Search Results

Search found 8557 results on 343 pages for 'attribute exchange'.

Page 177/343 | < Previous Page | 173 174 175 176 177 178 179 180 181 182 183 184  | Next Page >

  • Why do my 512x512 bitmaps look jaggy on Android OpenGL?

    - by Milo Mordaunt
    This is sort of driving me nuts, I've googled and googled and tried everything I can think of, but my sprites still look super blurry and super jaggy. Example: Here: https://docs.google.com/open?id=0Bx9Gbwnv9Hd2TmpiZkFycUNmRTA If you click through to the actual full size image you should see what I mean, it's like it's taking and average of every 5*5 pixels or something, the background looks really blurry and blocky, but the ball is the worst. The clouds look all right for some reason, probably because they're mostly transparent. I know the pngs aren't top notch themselves but hey, I'm no artist! I would imagine it's a problem with either: a. How the pngs are made example sprite (512x512): https://docs.google.com/open?id=0Bx9Gbwnv9Hd2a2RRQlJiQTFJUEE b. How my Matrices work This is the relevant parts of the renderer: public void onDrawFrame(GL10 unused) { if(world != null) { dt = System.currentTimeMillis() - endTime; world.update( (float) dt); // Redraw background color GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT); Matrix.setIdentityM(mvMatrix, 0); Matrix.translateM(mvMatrix, 0, 0f, 0f, 0f); world.draw(mvMatrix, mProjMatrix); endTime = System.currentTimeMillis(); } else { Log.d(TAG, "There is no world...."); } } public void onSurfaceChanged(GL10 unused, int width, int height) { GLES20.glViewport(0, 0, width, height); Matrix.orthoM(mProjMatrix, 0, 0, width /2, 0, height /2, -1.f, 1.f); } And this is what each Quad does when draw is called: public void draw(float[] mvMatrix, float[] pMatrix) { Matrix.setIdentityM(mMatrix, 0); Matrix.setIdentityM(mvMatrix, 0); Matrix.translateM(mMatrix, 0, xPos, yPos, 0.f); Matrix.multiplyMM(mvMatrix, 0, mvMatrix, 0, mMatrix, 0); Matrix.scaleM(mvMatrix, 0, scale, scale, 0f); Matrix.rotateM(mvMatrix, 0, angle, 0f, 0f, -1f); GLES20.glUseProgram(mProgram); posAttr = GLES20.glGetAttribLocation(mProgram, "vPosition"); texAttr = GLES20.glGetAttribLocation(mProgram, "aTexCo"); uSampler = GLES20.glGetUniformLocation(mProgram, "uSampler"); int alphaHandle = GLES20.glGetUniformLocation(mProgram, "alpha"); GLES20.glVertexAttribPointer(posAttr, COORDS_PER_VERTEX, GLES20.GL_FLOAT, false, 0, vertexBuffer); GLES20.glVertexAttribPointer(texAttr, 2, GLES20.GL_FLOAT, false, 0, texCoBuffer); GLES20.glEnableVertexAttribArray(posAttr); GLES20.glEnableVertexAttribArray(texAttr); GLES20.glActiveTexture(GLES20.GL_TEXTURE0); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, texture); GLES20.glUniform1i(uSampler, 0); GLES20.glUniform1f(alphaHandle, alpha); mMVMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVMatrix"); mPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uPMatrix"); GLES20.glUniformMatrix4fv(mMVMatrixHandle, 1, false, mvMatrix, 0); GLES20.glUniformMatrix4fv(mPMatrixHandle, 1, false, pMatrix, 0); GLES20.glDrawElements(GLES20.GL_TRIANGLE_STRIP, 4, GLES20.GL_UNSIGNED_SHORT, indicesBuffer); GLES20.glDisableVertexAttribArray(posAttr); GLES20.glDisableVertexAttribArray(texAttr); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0); } c. How my texture loading/blending/shaders setup works Here is the renderer setup: public void onSurfaceCreated(GL10 unused, EGLConfig config) { // Set the background frame color GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f); GLES20.glDisable(GLES20.GL_DEPTH_TEST); GLES20.glDepthMask(false); GLES20.glBlendFunc(GLES20.GL_ONE, GLES20.GL_ONE_MINUS_SRC_ALPHA); GLES20.glEnable(GLES20.GL_BLEND); GLES20.glEnable(GLES20.GL_DITHER); } Here is the vertex shader: attribute vec4 vPosition; attribute vec2 aTexCo; varying vec2 vTexCo; uniform mat4 uMVMatrix; uniform mat4 uPMatrix; void main() { gl_Position = uPMatrix * uMVMatrix * vPosition; vTexCo = aTexCo; } And here's the fragment shader: precision mediump float; uniform sampler2D uSampler; uniform vec4 vColor; varying vec2 vTexCo; varying float alpha; void main() { vec4 color = texture2D(uSampler, vec2(vTexCo)); gl_FragColor = color; if(gl_FragColor.a == 0.0) { "discard; } } This is how textures are loaded: private int loadTexture(int rescource) { int[] texture = new int[1]; BitmapFactory.Options opts = new BitmapFactory.Options(); opts.inScaled = false; Bitmap temp = BitmapFactory.decodeResource(context.getResources(), rescource, opts); GLES20.glGenTextures(1, texture, 0); GLES20.glActiveTexture(GLES20.GL_TEXTURE0); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, texture[0]); GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_LINEAR); GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_LINEAR); GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, 0, temp, 0); GLES20.glGenerateMipmap(GLES20.GL_TEXTURE_2D); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0); temp.recycle(); return texture[0]; } I'm sure I'm doing about 20,000 things wrong, so I'm really sorry if the problem is blindingly obvious... The test device is a Galaxy Note, running a JellyBean custom ROM, if that matters at all. So the screen resolution is 1280x800, which means... The background is 1024x1024, so yeah it might be a little blurry, but shouldn't be made of lego. Thank you so much, any answer at all would be appreciated.

    Read the article

  • data maintenance/migrations in image based sytems

    - by User
    Web applications usually have a database. The code and the database work hand in hand together. Therefore Frameworks like Ruby on Rails and Django create migration files Sure there are also servers written in Self or Smalltalk or other image-based systems that face the same problem: Code is not written on the server but in a separate image of the programmer. How do these systems deal with a changing schema, changing classes/prototypes. Which way do the migrations go? Example: What is the process of a new attribute going from programmer's idea to the server code and all objects? I found the Gemstone/S manual chapter 8 but it does not really talk about the process of shipping code to the server.

    Read the article

  • Coolbits not working

    - by usk
    I want to use coolbits to increase fan speed of my Fermi GPU. 280.13 driver installed. Ubuntu 11.10 I edited /etc/X11/xorg.conf as follows, by pressing Alt+F2 and gksu gedit /etc/X11/xorg.conf I get Section "Device" Identifier "Device0" Driver "nvidia" VendorName "NVIDIA Corporation" BoardName "GeForce GTX 470" Option "NoLogo" "True" Option "Coolbits" "4" EndSection Started getting these messages, Gtk-WARNING **: Unable to locate theme engine in module_path: "pixmap" So I did this, sudo aptitude install gtk2-engines-pixbuf terminal, a@z:~$ nvidia-settings -a [gpu:0]/GPUFanControlState=1 a@z:~$ nvidia-settings -q fans 1 Fan on z:0 [0] z:0[fan:0] (Fan 0) a@z:~$ nvidia-settings -a [fan:0]/GPUCurrentFanSpeed=80 ERROR: Error assigning value 80 to attribute 'GPUCurrentFanSpeed' (z:0[fan:0]) as specified in assignment '[fan:0]/GPUCurrentFanSpeed=80' (Unknown Error). So, it's not working; I can't enter the fan speed percentage. Also from NVidia X Server, there are no fan controls. http://en.gentoo-wiki.com/wiki/Nvidia#Manual_Fan_Control_for_nVIDIA_Settings

    Read the article

  • Three Hidden Extensibility Gems in ASP.NET 4

    ASP.NET 4 introduces a few new extensibility APIs that live the hermit lifestyle away from the public eye. Theyre not exactly hidden - they are well documented on MSDN - but they arent well publicized. Its about time we shine a spotlight on them. PreApplicationStartMethodAttribute This new attribute allows you to have code run way early in the ASP.NET pipeline as an application starts up. I mean way early, even before Application_Start. This happens to also be before code in your App_code folder...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Facing problem with "gtk.RESPONSE_OK" in the simple-player quickly tutorial

    - by sumit_gt
    I am fairly new to both quickly and Python. I am facing several problems while learning to use quickly from the following tutorial on the Ubuntu developers site: http://developer.ubuntu.com/resources/app-developer-cookbook/multimedia/creating-a-simple-media-player/ The following error I'm unable to understand: Traceback (most recent call last): File "/home/sumit/Sumit/simple-player/simple_player/SimplePlayerWindow.py", line 36, in on_openbutton_clicked if response==gtk.RESPONSE_OK: NameError: global name 'gtk' is not defined I realize that I am supposed to import something, so I tried to add import gtk which it didn't work and it gave the following error: from gtk import _gtk /usr/lib/python2.7/dist-packages/gtk-2.0/gtk/__init__.py:40: Warning: g_type_get_qdata: assertion `node != NULL' failed from gtk import _gtk I have followed every step of the tutorials so far. But there is no mention of any other imports other that "prompts" and "os". Please help. Contribution of Agmenor, facing the same problem: I also tried to replace the text if response == gtk.RESPONSE_OK: by if response == Gtk.RESPONSE_OK: (notice the capital G). This gives another error: AttributeError: 'gi.repository.Gtk' object has no attribute 'RESPONSE_OK'

    Read the article

  • SEO optimisation problems after Google Panda [on hold]

    - by Daniel West
    I am currently trying to improve a website's SEO after it took quite a hit from the Google Panda upgrades. What are the main things I need to look at improving when trying to improve its ranking in Google? I have already made sure that the pages validate to W3C Standards, minimized css and js and done the obvious meta tags and header optimization but this hasn't made any difference yet. It could possibly be a content issue as the pages currently read much like a brochure and there were some pages with just a video and no text content on them which is also an issue. I've added a rel="nofollow" attribute to the links to these pages although i'm told this doesn't really work anymore. If anyone has any ideas let me know. Cheers!

    Read the article

  • How to detect if a placement would be empty (Doubleclick for Publishers)?

    - by EricSchaefer
    I want to use DFP for my ads. To display an ad I am calling GA_googleFillSlot(). My understanding of this is, that this function injects the ad code at the position where the JS call is placed. How can I detect if the placement is empty, e.g. no banner code will be injected because there is currently no banner. I need to know because the surrounding html needs to be adapted. Any ideas? Edit: Alternatively, is it possible to alter the injected html elements? DFP injects a div with id="google_ads_div_$PLACEMENT_ID". Is it possible to add a class attribute?

    Read the article

  • Why use link classes in oql instead of classes that contain links

    - by Isaac
    itop abstracts its very complex database design with an object query language (oql). For this there are classes definded, like 'Ticket' and 'Server'. Now a Ticket usually is linked to a Server. In my naive way I would give the Ticket class an attribute 'affected_server_list', where I could reference the affected servers. itop does it different: neither Servers nor Tickets know of each other. Instead there is a class 'linkTicketToServer', which provides the link between the two. The first thing I noticed is that it makes oql queries more complex. So I wondered why they designed it this way. One thing that occured to me is that it allows for more flexiblity, in that I can add links without modifying the original classes. Is this allready why one would implement it this way, or are there other reasons for this kind of design?

    Read the article

  • SOLVED: IIS7, validateIntegratedModeConfiguration and inheritInChildApplications clash

    This article covers an edge case you might have encountered when using the inheritInChildApplications attribute with a web site hosted on IIS7 and provides two possible solutions to your problem. Scenario You are trying to set up a sub application in your website and you wrap the <location path="." inheritInChildApplications="false"> element around your <system.webServer> element to break dependencies between apps. Despite having followed the correct instructions...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Geotargeted subfolder questions (Portugal/Brazil and Switzerland)

    - by Lucy
    We are at the beginning of the process to get multilingual versions of a website. We will be using subfolders working off the core domain (eg mydomain.com/fr/), set the geotargeting at webmaster tools and set hreflang attribute. I would really appreciate your help with a couple of questions. 1/Portuguese: we will have a Portuguese language version of the site. Our intention is to use this to cover users in both Portugal AND Brazil. ie, we are not going to do separate folders mydomain.com/pt/ and mydomain.com/br/ Can I use 2 hreflang attributes for this language version to tell Google it covers Brazil AND Portugal? What country code to use for this subfolder? 2/Switzerland Does anyone have best practice advice how to do this? One one hand, the subfolder should be mydomain.com/ch/ but as Switzerland covers 2 language possibilities (French AND German) - what to do? thanks

    Read the article

  • What is history and concept of code annotation?

    - by Eonil
    C# and Java has code attribute and code annotation. I don't know about other languages, but I know the code annotation feature is used to expand language itself. I knew what it is, but I want to know how it developed over time. I want to know its history. How it demanded and how it implemented. Is this possible to implement this in kind of concept on LISP, Smalltalk or C++? And is there a general term to call the concept of annotation?

    Read the article

  • Can Google Employees See My Saved Google Chrome Passwords?

    - by Jason Fitzpatrick
    Storing your passwords in your web browser seems like a great time saver, but are the passwords secure and inaccessible to others (even employees of the browser company) when squirreled away? Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. The Question SuperUser reader MMA is curious if Google employees have (or could have) access to the passwords he stores in Google Chrome: I understand that we are really tempted to save our passwords in Google Chrome. The likely benefit is two fold, You don’t need to (memorize and) input those long and cryptic passwords. These are available wherever you are once you log in to your Google account. The last point sparked my doubt. Since the password is available anywhere, the storage must in some central location, and this should be at Google. Now, my simple question is, can a Google employee see my passwords? Searching over the Internet revealed several articles/messages. Do you save passwords in Chrome? Maybe you should reconsider: Talks about your passwords being stolen by someone who has access to your computer account. Nothing mentioned about the central storage security and vulnerability. There is even a response from Chrome browser security tech lead about the first issue. Chrome’s insane password security strategy: Mostly along the same line. You can steal password from somebody if you have access to the computer account. How to Steal Passwords Saved in Google Chrome in 5 Simple Steps: Teaches you how to actually perform the act mentioned in the previous two when you have access to somebody else’s account. There are many more (including this one at this site), mostly along the same line, points, counter-points, huge debates. I refrain from mentioning them here, simply carry a search if you want to find them. Coming back to my original query, can a Google employee see my password? Since I can view the password using a simple button, definitely they can be unhashed (decrypted) even if encrypted. This is very different from the passwords saved in Unix-like OS’s where the saved password can never be seen in plain text. They use a one-way encryption algorithm to encrypt your passwords. This encrypted password is then stored in the passwd or shadow file. When you attempt to login, the password you type in is encrypted again and compared with the entry in the file that stores your passwords. If they match, it must be the same password, and you are allowed access. Thus, a superuser can change my password, can block my account, but he can never see my password. So are his concerns well founded or will a little insight dispel his worry? The Answer SuperUser contributor Zeel helps put his mind at ease: Short answer: No* Passwords stored on your local machine can be decrypted by Chrome, as long as your OS user account is logged in. And then you can view those in plain text. At first this seems horrible, but how did you think auto-fill worked? When that password field gets filled in, Chrome must insert the real password into the HTML form element – or else the page wouldn’t work right, and you could not submit the form. And if the connection to the website is not over HTTPS, the plain text is then sent over the internet. In other words, if chrome can’t get the plain text passwords, then they are totally useless. A one way hash is no good, because we need to use them. Now the passwords are in fact encrypted, the only way to get them back to plain text is to have the decryption key. That key is your Google password, or a secondary key you can set up. When you sign into Chrome and sync the Google servers will transmit the encrypted passwords, settings, bookmarks, auto-fill, etc, to your local machine. Here Chrome will decrypt the information and be able to use it. On Google’s end all that info is stored in its encrpyted state, and they do not have the key to decrypt it. Your account password is checked against a hash to log in to Google, and even if you let chrome remember it, that encrypted version is hidden in the same bundle as the other passwords, impossible to access. So an employee could probably grab a dump of the encrypted data, but it wouldn’t do them any good, since they would have no way to use it.* So no, Google employees can not** access your passwords, since they are encrypted on their servers. * However, do not forget that any system that can be accessed by an authorized user can be accessed by an unauthorized user. Some systems are easier to break than other, but none are fail-proof. . . That being said, I think I will trust Google and the millions they spend on security systems, over any other password storage solution. And heck, I’m a wimpy nerd, it would be easier to beat the passwords out of me than break Google’s encryption. ** I am also assuming that there isn’t a person who just happens to work for Google gaining access to your local machine. In that case you are screwed, but employment at Google isn’t actually a factor any more. Moral: Hit Win + L before leaving machine. While we agree with zeel that it’s a pretty safe bet (as long as your computer is not compromised) that your passwords are in fact safe while stored in Chrome, we prefer to encrypt all our logins and passwords in a LastPass vault. Have something to add to the explanation? Sound off in the the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.     

    Read the article

  • BizTalk: Internals: the Partner Direct Ports and the Orchestration Chains

    - by Leonid Ganeline
    Partner Direct Port is one of the BizTalk hidden gems. It opens simple ways to the several messaging patterns. This article based on the Kevin Lam’s blog article. The article is pretty detailed but it still leaves several unclear pieces. So I have created a sample and will show how it works from different perspectives. Requirements We should create an orchestration chain where the messages should be routed from the first stage to the second stage. The messages should not be modified. All messages has the same message type. Common artifacts Source code can be downloaded here. It is interesting but all orchestrations use only one port type. It is possible because all ports are one-way ports and use only one operation. I have added a B orchestration. It helps to test the sample, showing all test messages in channel. The Receive shape Filter is empty. A Receive Port (R_Shema1Direct) is a plain Direct Port. As you can see, a subscription expression of this direct port has only one part, the MessageType for our test schema: A Filer is empty but, as you know, a link from the Receive shape to the Port creates this MessageType expression. I use only one Physical Receive File port to send a message to all processes. Each orchestration outputs a Trace.WriteLine(“<Orchestration Name>”). Forward Binding This sample has three orchestrations: A_1, A_21 and A_22. A_1 is a sender, A_21 and A_22 are receivers. Here is a subscription of the A_1 orchestration: It has two parts A MessageType. The same was for the B orchestration. A ReceivePortID. There was no such parameter for the B orchestration. It was created because I have bound the orchestration port with Physical Receive File port. This binding means the PortID parameter is added to the subscription. How to set up the ports? All ports involved in the message exchange should be the same port type. It forces us to use the same operation and the same message type for the bound ports. This step as absolutely contra-intuitive. We have to choose a Partner Orchestration parameter for the sending orchestration, A_1. The first strange thing is it is not a partner orchestration we have to choose but an orchestration port. But the most strange thing is we have to choose exactly this orchestration and exactly this port.It is not a port from the partner, receive orchestrations, A_21 or A_22, but it is A_1 orchestration and S_SentFromA_1 port. Now we have to choose a Partner Orchestration parameter for the received orchestrations, A_21 and A_22. Nothing strange is here except a parameter name. We choose the port of the sender, A_1 orchestration and S_SentFromA_1 port. As you can see the Partner Orchestration parameter for the sender and receiver orchestrations is the same. Testing I dropped a test file in a file folder. There we go: A dropped file was received by B and by A_1 A_1 sent a message forward. A message was received by B, A_21, A_22 Let’s look at a context of a message sent by A_1 on the second step: A MessageType part. It is quite expected. A PartnerService, a ParnerPort, an Operation. All those parameters were set up in the Partner Orchestration parameter on both bound ports.     Now let’s see a subscription of the A_21 and A_22 orchestrations. Now it makes sense. That’s why we have chosen such a strange value for the Partner Orchestration parameter of the sending orchestration. Inverse Binding This sample has three orchestrations: A_11, A_12 and A_2. A_11 and A_12 are senders, A_2 is receiver. How to set up the ports? All ports involved in the message exchange should be the same port type. It forces us to use the same operation and the same message type for the bound ports. This step as absolutely contra-intuitive. We have to choose a Partner Orchestration parameter for a receiving orchestration, A_2. The first strange thing is it is not a partner orchestration we have to choose but an orchestration port. But the most strange thing is we have to choose exactly this orchestration and exactly this port.It is not a port from the partner, sent orchestrations, A_11 or A_12, but it is A_2 orchestration and R_SentToA_2 port. Now we have to choose a Partner Orchestration parameter for the sending orchestrations, A_11 and A_12. Nothing strange is here except a parameter name. We choose the port of the sender, A_2 orchestration and R_SentToA_2 port. Testing I dropped a test file in a file folder. There we go: A dropped file was received by B, A_11 and by A_12 A_11 and A_12 sent two messages forward. The messages were received by B, A_2 Let’s see what was a context of a message sent by A_1 on the second step: A MessageType part. It is quite expected. A PartnerService, a ParnerPort, an Operation. All those parameters were set up in the Partner Orchestration parameter on both bound ports. Here is a subscription of the A_2 orchestration. Models I had a hard time trying to explain the Partner Direct Ports in simple terms. I have finished with this model: Forward Binding Receivers know a Sender. Sender doesn’t know Receivers. Publishers know a Subscriber. Subscriber doesn’t know Publishers. 1 –> 1 1 –> M Inverse Binding Senders know a Receiver. Receiver doesn’t know Senders. Subscribers know a Publisher. Publisher doesn’t know Subscribers. 1 –> 1 M –> 1 Notes   Orchestration chain It’s worth to note, the Partner Direct Port Binding creates a chain opened from one side and closed from another. The Forward Binding: A new Receiver can be added at run-time. The Sender can not be changed without design-time changes in Receivers. The Inverse Binding: A new Sender can be added at run-time. The Receiver can not be changed without design-time changes in Senders.

    Read the article

  • Orchestrating the Virtual Enterprise

    - by John Murphy
    During the American Industrial Revolution, the Ford Motor Company did it all. It turned raw materials into a showroom full of Model Ts. It owned a steel mill, a glass factory, and an automobile assembly line. The company was both self-sufficient and innovative and went on to become one of the largest and most profitable companies in the world. Nowadays, it's unusual for any business to follow this vertical integration model because its much harder to be best in class across such a wide a range of capabilities and services. Instead, businesses focus on their core competencies and outsource other business functions to specialized suppliers. They exchange vertical integration for collaboration. When done well, all parties benefit from this arrangement and the collaboration leads to the creation of an agile, lean and successful "virtual enterprise." Case in point: For Sun hardware, Oracle outsources most of its manufacturing and all of its logistics to third parties. These are vital activities, but ones where Oracle doesn't have a core competency, so we shift them to business partners who do. Within our enterprise, we always retain the core functions of product development, support, and most of the sales function, because that's what constitutes our core value to our customers. This is a perfect example of a virtual enterprise.  What are the implications of this? It means that we must exchange direct internal control for indirect external collaboration. This fundamentally changes the relative importance of different business processes, the boundaries of security and information sharing, and the relationship of the supply chain systems to the ERP. The challenge is that the systems required to support this virtual paradigm are still mired in "island enterprise" thinking. But help is at hand. Developments such as the Web, social networks, collaboration, and rules-based orchestration offer great potential to fundamentally re-architect supply chain systems to better support the virtual enterprise.  Supply Chain Management Systems in a Virtual Enterprise Historically enterprise software was constructed to automate the ERP - and then the supply chain systems extended the ERP. They were joined at the hip. In virtual enterprises, the supply chain system needs to be ERP agnostic, sitting above each of the ERPs that are distributed across the virtual enterprise - most of which are operating in other businesses. This is vital so that the supply chain system can manage the flow of material and the related information through the multiple enterprises. It has to have strong collaboration tools. It needs to be highly flexible. Users need to be able to see information that's coming from multiple sources and be able to react and respond to events across those sources.  Oracle Fusion Distributed Order Orchestration (DOO) is a perfect example of a supply chain system designed to operate in this virtual way. DOO embraces the idea that a company's fulfillment challenge is a distributed, multi-enterprise problem. It enables users to manage the process and the trading partners in a uniform way and deliver a consistent user experience while operating over a heterogeneous, virtual enterprise. This is a fundamental shift at the core of managing supply chains. It forces virtual enterprises to think architecturally about how best to construct their supply chain systems.  Case in point, almost everyone has ordered from Amazon.com at one time or another. Our orders are as likely to be fulfilled by third parties as they are by Amazon itself. To deliver the order promptly and efficiently, Amazon has to send it to the right fulfillment location and know the availability in that location. It needs to be able to track status of the fulfillment and deal with exceptions. As a virtual enterprise, Amazon's operations, using thousands of trading partners, requires a very different approach to fulfillment than the traditional 'take an order and ship it from your own warehouse' model. Amazon had no choice but to develop a complex, expensive and custom solution to tackle this problem as there used to be no product solution available. Now, other companies who want to follow similar models have a better off-the-shelf choice -- Oracle Distributed Order Orchestration (DOO).  Consider how another of our customers is using our distributed orchestration solution. This major airplane manufacturer has a highly complex business and interacts regularly with the U.S. Government and major airlines. It sits in the middle of an intricate supply chain and needed to improve visibility across its many different entities. Oracle Fusion DOO gives the company an orchestration mechanism so it could improve quality, speed, flexibility, and consistency without requiring an organ transplant of these highly complex legacy systems. Many retailers face the challenge of dealing with brick and mortar, Web, and reseller channels. They all need to be knitted together into a virtual enterprise experience that is consistent for their customers. When a large U.K. grocer with a strong brick and mortar retail operation added an online business, they turned to Oracle Fusion DOO to bring these entities together. Disturbing the Peace with Acquisitions Quite often a company's ERP system is disrupted when it acquires a new company. An acquisition can inject a new set of processes and systems -- or even introduce an entirely new business like Sun's hardware did at Oracle. This challenge has been a driver for some of our DOO customers. A large power management company is using Oracle Fusion DOO to provide the flexibility to rapidly integrate additional products and services into its central fulfillment operation. The Flip Side of Fulfillment Meanwhile, we haven't ignored similar challenges on the supply side of the equation. Specifically, how to manage complex supply in a flexible way when there are multiple trading parties involved? How to manage the supply to suppliers? How to manage critical components that need to merge in a tier two or tier three supply chain? By investing in supply orchestration solutions for the virtual enterprise, we plan to give users better visibility into their network of suppliers to help them drive down costs. We also think this technology and full orchestration process can be applied to the financial side of organizations. An example is transactions that flow through complex internal structures to minimize tax exposure. We can help companies manage those transactions effectively by thinking about the internal organization as a virtual enterprise and bringing the same solution set to this internal challenge.  The Clear Front Runner No other company is investing in solving the virtual enterprise supply chain issues like Oracle is. Oracle is in a unique position to become the gold standard in this market space. We have the infrastructure of Oracle technology. We already have an Oracle Fusion DOO application which embraces the best of what's required in this area. And we're absolutely committed to extending our Fusion solution to other use cases and delivering even more business value.

    Read the article

  • Custom Configuration Section Handlers

    Most .NET developers who need to store something in configuration tend to use appSettings for this purpose, in my experience.  More recently, the framework itself has helped things by adding the <connectionStrings /> section so at least these are in their own section and not adding to the appSettings clutter that pollutes most apps.  I recommend avoiding appSettings for several reasons.  In addition to those listed there, I would add that strong typing and validation are additional reasons to go the custom configuration section route. For my ASP.NET Tips and Tricks talk, I use the following example, which is a simple DemoSettings class that includes two fields.  The first is an integer representing how many attendees there are present for the talk, and the second is the title of the talk.  The setup in web.config is as follows: <configSections> <section name="DemoSettings" type="ASPNETTipsAndTricks.Code.DemoSettings" /> </configSections>   <DemoSettings sessionAttendees="100" title="ASP.NET Tips and Tricks DevConnections Spring 2010" /> Referencing the values in code is strongly typed and straightforward.  Here I have a page that exposes two properties which internally get their values from the configuration section handler: public partial class CustomConfig1 : System.Web.UI.Page { public string SessionTitle { get { return DemoSettings.Settings.Title; } } public int SessionAttendees { get { return DemoSettings.Settings.SessionAttendees; } } } Note that the settings are only read from the config file once after that they are cached so there is no need to be concerned about excessive file access. Now weve seen how to set it up on the config file and how to refer to the settings in code.  All that remains is to see the file itself: public class DemoSettings : ConfigurationSection { private static DemoSettings settings = ConfigurationManager.GetSection("DemoSettings") as DemoSettings; public static DemoSettings Settings{ get { return settings;} }   [ConfigurationProperty("sessionAttendees" , DefaultValue = 200 , IsRequired = false)] [IntegerValidator(MinValue = 1 , MaxValue = 10000)] public int SessionAttendees { get { return (int)this["sessionAttendees"]; } set { this["sessionAttendees"] = value; } }   [ConfigurationProperty("title" , IsRequired = true)] [StringValidator(InvalidCharacters = "~!@#$%^&*()[]{}/;\"|\\")] public string Title { get { return (string)this["title"]; } set { this["title"] = value; }   } } The class is pretty straightforward, but there are some important components to note.  First, it must inherit from System.Configuration.ConfigurationSection.  Next, as a convention I like to have a static settings member that is responsible for pulling out the section when the class is first referenced, and further to expose this collection via a static readonly property, Settings.  Note that the types of both of these are the type of my class, DemoSettings. The properties of the class, SessionAttendees and Title, should map to the attributes of the config element in the XML file.  The [ConfigurationProperty] attribute allows you to map the attribute name to the property name (thus using both XML standard naming conventions and C# naming conventions).  In addition, you can specify a default value to use if nothing is specified in the config file, and whether or not the setting must be provided (IsRequired).  If it is required, then it doesnt make sense to include a default value. Beyond defaults and required, you can specify more advanced validation rules for the configuration values using additional C# attributes, such as [IntegerValidator] and [StringValidator].  Using these, you can declaratively specify that your configuration values be in a given range, or omit certain forbidden characters, for instance.  Of course you can write your own custom validation attributes, and there are others specified in System.Configuration. Individual sections can also be loaded from separate files, using syntax like this: <DemoSettings configSource="demosettings.config" /> Summary Using a custom configuration section handler is not hard.  If your application or component requires configuration, I recommend creating a custom configuration handler dedicated to your app or component.  Doing so will reduce the clutter in appSettings, will provide you with strong typing and validation, and will make it much easier for other developers or system administrators to locate and understand the various configuration values that are necessary for a given application. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Why Is Vertical Resolution Monitor Resolution so Often a Multiple of 360?

    - by Jason Fitzpatrick
    Stare at a list of monitor resolutions long enough and you might notice a pattern: many of the vertical resolutions, especially those of gaming or multimedia displays, are multiples of 360 (720, 1080, 1440, etc.) But why exactly is this the case? Is it arbitrary or is there something more at work? Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. The Question SuperUser reader Trojandestroy recently noticed something about his display interface and needs answers: YouTube recently added 1440p functionality, and for the first time I realized that all (most?) vertical resolutions are multiples of 360. Is this just because the smallest common resolution is 480×360, and it’s convenient to use multiples? (Not doubting that multiples are convenient.) And/or was that the first viewable/conveniently sized resolution, so hardware (TVs, monitors, etc) grew with 360 in mind? Taking it further, why not have a square resolution? Or something else unusual? (Assuming it’s usual enough that it’s viewable). Is it merely a pleasing-the-eye situation? So why have the display be a multiple of 360? The Answer SuperUser contributor User26129 offers us not just an answer as to why the numerical pattern exists but a history of screen design in the process: Alright, there are a couple of questions and a lot of factors here. Resolutions are a really interesting field of psychooptics meeting marketing. First of all, why are the vertical resolutions on youtube multiples of 360. This is of course just arbitrary, there is no real reason this is the case. The reason is that resolution here is not the limiting factor for Youtube videos – bandwidth is. Youtube has to re-encode every video that is uploaded a couple of times, and tries to use as little re-encoding formats/bitrates/resolutions as possible to cover all the different use cases. For low-res mobile devices they have 360×240, for higher res mobile there’s 480p, and for the computer crowd there is 360p for 2xISDN/multiuser landlines, 720p for DSL and 1080p for higher speed internet. For a while there were some other codecs than h.264, but these are slowly being phased out with h.264 having essentially ‘won’ the format war and all computers being outfitted with hardware codecs for this. Now, there is some interesting psychooptics going on as well. As I said: resolution isn’t everything. 720p with really strong compression can and will look worse than 240p at a very high bitrate. But on the other side of the spectrum: throwing more bits at a certain resolution doesn’t magically make it better beyond some point. There is an optimum here, which of course depends on both resolution and codec. In general: the optimal bitrate is actually proportional to the resolution. So the next question is: what kind of resolution steps make sense? Apparently, people need about a 2x increase in resolution to really see (and prefer) a marked difference. Anything less than that and many people will simply not bother with the higher bitrates, they’d rather use their bandwidth for other stuff. This has been researched quite a long time ago and is the big reason why we went from 720×576 (415kpix) to 1280×720 (922kpix), and then again from 1280×720 to 1920×1080 (2MP). Stuff in between is not a viable optimization target. And again, 1440P is about 3.7MP, another ~2x increase over HD. You will see a difference there. 4K is the next step after that. Next up is that magical number of 360 vertical pixels. Actually, the magic number is 120 or 128. All resolutions are some kind of multiple of 120 pixels nowadays, back in the day they used to be multiples of 128. This is something that just grew out of LCD panel industry. LCD panels use what are called line drivers, little chips that sit on the sides of your LCD screen that control how bright each subpixel is. Because historically, for reasons I don’t really know for sure, probably memory constraints, these multiple-of-128 or multiple-of-120 resolutions already existed, the industry standard line drivers became drivers with 360 line outputs (1 per subpixel). If you would tear down your 1920×1080 screen, I would be putting money on there being 16 line drivers on the top/bottom and 9 on one of the sides. Oh hey, that’s 16:9. Guess how obvious that resolution choice was back when 16:9 was ‘invented’. Then there’s the issue of aspect ratio. This is really a completely different field of psychology, but it boils down to: historically, people have believed and measured that we have a sort of wide-screen view of the world. Naturally, people believed that the most natural representation of data on a screen would be in a wide-screen view, and this is where the great anamorphic revolution of the ’60s came from when films were shot in ever wider aspect ratios. Since then, this kind of knowledge has been refined and mostly debunked. Yes, we do have a wide-angle view, but the area where we can actually see sharply – the center of our vision – is fairly round. Slightly elliptical and squashed, but not really more than about 4:3 or 3:2. So for detailed viewing, for instance for reading text on a screen, you can utilize most of your detail vision by employing an almost-square screen, a bit like the screens up to the mid-2000s. However, again this is not how marketing took it. Computers in ye olden days were used mostly for productivity and detailed work, but as they commoditized and as the computer as media consumption device evolved, people didn’t necessarily use their computer for work most of the time. They used it to watch media content: movies, television series and photos. And for that kind of viewing, you get the most ‘immersion factor’ if the screen fills as much of your vision (including your peripheral vision) as possible. Which means widescreen. But there’s more marketing still. When detail work was still an important factor, people cared about resolution. As many pixels as possible on the screen. SGI was selling almost-4K CRTs! The most optimal way to get the maximum amount of pixels out of a glass substrate is to cut it as square as possible. 1:1 or 4:3 screens have the most pixels per diagonal inch. But with displays becoming more consumery, inch-size became more important, not amount of pixels. And this is a completely different optimization target. To get the most diagonal inches out of a substrate, you want to make the screen as wide as possible. First we got 16:10, then 16:9 and there have been moderately successful panel manufacturers making 22:9 and 2:1 screens (like Philips). Even though pixel density and absolute resolution went down for a couple of years, inch-sizes went up and that’s what sold. Why buy a 19″ 1280×1024 when you can buy a 21″ 1366×768? Eh… I think that about covers all the major aspects here. There’s more of course; bandwidth limits of HDMI, DVI, DP and of course VGA played a role, and if you go back to the pre-2000s, graphics memory, in-computer bandwdith and simply the limits of commercially available RAMDACs played an important role. But for today’s considerations, this is about all you need to know. Have something to add to the explanation? Sound off in the the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.     

    Read the article

  • EclipseLink Moxy Provider for JAX-RS and JAX-WS

    - by arungupta
    EclipseLink MOXy is a JAXB provider bundled in GlassFish 3.1.2. In addition to JAXB RI, it provides XPath Based Mapping, better support for JPA entities, native JSON binding and many other features. Learn more about MOXy and JAXB examples on their wiki. Blaise blogged about how MOXy can be leveraged to create a JAX-WS service.You just need to provide data-binding attribute in sun-jaxws.xml and then all the XPath-based mapping can be specified on JAXB beans. MOXy can also be used as JAX-RS JSON provider on server-side and client-side. How are you using MOXy in your applications ?

    Read the article

  • Solaris 11.2: Functional Deprecation

    - by alanc
    In Solaris 11.1, I updated the system headers to enable use of several attributes on functions, including noreturn and printf format, to give compilers and static analyzers more information about how they are used to give better warnings when building code. In Solaris 11.2, I've gone back in and added one more attribute to a number of functions in the system headers: __attribute__((__deprecated__)). This is used to warn people building software that they’re using function calls we recommend no longer be used. While in many cases the Solaris Binary Compatibility Guarantee means we won't ever remove these functions from the system libraries, we still want to discourage their use. I made passes through both the POSIX and C standards, and some of the Solaris architecture review cases to come up with an initial list which the Solaris architecture review committee accepted to start with. This set is by no means a complete list of Obsolete function interfaces, but should be a reasonable start at functions that are well documented as deprecated and seem useful to warn developers away from. More functions may be flagged in the future as they get deprecated, or if further passes are made through our existing deprecated functions to flag more of them. Header Interface Deprecated by Alternative Documented in <door.h> door_cred(3C) PSARC/2002/188 door_ucred(3C) door_cred(3C) <kvm.h> kvm_read(3KVM), kvm_write(3KVM) PSARC/1995/186 Functions on kvm_kread(3KVM) man page kvm_read(3KVM) <stdio.h> gets(3C) ISO C99 TC3 (Removed in ISO C11), POSIX:2008/XPG7/Unix08 fgets(3C) gets(3C) man page, and just about every gets(3C) reference online from the past 25 years, since the Morris worm proved bad things happen when it’s used. <unistd.h> vfork(2) PSARC/2004/760, POSIX:2001/XPG6/Unix03 (Removed in POSIX:2008/XPG7/Unix08) posix_spawn(3C) vfork(2) man page. <utmp.h> All functions from getutent(3C) man page PSARC/1999/103 utmpx functions from getutentx(3C) man page getutent(3C) man page <varargs.h> varargs.h version of va_list typedef ANSI/ISO C89 standard <stdarg.h> varargs(3EXT) <volmgt.h> All functions PSARC/2005/672 hal(5) API volmgt_check(3VOLMGT), etc. <sys/nvpair.h> nvlist_add_boolean(3NVPAIR), nvlist_lookup_boolean(3NVPAIR) PSARC/2003/587 nvlist_add_boolean_value, nvlist_lookup_boolean_value nvlist_add_boolean(3NVPAIR) & (9F), nvlist_lookup_boolean(3NVPAIR) & (9F). <sys/processor.h> gethomelgroup(3C) PSARC/2003/034 lgrp_home(3LGRP) gethomelgroup(3C) <sys/stat_impl.h> _fxstat, _xstat, _lxstat, _xmknod PSARC/2009/657 stat(2) old functions are undocumented remains of SVR3/COFF compatibility support If the above table is cut off when viewing in the blog, try viewing this standalone copy of the table. To See or Not To See To see these warnings, you will need to be building with either gcc (versions 3.4, 4.5, 4.7, & 4.8 are available in the 11.2 package repo), or with Oracle Solaris Studio 12.4 or later (which like Solaris 11.2, is currently in beta testing). For instance, take this oversimplified (and obviously buggy) implementation of the cat command: #include <stdio.h> int main(int argc, char **argv) { char buf[80]; while (gets(buf) != NULL) puts(buf); return 0; } Compiling it with the Studio 12.4 beta compiler will produce warnings such as: % cc -V cc: Sun C 5.13 SunOS_i386 Beta 2014/03/11 % cc gets_test.c "gets_test.c", line 6: warning: "gets" is deprecated, declared in : "/usr/include/iso/stdio_iso.h", line 221 The exact warning given varies by compilers, and the compilers also have a variety of flags to either raise the warnings to errors, or silence them. Of couse, the exact form of the output is Not An Interface that can be relied on for automated parsing, just shown for example. gets(3C) is actually a special case — as noted above, it is no longer part of the C Standard Library in the C11 standard, so when compiling in C11 mode (i.e. when __STDC_VERSION__ >= 201112L), the <stdio.h> header will not provide a prototype for it, causing the compiler to complain it is unknown: % gcc -std=c11 gets_test.c gets_test.c: In function ‘main’: gets_test.c:6:5: warning: implicit declaration of function ‘gets’ [-Wimplicit-function-declaration] while (gets(buf) != NULL) ^ The gets(3C) function of course is still in libc, so if you ignore the error or provide your own prototype, you can still build code that calls it, you just have to acknowledge you’re taking on the risk of doing so yourself. Solaris Studio 12.4 Beta % cc gets_test.c "gets_test.c", line 6: warning: "gets" is deprecated, declared in : "/usr/include/iso/stdio_iso.h", line 221 % cc -errwarn=E_DEPRECATED_ATT gets_test.c "gets_test.c", line 6: "gets" is deprecated, declared in : "/usr/include/iso/stdio_iso.h", line 221 cc: acomp failed for gets_test.c This warning is silenced in the 12.4 beta by cc -erroff=E_DEPRECATED_ATT No warning is currently issued by Studio 12.3 & earler releases. gcc 3.4.3 % /usr/sfw/bin/gcc gets_test.c gets_test.c: In function `main': gets_test.c:6: warning: `gets' is deprecated (declared at /usr/include/iso/stdio_iso.h:221) Warning is completely silenced with gcc -Wno-deprecated-declarations gcc 4.7.3 % /usr/gcc/4.7/bin/gcc gets_test.c gets_test.c: In function ‘main’: gets_test.c:6:5: warning: ‘gets’ is deprecated (declared at /usr/include/iso/stdio_iso.h:221) [-Wdeprecated-declarations] % /usr/gcc/4.7/bin/gcc -Werror=deprecated-declarations gets_test.c gets_test.c: In function ‘main’: gets_test.c:6:5: error: ‘gets’ is deprecated (declared at /usr/include/iso/stdio_iso.h:221) [-Werror=deprecated-declarations] cc1: some warnings being treated as errors Warning is completely silenced with gcc -Wno-deprecated-declarations gcc 4.8.2 % /usr/bin/gcc gets_test.c gets_test.c: In function ‘main’: gets_test.c:6:5: warning: ‘gets’ is deprecated (declared at /usr/include/iso/stdio_iso.h:221) [-Wdeprecated-declarations] while (gets(buf) != NULL) ^ % /usr/bin/gcc -Werror=deprecated-declarations gets_test.c gets_test.c: In function ‘main’: gets_test.c:6:5: error: ‘gets’ is deprecated (declared at /usr/include/iso/stdio_iso.h:221) [-Werror=deprecated-declarations] while (gets(buf) != NULL) ^ cc1: some warnings being treated as errors Warning is completely silenced with gcc -Wno-deprecated-declarations

    Read the article

  • Computer Networks UNISA - Chap 10 &ndash; In Depth TCP/IP Networking

    - by MarkPearl
    After reading this section you should be able to Understand methods of network design unique to TCP/IP networks, including subnetting, CIDR, and address translation Explain the differences between public and private TCP/IP networks Describe protocols used between mail clients and mail servers, including SMTP, POP3, and IMAP4 Employ multiple TCP/IP utilities for network discovery and troubleshooting Designing TCP/IP-Based Networks The following sections explain how network and host information in an IPv4 address can be manipulated to subdivide networks into smaller segments. Subnetting Subnetting separates a network into multiple logically defined segments, or subnets. Networks are commonly subnetted according to geographic locations, departmental boundaries, or technology types. A network administrator might separate traffic to accomplish the following… Enhance security Improve performance Simplify troubleshooting The challenges of Classful Addressing in IPv4 (No subnetting) The simplest type of IPv4 is known as classful addressing (which was the Class A, Class B & Class C network addresses). Classful addressing has the following limitations. Restriction in the number of usable IPv4 addresses (class C would be limited to 254 addresses) Difficult to separate traffic from various parts of a network Because of the above reasons, subnetting was introduced. IPv4 Subnet Masks Subnetting depends on the use of subnet masks to identify how a network is subdivided. A subnet mask indicates where network information is located in an IPv4 address. The 1 in a subnet mask indicates that corresponding bits in the IPv4 address contain network information (likewise 0 indicates the opposite) Each network class is associated with a default subnet mask… Class A = 255.0.0.0 Class B = 255.255.0.0 Class C = 255.255.255.0 An example of calculating  the network ID for a particular device with a subnet mask is shown below.. IP Address = 199.34.89.127 Subnet Mask = 255.255.255.0 Resultant Network ID = 199.34.89.0 IPv4 Subnetting Techniques Subnetting breaks the rules of classful IPv4 addressing. Read page 490 for a detailed explanation Calculating IPv4 Subnets Read page 491 – 494 for an explanation Important… Subnetting only applies to the devices internal to your network. Everything external looks at the class of the IP address instead of the subnet network ID. This way, traffic directed to your network externally still knows where to go, and once it has entered your internal network it can then be prioritized and segmented. CIDR (classless Interdomain Routing) CIDR is also known as classless routing or supernetting. In CIDR conventional network class distinctions do not exist, a subnet boundary can move to the left, therefore generating more usable IP addresses on your network. A subnet created by moving the subnet boundary to the left is known as a supernet. With CIDR also came new shorthand for denoting the position of subnet boundaries known as CIDR notation or slash notation. CIDR notation takes the form of the network ID followed by a forward slash (/) followed by the number of bits that are used for the extended network prefix. To take advantage of classless routing, your networks routers must be able to interpret IP addresses that don;t adhere to conventional network class parameters. Routers that rely on older routing protocols (i.e. RIP) are not capable of interpreting classless IP addresses. Internet Gateways Gateways are a combination of software and hardware that enable two different network segments to exchange data. A gateway facilitates communication between different networks or subnets. Because on device cannot send data directly to a device on another subnet, a gateway must intercede and hand off the information. Every device on a TCP/IP based network has a default gateway (a gateway that first interprets its outbound requests to other subnets, and then interprets its inbound requests from other subnets). The internet contains a vast number of routers and gateways. If each gateway had to track addressing information for every other gateway on the Internet, it would be overtaxed. Instead, each handles only a relatively small amount of addressing information, which it uses to forward data to another gateway that knows more about the data’s destination. The gateways that make up the internet backbone are called core gateways. Address Translation An organizations default gateway can also be used to “hide” the organizations internal IP addresses and keep them from being recognized on a public network. A public network is one that any user may access with little or no restrictions. On private networks, hiding IP addresses allows network managers more flexibility in assigning addresses. Clients behind a gateway may use any IP addressing scheme, regardless of whether it is recognized as legitimate by the Internet authorities but as soon as those devices need to go on the internet, they must have legitimate IP addresses to exchange data. When a clients transmission reaches the default gateway, the gateway opens the IP datagram and replaces the client’s private IP address with an Internet recognized IP address. This process is known as NAT (Network Address Translation). TCP/IP Mail Services All Internet mail services rely on the same principles of mail delivery, storage, and pickup, though they may use different types of software to accomplish these functions. Email servers and clients communicate through special TCP/IP application layer protocols. These protocols, all of which operate on a variety of operating systems are discussed below… SMTP (Simple Mail transfer Protocol) The protocol responsible for moving messages from one mail server to another over TCP/IP based networks. SMTP belongs to the application layer of the ODI model and relies on TCP as its transport protocol. Operates from port 25 on the SMTP server Simple sub-protocol, incapable of doing anything more than transporting mail or holding it in a queue MIME (Multipurpose Internet Mail Extensions) The standard message format specified by SMTP allows for lines that contain no more than 1000 ascii characters meaning if you relied solely on SMTP you would have very short messages and nothing like pictures included in an email. MIME us a standard for encoding and interpreting binary files, images, video, and non-ascii character sets within an email message. MIME identifies each element of a mail message according to content type. MIME does not replace SMTP but works in conjunction with it. Most modern email clients and servers support MIME POP (Post Office Protocol) POP is an application layer protocol used to retrieve messages from a mail server POP3 relies on TCP and operates over port 110 With POP3 mail is delivered and stored on a mail server until it is downloaded by a user Disadvantage of POP3 is that it typically does not allow users to save their messages on the server because of this IMAP is sometimes used IMAP (Internet Message Access Protocol) IMAP is a retrieval protocol that was developed as a more sophisticated alternative to POP3 The single biggest advantage IMAP4 has over POP3 is that users can store messages on the mail server, rather than having to continually download them Users can retrieve all or only a portion of any mail message Users can review their messages and delete them while the messages remain on the server Users can create sophisticated methods of organizing messages on the server Users can share a mailbox in a central location Disadvantages of IMAP are typically related to the fact that it requires more storage space on the server. Additional TCP/IP Utilities Nearly all TCP/IP utilities can be accessed from the command prompt on any type of server or client running TCP/IP. The syntaxt may differ depending on the OS of the client. Below is a list of additional TCP/IP utilities – research their use on your own! Ipconfig (Windows) & Ifconfig (Linux) Netstat Nbtstat Hostname, Host & Nslookup Dig (Linux) Whois (Linux) Traceroute (Tracert) Mtr (my traceroute) Route

    Read the article

  • Adaptive Layout for ADF Faces on Tablets

    - by Shay Shmeltzer
    In the 11.1.16 version of Oracle ADF we started adding specific features to the ADF Faces components so they'll work better on iPad tablets. In this entry I'm going to highlight some new capabilities that we have added to the 11.1.2.3 release. (note if you are still on the 11.1.1.* branch - you'll need to wait for 11.1.1.7 to get the features discussed here). The two key additions in the 11.1.2.3 version compared to the 11.1.1.6 features for iPad support include: pagination for tables and adaptive flow layout. The pagination for table is self explanatory, basically since iPad don't support scroll bars, we automatically switch the table component to render with a pagination toolbar that allow you to scroll set of records or directly jump to a specific set. See the image below. The adaptive flow layout takes a bit more explanation. On regular desktops the UI that you usually build for ADF Faces screens is going to use stretch layout - meaning that it stretches to fill the whole area of the browser window. If you resize the browser windoe, the ADF Faces page resizes with it. If your browser window is too small, scroll bars will appear to allow you to scroll to areas that are "hidden". However on an iPad, this is probably not the type of layout you want - you would rather have a flow layout that eliminates scroll bars and instead allows you to scroll down the page. Basically your want the page to be sized based on its content, rather then based on the browser window size. In ADF Faces terminology this can be done with the dimensionsFrom property set to "children". And here comes the tricky part, since in the past(and also today) when you create an ADF Faces page and add a stretchable component to it, the dimensionsFrom property is set to parent by default. This will be true to other layout components you'll add as well. At this point you might be wondering "Does this mean I'll need to go to each of the layout components in my page and modify the dimensionsFrom property value to be children?" ADF Faces to the rescue... To eliminate the need to do this tedious manual changes, we introduced a new web.xml parameter "oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS" You'll basically add the following to your web.xml <context-param>    <description>      This parameter controls the default value for component geometry on the page.      Supported values are:        legacy - component attributes use the default values as specified for the attributes                 in the tag documentation (default value)        auto   - component attributes use the correct default value given the value of their                 parent component. For example, with this setting, the panelStretchLayout                 will use "auto" as the default value for its "dimensionsFrom" attribute                 instead of "parent".    </description>    <param-name>oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS</param-name>    <param-value>auto</param-value>  </context-param> Once you set this parameter, you only need to set the dimensionsFrom attribute for the top level layout component on your page, and the rest of the components will adjust accordingly. One trick that you can use, and that is used in the demo below, is to have the dimensionsFrom property depend on the type of client that access your application. This way you can switch between stretch or flow layout based on the device accessing your application. For example I use the following in my page: <af:panelStretchLayout topHeight="70px" startWidth="0px" endWidth="0px"                                       dimensionsFrom="#{adfFacesContext.agent.capabilities['touchScreen'] eq 'none'  ? 'parent' : 'children' }"> Which results in a flow layout for iPads and a stretch layout for regular browsers. Check out the result in the below demo: &amp;lt;span id=&amp;quot;XinhaEditingPostion&amp;quot;&amp;gt;&amp;lt;/span&amp;gt;

    Read the article

  • ADF version of "Modern" dialog windows

    - by Martin Deh
    It is no surprise with the popularity of the i-devices (iphone, ipad), that many of the iOS UI based LnF (look and feel) would start to inspire web designers to incorporate the same LnF into their web sites.  Take for example, a normal dialog popup.  In the iOS world, the LnF becomes a bit more elegant by add just a simple element as a "floating" close button: In this blog post, I will describe how this can be accomplished using OOTB ADF components and CSS3 style elements. There are two ways that this can be achieved.  The easiest way is to simply replace the default image, which looks like this, and adjust the af|panelWindow:close-icon-style skin selector.   Using this simple technique, you can come up with this: The CSS code to produce this effect is pretty straight forward: af|panelWindow.test::close-icon-style{    background-image: url("../popClose.gif");    line-height: 10px;    position: absolute;    right: -10px;    top: -10px;    height:38px;    width:38px;    outline:none; } You can see from the CSS, the position of the region, which holds the image, is relocated based on the position based attributes.  Also, the addition of the "outline" attribute removes the border that is visible in Chrome and IE.  The second example, is based on not having an image to produce the close button.  Like the previous sample, I will use the OOTB panelWindow.  However, this time I will use a OOTB commandButton to replace the image.  The construct of the components looks like this: The commandButton is positioned first in the hierarchy making the re-positioning easier.  The commandButton will also need a style class assigned to it (i.e. closeButton), which will allow for the positioning and the over-riding of the default skin attributes of a default button.  In addition, the closeIconVisible property is set to false, since the default icon is no longer needed.  Once this is done, the rest is in the CSS.  Here is the sample that I created that was used for an actual customer POC: The CSS code for the button: af|commandButton.closeButton, af|commandButton.closeButton af|commandButton:text-only{     line-height: 10px;     position: absolute;     right: -10px;     top: -10px;     -webkit-border-radius: 70px;     -moz-border-radius: 70px;     -ms-border-radius: 70px;     border-radius: 70px;     background-image:none;     border:#828c95 1px solid;     background-color:black;     font-weight: bold;     text-align: center;     text-decoration: none;     color:white;     height:30px;     width:30px;     outline:none; } The CSS uses the border radius to create the round effect on the button (in IE 8, since border-radius is not supported, this will only work with some added code). Also, I add the box-shadow attribute to the panelWindow style class to give it a nice shadowing effect.

    Read the article

  • Will many links to the same page without nofollow penalize the host site in the search engine rankings?

    - by Evgeny
    May be a silly question, but I'll give it a shot :). On my forum app I would like to allow users with sufficiently high reputation display links to their home pages under every post - without the nofollow attribute (while lower rep users will have the nofollow) I am happy to help the site contributors improve rankings of their own, but not sure if this can actually deteriorate the rank of the host (the site that hosts those links) - as potentially the same link to the user's home page may be peppered in the pages of the host. What do you think? Thanks.

    Read the article

  • HTG Explains: Should You Buy Extended Warranties?

    - by Chris Hoffman
    Buy something at an electronics store and you’ll be confronted by a pushy salesperson who insists you need an extended warranty. You’ll also see extended warranties pushed hard when shopping online. But are they worth it? There’s a reason stores push extended warranties so hard. They’re almost always pure profit for the store involved. An electronics store may live on razor-thin product margins and make big profits on extended warranties and overpriced HDMI cables. You’re Already Getting Multiple Warranties First, back up. The product you’re buying already includes a warranty. In fact, you’re probably getting several different types of warranties. Store Return and Exchange: Most electronics stores allow you to return a malfunctioning product within the first 15 or 30 days and they’ll provide you with a new one. The exact period of time will vary from store to store. If you walk out of the store with a defective product and have to swap it for a new one within the first few weeks, this should be easy. Manufacturer Warranty: A device’s manufacturer — whether the device is a laptop, a television, or a graphics card — offers their own warranty period. The manufacturer warranty covers you after the store refuses to take the product back and exchange it. The length of this warranty depends on the type of product. For example, a cheap laptop may only offer a one-year manufacturer warranty, while a more expensive laptop may offer a two-year warranty. Credit Card Warranty Extension: Many credit cards offer free extended warranties on products you buy with that credit card. Credit card companies will often give you an additional year of warranty. For example, if you buy a laptop with a two year warranty and it fails in the third year, you could then contact your credit card company and they’d cover the cost of fixing or replacing it. Check your credit card’s benefits and fine print for more information. Why Extended Warranties Are Bad You’re already getting a fairly long warranty period, especially if you have a credit card that offers you a free extended warranty — these are fairly common. If the product you get is a “lemon” and has a manufacturing error, it will likely fail pretty soon — well within your warranty period. The extended warranty matters after all your other warranties are exhausted. In the case of a laptop with a two-year warranty that you purchase with a credit card giving you a one-year warranty extension, your extended warranty will kick in three years after you purchase the laptop. In that many years, your current laptop will likely feel pretty old and laptops that are as good — or better — will likely be pretty cheap. If it’s a television, better television displays will be available at a lower price point. You’ll either want to upgrade to a newer model or you’ll be able to buy a new, just-as-good product for very cheap. You’ll only have to pay out-of-pocket if your device fails after the normal warranty period — in over two or three years for typical laptops purchased with a decent credit card. Save the money you would have spent on the warranty and put it towards a future upgrade. How Much Do Extended Warranties Cost? Let’s look at an example from a typical pushy retail outlet, Best Buy. We went to Best Buy’s website and found a pretty standard $600 Samsung laptop. This laptop comes with a one-year warranty period. If purchased with a fairly common credit card, you can easily get a two-year warranty period on this laptop without spending an additional penny. (Yes, such credit cards are available with no yearly fees.) During the check-out process, Best Buy tries to sell you a Geek Squad “Accidental Protection Plan.” To get an additional year of Best Buy’s extended warranty, you’d have to pay $324.98 for a “3-Year Accidental Protection Plan”. You’d basically be paying more than half the price of your laptop for an additional year of warranty — remember, the standard warranties would cover you anyway for the first two years. If this laptop did break sometime between two and three years from now, we wouldn’t be surprised if you could purchase a comparable laptop for about $325 anyway. And, if you don’t need to replace it, you’ve saved that money. Best Buy would object that this isn’t a standard extended warranty. It’s a supercharged warranty plan that will also provide coverage if you spill something on your laptop or drop it and break it. You just have to ask yourself a question. What are the odds that you’ll drop your laptop or spill something on it? They’re probably pretty low if you’re a typical human being. Is it worth spending more than half the price of the laptop just in case you’ll make an uncommon mistake? Probably not. There may be occasional exceptions to this — some Apple users swear by Apple’s AppleCare, for example — but you should generally avoid buying these things. There’s a reason stores are so pushy about extended warranties, and it’s not because they want to help protect you. It’s because they’re making lots of profit from these plans, and they’re making so much profit because they’re not a good deal for customers. Image Credit: Philip Taylor on Flickr     

    Read the article

  • Google Authorship: can I display:none for link to profile?

    - by RubenGeert
    I'd like to have my 'mugshot' in Google's SERPs but I couldn't care less about Google+. I don't really want to link my website to Google+ either. Can I use CSS display:none; on the link leading to my profile and still have authorship, which looks like <a href='https://plus.google.com/111823012258578917399?rel=author' rel='nofollow'>Google</a>? Will the nofollow attribute here spoil things? I don't want to lose 'link juice' on Google+ if I don't have to. Now Google should crawl only the HTML but I'm sure they'll figure out the link is not visible (perhaps it's technically even cloaking. Does anybody have experience with this situation? And do I really have to become (reasonably) active on Google+ in order for authorship to show? This answer suggests I do but I didn't read anything on that in Google's guidelines.

    Read the article

  • Optimizing data downloaded via 'link' media queries and asynchronous loading

    - by adam-asdf
    I have a website that tries to make sensible use of media queries and avoid 'expensive' CSS for users of mobile devices. My eventual goal is to make it 'mobile-first' but for now, since it is based on Twitter Bootstrap it isn't. I included some background images (Base64 encoded) and styles that would only apply to "full-size" browsers in a separate stylesheet loaded asynchronously via modernizr.load. In Firefox (but not webkit browsers) it makes it so that if you navigate away from the homepage and then return, the content (specifically, all those extras) 'blinks' when it finishes loading...or maybe I should say reloading. If, instead of using modernizr.load, I include that stylesheet via a link... in the head with a media query attribute will it prevent the data from being downloaded by non-matching browsers (mobile, based on screensize) that it is inapplicable to?

    Read the article

< Previous Page | 173 174 175 176 177 178 179 180 181 182 183 184  | Next Page >