Search Results

Search found 79383 results on 3176 pages for 'type system'.

Page 212/3176 | < Previous Page | 208 209 210 211 212 213 214 215 216 217 218 219  | Next Page >

  • Allowing user to type only one "."

    - by Tartar
    I am trying to implement a simple javascript-html calculator. What i want to do is,typing only one '.' by the user. How can i control this ? Here is the code that i tried. I can already find the number of '.' but i'am confused now also this replaceAll function is not replacing '.' with empty string. String.prototype.replaceAll = function(search, replace) { //if replace is null, return original string otherwise it will //replace search string with 'undefined'. if(!replace) return this; return this.replace(new RegExp('[' + search + ']', 'g'), replace); }; function calculate(){ var value = document.calculator.text.value; var valueArray = value.split(""); var arrayLenght = valueArray.length; var character = "."; var charCount = 0; for(i=0;i<arrayLenght;i++){ if (valueArray[i]===character) { charCount += 1; } } if(charCount>1){ var newValue=value.replaceAll(".",""); alert(newValue); } }

    Read the article

  • Dual Boot issues with Windows 7 and Ubuntu

    - by Michael
    I'm finding myself in a rather unique situation. I've read through just about every resource I can find about this and while things have helped me understand some background, I haven't yet been able to find a solution. So I'm asking here. I originally had just a Windows 7 64-bit OS installation on my desktop. Learning that I couldn't do anything with Apache, PHP and MySql from within a 64-bit system, I did some research and found out that I could use Ubuntu. I've installed the latest version: 11.04. I created a CD to install Ubuntu from and the install went just fine. I installed it side-by-side with Windows 7. I can boot into Ubuntu just fine through the dual-boot option. When I reboot to load Windows though, the Grub2 list shows Windows 7 (loader) and when I select this option the Windows System Recovery loads instead of the actual OS. I haven't made it past there because I didn't know what to do. I just shut the computer down and rebooted into Ubuntu. I've been working for the last hour and a half to try to figure out how to boot into the Windows 7 OS and I haven't got a clue. While I'm somewhat proficient with Windows 7, I'm totally new to Ubuntu, so if you do know what needs to happen, please keep it simple enough that I'll be able to understand. Thanks for all your help in advance. Here's the results after using the Boot Info Script: Boot Info Script 0.55 dated February 15th, 2010 ============================= Boot Info Summary: ============================== => Grub 2 is installed in the MBR of /dev/sda and looks on the same drive in partition #5 for cbh. => Windows is installed in the MBR of /dev/sdb => Grub 2 is installed in the MBR of /dev/mapper/pdc_bdadcfbdif and looks on the same drive in partition #5 for cbh. sda1: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Mounting failed: fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy sda2: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Mounting failed: fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy sda3: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Mounting failed: fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy sdb1: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files/dirs: /bootmgr /Boot/BCD sdb2: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files/dirs: sdb3: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files/dirs: /bootmgr /boot/BCD sdb4: _________________________________________________________________________ File system: Extended Partition Boot sector type: - Boot sector info: sdb5: _________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu 11.04 Boot files/dirs: /boot/grub/grub.cfg /etc/fstab /boot/grub/core.img sdb6: _________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: pdc_bdadcfbdif1: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files/dirs: /bootmgr /Boot/BCD pdc_bdadcfbdif2: _________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files/dirs: /bootmgr /Boot/BCD /Windows/System32/winload.exe pdc_bdadcfbdif3: _________________________________________________________________________ File system: Boot sector type: Unknown Boot sector info: Mounting failed: fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy fuse: mount failed: Device or resource busy mount: unknown filesystem type '' =========================== Drive/Partition Info: ============================= Drive: sda ___________________ _____________________________________________________ Disk /dev/sda: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders, total 1465149168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start End Size Id System /dev/sda1 * 2,048 206,847 204,800 7 HPFS/NTFS /dev/sda2 206,911 1,440,372,735 1,440,165,825 7 HPFS/NTFS /dev/sda3 1,440,372,736 1,464,856,575 24,483,840 7 HPFS/NTFS Drive: sdb ___________________ _____________________________________________________ Disk /dev/sdb: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start End Size Id System /dev/sdb1 * 2,048 206,847 204,800 7 HPFS/NTFS /dev/sdb2 206,911 1,342,554,688 1,342,347,778 7 HPFS/NTFS /dev/sdb3 1,930,344,448 1,953,521,663 23,177,216 7 HPFS/NTFS /dev/sdb4 1,342,556,158 1,930,344,447 587,788,290 5 Extended /dev/sdb5 1,342,556,160 1,896,806,399 554,250,240 83 Linux /dev/sdb6 1,896,808,448 1,930,344,447 33,536,000 82 Linux swap / Solaris Drive: pdc_bdadcfbdif ___________________ _____________________________________________________ Disk /dev/mapper/pdc_bdadcfbdif: 750.0 GB, 749999947776 bytes 255 heads, 63 sectors/track, 91182 cylinders, total 1464843648 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start End Size Id System /dev/mapper/pdc_bdadcfbdif1 * 2,048 206,847 204,800 7 HPFS/NTFS /dev/mapper/pdc_bdadcfbdif2 206,911 1,440,372,735 1,440,165,825 7 HPFS/NTFS /dev/mapper/pdc_bdadcfbdif3 1,440,372,736 1,464,856,575 24,483,840 7 HPFS/NTFS /dev/mapper/pdc_bdadcfbdif3 ends after the last sector of /dev/mapper/pdc_bdadcfbdif blkid -c /dev/null: ____________________________________________________________ Device UUID TYPE LABEL /dev/mapper/pdc_bdadcfbdif1 888E54CC8E54B482 ntfs SYSTEM /dev/mapper/pdc_bdadcfbdif2 C2766BF6766BEA1D ntfs OS /dev/mapper/pdc_bdadcfbdif: PTTYPE="dos" /dev/sda1 888E54CC8E54B482 ntfs SYSTEM /dev/sda2 C2766BF6766BEA1D ntfs OS /dev/sda3 BE6CA31D6CA2CF87 ntfs HP_RECOVERY /dev/sda promise_fasttrack_raid_member /dev/sdb1 20B65685B6565B7C ntfs SYSTEM /dev/sdb2 B4467A314679F508 ntfs HP /dev/sdb3 6E10B7A410B77227 ntfs FACTORY_IMAGE /dev/sdb4: PTTYPE="dos" /dev/sdb5 266f9801-cf4f-4acc-affa-2092be035f0c ext4 /dev/sdb6 1df35749-a887-45ff-a3de-edd52239847d swap /dev/sdb: PTTYPE="dos" error: /dev/mapper/pdc_bdadcfbdif3: No such file or directory error: /dev/sdc: No medium found error: /dev/sdd: No medium found error: /dev/sde: No medium found error: /dev/sdf: No medium found error: /dev/sdg: No medium found ============================ "mount | grep ^/dev output: =========================== Device Mount_Point Type Options /dev/sdb5 / ext4 (rw,errors=remount-ro,commit=0) =========================== sdb5/boot/grub/grub.cfg: =========================== # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { insmod vbe insmod vga insmod video_bochs insmod video_cirrus } insmod part_msdos insmod ext2 set root='(/dev/sdb,msdos5)' search --no-floppy --fs-uuid --set=root 266f9801-cf4f-4acc-affa-2092be035f0c if loadfont /usr/share/grub/unicode.pf2 ; then set gfxmode=auto load_video insmod gfxterm fi terminal_output gfxterm insmod part_msdos insmod ext2 set root='(/dev/sdb,msdos5)' search --no-floppy --fs-uuid --set=root 266f9801-cf4f-4acc-affa-2092be035f0c set locale_dir=($root)/boot/grub/locale set lang=en_US insmod gettext if [ "${recordfail}" = 1 ]; then set timeout=-1 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### if [ ${recordfail} != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "$linux_gfx_mode" != "text" ]; then load_video; fi menuentry 'Ubuntu, with Linux 2.6.38-8-generic-pae' --class ubuntu --class gnu-linux --class gnu --class os { recordfail set gfxpayload=$linux_gfx_mode insmod part_msdos insmod ext2 set root='(/dev/sdb,msdos5)' search --no-floppy --fs-uuid --set=root 266f9801-cf4f-4acc-affa-2092be035f0c linux /boot/vmlinuz-2.6.38-8-generic-pae root=UUID=266f9801-cf4f-4acc- affa-2092be035f0c ro quiet splash vt.handoff=7 initrd /boot/initrd.img-2.6.38-8-generic-pae } menuentry 'Ubuntu, with Linux 2.6.38-8-generic-pae (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os { recordfail set gfxpayload=$linux_gfx_mode insmod part_msdos insmod ext2 set root='(/dev/sdb,msdos5)' search --no-floppy --fs-uuid --set=root 266f9801-cf4f-4acc-affa-2092be035f0c echo 'Loading Linux 2.6.38-8-generic-pae ...' linux /boot/vmlinuz-2.6.38-8-generic-pae root=UUID=266f9801-cf4f-4acc-affa-2092be035f0c ro single echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-2.6.38-8-generic-pae } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='(/dev/sdb,msdos5)' search --no-floppy --fs-uuid --set=root 266f9801-cf4f-4acc-affa-2092be035f0c linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='(/dev/sdb,msdos5)' search --no-floppy --fs-uuid --set=root 266f9801-cf4f-4acc-affa-2092be035f0c linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry "Windows 7 (loader) (on /dev/sdb1)" --class windows --class os { insmod part_msdos insmod ntfs set root='(/dev/sdb,msdos1)' search --no-floppy --fs-uuid --set=root 20B65685B6565B7C chainloader +1 } menuentry "Windows Recovery Environment (loader) (on /dev/sdb3)" --class windows --class os { insmod part_msdos insmod ntfs set root='(/dev/sdb,msdos3)' search --no-floppy --fs-uuid --set=root 6E10B7A410B77227 drivemap -s (hd0) ${root} chainloader +1 } ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### =============================== sdb5/etc/fstab: =============================== # /etc/fstab: static file system information. # # Use 'blkid -o value -s UUID' to print the universally unique identifier # for a device; this may be used with UUID= as a more robust way to name # devices that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> proc /proc proc nodev,noexec,nosuid 0 0 # / was on /dev/sdb5 during installation UUID=266f9801-cf4f-4acc-affa-2092be035f0c / ext4 errors=remount-ro 0 1 # swap was on /dev/sdb6 during installation UUID=1df35749-a887-45ff-a3de-edd52239847d none swap sw 0 0 =================== sdb5: Location of files loaded by Grub: =================== 900.1GB: boot/grub/core.img 825.0GB: boot/grub/grub.cfg 688.7GB: boot/initrd.img-2.6.38-8-generic-pae 688.0GB: boot/vmlinuz-2.6.38-8-generic-pae 688.7GB: initrd.img 688.0GB: vmlinuz =========================== Unknown MBRs/Boot Sectors/etc ======================= Unknown BootLoader on pdc_bdadcfbdif3 =======Devices which don't seem to have a corresponding hard drive============== sdc sdd sde sdf sdg =============================== StdErr Messages: =============================== ERROR: dos: partition address past end of RAID device hexdump: /dev/mapper/pdc_bdadcfbdif3: No such file or directory hexdump: /dev/mapper/pdc_bdadcfbdif3: No such file or directory ERROR: dos: partition address past end of RAID device

    Read the article

  • BizTalk: History of one project architecture

    - by Leonid Ganeline
    "In the beginning God made heaven and earth. Then he started to integrate." At the very start was the requirement: integrate two working systems. Small digging up: It was one system. It was good but IT guys want to change it to the new one, much better, chipper, more flexible, and more progressive in technologies, more suitable for the future, for the faster world and hungry competitors. One thing. One small, little thing. We cannot turn off the old system (call it A, because it was the first), turn on the new one (call it B, because it is second but not the last one). The A has a hundreds users all across a country, they must study B. A still has a lot nice custom features, home-made features that cannot disappear. These features have to be moved to the B and it is a long process, months and months of redevelopment. So, the decision was simple. Let’s move not jump, let’s both systems working side-by-side several months. In this time we could teach the users and move all custom A’s special functionality to B. That automatically means both systems should work side-by-side all these months and use the same data. Data in A and B must be in sync. That’s how the integration projects get birth. Moreover, the specific of the user tasks requires the both systems must be in sync in real-time. Nightly synchronization is not working, absolutely.   First draft The first draft seems simple. Both systems keep data in SQL databases. When data changes, the Create, Update, Delete operations performed on the data, and the sync process could be started. The obvious decision is to use triggers on tables. When we are talking about data, we are talking about several entities. For example, Orders and Items [in Orders]. We decided to use the BizTalk Server to synchronize systems. Why it was chosen is another story. Second draft   Let’s take an example how it works in more details. 1.       User creates a new entity in the A system. This fires an insert trigger on the entity table. Trigger has to pass the message “Entity created”. This message includes all attributes of the new entity, but I focused on the Id of this entity in the A system. Notation for this message is id.A. System A sends id.A to the BizTalk Server. 2.       BizTalk transforms id.A to the format of the system B. This is easiest part and I will not focus on this kind of transformations in the following text. The message on the picture is still id.A but it is in slightly different format, that’s why it is changing in color. BizTalk sends id.A to the system B. 3.       The system B creates the entity on its side. But it uses different id-s for entities, these id-s are id.B. System B saves id.A+id.B. System B sends the message id.A+id.B back to the BizTalk. 4.       BizTalk sends the message id.A+id.B to the system A. 5.       System A saves id.A+id.B. Why both id-s should be saved on both systems? It was one of the next requirements. Users of both systems have to know the systems are in sync or not in sync. Users working with the entity on the system A can see the id.B and use it to switch to the system B and work there with the copy of the same entity. The decision was to store the pairs of entity id-s on both sides. If there is only one id, the entities are not in sync yet (for the Create operation). Third draft Next problem was the reliability of the synchronization. The synchronizing process can be interrupted on each step, when message goes through the wires. It can be communication problem, timeout, temporary shutdown one of the systems, the second system cannot be synchronized by some internal reason. There were several potential problems that prevented from enclosing the whole synchronization process in one transaction. Decision was to restart the whole sync process if it was not finished (in case of the error). For this purpose was created an additional service. Let’s call it the Resync service. We still keep the id pairs in both systems, but only for the fast access not for the synchronization process. For the synchronizing these id-s now are kept in one main place, in the Resync service database. The Resync service keeps record as: ·       Id.A ·       Id.B ·       Entity.Type ·       Operation (Create, Update, Delete) ·       IsSyncStarted (true/false) ·       IsSyncFinished (true/false0 The example now looks like: 1.       System A creates id.A. id.A is saved on the A. Id.A is sent to the BizTalk. 2.       BizTalk sends id.A to the Resync and to the B. id.A is saved on the Resync. 3.       System B creates id.B. id.A+id.B are saved on the B. id.A+id.B are sent to the BizTalk. 4.       BizTalk sends id.A+id.B to the Resync and to the A. id.A+id.B are saved on the Resync. 5.       id.A+id.B are saved on the B. Resync changes the IsSyncStarted and IsSyncFinished flags accordingly. The Resync service implements three main methods: ·       Save (id.A, Entity.Type, Operation) ·       Save (id.A, id.B, Entity.Type, Operation) ·       Resync () Two Save() are used to save id-s to the service storage. See in the above example, in 2 and 4 steps. What about the Resync()? It is the method that finishes the interrupted synchronization processes. If Save() is started by the trigger event, the Resync() is working as an independent process. It periodically scans the Resync storage to find out “unfinished” records. Then it restarts the synchronization processes. It tries to synchronize them several times then gives up.     One more thing, both systems A and B must tolerate duplicates of one synchronizing process. Say on the step 3 the system B was not able to send id.A+id.B back. The Resync service must restart the synchronization process that will send the id.A to B second time. In this case system B must just send back again also created id.A+id.B pair without errors. That means “tolerate duplicates”. Fourth draft Next draft was created only because of the aesthetics. As it always happens, aesthetics gave significant performance gain to the whole system. First was the stupid question. Why do we need this additional service with special database? Can we just master the BizTalk to do something like this Resync() does? So the Resync orchestration is doing the same thing as the Resync service. It is started by the Id.A and finished by the id.A+id.B message. The first works as a Start message, the second works as a Finish message.     Here is a diagram the whole process without errors. It is pretty straightforward. The Resync orchestration is waiting for the Finish message specific period of time then resubmits the Id.A message. It resubmits the Id.A message specific number of times then gives up and gets suspended. It can be resubmitted then it starts the whole process again: waiting [, resubmitting [, get suspended]], finishing. Tuning up The Resync orchestration resubmits the id.A message with special “Resubmitted” flag. The subscription filter on the Resync orchestration includes predicate as (Resubmit_Flag != “Resubmitted”). That means only the first Sync orchestration starts the Resync orchestration. Other Sync orchestration instantiated by the resubmitting can finish this Resync orchestration but cannot start another instance of the Resync   Here is a diagram where system B was inaccessible for some period of time. The Resync orchestration resubmitted the id.A two times. Then system B got the response the id.A+id.B and this finished the Resync service execution. What is interesting about this, there were submitted several identical id.A messages and only one id.A+id.B message. Because of this, the system B and the Resync must tolerate the duplicate messages. We also told about this requirement for the system B. Now the same requirement is for the Resunc. Let’s assume the system B was very slow in the first response and the Resync service had time to resubmit two id.A messages. System B responded not, as it was in previous case, with one id.A+id.B but with two id.A+id.B messages. First of them finished the Resync execution for the id.A. What about the second id.A+id.B? Where it goes? So, we have to add one more internal requirement. The whole solution must tolerate many identical id.A+id.B messages. It is easy task with the BizTalk. I added the “SinkExtraMessages” subscriber (orchestration with one receive shape), that just get these messages and do nothing. Real design Real architecture is much more complex and interesting. In reality each system can submit several id.A almost simultaneously and completely unordered. There are not only the “Create entity” operation but the Update and Delete operations. And these operations relate each other. Say the Update operation after Delete means not the same as Update after Create. In reality there are entities related each other. Say the Order and Order Items. Change on one of it could start the series of the operations on another. Moreover, the system internals are the “black boxes” and we cannot predict the exact content and order of the operation series. It worth to say, I had to spend a time to manage the zombie message problems. The zombies are still here, but this is not a problem now. And this is another story. What is interesting in the last design? One orchestration works to help another to be more reliable. Why two orchestration design is more reliable, isn’t it something strange? The Synch orchestration takes all the message exchange between systems, here is the area where most of the errors could happen. The Resync orchestration sends and receives messages only within the BizTalk server. Is there another design? Sure. All Resync functionality could be implemented inside the Sync orchestration. Hey guys, some other ideas?

    Read the article

  • Code structure for multiple applications with a common core

    - by Azrael Seraphin
    I want to create two applications that will have a lot of common functionality. Basically, one system is a more advanced version of the other system. Let's call them Simple and Advanced. The Advanced system will add to, extend, alter and sometimes replace the functionality of the Simple system. For instance, the Advanced system will add new classes, add properties and methods to existing Simple classes, change the behavior of classes, etc. Initially I was thinking that the Advanced classes simply inherited from the Simple classes but I can see the functionality diverging quite significantly as development progresses, even while maintaining a core base functionality. For instance, the Simple system might have a Project class with a Sponsor property whereas the Advanced system has a list of Project.Sponsors. It seems poor practice to inherit from a class and then hide, alter or throw away significant parts of its features. An alternative is just to run two separate code bases and copy the common code between them but that seems inefficient, archaic and fraught with peril. Surely we have moved beyond the days of "copy-and-paste inheritance". Another way to structure it would be to use partial classes and have three projects: Core which has the common functionality, Simple which extends the Core partial classes for the simple system, and Advanced which also extends the Core partial classes for the advanced system. Plus having three test projects as well for each system. This seems like a cleaner approach. What would be the best way to structure the solution/projects/code to create two versions of a similar system? Let's say I later want to create a third system called Extreme, largely based on the Advanced system. Do I then create an AdvancedCore project which both Advanced and Extreme extend using partial classes? Is there a better way to do this? If it matters, this is likely to be a C#/MVC system but I'd be happy to do this in any language/framework that is suitable.

    Read the article

  • How to retain secondary hard drive mounts at reboot and keep shares?

    - by Tom
    I'm running Ubuntu 12.04. A second hard drive connected to this computer does not mount when the computer boots. Additionally, I have set up the drive to be shared but the share is not retained, the share is lost after each boot. My main system drive and a removable drive mount OK and shares remain between boots. Additional information follows: D2Linux sda1 is the secondary hard drive L-Freeagent sdc1 is the removeable drive Here is the contents of fstab immediately after booting (D2Linux /dev/sda1 not yet mounted): '# /etc/fstab: static file system information. ' '# ' '# Use 'blkid' to print the universally unique identifier for a ' '# device; this may be used with UUID= as a more robust way to name devices ' '# that works even if disks are added and removed. See fstab(5). ' '# ' '# ' proc /proc proc nodev,noexec,nosuid 0 0 '# / was on /dev/sdb1 during installation ' UUID=43d29a82-66b3-40f3-91ed-735a27a60004 / ext4 errors=remount-ro 0 1 '# swap was on /dev/sdb5 during installation UUID=cf8e3351-11d0-487a-8a6e-e499c2e88a10 none swap sw ' 0 0 Here is the output of mount with all drives mounted (I did not restore the share): /dev/sdb1 on / type ext4 (rw,errors=remount-ro) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) gvfs-fuse-daemon on /home/tom/.gvfs type fuse.gvfs-fuse-daemon (rw,nosuid,nodev,user=tom) /dev/sdc1 on /media/L-Freeagent type ext4 (rw,nosuid,nodev,uhelper=udisks) /dev/sda1 on /media/D2Linux type ext4 (rw,nosuid,nodev,uhelper=udisks) Thank you!

    Read the article

  • Why does Scala require functions to have explicit return type?

    - by garbage collection
    I recently began learning to program in Scala, and it's been fun so far. I really like the ability to declare functions within another function which just seems to intuitive thing to do. One pet peeve I have about Scala is the fact that Scala requires explicit return type in its functions. And I feel like this hinders on expressiveness of the language. Also it's just difficult to program with that requirement. Maybe it's because I come from Javascript and Ruby comfort zone. But for a language like Scala which will have tons of connected functions in an application, I cannot conceive how I brainstorm in my head exactly what type the particular function I am writing should return with recursions after recursions. This requirement of explicit return type declaration on functions, do not bother me for languages like Java and C++. Recursions in Java and C++, when they did happen, often were dealt with 2 to 3 functions max. Never several functions chained up together like Scala. So I guess I'm wondering if there is a good reason why Scala should have the requirement of functions having explicit return type?

    Read the article

  • Serve up syntactic XHTML5 using the text/html MIME type?

    - by cboettig
    I have a site currently written with HTML5 tags. I'd like to be able to parse the site as XML, with support for namespaces, etc, to facilitate programmatic extraction of data. Currently I have <!DOCTYPE html> and <meta charset="utf-8"> Which I gather is equivalent in HTML5 to explicitly setting the content-types as <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> for my current setup. In order to serve XML it sounds like the right thing to do is <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> Should I also change my Content-Type to <meta http-equiv="content-type" content="application/xhtml+xml; charset=iso-8859-1" /> Or is that not necessary? What is the advantage of having content-type be "application/xhtml+xml"? What is the disadvantage? (Sounds like it may break internet explorer rendering of the site? but maybe that information is out of date now?) Many thanks!

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Conversion constructor vs. conversion operator: precedence

    - by GRB
    Reading some questions here on SO about conversion operators and constructors got me thinking about the interaction between them, namely when there is an 'ambiguous' call. Consider the following code: class A; class B { public: B(){} B(const A&) //conversion constructor { cout << "called B's conversion constructor" << endl; } }; class A { public: operator B() //conversion operator { cout << "called A's conversion operator" << endl; return B(); } }; int main() { B b = A(); //what should be called here? apparently, A::operator B() return 0; } The above code displays "called A's conversion operator", meaning that the conversion operator is called as opposed to the constructor. If you remove/comment out the operator B() code from A, the compiler will happily switch over to using the constructor instead (with no other changes to the code). My questions are: Since the compiler doesn't consider B b = A(); to be an ambiguous call, there must be some type of precedence at work here. Where exactly is this precedence established? (a reference/quote from the C++ standard would be appreciated) From an object-oriented philosophical standpoint, is this the way the code should behave? Who knows more about how an A object should become a B object, A or B? According to C++, the answer is A -- is there anything in object-oriented practice that suggests this should be the case? To me personally, it would make sense either way, so I'm interested to know how the choice was made. Thanks in advance

    Read the article

  • using text and ntext SQL Datatypes in RPG

    - by David Stratton
    I'll preface this with saying that I'm a .NET developer, and am NOT an RPG developer. I'm working with one of our RPG developers to come up with a solution, so any suggestions you provide will get passed to him. We have a scenario where we want our iSeries to read from a SQL Server database. One of the columns is a TEXT column. IN RPG, there is no equivalent data type to use for this. We've gone back and forth on this, and our current plan is to change course, and have our SQL Server write out a text file, which the iSeries can pick up and parse. This is, however, a last resort option, as the data in the file is sensitive, and we'd like to avoid the additional security overhead. We've already got the SQL Server locked down as tight as possible (one user only has read access to this, and that user is an iSeries user.) We don't want to have to worry about transferring files back and forth. However, at this point, we see no other option. We have no in-house Java developers, and need to do this in RPG. So I'm wondering if there are any RPG developers out there who have faced this situation and have any advice.

    Read the article

  • Weird error running com-exposed assembly

    - by Bernabé Panarello
    I am facing the following issue when deploying a com-exposed assembly to my client's. The COM component should be consummed by a vb6 application. Here's how it's done 1) I have one c# project which has a class with a couple of methods exposed to COM 2) The project has references to multiple assemblies 3) I compile the project, generating a folder (named dllcom) that contains the assembly plus all the referenced dlls 4) I include in the folder a .bat which does the following: regasm /u c:\dllcom\LibInsertador.dll del LibInsertador.tlb regasm c:\dllcom\LibInsertador.dll /tlb:c:\dllcom\LibInsertador.tlb /codebase c:\dllcom\ pause 5) After running the bat locally in many workstations of my laboratory, i'm able to consume the generated tlb from my vb6 application without any problems. I'm even able to update the dll by only means of running this bat, without having to recompile the vb6 application. I mean that im not having issues of vb6 fiding and invoking the exposed com object. The problem 6) I send the SAME FOLDER to my client 7) They execute the .bat locally, without any errors 8) They execute the vb6 application, vb6 finds the main assembly, the .net code seems to run correctly (it's even able to generate a log file) until it has to intantiate it's first referenced assembly. Then, they get the following exception: "Could not load type 'GYF.Common.TypeBuilder' from assembly 'GYF_Common, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null'." Where "GYF.Common" is an assembly referenced by LibInsertador and TypeBuilder is a class contained in GYF.Common. GYF.Common is not a signed assembly and it's not in the GAC, just in the same folder with Libinsertador. According to .net reflector, the version is correct. ¿Any ideas about what could be happening?

    Read the article

  • DBD::SQLite::st execute failed: datatype mismatch

    - by Barton Chittenden
    Here's a snippit of perl code: sub insert_timesheet { my $dbh = shift; my $entryref = shift; my $insertme = join(',', @_); my $values_template = '?, ' x scalar(@_); chop $values_template; chop $values_template; #remove trailing comma my $insert = "INSERT INTO timesheet( $insertme ) VALUES ( $values_template );"; my $sth = $dbh->prepare($insert); debug("$insert"); my @values; foreach my $entry (@_){ push @values, $$entryref{$entry} } debug("@values"); my $rv = $sth->execute( @values ) or die $dbh->errstr; debug("sql return value: $rv"); $dbh->disconnect; } The value of $insert: [INSERT INTO timesheet( idx,Start_Time,End_Time,Project,Ticket_Number,Site,Duration,Notes ) VALUES ( ?, ?, ?, ?, ?, ?, ?, ? );] Here are @values: [null '1270950742' '1270951642' 'asdf' 'asdf' 'adsf' 15 ''] Here's the schema of 'timesheet' timesheet( idx INTEGER PRIMARY KEY AUTOINCREMENT, Start_Time VARCHAR, End_Time VARCHAR, Duration INTEGER, Project VARCHAR, Ticket_Number VARCHAR, Site VARCHAR, Notes VARCHAR) Here's how things line up: ---- Insert Statement Schema @values ---- idx idx INTEGER PRIMARY KEY AUTOINCREMENT null: # this is not a mismatch, passing null will allow auto-increment. Start_Time Start_Time VARCHAR '1270950742' End_Time End_Time VARCHAR '1270951642' Project Project VARCHAR 'asdf' Ticket_Number Ticket_Number VARCHAR 'asdf' Site Site VARCHAR 'adsf' Duration Duration INTEGER 15 Notes Notes VARCHAR '' ... I can't see the data-type mis-match.

    Read the article

  • Ideas for multiplatform encrypted java mobile storage system

    - by Fernando Miguélez
    Objective I am currently designing the API for a multiplatform storage system that would offer same interface and capabilities accross following supported mobile Java Platforms: J2ME. Minimum configuration/profile CLDC 1.1/MIDP 2.0 with support for some necessary JSRs (JSR-75 for file storage). Android. No minimum platform version decided yet, but rather likely could be API level 7. Blackberry. It would use the same base source of J2ME but taking advantage of some advaced capabilities of the platform. No minimum configuration decided yet (maybe 4.6 because of 64 KB limitation for RMS on 4.5). Basically the API would sport three kind of stores: Files. These would allow standard directory/file manipulation (read/write through streams, create, mkdir, etc.). Preferences. It is a special store that handles properties accessed through keys (Similar to plain old java properties file but supporting some improvements such as different value data types such as SharedPreferences on Android platform) Local Message Queues. This store would offer basic message queue functionality. Considerations Inspired on JSR-75, all types of stores would be accessed in an uniform way by means of an URL following RFC 1738 conventions, but with custom defined prefixes (i.e. "file://" for files, "prefs://" for preferences or "queue://" for message queues). The address would refer to a virtual location that would be mapped to a physical storage object by each mobile platform implementation. Only files would allow hierarchical storage (folders) and access to external extorage memory cards (by means of a unit name, the same way as in JSR-75, but that would not change regardless of underlying platform). The other types would only support flat storage. The system should also support a secure version of all basic types. The user would indicate it by prefixing "s" to the URL (i.e. "sfile://" instead of "file://"). The API would only require one PIN (introduced only once) to access any kind of secure object types. Implementation issues For the implementation of both plaintext and encrypted stores, I would use the functionality available on the underlying platforms: Files. These are available on all platforms (J2ME only with JSR-75, but it is mandatory for our needs). The abstract File to actual File mapping is straight except for addressing issues. RMS. This type of store available on J2ME (and Blackberry) platforms is convenient for Preferences and maybe Message Queues (though depending on performance or size requirements these could be implemented by means of normal files). SharedPreferences. This type of storage, only available on Android, would match Preferences needs. SQLite databases. This could be used for message queues on Android (and maybe Blackberry). When it comes to encryption some requirements should be met: To ease the implementation it will be carried out on read/write operations basis on streams (for files), RMS Records, SharedPreferences key-value pairs, SQLite database columns. Every underlying storage object should use the same encryption key. Handling of encrypted stores should be the same as the unencrypted counterpart. The only difference (from the user point of view) accessing an encrypted store would be the addressing. The user PIN provides access to any secure storage object, but the change of it would not require to decrypt/re-encrypt all the encrypted data. Cryptographic capabilities of underlying platform should be used whenever it is possible, so we would use: J2ME: SATSA-CRYPTO if it is available (not mandatory) or lightweight BoncyCastle cryptographic framework for J2ME. Blackberry: RIM Cryptographic API or BouncyCastle Android: JCE with integraced cryptographic provider (BouncyCastle?) Doubts Having reached this point I was struck by some doubts about what solution would be more convenient, taking into account the limitation of the plataforms. These are some of my doubts: Encryption Algorithm for data. Would AES-128 be strong and fast enough? What alternatives for such scenario would you suggest? Encryption Mode. I have read about the weakness of ECB encryption versus CBC, but in this case the first would have the advantage of random access to blocks, which is interesting for seek functionality on files. What type of encryption mode would you choose instead? Is stream encryption suitable for this case? Key generation. There could be one key generated for each storage object (file, RMS RecordStore, etc.) or just use one for all the objects of the same type. The first seems "safer", though it would require some extra space on device. In your opinion what would the trade-offs of each? Key storage. For this case using a standard JKS (or PKCS#12) KeyStore file could be suited to store encryption keys, but I could also define a smaller structure (encryption-transformation / key data / checksum) that could be attached to each storage store (i.e. using addition files with the same name and special extension for plain files or embedded inside other types of objects such as RMS Record Stores). What approach would you prefer? And when it comes to using a standard KeyStore with multiple-key generation (given this is your preference), would it be better to use a record-store per storage object or just a global KeyStore keeping all keys (i.e. using the URL identifier of abstract storage object as alias)? Master key. The use of a master key seems obvious. This key should be protected by user PIN (introduced only once) and would allow access to the rest of encryption keys (they would be encrypted by means of this master key). Changing the PIN would only require to reencrypt this key and not all the encrypted data. Where would you keep it taking into account that if this got lost all data would be no further accesible? What further considerations should I take into account? Platform cryptography support. Do SATSA-CRYPTO-enabled J2ME phones really take advantage of some dedicated hardware acceleration (or other advantage I have not foreseen) and would this approach be prefered (whenever possible) over just BouncyCastle implementation? For the same reason is RIM Cryptographic API worth the license cost over BouncyCastle? Any comments, critics, further considerations or different approaches are welcome.

    Read the article

  • Reading DATA from an OBJECT asp.net MVC C#

    - by kalyan
    Hi, I am new to the MVC and I am stuck with a wierd situation. I have to read the Data from the type object and I tried different ways and I couldn't get a solution.Please help. IList<User> u = new UserRepository().Getuser(Name.ToUpper(), UserName.ToUpper(), UserCertNumber.ToUpper(), Date.ToUpper(), UserType.ToUpper(), Company.ToUpper(), PageNumber, Orderby, SearchALL.ToUpper(), PrintAllPages.ToUpper()); object[] users = new object[u.Count]; for (int i = 0; i < u.Count; i++) { users[i] = new { Id = u[i].UserId, Title = u[i].Title, FirstName = u[i].FirstName, LastName = u[i].LastName, Privileges = (from apps in u[i].UserPrivileges select new { PrivilegeId = apps.Privilege.PrivilegeId, PrivilegeName = apps.Privilege.Name, DeactiveDate = apps.DeactiveDate }), Status = (from status in u[i].UserStatus select new { StatusId = status.Status.StatusId, StatusName = status.Status.StatusName, DeactiveDate = status.DeactiveDate }), ActiveDate = u[i].ActiveDate, UserName = u[i].Email, UserCN = (from cert in u[i].UserCertificates select new { CertificateNumber = cert.CertificateNumber, DeactiveDate = cert.DeactiveDate }), Company = u[i].Company.Name }; } string x = ""; string y = ""; var report = users; foreach (var r in report) { x = r[0].....; i want to assign the values from the report to something else and I am not able to read the data from the report object. Please help. } Thank you.

    Read the article

  • Compile time float packing/punning

    - by detly
    I'm writing C for the PIC32MX, compiled with Microchip's PIC32 C compiler (based on GCC 3.4). My problem is this: I have some reprogrammable numeric data that is stored either on EEPROM or in the program flash of the chip. This means that when I want to store a float, I have to do some type punning: typedef union { int intval; float floatval; } IntFloat; unsigned int float_as_int(float fval) { IntFloat intf; intf.floatval = fval; return intf.intval; } // Stores an int of data in whatever storage we're using void StoreInt(unsigned int data, unsigned int address); void StoreFPVal(float data, unsigned int address) { StoreInt(float_as_int(data), address); } I also include default values as an array of compile time constants. For (unsigned) integer values this is trivial, I just use the integer literal. For floats, though, I have to use this Python snippet to convert them to their word representation to include them in the array: import struct hex(struct.unpack("I", struct.pack("f", float_value))[0]) ...and so my array of defaults has these indecipherable values like: const unsigned int DEFAULTS[] = { 0x00000001, // Some default integer value, 1 0x3C83126F, // Some default float value, 0.005 } (These actually take the form of X macro constructs, but that doesn't make a difference here.) Commenting is nice, but is there a better way? It's be great to be able to do something like: const unsigned int DEFAULTS[] = { 0x00000001, // Some default integer value, 1 COMPILE_TIME_CONVERT(0.005), // Some default float value, 0.005 } ...but I'm completely at a loss, and I don't even know if such a thing is possible. Notes Obviously "no, it isn't possible" is an acceptable answer if true. I'm not overly concerned about portability, so implementation defined behaviour is fine, undefined behaviour is not (I have the IDB appendix sitting in front of me). As fas as I'm aware, this needs to be a compile time conversion, since DEFAULTS is in the global scope. Please correct me if I'm wrong about this.

    Read the article

  • Handles Comparison: empty classes vs. undefined classes vs. void*

    - by Nawaz
    Microsoft's GDI+ defines many empty classes to be treated as handles internally. For example, (source GdiPlusGpStubs.h) //Approach 1 class GpGraphics {}; class GpBrush {}; class GpTexture : public GpBrush {}; class GpSolidFill : public GpBrush {}; class GpLineGradient : public GpBrush {}; class GpPathGradient : public GpBrush {}; class GpHatch : public GpBrush {}; class GpPen {}; class GpCustomLineCap {}; There are other two ways to define handles. They're, //Approach 2 class BOOK; //no need to define it! typedef BOOK *PBOOK; typedef PBOOK HBOOK; //handle to be used internally //Approach 3 typedef void* PVOID; typedef PVOID HBOOK; //handle to be used internally I just want to know the advantages and disadvantages of each of these approaches. One advantage with Microsoft's approach is that, they can define type-safe hierarchy of handles using empty classes, which (I think) is not possible with the other two approaches. What else? EDIT: One advantage with the second approach (i.e using incomplete classes) is that we can prevent clients from dereferencing the handles (that means, this approach appears to support encapsulation strongly, I suppose). The code would not even compile if one attempts to dereference handles. What else?

    Read the article

  • inline images in email using javamail

    - by manu1001
    I want to send an email with an inline image using javamail. I'm doing something like this. MimeMultipart content = new MimeMultipart("related"); BodyPart bodyPart = new MimeBodyPart(); bodyPart.setContent(message, "text/html; charset=ISO-8859-1"); content.addBodyPart(bodyPart); bodyPart = new MimeBodyPart(); DataSource ds = new ByteArrayDataSource(image, "image/jpeg"); bodyPart.setDataHandler(new DataHandler(ds)); bodyPart.setHeader("Content-Type", "image/jpeg; name=image.jpg"); bodyPart.setHeader("Content-ID", "<image>"); bodyPart.setHeader("Content-Disposition", "inline"); content.addBodyPart(bodyPart); msg.setContent(content); I've also tried bodyPart.setHeader("inline; filename=image.jpg"); and bodyPart.setDisposition("inline"); but no matter what, the image is being sent as an attachment and the Content-Dispostion is turning into "attachment". How do I send an image inline in the email using javamail?

    Read the article

  • Overriding content_type for Rails Paperclip plugin

    - by Fotios
    I think I have a bit of a chicken and egg problem. I would like to set the content_type of a file uploaded via Paperclip. The problem is that the default content_type is only based on extension, but I'd like to base it on another module. I seem to be able to set the content_type with the before_post_process class Upload < ActiveRecord::Base has_attached_file :upload before_post_process :foo def foo logger.debug "Changing content_type" #This works self.upload.instance_write(:content_type,"foobar") # This fails because the file does not actually exist yet self.upload.instance_write(:content_type,file_type(self.upload.path) end # Returns the filetype based on file command (assume it works) def file_type(path) return `file -ib '#{path}'`.split(/;/)[0] end end But...I cannot base the content type on the file because Paperclip doesn't write the file until after_create. And I cannot seem to set the content_type after it has been saved or with the after_create callback (even back in the controller) So I would like to know if I can somehow get access to the actual file object (assume there are no processors doing anything to the original file) before it is saved, so that I can run the file_type command on that. Or is there a way to modify the content_type after the objects have been created.

    Read the article

  • How do you perform arithmetic calculations on symbols in Scheme/Lisp?

    - by kunjaan
    I need to perform calculations with a symbol. I need to convert the time which is of hh:mm form to the minutes passed. ;; (get-minutes symbol)->number ;; convert the time in hh:mm to minutes ;; (get-minutes 6:19)-> 6* 60 + 19 (define (get-minutes time) (let* ((a-time (string->list (symbol->string time))) (hour (first a-time)) (minutes (third a-time))) (+ (* hour 60) minutes))) This is an incorrect code, I get a character after all that conversion and cannot perform a correct calculation. Do you guys have any suggestions? I cant change the input type. Context: The input is a flight schedule so I cannot alter the data structure. ;; ---------------------------------------------------------------------- Edit: Figured out an ugly solution. Please suggest something better. (define (get-minutes time) (let* ((a-time (symbol->string time)) (hour (string->number (substring a-time 0 1))) (minutes (string->number (substring a-time 2 4)))) (+ (* hour 60) minutes)))

    Read the article

  • Conversion between different template instantiation of the same template

    - by Naveen
    I am trying to write an operator which converts between the differnt types of the same implementation. This is the sample code: template <class T = int> class A { public: A() : m_a(0){} template <class U> operator A<U>() { A<U> u; u.m_a = m_a; return u; } private: int m_a; }; int main(void) { A<int> a; A<double> b = a; return 0; } However, it gives the following error for line u.m_a = m_a;. Error 2 error C2248: 'A::m_a' : cannot access private member declared in class 'A' d:\VC++\Vs8Console\Vs8Console\Vs8Console.cpp 30 Vs8Console I understand the error is because A<U> is a totally different type from A<T>. Is there any simple way of solving this (may be using a friend?) other than providing setter and getter methods? I am using Visual studio 2008 if it matters.

    Read the article

  • Aliasing `T*` with `char*` is allowed. Is it also allowed the other way around?

    - by StackedCrooked
    Note: This question has been renamed and reduced to make it more focused and readable. Most of the comments refer to the old text. According to the standard objects of different type may not share the same memory location. So this would not be legal: int i = 0; short * s = reinterpret_cast<short*>(&i); // BAD! The standard however allows an exception to this rule: any object may be accessed through a pointer to char or unsigned char: int i = 0; char * c = reinterpret_cast<char*>(&i); // OK However, it is not clear to me if this is also allowed the other way around. For example: char * c = read_socket(...); unsigned * u = reinterpret_cast<unsigned*>(c); // huh? Summary of the answers The answer is NO for two reasons: You an only access an existing object as char*. There is no object in my sample code, only a byte buffer. The pointer address may not have the right alignment for the target object. In that case dereferencing it would result in undefined behavior. On the Intel and AMD platforms it will result performance overhead. On ARM it will trigger a CPU trap and your program will be terminated! This is a simplified explanation. For more detailed information see answers by @Luc Danton, @Cheers and hth. - Alf and @David Rodríguez.

    Read the article

  • What's the best way to re-install Ubuntu on my triple-boot system?

    - by TheX
    I have a triple boot system with Windows, Ubuntu 10.10 and 11.04, installed in that order, plus a "Data" Partition that has all my data, what I want to do is remove the 11.04, because I haven't booted into it for over a month, and I am afraid if I try to do any updates it will bork the system... I would like to install a fresh copy of 11.04 and leave the rest of the system intact, what is the best way to do this?

    Read the article

  • Ask the Readers: What Operating System Do You Use?

    - by Mysticgeek
    The three most popular choices out there when it comes to computer operating systems, is Windows, Mac OS X, and Linux. What we want to know is…which operating system do you use? Photo by ~Dudu,,]* Computer users today have more choices than ever when it comes to the operating system they use. In the Windows world, there are three versions out there in daily use. A lot of businesses and home users use XP, completely avoided Vista, and are starting to migrate to Windows 7. While a lot of home users received their new computer with Vista pre-installed and are still using it. Others were quick to jump to Windows 7, and some don’t want to leave the comforts of XP. Desktop Linux distro’s have been consistently growing in popularity as versions like Ubuntu become more user friendly. And let us not forget the loyal Apple users who would never give up OS X. You may have to use a certain OS at the workplace, but when you get home, your options are a lot more open. And now with the ease of virtualization, it’s easy to run multiple operating systems on one machine. Each OS offers different advantages that people pick based on their needs. Today we want to know, which operating system(s) do you use? Let us know in the comments and join the discussion! Similar Articles Productive Geek Tips Easily Set Default OS in a Windows 7 / Vista and XP Dual-boot SetupGet the Version of Solaris RunningDisable System Restore in Windows 7Disable ProFTP on CentOSShut Down or Reboot a Solaris System TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Out of band Security Update for Internet Explorer 7 Cool Looking Screensavers for Windows SyncToy syncs Files and Folders across Computers on a Network (or partitions on the same drive) If it were only this easy Classic Cinema Online offers 100’s of OnDemand Movies OutSync will Sync Photos of your Friends on Facebook and Outlook

    Read the article

  • How do you keep cool when production system goes down?

    - by Mag20
    This has happened to most of us... You come to work one day. Everything seems normal: the sun is shining, birds are chirping, but you notice a couple of weird things on your way to work like deja vu with cat in matrix. You get into office, there are a lot of phones ringing, but could be that they are just doing a new sales promotion. You settle in, when you notice a dark cloud hovering over you. It takes you a couple of moments, but you recognize the cloud is your boss. Usually he checks on you every morning with his "Soooo Peeeeter, how about those TCP/IP reports?" routine, but today he forgot everything about common manners and rudely invaded your personal space. No "Good Morning", just some drooling, grunts and curses. He reminds you a bit of neanderthal who is trying to get away from cyber tooth tiger, fear and panic all compressed in a tight ball. You try to decipher the new language that he created since yesterday and you start understanding that something bad happened overnight - production system went down. Now, your system is usually used by clients during regular working hours from 9-5, but for whatever reason you didn't get any alerts on your beeper (for people under 30 - beeper was like a mobile phone that could only ring and tell you who beeped you). Need to remember to charge it next time. So it is 8:45am, the system MUST be up at 9am. Every 10 seconds, your boss lets out yet another curse which communicates to you that another customer is having problems getting into the system. Also several account managers are now hovering over your boss trying to make him understand how clients are REALLY REALLY suffering. Everyone is depending on you to get the system up ASAP and at the same time hinder your progress by constantly distracting you. How do you keep cool in a situation like this?

    Read the article

< Previous Page | 208 209 210 211 212 213 214 215 216 217 218 219  | Next Page >