Search Results

Search found 12925 results on 517 pages for 'programming fundamentals'.

Page 224/517 | < Previous Page | 220 221 222 223 224 225 226 227 228 229 230 231  | Next Page >

  • Which C# Book to take?

    - by Fischkopf
    I was searching for a book to learn C#, but now i'm kinda stuck. I found many people asking the same question, and many people gave answers, but there are so many books about C# that it is really hard to decide which one to take. Now i reduced my choice on two books, but I just can't decide between them. Namely, there are: Programming C# 4.0 and C# 4.0 In A Nutshell The first thing I want to know, are these good choices? I'm not completely new to programming, but I just didn't find the right language until know, but i think C# is the one I was searching for. I know all the bassic stuff from Delphi/Java/Python so I think i'm not a complete beginner in programming. Is there anyone out there that read both books and can cleary explain whats the difference between them? I haven't found many reviews and sort of, so I just don't know which one to chose. Or is there any book that is better suiting me?

    Read the article

  • SQL SERVER – Where Can YOU Get My Books – SQL Server Interview Question and Answers

    - by pinaldave
    Earlier month I released by third book SQL Server Interview Question and Answers. The focus of this book is ‘master the basics’. If you rate yourself 10 out of 10 in SQL Server – this book is not for you but if you want to learn fundamentals or want to refresh your fundamentals this book is for YOU. Earlier I was overwhelmed by love you all have shown to this book on release date leading our three digit inventory to run out of stock. Read detail blog post about the subject over here A Real Story of Book Getting ‘Out of Stock’ to A 25% Discount Story Available. Well, we learn the lesson from the experience and have made sure that the inventory does not run out any more. Since then we are now available on multiple outlets. Pretty much anywhere in USA and India the book is available. Additionally, where ever Amazon ships internationally. I have created dedicated page where I have listed where one can avail this book from Details of SQL Server Interview Question and Answers. Even though I keep on getting common question like – where one can get this book. You can get this book from: USA: Amazon India: Flipkart | IndiaPlaza | Crossword In India now you can walk into any crossword store and ask this book, if they do not have it, you can ask them get one for you. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Best Practices, Pinal Dave, PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Interview Questions and Answers, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority Author Visit, SQLAuthority Book Review, SQLAuthority News, T SQL, Technology

    Read the article

  • links for 2010-03-11

    - by Bob Rhubart
    Andy Mulholland: (Information Technology) + (Business Technology) ÷ Clouds = Infostructure "Internal information technology with its dedicated users, applications, licenses, client-server, data-centric and close coupled integration architecture cannot support externally oriented business technology where almost every condition is different. Internet connectivity and the emergence of people centric services in the web 2.0 world has led business and user expectations to shift dramatically and give rise to the expectation of a new and completely different working environment, based in the cloud, or more correctly, clouds." -- Andy Mulholland, CTO Blog, Capgemini (tags: enterprisearchitecture cloud web2.0 entarch) @myfear: Getting started with (GSW #2): GlassFish v3 "If the application server/container of your choice is a Java EE compliant one, you are on the right track. This list is not too long these days, if you look for Java EE 6 compliant servers. The most prominent and well-known is also the Java EE 6 reference implementation (RI): The Oracle GlassFish v3." -- Oracle ACE Markus "@myfear" Eisele (tags: oracle otn oracleace glassfish java) @oraclenerd: The"Database is a Bucket" Mentality "Could it be that everyone out there believes that the sole purpose of a database is to store data? That it can't do anything else?" -- Chet "@oraclenerd" Justice (tags: otn oracle database dba) The Encyclopedia of SOA "SOA is an anagram for OSA, which means female bear in spanish. It is a well-known fact in the spanish-speaking world that female bears are able to model business processes and optimize reusable IT assets better than any other hibernating animal." -- One of the surprisingly funny nuggets of wisdom available in the Encyclopedia of SOA. (tags: architecture chucknorris humor soa software technology webservices) Marina Fisher: Book Review - Web 2.0 Fundamentals Marina Fisher reviews WEB 2.0 FUNDAMENTALS by Oswald Campesato and Kevin Nilson. (tags: sun web2.0 bookreview socialnetworking)

    Read the article

  • Oracle Storage Implementation Boot Camp: ZFS Storage Appliance and Flash

    - by mseika
    Oracle Storage Implementation Boot Camp: ZFS Storage Appliance and Flash Thursday 20th September 9.30 – 16.30 This is 1-day, face-to-face training is designed for your Storage Implementation Specialists and will help them in their path to Specialisation, as they prepare for the Storage Implementations Assessments for ZFSSA. Please read carefully the notes below on the required equipment for attendees. Agenda Module 1: Product Overview Module 2: Installation and Configuration ZFS Lab 1: Installation Module 3: Clustering Module 4: File and Data Services ZFS Lab 2: Creating Projects ZFS Lab 3: Creating a Share ZFS Lab 4: Snapshots and Clones ZFS Lab 5: CLI Overview Module 5: Maintenance ZFS Lab 6: Dashboard overview Module 6: Analytics ZFS Lab 7: Analytics Prerequisites for attendees Provide basic administration support for the Solaris OS and/or Windows Desktop/Server OS Understand the fundamentals of data storage administration Understand the fundamentals of Transmission Control Protocol/Internet Protocol (TCP/IP) networking and administration Troubleshoot server and network system software and hardware IMPORTANT: Equipment that attendees will have to bring to the class The attendees must bring their own laptops and have successfully installed the Virtual Box instance and the 7000 Series Simulator. To download Virtual Box and the Simulator click here. Attendees must have the Simulator running in advance of the class. For technical support on the download/installation of the Simulator, please send email to [email protected] Please register here

    Read the article

  • jQuery Samples

    - by dwahlin
    Here are the jsfiddle samples that John Papa and I covered in our jQuery Fundamentals workshop at DevConnections last week. These were a few of the samples we wrote on the fly (so they’re not “perfect”) using http://jsfiddle.net and wanted to share. Additional jQuery samples covering selectors, DOM manipulation, Ajax techniques, as well as sample applications can be found here. You can also view the talks John gave at the conference here.  Code and slides from my talks can be found at the following links: Building the Account at a Glance ASP.NET MVC, EF Code First, HTML5, and jQuery Application Techniques, Strategies, and Patterns for Structuring JavaScript Code Getting Started Building Windows 8 HTML/JavaScript Metro Apps If you’re interested in learning more about jQuery check out my jQuery Fundamentals course at Pluralsight.com. Using the Data Function   Using Object Literals with jQuery   Using jQuery each() with string concatenation   Using on() to handle child events   jQuery - hover   jQuery - event handling variations   jQuery - Twitter (bind, append, appendTo, each, fadeOut, $.getJSON, callback, success, error, complete)r   jQuery - attr vs prop   jQuery - Simple selectors

    Read the article

  • Rendering Text with the HTML5 Canvas

    - by dwahlin
    In a previous post I walked through the fundamentals of rendering shapes such as squares and circles using the HTML5 Canvas API. In this post I’ll provide a simple example of rendering and rotating text. To render text you can use the fillText() or strokeText() functions which take the text to render as well as the x and y coordinates of where to render it. To rotate text you can use the transform functions available with the HTML5 Canvas such as save(), rotate(), and restore(). To run the live demos that follow click the Result tab in the blue bar of each demo.   Rendering Text This example provides a simple look at how text can be rendered using the HTML5 Canvas. It iterates through a loop, updates the text and font size dynamically, measures the width of the text using the measureText() function, and then calls fillText() to render the text with the desired font size to the screen.   Here’s what the code above renders:   Rotating Text This example shows how text can be rendered and even rotated by using transform functions built into the HTML5 Canvas. The code starts by rendering text the standard way using fillText(). It then saves the state of the canvas performs an x,y coordinate transform (moves to 100, 300 respectively) and then rotates the canvas –90 degrees using the rotate() function. After the text is rendered, the canvas is reverted back to it’s existing state (saved by calling the save() function) by calling the restore() function. An additional line of text is then rendered.   Here’s what the code above renders:   If you’re interested in learning more about the HTML5 Canvas and how it can be used in your Web or Windows 8 applications, check out my HTML5 Canvas Fundamentals course from Pluralsight.

    Read the article

  • Microsoft ADO.NET 4 Step by Step

    - by Sahil Malik
    Ad:: SharePoint 2007 Training in .NET 3.5 technologies (more information). Many years ago, I wrote Pro ADO.NET 2.0. I still think that in the plethora of new data access technologies that have come out since, the basic core ADO.NET fundamentals are still every developer must know, and sadly they do not know. So for some crazy reason, I still see every project make the same data access related mistakes over and over again. Anyway, the challenge is that on top of the core ADO.NET fundamentals, there is a vast array of other new technologies you must learn. The important of which is Entity Framework. So, I was asked to, and I was pleased to be the technical reviewer for Microsoft ADO.NET 4, Step by Step, by Tim Patrick. This book introduces the reader not just to the basic ADO.NET principles, but also Entity Framework, LINQ to SQL, and WCF Data Services. So what you may ask is a SharePoint guy like me doing with such interest in ADO.NET land? Well, that’s what the other side says, what is a hardcore data access sorta guy doing in SharePoint land? :). I have authored/co-authored 4 books so far on data access (1,2,3,4), and one on pure SharePoint, and now one on SharePoint 2010 BI. These are very intertwined topics. And LINQ to SQL and LINQ to SharePoint are almost copy paste of each other. WCF Data services are literally the same in both. And many Entity Framework concepts also apply within SharePoint. So there, I did these both for “interest” reasons. Comment on the article ....

    Read the article

  • Oracle Business Intelligence Applications 10g Bootcamp

    - by mseika
    Oracle Business Intelligence Applications 10g Bootcamp 12th - 15th February 2012, Reading (UK) The Oracle Business Intelligence Applications offer out-of-the-box integration with Siebel CRM and Oracle eBusiness Suite and provide pre-built Operational BI solutions for eBusiness Suite, Peoplesoft, Siebel, and SAP. This training will provide attendees with an in-depth working understanding of the architecture, the technical and the functional content of the Oracle Business Intelligence Applications, whilst also providing an understanding of their installation, configuration and extension. The course will cover the following topics:• Overview of Oracle Business Intelligence Applications• Oracle BI Applications Fundamentals and Features• Configuring BI Applications for Oracle E-Business Suite• Understanding BI Applications Architecture• Fundamentals of BI Applications Security REGISTER NOW Partner Registration Guide Price: FREE Cookham RoomOracle Corporation UK LtdOracle ParkwayThames Valley ParkReading, Berkshire RG6 1RA12th - 15th February 20129:30 am – 5:00 pm BST AudienceThe seminar is aimed at BI Consultants and Implementation Consultants within Oracle's Gold and Platinum Partners. Prerequisites• Good understanding of basic data warehousing concepts• Hands on experience in Oracle Business Intelligence Enterprise Edition• Hands on experience in Informatica• Some understanding of Oracle BI Applications is required (See Sales & Technical Tutorials for OBI, BI-Apps and Hyperion EPM) • Good understanding of any of the following Oracle EBS modules: General Ledger, Accounts Receivables, Accounts Payables System Requirements Please note that attendees are required to have a laptop. Laptop• 4GB RAM-Recognized by Windows 64 bits• 80GB free space in Hard drive or External Device• CPU Core 2 Duo or HigherOperating System Requirements• Windows 7, Windows XP, Windows 2003• NOT ALLOWED with Windows Vista• An Administrator User For more information please contact [email protected].

    Read the article

  • Partner Training for Oracle Business Intelligence Applications 4-Day Bootcamp

    - by Mike.Hallett(at)Oracle-BI&EPM
    Partners 4-Day training from 15th - 18th October 2012, at Oracle Reading (UK) The Oracle Business Intelligence Applications provide pre-built Operational BI solutions for eBusiness Suite, Peoplesoft, Siebel, JDE and SAP; offering out-of-the-box integration. This FREE for Partners 4-Day training will provide attendees with an in-depth working understanding of the architecture, the technical and the functional content of the Oracle Business Intelligence Applications, whilst also providing an understanding of their installation, configuration and extension. The course will cover the following topics: Overview of Oracle Business Intelligence Applications Oracle BI Applications Fundamentals and Features Configuring BI Applications for Oracle E-Business Suite Understanding BI Applications Architecture Fundamentals of BI Applications Security   REGISTER HERE NOW    (acceptance is subject to availability and your place will be confirmed within two weeks: for help see the Partner Registration Guide) Location: Bray Room, at Oracle Corporation UK Ltd Oracle Parkway Thames Valley Park Reading, Berkshire RG6 1RA 15th - 18th October 2012, 4-Days :  9:30 am – 5:00 pm BST Audience The seminar is aimed at BI Consultants and Implementation Consultants within Oracle's Gold and Platinum Partners. Good understanding of basic data warehousing concepts Hands on experience in Oracle Business Intelligence Enterprise Edition Hands on experience in Informatica Some understanding of  Oracle BI Applications is required (See Sales & Technical Tutorials for OBI, BI-Apps and Hyperion EPM)  Good understanding of any of the following Oracle EBS modules: General Ledger, Accounts Receivables, Accounts Payables Please note that attendees are required to bring a laptop: 4GB RAM Windows 64 bits 80GB free space in Hard drive or External Device CPU Core 2 Duo or Higher Windows 7, Windows XP, Windows 2003 NOT ALLOWED with Windows Vista An Administrator User For more information please contact [email protected].

    Read the article

  • I've inherited 200K lines of spaghetti code -- what now?

    - by kmote
    I hope this isn't too general of a question; I could really use some seasoned advice. I am newly employed as the sole "SW Engineer" in a fairly small shop of scientists who have spent the last 10-20 years cobbling together a vast code base. (It was written in a virtually obsolete language: G2 -- think Pascal with graphics). The program itself is a physical model of a complex chemical processing plant; the team that wrote it have incredibly deep domain knowledge but little or no formal training in programming fundamentals. They've recently learned some hard lessons about the consequences of non-existant configuration management. Their maintenance efforts are also greatly hampered by the vast accumulation of undocumented "sludge" in the code itself. I will spare you the "politics" of the situation (there's always politics!), but suffice to say, there is not a consensus of opinion about what is needed for the path ahead. They have asked me to begin presenting to the team some of the principles of modern software development. They want me to introduce some of the industry-standard practices and strategies regarding coding conventions, lifecycle management, high-level design patterns, and source control. Frankly, it's a fairly daunting task and I'm not sure where to begin. Initially, I'm inclined to tutor them in some of the central concepts of The Pragmatic Programmer, or Fowler's Refactoring ("Code Smells", etc). I also hope to introduce a number of Agile methodologies. But ultimately, to be effective, I think I'm going to need to hone in on 5-7 core fundamentals; in other words, what are the most important principles or practices that they can realistically start implementing that will give them the most "bang for the buck". So that's my question: What would you include in your list of the most effective strategies to help straighten out the spaghetti (and prevent it in the future)?

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Is a university education really worth it for a good programmer?

    - by Jon Purdy
    The title says it all, but here's the personal side of it: I've been doing design and programming for about as long as I can remember. If there's a programming problem, I can figure it out. (Though admittedly StackOverflow has allowed me to skip the figuring out and get straight to the doing in many instances.) I've made games, esoteric programming languages, and widgets and gizmos galore. I'm currently working on a general-purpose programming language. There's nothing I do better than programming. However, I'm just as passionate about design. Thus when I felt leaving high school that my design skills were lacking, I decided to attend university for New Media Design and Imaging, a digital design-related major. For a year, I diligently studied art and programmed in my free time. As the next year progressed, however, I was obligated to take fewer art and design classes and more technical classes. The trouble was of course that these classes were geared toward non-technical students, and were far beneath my skill level at the time. No amount of petitioning could overcome the institution's reluctance to allow me to test out of such classes, and the major offered no promise for any greater challenge in the future, so I took the extreme route: I switched into the technical equivalent of the major, New Media Interactive Development. A lot of my credits moved over into the new major, but many didn't. It would have been infeasible to switch to a more rigorous technical major such as Computer Science, and having tutored Computer Science students at every level here, I doubt I would be exposed to anything that I haven't already or won't eventually find out on my own, since I'm so involved in the field. I'm now on track to graduate perhaps a year later than I had planned, which puts a significant financial strain on my family and my future self. My schedule continues to be bogged down with classes that are wholly unnecessary for me to take. I'm being re-introduced to subjects that I've covered a thousand times over, simply because I've always been interested in it all. And though I succeed in avoiding the cynical and immature tactic of failing to complete work out of some undeserved sense of superiority, I'm becoming increasingly disillusioned by the lack of intellectual stimulation. Further, my school requires students to complete a number of quarters of co-op work experience proportional to their major. My original major required two quarters, but my current requires three, delaying my graduation even more. To top it all off, college is putting a severe strain on my relationship with my very close partner of a few years, so I've searched diligently for co-op jobs in my area, alas to no avail. I'm now in my third year, and approaching that point past which I can no longer handle this. Either I keep my head down, get a degree no matter what it takes, and try to get a job with a company that will pay me enough to do what I love that I can eventually pay off my loans; or I cut my losses now, move wherever there is work, and in six months start paying off what debt I've accumulated thus far. So the real question is: is a university education really more than just a formality? It's a big decision, and one I can't make lightly. I think this is the appropriate venue for this kind of question, and I hope it sticks around for the sake of others who might someday find themselves in similar situations. My heartfelt thanks for reading, and in advance for your help.

    Read the article

  • Why is there no service-oriented language?

    - by Wolfgang
    Edit: To avoid further confusion: I am not talking about web services and such. I am talking about structuring applications internally, it's not about how computers communicate. It's about programming languages, compilers and how the imperative programming paradigm is extended. Original: In the imperative programming field, we saw two paradigms in the past 20 years (or more): object-oriented (OO), and service-oriented (SO) aka. component-based (CB). Both paradigms extend the imperative programming paradigm by introducing their own notion of modules. OO calls them objects (and classes) and lets them encapsulates both data (fields) and procedures (methods) together. SO, in contrast, separates data (records, beans, ...) from code (components, services). However, only OO has programming languages which natively support its paradigm: Smalltalk, C++, Java and all other JVM-compatibles, C# and all other .NET-compatibles, Python etc. SO has no such native language. It only comes into existence on top of procedural languages or OO languages: COM/DCOM (binary, C, C++), CORBA, EJB, Spring, Guice (all Java), ... These SO frameworks clearly suffer from the missing native language support of their concepts. They start using OO classes to represent services and records. This leads to designs where there is a clear distinction between classes that have methods only (services) and those that have fields only (records). Inheritance between services or records is then simulated by inheritance of classes. Technically, its not kept so strictly but in general programmers are adviced to make classes to play only one of the two roles. They use additional, external languages to represent the missing parts: IDL's, XML configurations, Annotations in Java code, or even embedded DSL like in Guice. This is especially needed, but not limited to, since the composition of services is not part of the service code itself. In OO, objects create other objects so there is no need for such facilities but for SO there is because services don't instantiate or configure other services. They establish an inner-platform effect on top of OO (early EJB, CORBA) where the programmer has to write all the code that is needed to "drive" SO. Classes represent only a part of the nature of a service and lots of classes have to be written to form a service together. All that boiler plate is necessary because there is no SO compiler which would do it for the programmer. This is just like some people did it in C for OO when there was no C++. You just pass the record which holds the data of the object as a first parameter to the procedure which is the method. In a OO language this parameter is implicit and the compiler produces all the code that we need for virtual functions etc. For SO, this is clearly missing. Especially the newer frameworks extensively use AOP or introspection to add the missing parts to a OO language. This doesn't bring the necessary language expressiveness but avoids the boiler platform code described in the previous point. Some frameworks use code generation to produce the boiler plate code. Configuration files in XML or annotations in OO code is the source of information for this. Not all of the phenomena that I mentioned above can be attributed to SO but I hope it clearly shows that there is a need for a SO language. Since this paradigm is so popular: why isn't there one? Or maybe there are some academic ones but at least the industry doesn't use one.

    Read the article

  • C# Winforms vs WPF

    - by m0s
    Hi pros, I am a student and I do freelance here and there when I have opportunity. I believe my strongest language is C#. I don't really know what is going on in real programming world, so I was wondering if WPF did take over WinForms? I know the differences between two and how two can be used simultaneously but, I just don't want to invest my time in learning dying technologies, I hope you understand. So, for windows desktop programming what would you recommend to master WinForms, WPF or maybe both? I also get a lot that desktop programming is dead already and one should only care about learning web programming. Thanks for attention, any comments are greatly appreciated.

    Read the article

  • Emacs X11 autocompletion (intellisense)

    - by JC
    Hi everyone, I use visual studio for day to day programming (read putting food in my mouth) but for personal programming (read c/c++ hacking) I use Emacs. Right now I am doing a programming exercise involving the X11 API. I am continually referring to the programming API manual to find the signature of function calls. What would be really nice would be if there was an emacs alternative to the visual studio intellisense. I know there is autocompletion for the language specifics. Is there such an extension available to Emacs? Or if not, is there way of creating one, maybe using the language specifics mechanism already used for auto completion?

    Read the article

  • Tricks to avoid losing motivation?

    - by AareP
    Motivation is a tricky thing to upkeep. Once I thought that ambitious projects will keep programmer motivated, and too simple tasks will hinder his motivation. Now I have plenty of experience with small and large projects, desktop/web/database programming, c++/c#/java/php languages, oop/non-oop paradigms, day-job/free-time programming.. but I still can't answer the question of motivation. Which programming tasks I like, and which don't? It seems to depend on too many variables. One thing remains constant though. It's that starting everything from scratch is always more motivating than extending some existing system. Unfortunately it's hard to use this trick in productive programming. :) So my question is, what tricks programmer can use to stay motivated? For example should we use pen and paper as much as possible, in order not to get fed up with monitor and keyboard?

    Read the article

  • good books on numerical computation with C

    - by yCalleecharan
    Hi, I've read the post "What is the best book on numerical methods?" and I wish to ask more or less the same question but in relation to C programming. Most of the time, C programming books on numerical methods are just another version of the author's previous Fortran book on the same subject. I've seen Applied numerical methods in C by Nakamura, Shoichiro and the C codes are not good programming practice. I've heard bad comments about Numerical Recipes by Press. Do you know good books on C that discusses numerical methods. It's seem better for me to ask about good books on C discussing numerical methods than rather asking books on numerical methods that discusses C. I've heard about Numerical Algorithms with C by Giesela Engeln-Müllges and A Numerical Library in C for Scientists and Engineers bu Lau but haven't read them. Good books will always have algorithms implemented in the programming language in a smart way. Thanks a lot...

    Read the article

  • What should I learn after HTML and CSS?

    - by Ryan B
    I am 5 days into learning how to make my website, flying through my HTML & CSS book and having fun. I’m starting to consider what to order next. I’m not sure what to study next, so please give me some advice if you can. My end goal is to create a site that has a lot of the functionality that www.edufire.com and similar sites have, just for example. I think I’m learning well with the Head First Series, and the style will probably serve me well as an intro to programming. However, I don't think the books dive too deeply into any 1 subject. I could order: A: Head First Programming: A Learner’s Guide to Programming Using the Python Language B: Head First Javascript C: Head First PHP & MySQL D: a different programming book or E: another CSS or design book to solidify my basic HTML & CSS skills Any guidance would be appreciated. Thanks!

    Read the article

  • Master thesis in software engineering

    - by maya
    Hi everyone, I will be Master student and I look for a topic in software engineering for my thesis , I want a topic which is less programming and more analysis. I mean a topic without programming because I'm not professional in programming. I'm thinking in UML tools but I really don't have specific topic. any suggestion please any one help me thanks in advance

    Read the article

  • How do I program an AVR Raven with Linux or a Mac?

    - by Andrew McGregor
    This tutorial for programming these starts with programming the Ravens and Jackdaw with a Windows box. Can I do those initial steps with avrdude on a Linux or OS X machine instead? If so, how? Is there any risk of bricking the hardware if I just try? I have a USB JTAG ICE MKii clone, which is supposed to work for this. I'm totally new to AVR, but very experienced with C/C++ programming on Linux or OS X, up to and including kernel programming... so any hint at all would be appreciated, I can read man pages, but only if I know what I'm looking for.

    Read the article

< Previous Page | 220 221 222 223 224 225 226 227 228 229 230 231  | Next Page >