Search Results

Search found 9634 results on 386 pages for 'proxy pattern'.

Page 182/386 | < Previous Page | 178 179 180 181 182 183 184 185 186 187 188 189  | Next Page >

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1

    - by shiju
    In this post, I will demonstrate web application development using ASP. NET MVC 3, Razor and EF code First. This post will also cover Dependency Injection using Unity 2.0 and generic Repository and Unit of Work for EF Code First. The following frameworks will be used for this step by step tutorial. ASP.NET MVC 3 EF Code First CTP 5 Unity 2.0 Define Domain Model Let’s create domain model for our simple web application Category class public class Category {     public int CategoryId { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public virtual ICollection<Expense> Expenses { get; set; } }   Expense class public class Expense {             public int ExpenseId { get; set; }            public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }     public int CategoryId { get; set; }     public virtual Category Category { get; set; } } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. In this post, we will be focusing on CRUD operations for the entity Category and will be working on the Expense entity with a View Model object in the later post. And the source code for this application will be refactored over time. The above entities are very simple POCO (Plain Old CLR Object) classes and the entity Category is decorated with validation attributes in the System.ComponentModel.DataAnnotations namespace. Now we want to use these entities for defining model objects for the Entity Framework 4. Using the Code First approach of Entity Framework, we can first define the entities by simply writing POCO classes without any coupling with any API or database library. This approach lets you focus on domain model which will enable Domain-Driven Development for applications. EF code first support is currently enabled with a separate API that is runs on top of the Entity Framework 4. EF Code First is reached CTP 5 when I am writing this article. Creating Context Class for Entity Framework We have created our domain model and let’s create a class in order to working with Entity Framework Code First. For this, you have to download EF Code First CTP 5 and add reference to the assembly EntitFramework.dll. You can also use NuGet to download add reference to EEF Code First.    public class MyFinanceContext : DbContext {     public MyFinanceContext() : base("MyFinance") { }     public DbSet<Category> Categories { get; set; }     public DbSet<Expense> Expenses { get; set; }         }   The above class MyFinanceContext is derived from DbContext that can connect your model classes to a database. The MyFinanceContext class is mapping our Category and Expense class into database tables Categories and Expenses using DbSet<TEntity> where TEntity is any POCO class. When we are running the application at first time, it will automatically create the database. EF code-first look for a connection string in web.config or app.config that has the same name as the dbcontext class. If it is not find any connection string with the convention, it will automatically create database in local SQL Express database by default and the name of the database will be same name as the dbcontext class. You can also define the name of database in constructor of the the dbcontext class. Unlike NHibernate, we don’t have to use any XML based mapping files or Fluent interface for mapping between our model and database. The model classes of Code First are working on the basis of conventions and we can also use a fluent API to refine our model. The convention for primary key is ‘Id’ or ‘<class name>Id’.  If primary key properties are detected with type ‘int’, ‘long’ or ‘short’, they will automatically registered as identity columns in the database by default. Primary key detection is not case sensitive. We can define our model classes with validation attributes in the System.ComponentModel.DataAnnotations namespace and it automatically enforces validation rules when a model object is updated or saved. Generic Repository for EF Code First We have created model classes and dbcontext class. Now we have to create generic repository pattern for data persistence with EF code first. If you don’t know about the repository pattern, checkout Martin Fowler’s article on Repository Let’s create a generic repository to working with DbContext and DbSet generics. public interface IRepository<T> where T : class     {         void Add(T entity);         void Delete(T entity);         T GetById(long Id);         IEnumerable<T> All();     }   RepositoryBasse – Generic Repository class public abstract class RepositoryBase<T> where T : class { private MyFinanceContext database; private readonly IDbSet<T> dbset; protected RepositoryBase(IDatabaseFactory databaseFactory) {     DatabaseFactory = databaseFactory;     dbset = Database.Set<T>(); }   protected IDatabaseFactory DatabaseFactory {     get; private set; }   protected MyFinanceContext Database {     get { return database ?? (database = DatabaseFactory.Get()); } } public virtual void Add(T entity) {     dbset.Add(entity);            }        public virtual void Delete(T entity) {     dbset.Remove(entity); }   public virtual T GetById(long id) {     return dbset.Find(id); }   public virtual IEnumerable<T> All() {     return dbset.ToList(); } }   DatabaseFactory class public class DatabaseFactory : Disposable, IDatabaseFactory {     private MyFinanceContext database;     public MyFinanceContext Get()     {         return database ?? (database = new MyFinanceContext());     }     protected override void DisposeCore()     {         if (database != null)             database.Dispose();     } } Unit of Work If you are new to Unit of Work pattern, checkout Fowler’s article on Unit of Work . According to Martin Fowler, the Unit of Work pattern "maintains a list of objects affected by a business transaction and coordinates the writing out of changes and the resolution of concurrency problems." Let’s create a class for handling Unit of Work   public interface IUnitOfWork {     void Commit(); }   UniOfWork class public class UnitOfWork : IUnitOfWork {     private readonly IDatabaseFactory databaseFactory;     private MyFinanceContext dataContext;       public UnitOfWork(IDatabaseFactory databaseFactory)     {         this.databaseFactory = databaseFactory;     }       protected MyFinanceContext DataContext     {         get { return dataContext ?? (dataContext = databaseFactory.Get()); }     }       public void Commit()     {         DataContext.Commit();     } }   The Commit method of the UnitOfWork will call the commit method of MyFinanceContext class and it will execute the SaveChanges method of DbContext class.   Repository class for Category In this post, we will be focusing on the persistence against Category entity and will working on other entities in later post. Let’s create a repository for handling CRUD operations for Category using derive from a generic Repository RepositoryBase<T>.   public class CategoryRepository: RepositoryBase<Category>, ICategoryRepository     {     public CategoryRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface ICategoryRepository : IRepository<Category> { } If we need additional methods than generic repository for the Category, we can define in the CategoryRepository. Dependency Injection using Unity 2.0 If you are new to Inversion of Control/ Dependency Injection or Unity, please have a look on my articles at http://weblogs.asp.net/shijuvarghese/archive/tags/IoC/default.aspx. I want to create a custom lifetime manager for Unity to store container in the current HttpContext.   public class HttpContextLifetimeManager<T> : LifetimeManager, IDisposable {     public override object GetValue()     {         return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];     }     public override void RemoveValue()     {         HttpContext.Current.Items.Remove(typeof(T).AssemblyQualifiedName);     }     public override void SetValue(object newValue)     {         HttpContext.Current.Items[typeof(T).AssemblyQualifiedName] = newValue;     }     public void Dispose()     {         RemoveValue();     } }   Let’s create controller factory for Unity in the ASP.NET MVC 3 application. public class UnityControllerFactory : DefaultControllerFactory { IUnityContainer container; public UnityControllerFactory(IUnityContainer container) {     this.container = container; } protected override IController GetControllerInstance(RequestContext reqContext, Type controllerType) {     IController controller;     if (controllerType == null)         throw new HttpException(                 404, String.Format(                     "The controller for path '{0}' could not be found" +     "or it does not implement IController.",                 reqContext.HttpContext.Request.Path));       if (!typeof(IController).IsAssignableFrom(controllerType))         throw new ArgumentException(                 string.Format(                     "Type requested is not a controller: {0}",                     controllerType.Name),                     "controllerType");     try     {         controller= container.Resolve(controllerType) as IController;     }     catch (Exception ex)     {         throw new InvalidOperationException(String.Format(                                 "Error resolving controller {0}",                                 controllerType.Name), ex);     }     return controller; }   }   Configure contract and concrete types in Unity Let’s configure our contract and concrete types in Unity for resolving our dependencies.   private void ConfigureUnity() {     //Create UnityContainer               IUnityContainer container = new UnityContainer()                 .RegisterType<IDatabaseFactory, DatabaseFactory>(new HttpContextLifetimeManager<IDatabaseFactory>())     .RegisterType<IUnitOfWork, UnitOfWork>(new HttpContextLifetimeManager<IUnitOfWork>())     .RegisterType<ICategoryRepository, CategoryRepository>(new HttpContextLifetimeManager<ICategoryRepository>());                 //Set container for Controller Factory                ControllerBuilder.Current.SetControllerFactory(             new UnityControllerFactory(container)); }   In the above ConfigureUnity method, we are registering our types onto Unity container with custom lifetime manager HttpContextLifetimeManager. Let’s call ConfigureUnity method in the Global.asax.cs for set controller factory for Unity and configuring the types with Unity.   protected void Application_Start() {     AreaRegistration.RegisterAllAreas();     RegisterGlobalFilters(GlobalFilters.Filters);     RegisterRoutes(RouteTable.Routes);     ConfigureUnity(); }   Developing web application using ASP.NET MVC 3 We have created our domain model for our web application and also have created repositories and configured dependencies with Unity container. Now we have to create controller classes and views for doing CRUD operations against the Category entity. Let’s create controller class for Category Category Controller   public class CategoryController : Controller {     private readonly ICategoryRepository categoryRepository;     private readonly IUnitOfWork unitOfWork;           public CategoryController(ICategoryRepository categoryRepository, IUnitOfWork unitOfWork)     {         this.categoryRepository = categoryRepository;         this.unitOfWork = unitOfWork;     }       public ActionResult Index()     {         var categories = categoryRepository.All();         return View(categories);     }     [HttpGet]     public ActionResult Edit(int id)     {         var category = categoryRepository.GetById(id);         return View(category);     }       [HttpPost]     public ActionResult Edit(int id, FormCollection collection)     {         var category = categoryRepository.GetById(id);         if (TryUpdateModel(category))         {             unitOfWork.Commit();             return RedirectToAction("Index");         }         else return View(category);                 }       [HttpGet]     public ActionResult Create()     {         var category = new Category();         return View(category);     }           [HttpPost]     public ActionResult Create(Category category)     {         if (!ModelState.IsValid)         {             return View("Create", category);         }                     categoryRepository.Add(category);         unitOfWork.Commit();         return RedirectToAction("Index");     }       [HttpPost]     public ActionResult Delete(int  id)     {         var category = categoryRepository.GetById(id);         categoryRepository.Delete(category);         unitOfWork.Commit();         var categories = categoryRepository.All();         return PartialView("CategoryList", categories);       }        }   Creating Views in Razor Now we are going to create views in Razor for our ASP.NET MVC 3 application.  Let’s create a partial view CategoryList.cshtml for listing category information and providing link for Edit and Delete operations. CategoryList.cshtml @using MyFinance.Helpers; @using MyFinance.Domain; @model IEnumerable<Category>      <table>         <tr>         <th>Actions</th>         <th>Name</th>          <th>Description</th>         </tr>     @foreach (var item in Model) {             <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.CategoryId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.CategoryId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divCategoryList" })                           </td>             <td>                 @item.Name             </td>             <td>                 @item.Description             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New", "Create")     </p> The delete link is providing Ajax functionality using the Ajax.ActionLink. This will call an Ajax request for Delete action method in the CategoryCotroller class. In the Delete action method, it will return Partial View CategoryList after deleting the record. We are using CategoryList view for the Ajax functionality and also for Index view using for displaying list of category information. Let’s create Index view using partial view CategoryList  Index.chtml @model IEnumerable<MyFinance.Domain.Category> @{     ViewBag.Title = "Index"; }    <h2>Category List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script>    <div id="divCategoryList">               @Html.Partial("CategoryList", Model) </div>   We can call the partial views using Html.Partial helper method. Now we are going to create View pages for insert and update functionality for the Category. Both view pages are sharing common user interface for entering the category information. So I want to create an EditorTemplate for the Category information. We have to create the EditorTemplate with the same name of entity object so that we can refer it on view pages using @Html.EditorFor(model => model) . So let’s create template with name Category. Let’s create view page for insert Category information   @model MyFinance.Domain.Category   @{     ViewBag.Title = "Save"; }   <h2>Create</h2>   <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script>   @using (Html.BeginForm()) {     @Html.ValidationSummary(true)     <fieldset>         <legend>Category</legend>                @Html.EditorFor(model => model)               <p>             <input type="submit" value="Create" />         </p>     </fieldset> }   <div>     @Html.ActionLink("Back to List", "Index") </div> ViewStart file In Razor views, we can add a file named _viewstart.cshtml in the views directory  and this will be shared among the all views with in the Views directory. The below code in the _viewstart.cshtml, sets the Layout page for every Views in the Views folder.      @{     Layout = "~/Views/Shared/_Layout.cshtml"; }   Source Code You can download the source code from http://efmvc.codeplex.com/ . The source will be refactored on over time.   Summary In this post, we have created a simple web application using ASP.NET MVC 3 and EF Code First. We have discussed on technologies and practices such as ASP.NET MVC 3, Razor, EF Code First, Unity 2, generic Repository and Unit of Work. In my later posts, I will modify the application and will be discussed on more things. Stay tuned to my blog  for more posts on step by step application building.

    Read the article

  • Cloud Based Load Testing Using TF Service &amp; VS 2013

    - by Tarun Arora [Microsoft MVP]
    Originally posted on: http://geekswithblogs.net/TarunArora/archive/2013/06/30/cloud-based-load-testing-using-tf-service-amp-vs-2013.aspx One of the new features announced as part of the Visual Studio 2013 Ultimate Preview is ‘Cloud Based Load Testing’. In this blog post I’ll walk you through, What is Cloud Based Load Testing? How have I been using this feature? – Success story! Where can you find more resources on this feature? What is Cloud Based Load Testing? It goes without saying that performance testing your application not only gives you the confidence that the application will work under heavy levels of stress but also gives you the ability to test how scalable the architecture of your application is. It is important to know how much is too much for your application! Working with various clients in the industry I have realized that the biggest barriers in Load Testing & Performance Testing adoption are, High infrastructure and administration cost that comes with this phase of testing Time taken to procure & set up the test infrastructure Finding use for this infrastructure investment after completion of testing Is cloud the answer? 100% Visual Studio Compatible Scalable and Realistic Start testing in < 2 minutes Intuitive Pay only for what you need Use existing on premise tests on cloud There are a lot of vendors out there offering Cloud Based Load Testing, to name a few, Load Storm Soasta Blaze Meter Blitz And others… The question you may want to ask is, why should you go with Microsoft’s Cloud based Load Test offering. If you are a Microsoft shop or already have investments in Microsoft technologies, you’ll see great benefit in the natural integration this offers with existing Microsoft products such as Visual Studio and Windows Azure. For example, your existing Web tests authored in Visual Studio 2010 or Visual Studio 2012 will run on the cloud without requiring any modifications what so ever. Microsoft’s cloud test rig also supports API based testing, for example, if you are building a WPF application which consumes WCF services, you can write unit tests to invoke the WCF service, these tests can be run on the cloud test rig and loaded with ‘N’ concurrent users for performance testing. If you have your assets already hosted in the Azure and possibly in the same data centre as the Cloud test rig, your Azure app will not incur a usage cost because of the generated traffic since the traffic is coming from the same data centre. The licensing or pricing information on Microsoft’s cloud based Load test service is yet to be announced, but I would expect this to be priced attractively to match the market competition.   The only additional configuration required for running load tests on Microsoft Cloud based Load Tests service is to select the Test run location as Run tests using Visual Studio Team Foundation Service, How have I been using Microsoft’s Cloud based Load Test Service? I have been part of the Microsoft Cloud Based Load Test Service advisory council for the last 7 months. This gave the opportunity to see the product shape up from concept to working solution. I was also the first person outside of Microsoft to try this offering out. This gave me the opportunity to test real world application at various clients using the Microsoft Load Test Service and provide real world feedback to the Microsoft product team. One of the most recent systems I tested using the Load Test Service has been an insurance quote generation engine. This insurance quote generation engine is,   hosted in Windows Azure expected to get quote requests from across the globe expected to handle 5 Million quote requests in a day (not clear how this load will be distributed across the day) There was no way, I could simulate such kind of load from on premise without standing up additional hardware. But Microsoft’s Cloud based Load Test service allowed me to test my key performance testing scenarios, i.e. Simulate expected Load, Endurance Testing, Threshold Testing and Testing for Latency. Simulating expected load: approach to devising a load pattern My approach to devising a load test pattern has been to run the test scenario with 1 user to figure out the response time. Then work out how many users are required to reach the target load. So, for example, to invoke 1 quote from the quote engine software takes 0.5 seconds. Now if you do the math,   1 quote request by 1 user = 0.5 seconds   quotes generated by 1 user in 24 hour = 1 * (((2 * 60) * 60) * 24) = 172,800   quotes generated by 30 users in 24 hours = 172,800 * 30 =  5,184,000 This was a very simple example, if your application requires more concurrent users to test scenario’s such as caching, etc then you can devise your own load pattern, some examples of load test patterns can be found here.  Endurance Testing To test for endurance, I loaded the quote generation engine with an expected fixed user load and ran the test for very long duration such as over 48 hours and observed the affect of the long running test on the Azure infrastructure. Currently Microsoft Load Test service does not support metrics from the machine under test. I used Azure diagnostics to begin with, but later started using Cerebrata Azure Diagnostics Manager to capture the metrics of the machine under test. Threshold Testing To figure out how much user load the application could cope with before falling on its belly, I opted to step load the quote generation engine by incrementing user load with different variations of incremental user load per minute till the application crashed out and forced an IIS reset. Testing for Latency Currently the Microsoft Load Test service does not support generating geographically distributed load, I however, deployed the insurance quote generation engine in different Azure data centres and ran the same set of performance tests to measure for latency. Because I could compare load test results from different runs by exporting the results to excel (this feature is provided out of the box right from Visual Studio 2010) I could see the different in response times. More resources on Microsoft Cloud based Load Test Service A few important links to get you started, Download Visual Studio Ultimate 2013 Preview Getting started guide for load testing using Team Foundation Service Troubleshooting guide for FAQs and known issues Team Foundation Service forum for questions and support Detailed demo and presentation (link to Tech-Ed session recording) Detailed demo and presentation (link to Build session recording) There a few limits on the usage of Microsoft Cloud based Load Test service that you can read about here. If you have any feedback on Microsoft Cloud based Load Test service, feel free to share it with the product team via the Visual Studio User Voice forum. I hope you found this useful. Thank you for taking the time out and reading this blog post. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Stay tuned!

    Read the article

  • find . -type l says missing argument

    - by Sebi
    I want to find all symbolic links in the current directory and below. Therefore, I used: find . -type l Running that clears the screen showing "Pattern not found (press RETURN)" at the bottom of the screen. After pressing return, I get: find: missing argument to `-type' Here some system details: Ubuntu 10.04 LTS 64Bit zsh 4.3.10 (x86_64-unknown-linux-gnu) happens also in Screen version 4.00.03jw4 (FAU) 2-May-06 find (GNU findutils) 4.4.2 So how do I search for symbolic links so that I can grep in their names?

    Read the article

  • How to apply programatical changes to the Terrain SplatPrototype

    - by Shivan Dragon
    I have a script to which I add a Terrain object (I drag and drop the terrain in the public Terrain field). The Terrain is already setup in Unity to have 2 PaintTextures: 1 is a Square (set up with a tile size so that it forms a checkered pattern) and the 2nd one is a grass image: Also the Target Strength of the first PaintTexture is lowered so that the checkered pattern also reveals some of the grass underneath. Now I want, at run time, to change the Tile Size of the first PaintTexture, i.e. have more or less checkers depending on various run time conditions. I've looked through Unity's documentation and I've seen you have the Terrain.terrainData.SplatPrototype array which allows you to change this. Also there's a RefreshPrototypes() method on the terrainData object and a Flush() method on the Terrain object. So I made a script like this: public class AStarTerrain : MonoBehaviour { public int aStarCellColumns, aStarCellRows; public GameObject aStarCellHighlightPrefab; public GameObject aStarPathMarkerPrefab; public GameObject utilityRobotPrefab; public Terrain aStarTerrain; void Start () { //I've also tried NOT drag and dropping the Terrain on the public field //and instead just using the commented line below, but I get the same results //aStarTerrain = this.GetComponents<Terrain>()[0]; Debug.Log ("Got terrain "+aStarTerrain.name); SplatPrototype[] splatPrototypes = aStarTerrain.terrainData.splatPrototypes; Debug.Log("Terrain has "+splatPrototypes.Length+" splat prototypes"); SplatPrototype aStarCellSplat = splatPrototypes[0]; Debug.Log("Re-tyling splat prototype "+aStarCellSplat.texture.name); aStarCellSplat.tileSize = new Vector2(2000,2000); Debug.Log("Tyling is now "+aStarCellSplat.tileSize.x+"/"+aStarCellSplat.tileSize.y); aStarTerrain.terrainData.RefreshPrototypes(); aStarTerrain.Flush(); } //... Problem is, nothing gets changed, the checker map is not re-tiled. The console outputs correctly tell me that I've got the Terrain object with the right name, that it has the right number of splat prototypes and that I'm modifying the tileSize on the SplatPrototype object corresponding to the right texture. It also tells me the value has changed. But nothing gets updated in the actual graphical view. So please, what am I missing?

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • Learning resources for working with POCO entities in EF 4.0

    - by boghydan
    Here are some links that can help you start working with POCO entities in EF 4.0: ADO.NET Team blog: - Working with POCO objects: http://blogs.msdn.com/adonet/archive/2009/05/21/poco-in-the-entity-framework-part-1-the-experience.aspx - Proxy objects for POCO entities: http://blogs.msdn.com/adonet/archive/2009/12/22/poco-proxies-part-1.aspx MSDN Library: - Working with POCO  http://msdn.microsoft.com/en-us/library/dd456853.aspx - T4 editor for POCO generator can be downloaded from here: http://visualstudiogallery.msdn.microsoft.com/en-us/60297607-5fd4-4da4-97e1-3715e90c1a23

    Read the article

  • A pseudo-listener for AlwaysOn Availability Groups for SQL Server virtual machines running in Azure

    - by MikeD
    I am involved in a project that is implementing SharePoint 2013 on virtual machines hosted in Azure. The back end data tier consists of two Azure VMs running SQL Server 2012, with the SharePoint databases contained in an AlwaysOn Availability Group. I used this "Tutorial: AlwaysOn Availability Groups in Windows Azure (GUI)" to help me implement this setup.Because Azure DHCP will not assign multiple unique IP addresses to the same VM, having an AG Listener in Azure is not currently supported.  I wanted to figure out another mechanism to support a "pseudo listener" of some sort. First, I created a CNAME (alias) record in the DNS zone with a short TTL (time to live) of 5 minutes (I may yet make this even shorter). The record represents a logical name (let's say the alias is SPSQL) of the server to connect to for the databases in the availability group (AG). When Server1 was hosting the primary replica of the AG, I would set the CNAME of SPSQL to be SERVER1. When the AG failed over to Server1, I wanted to set the CNAME to SERVER2. Seemed simple enough.(It's important to point out that the connection strings for my SharePoint services should use the CNAME alias, and not the actual server name. This whole thing falls apart otherwise.)To accomplish this, I created identical SQL Agent Jobs on Server1 and Server2, with two steps:1. Step 1: Determine if this server is hosting the primary replica.This is a TSQL step using this script:declare @agName sysname = 'AGTest'set nocount on declare @primaryReplica sysnameselect @primaryReplica = agState.primary_replicafrom sys.dm_hadr_availability_group_states agState   join sys.availability_groups ag on agstate.group_id = ag.group_id   where ag.name = @AGname if not exists(   select *    from sys.dm_hadr_availability_group_states agState   join sys.availability_groups ag on agstate.group_id = ag.group_id   where @@Servername = agstate.primary_replica    and ag.name = @AGname)begin   raiserror ('Primary replica of %s is not hosted on %s, it is hosted on %s',17,1,@Agname, @@Servername, @primaryReplica) endThis script determines if the primary replica value of the AG group is the same as the server name, which means that our server is hosting the current AG (you should update the value of the @AgName variable to the name of your AG). If this is true, I want the DNS alias to point to this server. If the current server is not hosting the primary replica, then the script raises an error. Also, if the script can't be executed because it cannot connect to the server, that also will generate an error. For the job step settings, I set the On Failure option to "Quit the job reporting success". The next step in the job will set the DNS alias to this server name, and I only want to do that if I know that it is the current primary replica, otherwise I don't want to do anything. I also include the step output in the job history so I can see the error message.Job Step 2: Update the CNAME entry in DNS with this server's name.I used a PowerShell script to accomplish this:$cname = "SPSQL.contoso.com"$query = "Select * from MicrosoftDNS_CNAMEType"$dns1 = "dc01.contoso.com"$dns2 = "dc02.contoso.com"if ((Test-Connection -ComputerName $dns1 -Count 1 -Quiet) -eq $true){    $dnsServer = $dns1}elseif ((Test-Connection -ComputerName $dns2 -Count 1 -Quiet) -eq $true) {   $dnsServer = $dns2}else{  $msg = "Unable to connect to DNS servers: " + $dns1 + ", " + $dns2   Throw $msg}$record = Get-WmiObject -Namespace "root\microsoftdns" -Query $query -ComputerName $dnsServer  | ? { $_.Ownername -match $cname }$thisServer = [System.Net.Dns]::GetHostEntry("LocalHost").HostName + "."$currentServer = $record.RecordData if ($currentServer -eq $thisServer ) {     $cname + " CNAME is up to date: " + $currentServer}else{    $cname + " CNAME is being updated to " + $thisServer + ". It was " + $currentServer    $record.RecordData = $thisServer    $record.put()}This script does a few things:finds a responsive domain controller (Test-Connection does a ping and returns a Boolean value if you specify the -Quiet parameter)makes a WMI call to the domain controller to get the current CNAME record value (Get-WmiObject)gets the FQDN of this server (GetHostEntry)checks if the CNAME record is correct and updates it if necessary(You should update the values of the variables $cname, $dns1 and $dns2 for your environment.)Since my domain controllers are also hosted in Azure VMs, either one of them could be down at any point in time, so I need to find a DC that is responsive before attempting the DNS call. The other little thing here is that the CNAME record contains the FQDN of a machine, plus it ends with a period. So the comparison of the CNAME record has to take the trailing period into account. When I tested this step, I was getting ACCESS DENIED responses from PowerShell for the Get-WmiObject cmdlet that does a remote lookup on the DC. This occurred because the SQL Agent service account was not a member of the Domain Admins group, so I decided to create a SQL Credential to store the credentials for a domain administrator account and use it as a PowerShell proxy (rather than give the service account Domain Admins membership).In SQL Management Studio, right click on the Credentials node (under the server's Security node), and choose New Credential...Then, under SQL Agent-->Proxies, right click on the PowerShell node and choose New Proxy...Finally, in the job step properties for the PowerShell step, select the new proxy in the Run As drop down.I created this two step Job on both nodes of the Availability Group, but if you had more than two nodes, just create the same job on all the servers. I set the schedule for the job to execute every minute.When the server that is hosting the primary replica is running the job, the job history looks like this:The job history on the secondary server looks like this: When a failover occurs, the SQL Agent job on the new primary replica will detect that the CNAME needs to be updated within a minute. Based on the TTL of the CNAME (which I said at the beginning was 5 minutes), the SharePoint servers will get the new alias within five minutes and should be able to reconnect. I may want to shorten up the TTL to reduce the time it takes for the client connections to use the new alias. Using a DNS CNAME and a SQL Agent Job on all servers hosting AG replicas, I was able to create a pseudo-listener to automatically change the name of the server that was hosting the primary replica, for a scenario where I cannot use a regular AG listener (in this case, because the servers are all hosted in Azure).    

    Read the article

  • How much will .NET Reflector Pro cost?

    - by Bart Read
    Somebody asked about this on our beta support forum earlier, so I thought I'd mirror the information I posted in my response here as well. We're going to make full pricing information available with the product is released, but for now I can say that .NET Reflector Pro will initially cost $195 for a single user license, with discounts available for multi-user licenses, which follows a similar pattern to our other products. .NET Reflector Pro will also be added to the .NET Developer Tools bundle,...(read more)

    Read the article

  • Error trapping for a missing data source in a Spring MVC / Spring JDBC web app [migrated]

    - by Geeb
    I have written a web app that uses Spring MVC libraries and Spring JDBC to connect to an Oracle DB. (I don't use any ORM type libraries as I create stored procedures on Oracle that do my stuff and I'm quite happy with that.) I use a connection pool to Oracle managed by the Tomcat container The app generally works absolutely fine by the way! BUT... I noticed the other day when I tried to set up the app on another Tomcat instance that I had forgotten to configure the connection pool and obviously the app could not get hold of an org.apache.commons.dbcp.BasicDataSource object, so it crashed. I define the pool params in the tomcat "context.conf" In my "web.xml" I have: <servlet> <servlet-name>appServlet</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <init-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/Spring/appServlet/servlet-context.xml</param-value> </init-param> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>appServlet</servlet-name> <!-- Map *everything* to appServlet --> <url-pattern>/</url-pattern> </servlet-mapping> <resource-ref> <description>Oracle Datasource example</description> <res-ref-name>jdbc/ora1</res-ref-name> <res-type>org.apache.commons.dbcp.BasicDataSource</res-type> <res-auth>Container</res-auth> </resource-ref> And I have a Spring "servlet-context.xml" where JNDI is used to map the data source object provided by the connection pool to a Spring bean with the ID of "dataSource": <jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/ora1" resource-ref="true" /> Here's the question: Where do I trap the case where the database cannot be accessed for whatever reason? I don't want the user to see a yard-and-a-half of Java stack trace in their browser, rather a nicer message that tells them there is a database problem etc. It seems that my app tries to configure the "dataSource" bean (in "servlet-context.xml") before any code has tested it can actually provide a dataSource object from the pool?! Maybe I'm not fully understanding exactly what is going on in these stages of the app firing up ... Thanks for any advice!

    Read the article

  • T-SQL Tuesday #31: Paradox of the Sawtooth Log

    - by merrillaldrich
    Today’s T-SQL Tuesday, hosted by Aaron Nelson ( @sqlvariant | sqlvariant.com ) has the theme Logging . I was a little pressed for time today to pull this post together, so this will be short and sweet. For a long time, I wondered why and how a database in Full Recovery Mode, which you’d expect to have an ever-growing log -- as all changes are written to the log file -- could in fact have a log usage pattern that looks like this: This graph shows the Percent Log Used (bold, red) and the Log File(s)...(read more)

    Read the article

  • URL Routing in ASP.NET 4.0

    In the .NET Framework 3.5 SP1, Microsoft introduced ASP.NET Routing, which decouples the URL of a resource from the physical file on the web server. With ASP.NET Routing you, the developer, define routing rules map route patterns to a class that generates the content. For example, you might indicate that the URL Categories/CategoryName maps to a class that takes the CategoryName and generates HTML that lists that category's products in a grid. With such a mapping, users could view products for the Beverages category by visiting www.yoursite.com/Categories/Beverages. In .NET 3.5 SP1, ASP.NET Routing was primarily designed for ASP.NET MVC applications, although as discussed in Using ASP.NET Routing Without ASP.NET MVC it is possible to implement ASP.NET Routing in a Web Forms application, as well. However, implementing ASP.NET Routing in a Web Forms application involves a bit of seemingly excessive legwork. In a Web Forms scenario we typically want to map a routing pattern to an actual ASP.NET page. To do so we need to create a route handler class that is invoked when the routing URL is requested and, in a sense, dispatches the request to the appropriate ASP.NET page. For instance, to map a route to a physical file, such as mapping Categories/CategoryName to ShowProductsByCategory.aspx - requires three steps: (1) Define the mapping in Global.asax, which maps a route pattern to a route handler class; (2) Create the route handler class, which is responsible for parsing the URL, storing any route parameters into some location that is accessible to the target page (such as HttpContext.Items), and returning an instance of the target page or HTTP Handler that handles the requested route; and (3) writing code in the target page to grab the route parameters and use them in rendering its content. Given how much effort it took to just read the preceding sentence (let alone write it) you can imagine that implementing ASP.NET Routing in a Web Forms application is not necessarily the most straightforward task. The good news is that ASP.NET 4.0 has greatly simplified ASP.NET Routing for Web Form applications by adding a number of classes and helper methods that can be used to encapsulate the aforementioned complexity. With ASP.NET 4.0 it's easier to define the routing rules and there's no need to create a custom route handling class. This article details these enhancements. Read on to learn more! Read More >

    Read the article

  • Windows Azure Use Case: High-Performance Computing (HPC)

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: High-Performance Computing (also called Technical Computing) at its most simplistic is a layout of computer workloads where a “head node” accepts work requests, and parses them out to “worker nodes'”. This is useful in cases such as scientific simulations, drug research, MatLab work and where other large compute loads are required. It’s not the immediate-result type computing many are used to; instead, a “job” or group of work requests is sent to a cluster of computers and the worker nodes work on individual parts of the calculations and return the work to the scheduler or head node for the requestor in a batch-request fashion. This is typical to the way that many mainframe computing use-cases work. You can use commodity-based computers to create an HPC Cluster, such as the Linux application called Beowulf, and Microsoft has a server product for HPC using standard computers, called the Windows Compute Cluster that you can read more about here. The issue with HPC (from any vendor) that some organization have is the amount of compute nodes they need. Having too many results in excess infrastructure, including computers, buildings, storage, heat and so on. Having too few means that the work is slower, and takes longer to return a result to the calling application. Unless there is a consistent level of work requested, predicting the number of nodes is problematic. Implementation: Recently, Microsoft announced an internal partnership between the HPC group (Now called the Technical Computing Group) and Windows Azure. You now have two options for implementing an HPC environment using Windows. You can extend the current infrastructure you have for HPC by adding in Compute Nodes in Windows Azure, using a “Broker Node”.  You can then purchase time for adding machines, and then stop paying for them when the work is completed. This is a common pattern in groups that have a constant need for HPC, but need to “burst” that load count under certain conditions. The second option is to install only a Head Node and a Broker Node onsite, and host all Compute Nodes in Windows Azure. This is often the pattern for organizations that need HPC on a scheduled and periodic basis, such as financial analysis or actuarial table calculations. References: Blog entry on Hybrid HPC with Windows Azure: http://blogs.msdn.com/b/ignitionshowcase/archive/2010/12/13/high-performance-computing-on-premise-and-in-the-windows-azure-cloud.aspx  Links for further research on HPC, includes Windows Azure information: http://blogs.msdn.com/b/ncdevguy/archive/2011/02/16/handy-links-for-hpc-and-azure.aspx 

    Read the article

  • How To: Automatically Remove www from a Domain in IIS7

    I recently moved the DevMavens.com site from one server to another and needed to ensure that the www.devmavens.com domain correctly redirected to simply devmavens.com.  This is important for SEO reasons (you dont want multiple domains to refer to the same content) and its generally better to use the shorter URL (www is so 20th century) rather than wasting 4 characters for zero gain. My friend and IIS guru Scott Forsyth pointed me to his blog post on how to set up IIS URL Rewriting.  To get started, you simply install IIS Rewrite from this link using the super awesome Web Platform Installer.  You should get something like this when youre done with the install: If you already have IIS Manager open, you may need to close it and re-open it before you see the URL Rewrite module.  Once you do, you should see it listed for any given Site under the IIS section: Double click on the URL Rewrite icon, and then choose the Add Rule(s) action.  You can simply create a blank rule, and name it Redirect from www to domain.com.  Essentially were following the instructions from Scott Forsyths post, but in reverse since hes showing how to add 4 useless characters to the URL and Im interested in removing them. After adding the name, well set the Match Url sections Using dropdown to Wildcards and specify a pattern of simply * to match anything. In the Conditions section we need to add a new condition with an Input of {HTTP_HOST} such that it should match the pattern www.devmavens.com (replace this with your domain). Ignore the Server Variables section. Set the action to Redirect and the Redirect URL to http://devmavens.com/{R:0} (replace with your domain).  The {R:0} will be replaced with whatever the user had entered.  So if they were going to http://www.devmavens.com/default.aspx theyll now be going to http://devmavens.com/default.aspx. The complete Inbound Rule should look like this: Thats it!  Test it out and make sure you havent accidentally used my exact URLs and started sending all of your users to devmavens.com! :)  Be sure to read Scotts post for more information on how to use regular expressions for your rules, and how to set them up via web.config rather than IIS manager. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Translate jQuery UI Datepicker format to .Net Date format

    - by Michael Freidgeim
    I needed to use the same date format in client jQuery UI Datepicker and server ASP.NET code. The actual format can be different for different localization cultures.I decided to translate Datepicker format to .Net Date format similar as it was asked to do opposite operation in http://stackoverflow.com/questions/8531247/jquery-datepickers-dateformat-how-to-integrate-with-net-current-culture-date Note that replace command need to replace whole words and order of calls is importantFunction that does opposite operation (translate  .Net Date format toDatepicker format) is described in http://www.codeproject.com/Articles/62031/JQueryUI-Datepicker-in-ASP-NET-MVC /// <summary> /// Uses regex '\b' as suggested in //http://stackoverflow.com/questions/6143642/way-to-have-string-replace-only-hit-whole-words /// </summary> /// <param name="original"></param> /// <param name="wordToFind"></param> /// <param name="replacement"></param> /// <param name="regexOptions"></param> /// <returns></returns> static public string ReplaceWholeWord(this string original, string wordToFind, string replacement, RegexOptions regexOptions = RegexOptions.None) { string pattern = String.Format(@"\b{0}\b", wordToFind); string ret=Regex.Replace(original, pattern, replacement, regexOptions); return ret; } /// <summary> /// E.g "DD, d MM, yy" to ,"dddd, d MMMM, yyyy" /// </summary> /// <param name="datePickerFormat"></param> /// <returns></returns> /// <remarks> /// Idea to replace from http://stackoverflow.com/questions/8531247/jquery-datepickers-dateformat-how-to-integrate-with-net-current-culture-date ///From http://docs.jquery.com/UI/Datepicker/$.datepicker.formatDate to http://msdn.microsoft.com/en-us/library/8kb3ddd4.aspx ///Format a date into a string value with a specified format. ///d - day of month (no leading zero) ---.Net the same ///dd - day of month (two digit) ---.Net the same ///D - day name short ---.Net "ddd" ///DD - day name long ---.Net "dddd" ///m - month of year (no leading zero) ---.Net "M" ///mm - month of year (two digit) ---.Net "MM" ///M - month name short ---.Net "MMM" ///MM - month name long ---.Net "MMMM" ///y - year (two digit) ---.Net "yy" ///yy - year (four digit) ---.Net "yyyy" /// </remarks> public static string JQueryDatePickerFormatToDotNetDateFormat(string datePickerFormat) { string sRet = datePickerFormat.ReplaceWholeWord("DD", "dddd").ReplaceWholeWord("D", "ddd"); sRet = sRet.ReplaceWholeWord("M", "MMM").ReplaceWholeWord("MM", "MMMM").ReplaceWholeWord("m", "M").ReplaceWholeWord("mm", "MM");//order is important sRet = sRet.ReplaceWholeWord("yy", "yyyy").ReplaceWholeWord("y", "yy");//order is important return sRet; }

    Read the article

  • Static class vs Singleton class in C# [closed]

    - by Floradu88
    Possible Duplicate: What is the difference between all-static-methods and applying a singleton pattern? I need to make a decision for a project I'm working of whether to use static or singleton. After reading an article like this I am inclined to use singleton. What is better to use static class or singleton? Edit 1 : Client Server Desktop Application. Please provide code oriented solutions.

    Read the article

  • When should complexity be removed?

    - by ElGringoGrande
    Prematurely introducing complexity by implementing design patterns before they are needed is not good practice. But if you follow all (or even most of) the SOLID principles and use common design patterns you will introduce some complexity as features and requirements are added or changed to keep your design as maintainable and flexible as needed. However once that complexity is introduced and working like a champ when do you removed it? Example. I have an application written for a client. When originally created there where several ways to give raises to employees. I used the strategy pattern and factory to keep the whole process nice and clean. Over time certain raise methods where added or removed by the application owner. Time passes and new owner takes over. This new owner is hard nosed, keeps everything simple and only has one single way to give a raise. The complexity needed by the strategy pattern is no longer needed. If I where to code this from the requirements as they are now I would not introduce this extra complexity (but make sure I could introduce it with little or no work should the need arise). So do I remove the strategy implementation now? I don't think this new owner will ever change how raises are given. But the application itself has demonstrated that this could happen. Of course this is just one example in an application where a new owner takes over and has simplified many processes. I could remove dozens of classes, interfaces and factories and make the whole application much more simple. Note that the current implementation does works just fine and the owner is happy with it (and surprised and even happier that I was able to implement her changes so quickly because of the discussed complexity). I admit that a small part of this doubt is because it is highly likely the new owner isn't going to use me any longer. I don't really care that somebody else will take this over since it has not been a big income generator. But I do care about 2 (related) things I care a bit that the new maintainer will have to think a bit harder when trying to understand the code. Complexity is complexity and I don't want to anger the psycho maniac coming after me. But even more I worry about a competitor seeing this complexity and thinking I just implement design patterns to pad my hours on jobs. Then spreading this rumor to hurt my other business. (I have heard this mentioned.) So... In general should previously needed complexity be removed even though it works and there has been a historically demonstrated need for the complexity but you have no indication that it will be needed in the future? Even if the question above is generally answered "no" is it wise to remove this "un-needed" complexity if handing off the project to a competitor (or stranger)?

    Read the article

  • Managing 404 error pages with noindex and url rewrite

    - by ZenMaster
    Currently I use custom 404 error pages, having the following meta on them : <meta content="noindex" name="robots"> My guess is this way Google will remove deleted pages faster from the index, anyone has experienced a case where it does ? Also, is it better to have the url path rewritten to the actual error page, like the url pattern: http://{mysite}/{404_error_page} or is it best to keep the old deleted page's url when serving a 404 error ?

    Read the article

  • How does a website latency simulator work

    - by nighthawk457
    Sites like webpagetest allow users to enter a website url and a test location, to run a speed test on the site from multiple locations using real browsers. Can anyone give me a basic idea of how sites like this work? You also have plugin's like Aptimize latency simulator or charles web debugging proxy app, that simulate the delay while accessing a site from different locations. I am assuming since these are plugin's these function in a different way. How do these plugin's work ?

    Read the article

  • SQLAuthority News – I am Presenting 2 Sessions at TechEd India

    - by pinaldave
    TechED is the event which I am always excited about. It is one of the largest technology in India. Microsoft Tech Ed India 2011 is the premier technical education and networking event for tech professionals interested in learning, connecting and exploring a broad set of current and soon-to-be released Microsoft technologies, tools, platforms and services. I am going to speak at the TechED on two very interesting and advanced subjects. Venue: The LaLiT Ashok Kumara Krupa High Grounds Bangalore – 560001, Karnataka, India Sessions Date: March 25, 2011 Understanding SQL Server Behavioral Pattern – SQL Server Extended Events Date and Time: March 25, 2011 12:00 PM to 01:00 PM History repeats itself! SQL Server 2008 has introduced a very powerful, yet very minimal reoccurring feature called Extended Events. This advanced session will teach experienced administrators’ capabilities that were not possible before. From T-SQL error to CPU bottleneck, error login to deadlocks –Extended Event can detect it for you. Understanding the pattern of events can prevent future mistakes. SQL Server Waits and Queues – Your Gateway to Perf. Troubleshooting Date and Time: March 25, 2011 04:15 PM to 05:15 PM Just like a horoscope, SQL Server Waits and Queues can reveal your past, explain your present and predict your future. SQL Server Performance Tuning uses the Waits and Queues as a proven method to identify the best opportunities to improve performance. A glance at Wait Types can tell where there is a bottleneck. Learn how to identify bottlenecks and potential resolutions in this fast paced, advanced performance tuning session. My session will be on the third day of the event and I am very sure that everybody will be in groove to learn new interesting subjects. I will have few give-away during and at the end of the session. I will not tell you what I will have but it will be for sure something you will love to have. Please make a point and reserve above time slots to attend my session. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology Tagged: SQL Extended Events

    Read the article

  • How to wire finite state machine into component-based architecture?

    - by Pup
    State machines seem to cause harmful dependencies in component-based architectures. How, specifically, is communication handled between a state machine and the components that carry out state-related behavior? Where I'm at: I'm new to component-based architectures. I'm making a fighting game, although I don't think that should matter. I envision my state machine being used to toggle states like "crouching", "dashing", "blocking", etc. I've found this state-management technique to be the most natural system for a component-based architecture, but it conflicts with techniques I've read about: Dynamic Game Object Component System for Mutable Behavior Characters It suggests that all components activate/deactivate themselves by continually checking a condition for activation. I think that actions like "running" or "walking" make sense as states, which is in disagreement with the accepted response here: finite state machine used in mario like platform game I've found this useful, but ambiguous: How to implement behavior in a component-based game architecture? It suggests having a separate component that contains nothing but a state machine. But, this necessitates some kind of coupling between the state machine component and nearly all the other components. I don't understand how this coupling should be handled. These are some guesses: A. Components depend on state machine: Components receive reference to state machine component's getState(), which returns an enumeration constant. Components update themselves regularly and check this as needed. B. State machine depends on components: The state machine component receives references to all the components it's monitoring. It queries their getState() methods to see where they're at. C. Some abstraction between them Use an event hub? Command pattern? D. Separate state objects that reference components State Pattern is used. Separate state objects are created, which activate/deactivate a set of components. State machine switches between state objects. I'm looking at components as implementations of aspects. They do everything that's needed internally to make that aspect happen. It seems like components should function on their own, without relying on other components. I know some dependencies are necessary, but state machines seem to want to control all of my components.

    Read the article

  • Algorithm for spreading labels in a visually appealing and intuitive way

    - by mac
    Short version Is there a design pattern for distributing vehicle labels in a non-overlapping fashion, placing them as close as possible to the vehicle they refer to? If not, is any of the method I suggest viable? How would you implement this yourself? Extended version In the game I'm writing I have a bird-eye vision of my airborne vehicles. I also have next to each of the vehicles a small label with key-data about the vehicle. This is an actual screenshot: Now, since the vehicles could be flying at different altitudes, their icons could overlap. However I would like to never have their labels overlapping (or a label from vehicle 'A' overlap the icon of vehicle 'B'). Currently, I can detect collisions between sprites and I simply push away the offending label in a direction opposite to the otherwise-overlapped sprite. This works in most situations, but when the airspace get crowded, the label can get pushed very far away from its vehicle, even if there was an alternate "smarter" alternative. For example I get: B - label A -----------label C - label where it would be better (= label closer to the vehicle) to get: B - label label - A C - label EDIT: It also has to be considered that beside the overlapping vehicles case, there might be other configurations in which vehicles'labels could overlap (the ASCII-art examples show for example three very close vehicles in which the label of A would overlap the icon of B and C). I have two ideas on how to improve the present situation, but before spending time implementing them, I thought to turn to the community for advice (after all it seems like a "common enough problem" that a design pattern for it could exist). For what it's worth, here's the two ideas I was thinking to: Slot-isation of label space In this scenario I would divide all the screen into "slots" for the labels. Then, each vehicle would always have its label placed in the closest empty one (empty = no other sprites at that location. Spiralling search From the location of the vehicle on the screen, I would try to place the label at increasing angles and then at increasing radiuses, until a non-overlapping location is found. Something down the line of: try 0°, 10px try 10°, 10px try 20°, 10px ... try 350°, 10px try 0°, 20px try 10°, 20px ...

    Read the article

  • PASS Call for Speakers

    - by Paul Nielsen
    It's that time again - the PASS Summit 2010 (Seattle Nov 8-11) Call for Speakers is now open and accepting abstracts until June 5 th . personally, I'm on a pattern that on odd years I present what I'm excited about, and on even years I try try to proesent what I expect other are jazzed about, which takes a bit more work. Last year I offered to Coach any Pass Speakers for free and some success. I’m offering that service again startign with your abstracts. If you’d like me to review your abstracts...(read more)

    Read the article

  • B2B - OSB Action Series

    - by Ramesh Nittur
    What are we planning 1. Why there is a synergy between OSB B2B integration. 2. Integrating OSB - B2B for a healthcare scenario 3. Various Integration pattern for OSB - B2B integration 4. Correlation of messages from OSB perspective 5. Correlation of messges from B2B perspective. 6. User experience in B2B, user experience in OSB.

    Read the article

  • Redirect/rewrite dynamic URL to sub-domain and create DNS for subdomain

    - by Abdul Majeed
    I have created an application in PHP, I would like to re-direct the following URL to corresponding sub-domain. Dynamic URL pattern: http://mydomain.com/mypage.php?user_name=testuser I wish to re-direct this to the corresponding sub domain: http://testuser.mydomain.com/ How do I create a rewrite rule for this purpose? How do I register DNS for sub-domain without using CPANEL? (I want to activate sub-domain when the user registers to the system.)

    Read the article

< Previous Page | 178 179 180 181 182 183 184 185 186 187 188 189  | Next Page >