Search Results

Search found 40226 results on 1610 pages for 'object relational model'.

Page 196/1610 | < Previous Page | 192 193 194 195 196 197 198 199 200 201 202 203  | Next Page >

  • Linq to NHibernate - How to return a parent object with only certain child objects included

    - by vakman
    Given a simplified model like the following: public class Enquiry { public virtual DateTime Created { get; set; } public virtual Sender Sender { get; set; } } public class Sender { public virtual IList<Enquiry> Enquiries { get; set; } } How can you construct a Linq to Nhibernate query such that it gives you back a list of senders and their enquiries where the enquiries meet some criteria. I have tried something like this: return session.Linq<Enquiry>() .Where(enquiry => enquiry.Created < DateTime.Now) .Select(enquiry => enquiry.Sender) In this case I get an InvalidCastException saying you can't cast type Sender to type Enquiry. Any pointers on how I can do this without using HQL?

    Read the article

  • asp Repeater ItemTemplate - eval whole object

    - by Tomasz Bitowt
    Currently I am using asp:Repeater like this: <asp:Repeater ID="itemsRepeater" runat="server"> <ItemTemplate> <my:Button runat="server" Title='<%# DataBinder.Eval(Container.DataItem, "Title") %>' /> </ItemTemplate> </asp:Repeater> But now, I would like to send whole model to my:Button control like: <asp:Repeater ID="itemsRepeater" runat="server"> <ItemTemplate> <my:TabListButton runat="server" Mode;='<%# this %>' /> </ItemTemplate> </asp:Repeater> Could you tell me how to handle that?

    Read the article

  • Find by include nil object error in rails

    - by SpyrosP
    I've been trying hard to solve this problem but i really don't know what is happening. I have this small piece of code : DiscoveredLocation.find_by_user_id(user.id, :include => [:boss_kills]) The models are : DiscoveredLocation(id, user_id, boss_location_id) BossKill(user_id, monster_id) and associations : Monster belongs_to :boss_location Monster has_many :boss_kills BossKill belongs_to :user BossKill belongs_to :monster DiscoveredLocation belongs_to :user DiscoveredLocation belongs_to :boss_location DiscoveredLocation has_many :monsters, :through => :boss_location DiscoveredLocation has_many :boss_kills, :through => :monsters When i executed the find_by i get this error : NoMethodError in BossesController#index You have a nil object when you didn't expect it! You might have expected an instance of Array. The error occurred while evaluating nil.each If i change the include option to any other model, like :monster, it works great. I'm pretty much owned by this problem :P. Maybe somebody can help me ? :)

    Read the article

  • webgl adding projection doesnt display object

    - by dazed3confused
    I am having a look at web gl, and trying to render a cube, but I am having a problem when I try to add projection into the vertex shader. I have added an attribute, but when I use it to multiple the modelview and position, it stops displaying the cube. Im not sure why and was wondering if anyone could help? Ive tried looking at a few examples but just cant get this to work vertex shader attribute vec3 aVertexPosition; uniform mat4 uMVMatrix; uniform mat4 uPMatrix; void main(void) { gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0); //gl_Position = uMVMatrix * vec4(aVertexPosition, 1.0); } fragment shader #ifdef GL_ES precision highp float; // Not sure why this is required, need to google it #endif uniform vec4 uColor; void main() { gl_FragColor = uColor; } function init() { // Get a reference to our drawing surface canvas = document.getElementById("webglSurface"); gl = canvas.getContext("experimental-webgl"); /** Create our simple program **/ // Get our shaders var v = document.getElementById("vertexShader").firstChild.nodeValue; var f = document.getElementById("fragmentShader").firstChild.nodeValue; // Compile vertex shader var vs = gl.createShader(gl.VERTEX_SHADER); gl.shaderSource(vs, v); gl.compileShader(vs); // Compile fragment shader var fs = gl.createShader(gl.FRAGMENT_SHADER); gl.shaderSource(fs, f); gl.compileShader(fs); // Create program and attach shaders program = gl.createProgram(); gl.attachShader(program, vs); gl.attachShader(program, fs); gl.linkProgram(program); // Some debug code to check for shader compile errors and log them to console if (!gl.getShaderParameter(vs, gl.COMPILE_STATUS)) console.log(gl.getShaderInfoLog(vs)); if (!gl.getShaderParameter(fs, gl.COMPILE_STATUS)) console.log(gl.getShaderInfoLog(fs)); if (!gl.getProgramParameter(program, gl.LINK_STATUS)) console.log(gl.getProgramInfoLog(program)); /* Create some simple VBOs*/ // Vertices for a cube var vertices = new Float32Array([ -0.5, 0.5, 0.5, // 0 -0.5, -0.5, 0.5, // 1 0.5, 0.5, 0.5, // 2 0.5, -0.5, 0.5, // 3 -0.5, 0.5, -0.5, // 4 -0.5, -0.5, -0.5, // 5 -0.5, 0.5, -0.5, // 6 -0.5,-0.5, -0.5 // 7 ]); // Indices of the cube var indicies = new Int16Array([ 0, 1, 2, 1, 2, 3, // front 5, 4, 6, 5, 6, 7, // back 0, 1, 5, 0, 5, 4, // left 2, 3, 6, 6, 3, 7, // right 0, 4, 2, 4, 2, 6, // top 5, 3, 1, 5, 3, 7 // bottom ]); // create vertices object on the GPU vbo = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, vbo); gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW); // Create indicies object on th GPU ibo = gl.createBuffer(); gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, ibo); gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indicies, gl.STATIC_DRAW); gl.clearColor(0.0, 0.0, 0.0, 1.0); gl.enable(gl.DEPTH_TEST); // Render scene every 33 milliseconds setInterval(render, 33); } var mvMatrix = mat4.create(); var pMatrix = mat4.create(); function render() { // Set our viewport and clear it before we render gl.viewport(0, 0, canvas.width, canvas.height); gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); gl.useProgram(program); // Bind appropriate VBOs gl.bindBuffer(gl.ARRAY_BUFFER, vbo); gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, ibo); // Set the color for the fragment shader program.uColor = gl.getUniformLocation(program, "uColor"); gl.uniform4fv(program.uColor, [0.3, 0.3, 0.3, 1.0]); // // code.google.com/p/glmatrix/wiki/Usage program.uPMatrix = gl.getUniformLocation(program, "uPMatrix"); program.uMVMatrix = gl.getUniformLocation(program, "uMVMatrix"); mat4.perspective(45, gl.viewportWidth / gl.viewportHeight, 1.0, 10.0, pMatrix); mat4.identity(mvMatrix); mat4.translate(mvMatrix, [0.0, -0.25, -1.0]); gl.uniformMatrix4fv(program.uPMatrix, false, pMatrix); gl.uniformMatrix4fv(program.uMVMatrix, false, mvMatrix); // Set the position for the vertex shader program.aVertexPosition = gl.getAttribLocation(program, "aVertexPosition"); gl.enableVertexAttribArray(program.aVertexPosition); gl.vertexAttribPointer(program.aVertexPosition, 3, gl.FLOAT, false, 3*4, 0); // position // Render the Object gl.drawElements(gl.TRIANGLES, 36, gl.UNSIGNED_SHORT, 0); } Thanks in advance for any help

    Read the article

  • Creating an AJAX Form for a Polymorphic Object in Rails

    - by Isaac Yerushalmi
    I am trying to create an AJAX form for a polymorphic associated model. I created "Comments" which have a polymorphic association with all objects you can comment on (i.e. user profiles, organization profiles, events, etc). I can currently add comments to objects using a form created by: form_for [@commentable, @comment] do |f| I am trying to make this form via Ajax but I keep getting errors. I've tried at least ten different pieces of code, using remote_form_tag, remote_form_for, etc..with all different options, and nothing works. The comment does not get inserted into the database. Can anyone please tell me how I can make the above form ajax-enabled?

    Read the article

  • Python: Data Object or class

    - by arg20
    I enjoy all the python libraries for scraping websites and I am experimenting with BeautifulSoup and IMDB just for fun. As I come from Java, I have some Java-practices incorporated into my programming styles. I am trying to get the info of a certain movie, I can either create a Movie class or just use a dictionary with keys for the attributes. My question is, should I just use dictionaries when a class will only contain data and perhaps almost no behaviour? In other languages creating a type will help you enforce certain restrictions and because of type checks the IDE will help you program, this is not always the case in python, so what should I do? Should I resort to creating a class only when there's both, behaviour and data? Or create a movie class even though it'll probably be just a data container? This all depends on your model, in this particular case either one is fine but I'm wondering about what's a good practice.

    Read the article

  • How can I not render a button in my view if a given property off my model has no value?

    - by Lee Warner
    I'm new to web development. In my view, I want to conditionally show a button if Model.TemplateLocation (which is a string) is not null or empty. Below is the code that is rendering the button currently: <div class="WPButton MyButton"> <%=Html.ActionLink(Model.TemplateLinkName, "DownloadTemplate", "ExternalData", new ArgsDownloadTemplate { Path = Model.TemplateLocation, FileName = Model.TemplateFileNameForDownload }, new{})%> </div> Can I wrap some C# code in the <% %'s to test for Model.TemplateLocations value before I render that? I was told to look into @style = "display:none" somehow. Could that be what I need?

    Read the article

  • How do I pass object values with render :action => 'new'

    - by PlanetMaster
    Hi, In an app I have the following: def new @property = Property.new(:country_id => 1, :user_id => current_user.id, :status_id => 'draft') end def create @property = Property.new(params[:property]) if @property.save flash[:success] = t('The_property_is_successfully_created') redirect_to myimmonatie_url else flash.now[:error]=t("The_property_could_not_be_created") render :action => 'new' end end When an error accors, the line render :action = 'new' gets executed, but the my form gives an error: user blank country blank These cannot be blank (defined in model), meaning this code: @property = Property.new(:country_id => 1, :user_id => current_user.id, :status_id => 'draft') is not executed anymore. What is the reason and solution? Thanks!

    Read the article

  • Parameter index is out of range

    - by czuroski
    Hello, I am getting the following error when trying to update an object using nhibernate. I am attempting to update a field which is a foreign key. Any thoughts why I might be getting this error? I can't figure it out from that error and my log4net log doesn't give any hints either. Thanks System.IndexOutOfRangeException was unhandled by user code Message="Parameter index is out of range." Source="MySql.Data" StackTrace: at MySql.Data.MySqlClient.MySqlParameterCollection.CheckIndex(Int32 index) at MySql.Data.MySqlClient.MySqlParameterCollection.GetParameter(Int32 index) at System.Data.Common.DbParameterCollection.System.Collections.IList.get_Item(Int32 index) at NHibernate.Type.Int32Type.Set(IDbCommand rs, Object value, Int32 index) at NHibernate.Type.NullableType.NullSafeSet(IDbCommand cmd, Object value, Int32 index) at NHibernate.Type.NullableType.NullSafeSet(IDbCommand st, Object value, Int32 index, ISessionImplementor session) at NHibernate.Persister.Entity.AbstractEntityPersister.Dehydrate(Object id, Object[] fields, Object rowId, Boolean[] includeProperty, Boolean[][] includeColumns, Int32 table, IDbCommand statement, ISessionImplementor session, Int32 index) at NHibernate.Persister.Entity.AbstractEntityPersister.Update(Object id, Object[] fields, Object[] oldFields, Object rowId, Boolean[] includeProperty, Int32 j, Object oldVersion, Object obj, SqlCommandInfo sql, ISessionImplementor session) at NHibernate.Persister.Entity.AbstractEntityPersister.UpdateOrInsert(Object id, Object[] fields, Object[] oldFields, Object rowId, Boolean[] includeProperty, Int32 j, Object oldVersion, Object obj, SqlCommandInfo sql, ISessionImplementor session) at NHibernate.Persister.Entity.AbstractEntityPersister.Update(Object id, Object[] fields, Int32[] dirtyFields, Boolean hasDirtyCollection, Object[] oldFields, Object oldVersion, Object obj, Object rowId, ISessionImplementor session) at NHibernate.Action.EntityUpdateAction.Execute() at NHibernate.Engine.ActionQueue.Execute(IExecutable executable) at NHibernate.Engine.ActionQueue.ExecuteActions(IList list) at NHibernate.Engine.ActionQueue.ExecuteActions() at NHibernate.Event.Default.AbstractFlushingEventListener.PerformExecutions(IEventSource session) at NHibernate.Event.Default.DefaultFlushEventListener.OnFlush(FlushEvent event) at NHibernate.Impl.SessionImpl.Flush() at NHibernate.Transaction.AdoTransaction.Commit() at DataAccessLayer.NHibernateDataProvider.UpdateItem_temp(items_temp item_temp) in C:\Documents and Settings\user\My Documents\Visual Studio 2008\Projects\mySolution\DataAccessLayer\NHibernateDataProvider.cs:line 225 at InventoryDataClean.Controllers.ImportController.Edit(Int32 id, FormCollection formValues) in C:\Documents and Settings\user\My Documents\Visual Studio 2008\Projects\mySolution\InventoryDataClean\Controllers\ImportController.cs:line 101 at lambda_method(ExecutionScope , ControllerBase , Object[] ) at System.Web.Mvc.ActionMethodDispatcher.Execute(ControllerBase controller, Object[] parameters) at System.Web.Mvc.ReflectedActionDescriptor.Execute(ControllerContext controllerContext, IDictionary`2 parameters) at System.Web.Mvc.ControllerActionInvoker.InvokeActionMethod(ControllerContext controllerContext, ActionDescriptor actionDescriptor, IDictionary`2 parameters) at System.Web.Mvc.ControllerActionInvoker.<>c__DisplayClassa.<InvokeActionMethodWithFilters>b__7() at System.Web.Mvc.ControllerActionInvoker.InvokeActionMethodFilter(IActionFilter filter, ActionExecutingContext preContext, Func`1 continuation) InnerException: Here is my item mapping - <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="DataTransfer" namespace="DataTransfer"> <class name="DataTransfer.items_temp, DataTransfer" table="items_temp"> <id name="id" unsaved-value="any" > <generator class="assigned"/> </id> <property name="assetid"/> <property name="description"/> <property name="caretaker"/> <property name="category"/> <property name="status" /> <property name="vendor" /> <many-to-one name="statusName" class="status" column="status" /> </class> </hibernate-mapping> Here is my status mapping - <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="DataTransfer" namespace="DataTransfer"> <class name="DataTransfer.status, DataTransfer" table="status"> <id name="id" unsaved-value="0"> <generator class="assigned"/> </id> <property name="name"/> <property name="def"/> </class> </hibernate-mapping> and here is my update function - public void UpdateItem_temp(items_temp item_temp) { ITransaction t = _session.BeginTransaction(); try { _session.SaveOrUpdate(item_temp); t.Commit(); } catch (Exception) { t.Rollback(); throw; } finally { t.Dispose(); } }

    Read the article

  • What is good practice in .NET system architecture design concerning multiple models and aggregates

    - by BuzzBubba
    I'm designing a larger enterprise architecture and I'm in a doubt about how to separate the models and design those. There are several points I'd like suggestions for: - models to define - way to define models Currently my idea is to define: Core (domain) model Repositories to get data to that domain model from a database or other store Business logic model that would contain business logic, validation logic and more specific versions of forms of data retrieval methods View models prepared for specifically formated data output that would be parsed by views of different kind (web, silverlight, etc). For the first model I'm puzzled at what to use and how to define the mode. Should this model entities contain collections and in what form? IList, IEnumerable or IQueryable collections? - I'm thinking of immutable collections which IEnumerable is, but I'd like to avoid huge data collections and to offer my Business logic layer access with LINQ expressions so that query trees get executed at Data level and retrieve only really required data for situations like the one when I'm retrieving a very specific subset of elements amongst thousands or hundreds of thousands. What if I have an item with several thousands of bids? I can't just make an IEnumerable collection of those on the model and then retrieve an item list in some Repository method or even Business model method. Should it be IQueryable so that I actually pass my queries to Repository all the way from the Business logic model layer? Should I just avoid collections in my domain model? Should I void only some collections? Should I separate Domain model and BusinessLogic model or integrate those? Data would be dealt trough repositories which would use Domain model classes. Should repositories be used directly using only classes from domain model like data containers? This is an example of what I had in mind: So, my Domain objects would look like (e.g.) public class Item { public string ItemName { get; set; } public int Price { get; set; } public bool Available { get; set; } private IList<Bid> _bids; public IQueryable<Bid> Bids { get { return _bids.AsQueryable(); } private set { _bids = value; } } public AddNewBid(Bid newBid) { _bids.Add(new Bid {.... } } Where Bid would be defined as a normal class. Repositories would be defined as data retrieval factories and used to get data into another (Business logic) model which would again be used to get data to ViewModels which would then be rendered by different consumers. I would define IQueryable interfaces for all aggregating collections to get flexibility and minimize data retrieved from real data store. Or should I make Domain Model "anemic" with pure data store entities and all collections define for business logic model? One of the most important questions is, where to have IQueryable typed collections? - All the way from Repositories to Business model or not at all and expose only solid IList and IEnumerable from Repositories and deal with more specific queries inside Business model, but have more finer grained methods for data retrieval within Repositories. So, what do you think? Have any suggestions?

    Read the article

  • Binding Entity Framework Collections Simply Using ASP.NET MVC

    - by jpcmorton
    To begin with: Using Entity Framework v4.0. ASP.NET MVC 2.0. Visual Studio 2010. I have a model that consists simply of an order & order items. What I want to do is simply bind that model without too much hassle where possible (avoiding type converters, etc). Simply the model looks like this: public class Order { public int ID { get; set; } public string OrderNumber { get; set; } public EntityCollection<OrderItem> Items { get; set; } } public class OrderItem { public int ID { get; set; } public string Qty { get; set; } } This is as simple as I want to keep it. This model is coming directly from the code generated by the entity framework generator. I would prefer to use the model directly from the entity framework (I know there are views saying this is a bad thing, but alas). I then have the View looking like this: <% using (Html.BeginForm()) {%> <%: Html.ValidationSummary(true) %> <fieldset> <legend>Fields</legend> <div class="editor-label"> <%: Html.LabelFor(model => model.ID) %> </div> <div class="editor-field"> <%: Html.TextBoxFor(model => model.ID) %> <%: Html.ValidationMessageFor(model => model.ID) %> </div> <div class="editor-label"> <%: Html.LabelFor(model => model.OrderNumber) %> </div> <div class="editor-field"> <%: Html.TextBoxFor(model => model.OrderNumber)%> <%: Html.ValidationMessageFor(model => model.OrderNumber)%> </div> <div id="lineItems"> Where I need to put my line items to be edited, inserted </div> <p> <input type="submit" value="Create" /> </p> </fieldset> <% } %> What I want to do is have a situation where I can use dynamic line items (using javascript). Problems are this: How to go about inserting the initial line item (within the lineItems div). This need to be strongly typed and use the built in validation framework of MVC. Best way to go about inserting line items dynamically so that on the postback there is a complete bind to the model without too much messing around (id = 1,2,3,4, etc). Any help, examples, tips, etc would be appreciated.

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • ASP.NET MVC Framework

    - by Aamir Hasan
     MVC is a design pattern. A reusable "recipe" for constructing your application. Generally, you don't want your user interface code and data access code to be mixed together, it makes changing either one more difficult. By placing data access code into a "Model" object and user interface code into a "View" object, you can use a "Controller" object to act as a go-between, sending messages/calling methods on the view object when the data changes and vice versa. Model-view-controller (MVC) is an architectural pattern used in software engineering. In complex computer applications that present a large amount of data to the user, a developer often wishes to separate data (model) and user interface (view) concerns, so that changes to the user interface will not affect data handling, and that the data can be reorganized without changing the user interface. The model-view-controller solves this problem by decoupling data access and business logic from data presentation and user interaction, by introducing an intermediate component: the controller.Model:    The domain-specific representation of the information that the application operates. Domain logic adds meaning to raw data (e.g., calculating whether today is the user's birthday, or the totals, taxes, and shipping charges for shopping cart items).    Many applications use a persistent storage mechanism (such as a database) to store data. MVC does not specifically mention the data access layer because it is understood to be underneath or encapsulated by the Model.View:    Renders the model into a form suitable for interaction, typically a user interface element. Multiple views can exist for a single model for different purposes.Controller:    Processes and responds to events, typically user actions, and may invoke changes on the model.    

    Read the article

  • Finding the Right Solution to Source and Manage Your Contractors

    - by mark.rosenberg(at)oracle.com
    Many of our PeopleSoft Enterprise applications customers operate in service-based industries, and all of our customers have at least some internal service units, such as IT, marketing, and facilities. Employing the services of contractors, often referred to as "contingent labor," to deliver either or both internal and external services is common practice. As we've transitioned from an industrial age to a knowledge age, talent has become a primary competitive advantage for most organizations. Contingent labor offers talent on flexible terms; it offers the ability to scale up operations, close skill gaps, and manage risk in the process of delivering services. Talent comes from many sources and the rise in the contingent worker (contractor, consultant, temporary, part time) has increased significantly in the past decade and is expected to reach 40 percent in the next decade. Managing the total pool of talent in a seamless integrated fashion not only saves organizations money and increases efficiency, but creates a better place for workers of all kinds to work. Although the term "contingent labor" is frequently used to describe both contractors and employees who have flexible schedules and relationships with an organization, the remainder of this discussion focuses on contractors. The term "contingent labor" is used interchangeably with "contractor." Recognizing the importance of contingent labor, our PeopleSoft customers often ask our team, "What Oracle vendor management system (VMS) applications should I evaluate for managing contractors?" In response, I thought it would be useful to describe and compare the three most common Oracle-based options available to our customers. They are:   The enterprise licensed software model in which you implement and utilize the PeopleSoft Services Procurement (sPro) application and potentially other PeopleSoft applications;  The software-as-a-service model in which you gain access to a derivative of PeopleSoft sPro from an Oracle Business Process Outsourcing Partner; and  The managed service provider (MSP) model in which staffing industry professionals utilize either your enterprise licensed software or the software-as-a-service application to administer your contingent labor program. At this point, you may be asking yourself, "Why three options?" The answer is that since there is no "one size fits all" in terms of talent, there is also no "one size fits all" for effectively sourcing and managing contingent workers. Various factors influence how an organization thinks about and relates to its contractors, and each of the three Oracle-based options addresses an organization's needs and preferences differently. For the purposes of this discussion, I will describe the options with respect to (A) pricing and software provisioning models; (B) control and flexibility; (C) level of engagement with contractors; and (D) approach to sourcing, employment law, and financial settlement. Option 1:  Enterprise Licensed Software In this model, you purchase from Oracle the license and support for the applications you need. Typically, you license PeopleSoft sPro as your VMS tool for sourcing, monitoring, and paying your contract labor. In conjunction with sPro, you can also utilize PeopleSoft Human Capital Management (HCM) applications (if you do not already) to configure more advanced business processes for recruiting, training, and tracking your contractors. Many customers choose this enterprise license software model because of the functionality and natural integration of the PeopleSoft applications and because the cost for the PeopleSoft software is explicit. There is no fee per transaction to source each contractor under this model. Our customers that employ contractors to augment their permanent staff on billable client engagements often find this model appealing because there are no fees to affect their profit margins. With this model, you decide whether to have your own IT organization run the software or have the software hosted and managed by either Oracle or another application services provider. Your organization, perhaps with the assistance of consultants, configures, deploys, and operates the software for managing your contingent workforce. This model offers you the highest level of control and flexibility since your organization can configure the contractor process flow exactly to your business and security requirements and can extend the functionality with PeopleTools. This option has proven very valuable and applicable to our customers engaged in government contracting because their contingent labor management practices are subject to complex standards and regulations. Customers find a great deal of value in the application functionality and configurability the enterprise licensed software offers for managing contingent labor. Some examples of that functionality are... The ability to create a tiered network of preferred suppliers including competencies, pricing agreements, and elaborate candidate management capabilities. Configurable alerts and online collaboration for bid, resource requisition, timesheet, and deliverable entry, routing, and approval for both resource and deliverable-based services. The ability to manage contractors with the same PeopleSoft HCM and Projects applications that are used to manage the permanent workforce. Because it allows you to utilize much of the same PeopleSoft HCM and Projects application functionality for contractors that you use for permanent employees, the enterprise licensed software model supports the deepest level of engagement with the contingent workforce. For example, you can: fill job openings with contingent labor; guide contingent workers through essential safety and compliance training with PeopleSoft Enterprise Learning Management; and source contingent workers directly to project-based assignments in PeopleSoft Resource Management and PeopleSoft Program Management. This option enables contingent workers to collaborate closely with your permanent staff on complex, knowledge-based efforts - R&D projects, billable client contracts, architecture and engineering projects spanning multiple years, and so on. With the enterprise licensed software model, your organization maintains responsibility for the sourcing, onboarding (including adherence to employment laws), and financial settlement processes. This means your organization maintains on staff or hires the expertise in these domains to utilize the software and interact with suppliers and contractors. Option 2:  Software as a Service (SaaS) The effort involved in setting up and operating VMS software to handle a contingent workforce leads many organizations to seek a system that can be activated and configured within a few days and for which they can pay based on usage. Oracle's Business Process Outsourcing partner, Provade, Inc., provides exactly this option to our customers. Provade offers its vendor management software as a service over the Internet and usually charges your organization a fee that is a percentage of your total contingent labor spending processed through the Provade software. (Percentage of spend is the predominant fee model, although not the only one.) In addition to lower implementation costs, the effort of configuring and maintaining the software is largely upon Provade, not your organization. This can be very appealing to IT organizations that are thinly stretched supporting other important information technology initiatives. Built upon PeopleSoft sPro, the Provade solution is tailored for simple and quick deployment and administration. Provade has added capabilities to clone users rapidly and has simplified business documents, like work orders and change orders, to facilitate enterprise-wide, self-service adoption with little to no training. Provade also leverages Oracle Business Intelligence Enterprise Edition (OBIEE) to provide integrated spend analytics and dashboards. Although pure customization is more limited than with the enterprise licensed software model, Provade offers a very effective option for organizations that are regularly on-boarding and off-boarding high volumes of contingent staff hired to perform discrete support tasks (for example, order fulfillment during the holiday season, hourly clerical work, desktop technology repairs, and so on) or project tasks. The software is very configurable and at the same time very intuitive to even the most computer-phobic users. The level of contingent worker engagement your organization can achieve with the Provade option is generally the same as with the enterprise licensed software model since Provade can automatically establish contingent labor resources in your PeopleSoft applications. Provade has pre-built integrations to Oracle's PeopleSoft and the Oracle E-Business Suite procurement, projects, payables, and HCM applications, so that you can evaluate, train, assign, and track contingent workers like your permanent employees. Similar to the enterprise licensed software model, your organization is responsible for the contingent worker sourcing, administration, and financial settlement processes. This means your organization needs to maintain the staff expertise in these domains. Option 3:  Managed Services Provider (MSP) Whether you are using the enterprise licensed model or the SaaS model, you may want to engage the services of sourcing, employment, payroll, and financial settlement professionals to administer your contingent workforce program. Firms that offer this expertise are often referred to as "MSPs," and they are typically staffing companies that also offer permanent and temporary hiring services. (In fact, many of the major MSPs are Oracle applications customers themselves, and they utilize the PeopleSoft Solution for the Staffing Industry to run their own business operations.) Usually, MSPs place their staff on-site at your facilities, and they can utilize either your enterprise licensed PeopleSoft sPro application or the Provade VMS SaaS software to administer the network of suppliers providing contingent workers. When you utilize an MSP, there is a separate fee for the MSP's service that is typically funded by the participating suppliers of the contingent labor. Also in this model, the suppliers of the contingent labor (not the MSP) usually pay the contingent labor force. With an MSP, you are intentionally turning over business process control for the advantages associated with having someone else manage the processes. The software option you choose will to a certain extent affect your process flexibility; however, the MSPs are often able to adapt their processes to the unique demands of your business. When you engage an MSP, you will want to give some thought to the level of engagement and "partnering" you need with your contingent workforce. Because the MSP acts as an intermediary, it can be very valuable in handling high volume, routine contracting for which there is a relatively low need for "partnering" with the contingent workforce. However, if your organization (or part of your organization) engages contingent workers for high-profile client projects that require diplomacy, intensive amounts of interaction, and personal trust, introducing an MSP into the process may prove less effective than handling the process with your own staff. In fact, in many organizations, it is common to enlist an MSP to handle contractors working on internal projects and to have permanent employees handle the contractor relationships that affect the portion of the services portfolio focused on customer-facing, billable projects. One of the key advantages of enlisting an MSP is that you do not have to maintain the expertise required for orchestrating the sourcing, hiring, and paying of contingent workers.  These are the domain of the MSPs. If your own staff members are not prepared to manage the essential "overhead" processes associated with contingent labor, working with an MSP can make solid business sense. Proper administration of a contingent workforce can make the difference between project success and failure, operating profit and loss, and legal compliance and fines. Concluding Thoughts There is little doubt that thoughtfully and purposefully constructing a service delivery strategy that leverages the strengths of contingent workers can lead to better projects, deliverables, and business results. What requires a bit more thinking is determining the platform (or platforms) that will enable each part of your organization to best deliver on its mission.

    Read the article

  • Vertex fog producing black artifacts

    - by Nick
    I originally posted this question on the XNA forums but got no replies, so maybe someone here can help: I am rendering a textured model using the XNA BasicEffect. When I enable fog, the model outline is still visible as many small black dots when it should be "in the fog". Why is this happening? Here's what it looks like for me -- http://tinypic.com/r/fnh440/6 Here is a minimal example showing my problem: (the ship model that this example uses is from the chase camera sample on this site -- http://xbox.create.msdn.com/en-US/education/catalog/sample/chasecamera -- in case anyone wants to try it out ;)) public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; Model model; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; } protected override void LoadContent() { // Create a new SpriteBatch, which can be used to draw textures. spriteBatch = new SpriteBatch(GraphicsDevice); // TODO: use this.Content to load your game content here model = Content.Load<Model>("ship"); foreach (ModelMesh mesh in model.Meshes) { foreach (BasicEffect be in mesh.Effects) { be.EnableDefaultLighting(); be.FogEnabled = true; be.FogColor = Color.CornflowerBlue.ToVector3(); be.FogStart = 10; be.FogEnd = 30; } } } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); // TODO: Add your drawing code here model.Draw(Matrix.Identity * Matrix.CreateScale(0.01f) * Matrix.CreateRotationY(3 * MathHelper.PiOver4), Matrix.CreateLookAt(new Vector3(0, 0, 30), Vector3.Zero, Vector3.Up), Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, 16f/9f, 1, 100)); base.Draw(gameTime); } }

    Read the article

  • XNA CustomModelAnimationSample problem

    - by Mentoliptus
    I downloaded the official tutorial from:CustomModelAnimationSample It works fine but when I try to replicate it in my project, it fails to load the Tag property in my model. Is found that the probelm is in the line: skinnedModel = Content.Load<Model>("DudeWalk"); This line loads the model from the DudeWalk.fbx file and with the custom SkinnedModelProcessor. It loads the animations data in the model. After the line the Tag property is full. I stepped into the method and it went to the custom ModelData class. I copied everything from the projects CustomModelAnimationWindows and CustomModelAnimationPipeline to my solution and set all the references. I tried the same line of code and couldn't step in the method. It called the default method or model constructor and after the line the model's Tag propetry was null. I have to load the model through my custom SkinnedModelProcessor class, but how I tell the game to use this class? In the tutroail CustomModelClass the line is changed to: model = Content.Load<CustomModel>("tank"); So I assumed that I have to set the generic type to a custom model class, but the first example works without it. If anyone has some useful advice or some other helpful link, I'll be happy to try it.

    Read the article

  • Optimal communication pattern to update subscribers

    - by hpc
    What is the optimal way to update the subscriber's local model on changes C on a central model M? ( M + C - M_c) The update can be done by the following methods: Publish the updated model M_c to all subscribers. Drawback: if the model is big in contrast to the change it results in much more data to be communicated. Publish change C to all subscribes. The subscribers will then update their local model in the same way as the server does. Drawback: The client needs to know the business logic to update the model in the same way as the server. It must be assured that the subscribed model stays equal to the central model. Calculate the delta (or patch) of the change (M_c - M = D_c) and transfer the delta. Drawback: This requires that calculating and applying the delta (M + D_c = M_c) is an cheap/easy operation. If a client newly subscribes it must be initialized. This involves sending the current model M. So method 1 is always required. Think of playing chess as a concrete example: Subscribers send moves and want to see the latest chess board state. The server checks validity of the move and applies it to the chess board. The server can then send the updated chessboard (method 1) or just send the move (method 2) or send the delta (method 3): remove piece on field D4, put tower on field D8.

    Read the article

  • MVC pattern synchronisation

    - by Hariprasad
    I am facing a problem in synchronizing my model and view threads I have a view which is table. In it, user can select a few rows. I update the view as soon as the user clicks on any row since I don't want the UI to be slow. This updating is done by a logic which runs in the controller thread below. At the same time, the controller will update the model data too, which takes place in a different thread. i.e., controller puts the query in a queue, which is then executed by the model thread - which is a single-threaded interface. As soon as the query executes, controller will get a signal. Now, In order to keep the view and model synchronized, I will update the view again based on the return value of the query (the data returned by model) - even though I updated the view already for that user action. But, I am facing issues because, its taking a lot of time for the model to return the result, by that time user would have performed multiple clicks. So, as a result of updating the view again based on the information from model, the view sometimes goes back to the state in which the previous clicks were made (Suppose user clicks thrice on different rows. I update the view as soon as the click happens. Also, I update the view when I get data back from the model - which is supposed to be same as the already updated state of the view. Now, when the user clicks third time, I get data for the first click from model. As a result, view goes back to a state which is generated by the first click) Is there any way to handle such a synchronization issue?

    Read the article

  • WPF: Xaml, create an observable collection<object> in xaml in Dot Net 4.0

    - by Aran Mulholland
    the web site says you can in dot net 4.0 I cant seem to do it though, what assesmbly references and xmlns' do i need the following does not work xmlns:coll="clr-namespace:System.Collections.ObjectModel;assembly=mscorlib" <coll:ObservableCollection x:TypeArguments="x:Object"> <MenuItem Command="ApplicationCommands.Cut"/> <MenuItem Command="ApplicationCommands.Copy"/> <MenuItem Command="ApplicationCommands.Paste"/> </coll:ObservableCollection>

    Read the article

  • WPF: Xaml, create an observable collection<object> in xaml in .NET 4.0

    - by Aran Mulholland
    the web site says you can in .NET 4.0 I cant seem to do it though, what assesmbly references and xmlns' do i need the following does not work xmlns:coll="clr-namespace:System.Collections.ObjectModel;assembly=mscorlib" <coll:ObservableCollection x:TypeArguments="x:Object"> <MenuItem Command="ApplicationCommands.Cut"/> <MenuItem Command="ApplicationCommands.Copy"/> <MenuItem Command="ApplicationCommands.Paste"/> </coll:ObservableCollection>

    Read the article

  • ensime scala errors (class scala.Array not found, object scala not found)

    - by Jeff Bowman
    I've installed ensime according to the README.md file, however, I get errors in the inferior-ensime-server buffer with the following: INFO: Fatal Error: scala.tools.nsc.MissingRequirementError: object scala not found. scala.tools.nsc.MissingRequirementError: object scala not found. at scala.tools.nsc.symtab.Definitions$definitions$.getModuleOrClass(Definitions.scala:516) at scala.tools.nsc.symtab.Definitions$definitions$.ScalaPackage(Definitions.scala:43) at scala.tools.nsc.symtab.Definitions$definitions$.ScalaPackageClass(Definitions.scala:44) at scala.tools.nsc.symtab.Definitions$definitions$.UnitClass(Definitions.scala:89) at scala.tools.nsc.symtab.Definitions$definitions$.init(Definitions.scala:786) at scala.tools.nsc.Global$Run.(Global.scala:593) at scala.tools.nsc.interactive.Global$TyperRun.(Global.scala:473) at scala.tools.nsc.interactive.Global.newTyperRun(Global.scala:535) at scala.tools.nsc.interactive.Global.reloadSources(Global.scala:289) at scala.tools.nsc.interactive.Global$$anonfun$reload$1.apply(Global.scala:300) at scala.tools.nsc.interactive.Global$$anonfun$reload$1.apply(Global.scala:300) at scala.tools.nsc.interactive.Global.respond(Global.scala:276) at scala.tools.nsc.interactive.Global.reload(Global.scala:300) at scala.tools.nsc.interactive.CompilerControl$$anon$1.apply$mcV$sp(CompilerControl.scala:81) at scala.tools.nsc.interactive.Global.pollForWork(Global.scala:132) at scala.tools.nsc.interactive.Global$$anon$2.run(Global.scala:192) also: INFO: Fatal Error: scala.tools.nsc.MissingRequirementError: class scala.Array not found. scala.tools.nsc.MissingRequirementError: class scala.Array not found. at scala.tools.nsc.symtab.Definitions$definitions$.getModuleOrClass(Definitions.scala:516) at scala.tools.nsc.symtab.Definitions$definitions$.getClass(Definitions.scala:474) at scala.tools.nsc.symtab.Definitions$definitions$.ArrayClass(Definitions.scala:217) at scala.tools.nsc.backend.icode.TypeKinds$REFERENCE.(TypeKinds.scala:258) at scala.tools.nsc.backend.icode.GenICode$ICodePhase.(GenICode.scala:55) at scala.tools.nsc.backend.icode.GenICode.newPhase(GenICode.scala:43) at scala.tools.nsc.backend.icode.GenICode.newPhase(GenICode.scala:25) at scala.tools.nsc.Global$Run$$anonfun$4.apply(Global.scala:606) at scala.tools.nsc.Global$Run$$anonfun$4.apply(Global.scala:605) at scala.collection.LinearSeqOptimized$class.foreach(LinearSeqOptimized.scala:62) at scala.collection.immutable.List.foreach(List.scala:46) at scala.tools.nsc.Global$Run.(Global.scala:605) at scala.tools.nsc.interactive.Global$TyperRun.(Global.scala:473) at scala.tools.nsc.interactive.Global.newTyperRun(Global.scala:535) at scala.tools.nsc.interactive.Global.reloadSources(Global.scala:289) at scala.tools.nsc.interactive.Global.typedTreeAt(Global.scala:309) at scala.tools.nsc.interactive.Global$$anonfun$getTypedTreeAt$1.apply(Global.scala:326) at scala.tools.nsc.interactive.Global$$anonfun$getTypedTreeAt$1.apply(Global.scala:326) at scala.tools.nsc.interactive.Global.respond(Global.scala:276) at scala.tools.nsc.interactive.Global.getTypedTreeAt(Global.scala:326) at scala.tools.nsc.interactive.CompilerControl$$anon$2.apply$mcV$sp(CompilerControl.scala:89) at scala.tools.nsc.interactive.Global.pollForWork(Global.scala:132) at scala.tools.nsc.interactive.Global$$anon$2.run(Global.scala:192) Also none of the type identification works for me, I get 'NA' if I get anything at all. C-c t causes emacs to lock up. I'm running: Ubuntu 10.04 (64bit version) emacs 23.1.50.1 ensime from git (as of 3 May 2010) scala is version 2.8.0.RC1 java is 1.6.0_20 (from sun) here is a copy of the log: http://dl.dropbox.com/u/5309017/ensime.log Thanks! Jeff

    Read the article

  • Cannot get a connection, pool error Timeout waiting for idle object :sakai

    - by siddhant
    iam using sakai 2.9.1 after a few operations the server stops responding and prints log:- 2014-02-20 12:48:47,085 WARN http-bio-8080-exec-18 org.sakaiproject.db.impl.BasicSqlService - Sql.dbRead: sql: select SAKAI_SITE.SITE_ID,SAKAI_SITE.TITLE,SAKAI_SITE.TYPE,SAKAI_SITE.SHO RT_DESC,SAKAI_SITE.DESCRIPTION,SAKAI_SITE.ICON_URL,SAKAI_SITE.INFO_URL,SAKAI_SITE.SKIN,SAKAI_SITE.PUBLISHED,SAKAI_SITE.JOINABLE,SAKAI_SITE.PUBVIEW,SAKAI_SITE.JOIN_ROLE,SAKAI_SITE.IS_SPE CIAL,SAKAI_SITE.IS_USER,SAKAI_SITE.CREATEDBY,SAKAI_SITE.MODIFIEDBY,SAKAI_SITE.CREATEDON,SAKAI_SITE.MODIFIEDON,SAKAI_SITE.CUSTOM_PAGE_ORDERED,SAKAI_SITE.IS_SOFTLY_DELETED,SAKAI_SITE.SOFT LY_DELETED_DATE from SAKAI_SITE where ( SITE_ID = ? ) !admin org.apache.commons.dbcp.SQLNestedException: Cannot get a connection, pool error Timeout waiting for idle object at org.apache.commons.dbcp.PoolingDataSource.getConnection(PoolingDataSource.java:104) at org.apache.commons.dbcp.BasicDataSource.getConnection(BasicDataSource.java:880) at org.sakaiproject.db.impl.BasicSqlService.borrowConnection(BasicSqlService.java:260) at org.sakaiproject.db.impl.BasicSqlService.dbRead(BasicSqlService.java:540) at org.sakaiproject.util.BaseDbFlatStorage.getResource(BaseDbFlatStorage.java:341) at org.sakaiproject.util.BaseDbFlatStorage.getResource(BaseDbFlatStorage.java:321) at org.sakaiproject.site.impl.DbSiteService$DbStorage.get(DbSiteService.java:236) at org.sakaiproject.site.impl.BaseSiteService.getDefinedSite(BaseSiteService.java:616) at org.sakaiproject.site.impl.BaseSiteService.getSite(BaseSiteService.java:702) at org.sakaiproject.site.impl.BaseSiteService.getSiteVisit(BaseSiteService.java:780) at org.sakaiproject.site.cover.SiteService.getSiteVisit(SiteService.java:140) at org.sakaiproject.presence.tool.PresenceTool.doGet(PresenceTool.java:141) at javax.servlet.http.HttpServlet.service(HttpServlet.java:621) at javax.servlet.http.HttpServlet.service(HttpServlet.java:722) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:305) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:210) at org.sakaiproject.util.RequestFilter.doFilter(RequestFilter.java:634) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:243) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:210) at org.apache.catalina.core.ApplicationDispatcher.invoke(ApplicationDispatcher.java:684) at org.apache.catalina.core.ApplicationDispatcher.processRequest(ApplicationDispatcher.java:471) at org.apache.catalina.core.ApplicationDispatcher.doForward(ApplicationDispatcher.java:369) at org.apache.catalina.core.ApplicationDispatcher.forward(ApplicationDispatcher.java:329) at org.sakaiproject.tool.impl.ActiveToolComponent$MyActiveTool.forward(ActiveToolComponent.java:511) at org.sakaiproject.portal.charon.SkinnableCharonPortal.forwardTool(SkinnableCharonPortal.java:1470) at org.sakaiproject.portal.charon.handlers.PresenceHandler.doPresence(PresenceHandler.java:140) at org.sakaiproject.portal.charon.handlers.PresenceHandler.doGet(PresenceHandler.java:70) at org.sakaiproject.portal.charon.SkinnableCharonPortal.doGet(SkinnableCharonPortal.java:881) at javax.servlet.http.HttpServlet.service(HttpServlet.java:621) at javax.servlet.http.HttpServlet.service(HttpServlet.java:722) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:305) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:210) at org.sakaiproject.util.RequestFilter.doFilter(RequestFilter.java:695) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:243) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:210) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:224) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:169) at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:472) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:168) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:98) at org.apache.catalina.valves.AccessLogValve.invoke(AccessLogValve.java:927) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:118) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:407) at org.apache.coyote.http11.AbstractHttp11Processor.process(AbstractHttp11Processor.java:987) at org.apache.coyote.AbstractProtocol$AbstractConnectionHandler.process(AbstractProtocol.java:579) at org.apache.tomcat.util.net.JIoEndpoint$SocketProcessor.run(JIoEndpoint.java:307) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:619) Caused by: java.util.NoSuchElementException: Timeout waiting for idle object at org.apache.commons.pool.impl.GenericObjectPool.borrowObject(GenericObjectPool.java:1167) at org.apache.commons.dbcp.PoolingDataSource.getConnection(PoolingDataSource.java:96)

    Read the article

  • MVC2 Controller is passed a null object as a parameter

    - by Steve Wright
    I am having an issue with a controller getting a null object as a parameter: [HttpGet] public ActionResult Login() { return View(); } [HttpPost] public ActionResult Login(LoginViewData userLogin) { Assert.IsNotNull(userLogin); // FAILS if (ModelState.IsValid) { } return View(userLogin); } The LoginViewData is being passed as null when the HttpPost is called: Using MvcContrib.FluentHtml: <h2>Login to your Account</h2> <div id="contact" class="rounded-10"> <%using (Html.BeginForm()) { %> <fieldset> <ol> <li> <%= this.TextBox(f=>f.UserLogin).Label("Name: ", "name") %> <%= Html.ValidationMessageFor(m => m.UserLogin) %> </li> <li> <%= this.Password(u => u.UserPassword).Label("Password:", "name") %> <%= Html.ValidationMessageFor(m => m.UserPassword) %> </li> <li> <%= this.CheckBox(f => f.RememberMe).LabelAfter("Remember Me")%> </li> <li> <label for="submit" class="name">&nbsp;</label> <%= this.SubmitButton("Login")%> </li> </ol> </fieldset> <% } %> <p>If you forgot your user name or password, please use the Password Retrieval Form.</p> </div> The view inherits from MvcContrib.FluentHtml.ModelViewPage and is strongly typed against the LoginViewData object: public class LoginViewData { [Required] [DisplayName("User Login")] public string UserLogin { get; set; } [Required] [DisplayName("Password")] public string UserPassword { get; set; } [DisplayName("Remember Me?")] public bool RememberMe { get; set; } } Any ideas on why this would be happening? UPDATE I rebuilt the web project from scratch and that fixed it. I am still concerned why it happened.

    Read the article

< Previous Page | 192 193 194 195 196 197 198 199 200 201 202 203  | Next Page >