Search Results

Search found 16252 results on 651 pages for 'entity framework 4 0'.

Page 237/651 | < Previous Page | 233 234 235 236 237 238 239 240 241 242 243 244  | Next Page >

  • Enable Automatic Code First Migrations On SQL Database in Azure Web Sites

    - by Steve Michelotti
    Now that Azure supports .NET Framework 4.5, you can use all the latest and greatest available features. A common scenario is to be able to use Entity Framework Code First Migrations with a SQL Database in Azure. Prior to Code First Migrations, Entity Framework provided database initializers. While convenient for demos and prototypes, database initializers weren’t useful for much beyond that because, if you delete and re-create your entire database when the schema changes, you lose all of your operational data. This is the void that Migrations are meant to fill. For example, if you add a column to your model, Migrations will alter the database to add the column rather than blowing away the entire database and re-creating it from scratch. Azure is becoming increasingly easier to use – especially with features like Azure Web Sites. Being able to use Entity Framework Migrations in Azure makes deployment easier than ever. In this blog post, I’ll walk through enabling Automatic Code First Migrations on Azure. I’ll use the Simple Membership provider for my example. First, we’ll create a new Azure Web site called “migrationstest” including creating a new SQL Database along with it:   Next we’ll go to the web site and download the publish profile:   In the meantime, we’ve created a new MVC 4 website in Visual Studio 2012 using the “Internet Application” template. This template is automatically configured to use the Simple Membership provider. We’ll do our initial Publish to Azure by right-clicking our project and selecting “Publish…”. From the “Publish Web” dialog, we’ll import the publish profile that we downloaded in the previous step:   Once the site is published, we’ll just click the “Register” link from the default site. Since the AccountController is decorated with the [InitializeSimpleMembership] attribute, the initializer will be called and the initial database is created.   We can verify this by connecting to our SQL Database on Azure with SQL Management Studio (after making sure that our local IP address is added to the list of Allowed IP Addresses in Azure): One interesting note is that these tables got created with the default Entity Framework initializer – which is to create the database if it doesn’t already exist. However, our database did already exist! This is because there is a new feature of Entity Framework 5 where Code First will add tables to an existing database as long as the target database doesn’t contain any of the tables from the model. At this point, it’s time to enable Migrations. We’ll open the Package Manger Console and execute the command: PM> Enable-Migrations -EnableAutomaticMigrations This will enable automatic migrations for our project. Because we used the "-EnableAutomaticMigrations” switch, it will create our Configuration class with a constructor that sets the AutomaticMigrationsEnabled property set to true: 1: public Configuration() 2: { 3: AutomaticMigrationsEnabled = true; 4: } We’ll now add our initial migration: PM> Add-Migration Initial This will create a migration class call “Initial” that contains the entire model. But we need to remove all of this code because our database already exists so we are just left with empty Up() and Down() methods. 1: public partial class Initial : DbMigration 2: { 3: public override void Up() 4: { 5: } 6: 7: public override void Down() 8: { 9: } 10: } If we don’t remove this code, we’ll get an exception the first time we attempt to run migrations that tells us: “There is already an object named 'UserProfile' in the database”. This blog post by Julie Lerman fully describes this scenario (i.e., enabling migrations on an existing database). Our next step is to add the Entity Framework initializer that will automatically use Migrations to update the database to the latest version. We will add these 2 lines of code to the Application_Start of the Global.asax: 1: Database.SetInitializer(new MigrateDatabaseToLatestVersion<UsersContext, Configuration>()); 2: new UsersContext().Database.Initialize(false); Note the Initialize() call will force the initializer to run if it has not been run before. At this point, we can publish again to make sure everything is still working as we are expecting. This time we’re going to specify in our publish profile that Code First Migrations should be executed:   Once we have re-published we can once again navigate to the Register page. At this point the database has not been changed but Migrations is now enabled on our SQL Database in Azure. We can now customize our model. Let’s add 2 new properties to the UserProfile class – Email and DateOfBirth: 1: [Table("UserProfile")] 2: public class UserProfile 3: { 4: [Key] 5: [DatabaseGeneratedAttribute(DatabaseGeneratedOption.Identity)] 6: public int UserId { get; set; } 7: public string UserName { get; set; } 8: public string Email { get; set; } 9: public DateTime DateOfBirth { get; set; } 10: } At this point all we need to do is simply re-publish. We’ll once again navigate to the Registration page and, because we had Automatic Migrations enabled, the database has been altered (*not* recreated) to add our 2 new columns. We can verify this by once again looking at SQL Management Studio:   Automatic Migrations provide a quick and easy way to keep your database in sync with your model without the worry of having to re-create your entire database and lose data. With Azure Web Sites you can set up automatic deployment with Git or TFS and automate the entire process to make it dead simple.

    Read the article

  • Programmatically reuse Dynamics CRM 4 icons

    - by gperera
    The team that wrote the dynamics crm sdk help rocks! I wanted to display the same crm icons on our time tracking application for consistency, so I opened up the sdk help file, searched for 'icon', ignored all the sitemap/isv config entries since I know I want to get these icons programatically, about half way down the search results I see 'organizationui', sure enough that contains the 16x16 (gridicon), 32x32 (outlookshortcuticon) and 66x48 (largeentityicon) icons!To get all the entities, execute a retrieve multiple request. RetrieveMultipleRequest request = new RetrieveMultipleRequest{    Query = new QueryExpression    {        EntityName = "organizationui",        ColumnSet = new ColumnSet(new[] { "objecttypecode", "formxml", "gridicon" }),    }}; var response = sdk.Execute(request) as RetrieveMultipleResponse;Now you have all the entities and icons, here's the tricky part, all the custom entities in crm store the icons inside gridicon, outlookshortcuticon and largeentityicon attributes, the built-in entity icons are stored inside the /_imgs/ folder with the format of /_imgs/ico_16_xxxx.gif (gridicon), with xxxx being the entity type code. The entity type code is not stored inside an attribute of organizationui, however you can get it by looking at the formxml attribute objecttypecode xml attribute. response.BusinessEntityCollection.BusinessEntities.ToList()    .Cast<organizationui>().ToList()    .ForEach(a =>    {        try        {            // easy way to check if it's a custom entity            if (!string.IsNullOrEmpty(a.gridicon))            {                byte[] gif = Convert.FromBase64String(a.gridicon);            }            else            {                // built-in entity                if (!string.IsNullOrEmpty(a.formxml))                {                    int start = a.formxml.IndexOf("objecttypecode=\"") + 16;                    int end = a.formxml.IndexOf("\"", start);                     // found the entity type code                    string code = a.formxml.Substring(start, end - start);                    string url = string.Format("/_imgs/ico_16_{0}.gif", code);Enjoy!

    Read the article

  • To ORM or Not to ORM. That is the question&hellip;

    - by Patrick Liekhus
    UPDATE:  Thanks for the feedback and comments.  I have adjusted my table below with your recommendations.  I had missed a point or two. I wanted to do a series on creating an entire project using the EDMX XAF code generation and the SpecFlow BDD Easy Test tools discussed in my earlier posts, but I thought it would be appropriate to start with a simple comparison and reasoning on why I choose to use these tools. Let’s start by defining the term ORM, or Object-Relational Mapping.  According to Wikipedia it is defined as the following: Object-relational mapping (ORM, O/RM, and O/R mapping) in computer software is a programming technique for converting data between incompatible type systems in object-oriented programming languages. This creates, in effect, a "virtual object database" that can be used from within the programming language. Why should you care?  Basically it allows you to map your business objects in code to their persistence layer behind them. And better yet, why would you want to do this?  Let me outline it in the following points: Development speed.  No more need to map repetitive tasks query results to object members.  Once the map is created the code is rendered for you. Persistence portability.  The ORM knows how to map SQL specific syntax for the persistence engine you choose.  It does not matter if it is SQL Server, Oracle and another database of your choosing. Standard/Boilerplate code is simplified.  The basic CRUD operations are consistent and case use database metadata for basic operations. So how does this help?  Well, let’s compare some of the ORM tools that I have used and/or researched.  I have been interested in ORM for some time now.  My ORM of choice for a long time was NHibernate and I still believe it has a strong case in some business situations.  However, you have to take business considerations into account and the law of diminishing returns.  Because of these two factors, my recent activity and experience has been around DevExpress eXpress Persistence Objects (XPO).  The primary reason for this is because they have the DevExpress eXpress Application Framework (XAF) that sits on top of XPO.  With this added value, the data model can be created (either database first of code first) and the Web and Windows client can be created from these maps.  While out of the box they provide some simple list and detail screens, you can verify easily extend and modify these to your liking.  DevExpress has done a tremendous job of providing enough framework while also staying out of the way when you need to extend it.  This sounds worse than it really is.  What I mean by this is that if you choose to follow DevExpress coding style and recommendations, the hooks and extension points provided allow you to do some pretty heavy lifting while also not worrying about the basics. I have put together a list of the top features that I have used to compare the limited list of ORM’s that I have exposure with.  Again, the biggest selling point in my opinion is that XPO is just a solid as any of the other ORM’s but with the added layer of XAF they become unstoppable.  And then couple that with the EDMX modeling tools and code generation, it becomes a no brainer. Designer Features Entity Framework NHibernate Fluent w/ Nhibernate Telerik OpenAccess DevExpress XPO DevExpress XPO/XAF plus Liekhus Tools Uses XML to map relationships - Yes - - -   Visual class designer interface Yes - - - - Yes Management integrated w/ Visual Studio Yes - - Yes - Yes Supports schema first approach Yes - - Yes - Yes Supports model first approach Yes - - Yes Yes Yes Supports code first approach Yes Yes Yes Yes Yes Yes Attribute driven coding style Yes - Yes - Yes Yes                 I have a very small team and limited resources with a lot of responsibilities.  In order to keep up with our customers, we must rely on tools like these.  We use the EDMX tool so that we can create a visual representation of the applications with our customers.  Second, we rely on the code generation so that we can focus on the business problems at hand and not whether a field is mapped correctly.  This keeps us from requiring as many junior level developers on our team.  I have also worked on multiple teams where they believed in writing their own “framework”.  In my experiences and opinion this is not the route to take unless you have a team dedicated to supporting just the framework.  Each time that I have worked on custom frameworks, the framework eventually becomes old, out dated and full of “performance” enhancements specific to one or two requirements.  With an ORM, there are a lot smarter people than me working on the bigger issue of persistence and performance.  Again, my recommendation would be to use an available framework and get to working on your business domain problems.  If your coding is not making money for you, why are you working on it?  Do you really need to be writing query to object member code again and again? Thanks

    Read the article

  • Spring Security Issue: Controller, Anonymous Requests...

    - by Srirangan
    Hey guys, I have an app that uses Spring security and BlazeDS. Flex 3.2 is used for the client app. Generally client app makes service calls using RemoteObjects. However, for certain cases client app is sending a request to a URL. We're using Annotated Controllers for URL mapping. Here's where the "Access is denied" exception comes up: 2010-04-12 11:43:23,486 [qtp5138683-16] ERROR fr.plasticomnium.gpoc.utils.ServiceExceptionInterceptor - Unexpected RuntimeException : Access is denied org.springframework.security.access.AccessDeniedException: Access is denied at org.springframework.security.access.vote.AffirmativeBased.decide(AffirmativeBased.java:71) at org.springframework.security.access.intercept.AbstractSecurityInterceptor.beforeInvocation(AbstractSecurityInterceptor.java:203) at org.springframework.security.access.intercept.aopalliance.MethodSecurityInterceptor.invoke(MethodSecurityInterceptor.java:64) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at fr.plasticomnium.gpoc.utils.ServiceExceptionInterceptor.invoke(ServiceExceptionInterceptor.java:15) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.transaction.interceptor.TransactionInterceptor.invoke(TransactionInterceptor.java:110) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.aop.interceptor.ExposeInvocationInterceptor.invoke(ExposeInvocationInterceptor.java:89) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:202) ... ...

    Read the article

  • XAF DSL Tool Needs a new Team Lead

    - by Patrick Liekhus
    I have enjoyed my time on this project and have used it in several production projects.  However, with the enhancements in Visual Studio 2010 and the Entity Framework, the DSL tool doesn’t make sense for me to support at this time.  With that said, I am looking for someone who has interest to continue the project if they so desire.  I have moved my attention to creating a new project at Entity Framework Extensions for XAF.  We are converting the current DSL tool into the Entity Framework extensions.  The same code generation and everything else work.  However, the visual design surface is so much easier to work with.  If you have any questions, please let me know.  Also, please take a moment to look at the new project.  This is where all my effort going forward will be focused. Thanks again for all the support on my vision this far and enjoy.

    Read the article

  • Need clarification concerning Windows Azure

    - by SnOrfus
    I basically need some confirmation and clarification concerning Windows Azure with respect to a Silverlight application using RIA Services. In a normal Silverlight app that uses RIA services you have 2 projects: App App.Web ... where App is the default client-side Silverlight and app.web is the server-side code where your RIA services go. If you create a Windows Azure app and add a WCF Web Services Role, you get: App (Azure project) App.Services (WCF Services project) In App.Services, you add your RIA DomainService(s). You would then add another project to this solution that would be the client-side Silverlight that accesses the RIA Services in the App.Services project. You then can add the entity model to the App.Services or another project that is referenced by App.Services (if that division is required for unit testing etc.) and connect that entity model to either a SQLServer db or a SQLAzure instance. Is this correct? If not, what is the general 'layout' for building an application with the following tiers: UI (Silverlight 4) Services (RIA Services) Entity/Domain (EF 4) Data (SQL Server)

    Read the article

  • When to write an explicit return statement in Groovy?

    - by Roland Schneider
    At the moment I am working on a Groovy/Grails project (which I'm quite new in) and I wonder whether it is good practice to omit the return keyword in Groovy methods. As far as I know you have to explicitly insert the keyword i.e. for guard clauses, so should one use it also everywhere else? In my opinion the additional return keyword increases readability. Or is it something you just have to get used to? What is your experience with that topic? Some examples: def foo(boolean bar) { // Not consistent if (bar) { return positiveBar() } negativeBar() } def foo2() { // Special Grails example def entitiy = new Entity(foo: 'Foo', bar: 'Bar') entity.save flush: true // Looks strange to me this way entity }

    Read the article

  • .NET 4.0 build issues on CI Server

    - by DMcKenna
    Anybody manage to get .net 4.0 applications compiling on a CI server without installing visual studio 2010 on a CI server. No SDK exists for .net 4.0. Have installed .NET 4.0 on CI Server. Msbuild.exe works for simple projects and give the following warning (GetReferenceAssemblyPaths target) - C:\Windows\Microsoft.NET\Framework\v4.0.30319\Microsoft.Common.targets(847,9): warning MSB3644: The reference assemblies for framework ".NETFramework,Version=v4.0" were not found. To resolve this, install the SDK or Targeting Pack for this framework version or retarget your application to a version of the framework for which you have the SDK or Targeting Pack installed. Note that assemblies will be resolved from the Global Assembly Cache (GAC) and will be used in placeof reference assemblies. Therefore your assembly may not be correctly targeted for the framework you intend.

    Read the article

  • Adding UIComponent to both Canvas and Tree in Flex 3

    - by Chris M
    I currently am trying to add a custom class which subclasses UIComponent to both a tree and a canvas, but when I try to re-order the tree by dragging I get this error: TypeError: Error #1010: A term is undefined and has no properties. at mx.controls::Tree/get firstVisibleItem()[C:\autobuild\3.2.0\frameworks\projects\framework\src\mx\controls\Tree.as:764] at flash.utils::ByteArray/writeObject() at flash.desktop::Clipboard/putSerialization() at flash.desktop::Clipboard/convertFlashFormat() at flash.desktop::Clipboard/setData() at mx.managers::NativeDragManagerImpl/doDrag()[C:\autobuild\3.2.0\frameworks\projects\airframework\src\mx\managers\NativeDragManagerImpl.as:282] at mx.managers::DragManager$/doDrag()[C:\autobuild\3.2.0\frameworks\projects\framework\src\mx\managers\DragManager.as:243] at mx.controls.listClasses::ListBase/dragStartHandler()[C:\autobuild\3.2.0\frameworks\projects\framework\src\mx\controls\listClasses\ListBase.as:9085] at flash.events::EventDispatcher/dispatchEventFunction() at flash.events::EventDispatcher/dispatchEvent() at mx.core::UIComponent/dispatchEvent()[C:\autobuild\3.2.0\frameworks\projects\framework\src\mx\core\UIComponent.as:9298] at mx.controls.listClasses::ListBase/mouseMoveHandler()[C:\autobuild\3.2.0\frameworks\projects\framework\src\mx\controls\listClasses\ListBase.as:8822] When I do not add the UIComponent to the canvas, this error does not occur, anyone have any knowledge as to why this happens?

    Read the article

  • Upgrade from .NET 2.0 to .NET 3.5 problems

    - by Bashir Magomedov
    I’m trying to upgrade our solution from VS2005 .NET 2.0 to VS2008 .NET 3.5. I converted the solution using VS2008 conversion wizard. All the projects (about 50) remained targeting to .NET Framework 2.0., moreover if I’m changing target framework manually for one of the projects, all referenced dll (i.e. System, System.Core, System.Data, etc. are still pointing to Framework 2.0. The only way to completely change targeting framework I found is to remove these references and refer them again using proper version of framework. Doing it manually is not best choice I think. 50 projects ~ 10 references each ~ 0.5 minutes for changing each reference is about 5 hours to complete. Am I missing something? Are there any other ways of converting full solution from .NET 2.0 to .NET 3.5? Thank you.

    Read the article

  • Stumbling Through: Visual Studio 2010 (Part II)

    I would now like to expand a little on what I stumbled through in part I of my Visual Studio 2010 post and touch on a few other features of VS 2010.  Specifically, I want to generate some code based off of an Entity Framework model and tie it up to an actual data source.  Im not going to take the easy way and tie to a SQL Server data source, though, I will tie it to an XML data file instead.  Why?  Well, why not?  This is purely for learning, there are probably much better ways to get strongly-typed classes around XML but it will force us to go down a path less travelled and maybe learn a few things along the way.  Once we get this XML data and the means to interact with it, I will revisit data binding to this data in a WPF form and see if I cant get reading, adding, deleting, and updating working smoothly with minimal code.  To begin, I will use what was learned in the first part of this blog topic and draw out a data model for the MFL (My Football League) - I dont want the NFL to come down and sue me for using their name in this totally football-related article.  The data model looks as follows, with Teams having Players, and Players having a position and statistics for each season they played: Note that when making the associations between these entities, I was given the option to create the foreign key but I only chose to select this option for the association between Player and Position.  The reason for this is that I am picturing the XML that will contain this data to look somewhat like this: <MFL> <Position/> <Position/> <Position/> <Team>     <Player>         <Statistic/>     </Player> </Team> </MFL> Statistic will be under its associated Player node, and Player will be under its associated Team node no need to have an Id to reference it if we know it will always fall under its parent.  Position, however, is more of a lookup value that will not have any hierarchical relationship to the player.  In fact, the Position data itself may be in a completely different xml file (something Id like to play around with), so in any case, a player will need to reference the position by its Id. So now that we have a simple data model laid out, I would like to generate two things based on it:  A class for each entity with properties corresponding to each entity property An IO class with methods to get data for each entity, either all instances, by Id or by parent. Now my experience with code generation in the past has consisted of writing up little apps that use the code dom directly to regenerate code on demand (or using tools like CodeSmith).  Surely, there has got to be a more fun way to do this given that we are using the Entity Framework which already has built-in code generation for SQL Server support.  Lets start with that built-in stuff to give us a base to work off of.  Right click anywhere in the canvas of our model and select Add Code Generation Item: So just adding that code item seemed to do quite a bit towards what I was intending: It apparently generated a class for each entity, but also a whole ton more.  I mean a TON more.  Way too much complicated code was generated now that code is likely to be a black box anyway so it shouldnt matter, but we need to understand how to make this work the way we want it to work, so lets get ready to do some stumbling through that text template (tt) file. When I open the .tt file that was generated, right off the bat I realize there is going to be trouble there is no color coding, no intellisense no nothing!  That is going to make stumbling through more like groping blindly in the dark while handcuffed and hopping on one foot, which was one of the alternate titles I was considering for this blog.  Thankfully, the community comes to my rescue and I wont have to cast my mind back to the glory days of coding in VI (look it up, kids).  Using the Extension Manager (Available under the Tools menu), I did a quick search for tt editor in the Online Gallery and quickly found the Tangible T4 Editor: Downloading and installing this was a breeze, and after doing so I got some color coding and intellisense while editing the tt files.  If you will be doing any customizing of tt files, I highly recommend installing this extension.  Next, well see if that is enough help for us to tweak that tt file to do the kind of code generation that we wantDid you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Django + WebKit = Broken pipe

    - by Saosin
    I'm running the Django 1.2 development server and I get these Broken Pipe error messages whenever I load a page from it with Chrome or Safari. My co-worker is getting the error as well when he loads a page from his dev server. We don't have these errors when using Opera or Firefox. Traceback (most recent call last): File "/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/django/core/servers/basehttp.py", line 281, in run self.finish_response() File "/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/django/core/servers/basehttp.py", line 321, in finish_response self.write(data) File "/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/django/core/servers/basehttp.py", line 417, in write self._write(data) File "/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/socket.py", line 300, in write self.flush() File "/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/socket.py", line 286, in flush self._sock.sendall(buffer) error: [Errno 32] Broken pipe Can anyone help me out? I'm going crazy over this!

    Read the article

  • What does the Spring framework do? Should I use it? Why or why not?

    - by sangfroid
    So, I'm starting a brand-new project in Java, and am considering using Spring. Why am I considering Spring? Because lots of people tell me I should use Spring! Seriously, any time I've tried to get people to explain what exactly Spring is or what it does, they can never give me a straight answer. I've checked the intros on the SpringSource site, and they're either really complicated or really tutorial-focused, and none of them give me a good idea of why I should be using it, or how it will make my life easier. Sometimes people throw around the term "dependency injection", which just confuses me even more, because I think I have a different understanding of what that term means. Anyway, here's a little about my background and my app : Been developing in Java for a while, doing back-end web development. Yes, I do a ton of unit testing. To facilitate this, I typically make (at least) two versions of a method : one that uses instance variables, and one that only uses variables that are passed in to the method. The one that uses instance variables calls the other one, supplying the instance variables. When it comes time to unit test, I use Mockito to mock up the objects and then make calls to the method that doesn't use instance variables. This is what I've always understood "dependency injection" to be. My app is pretty simple, from a CS perspective. Small project, 1-2 developers to start with. Mostly CRUD-type operations with a a bunch of search thrown in. Basically a bunch of RESTful web services, plus a web front-end and then eventually some mobile clients. I'm thinking of doing the front-end in straight HTML/CSS/JS/JQuery, so no real plans to use JSP. Using Hibernate as an ORM, and Jersey to implement the webservices. I've already started coding, and am really eager to get a demo out there that I can shop around and see if anyone wants to invest. So obviously time is of the essence. I understand Spring has quite the learning curve, plus it looks like it necessitates a whole bunch of XML configuration, which I typically try to avoid like the plague. But if it can make my life easier and (especially) if make it can make development and testing faster, I'm willing to bite the bullet and learn Spring. So please. Educate me. Should I use Spring? Why or why not?

    Read the article

  • Techniques for separating game model from presentation

    - by liortal
    I am creating a simple 2D game using XNA. The elements that make up the game world are what i refer to as the "model". For instance, in a board game, i would have a GameBoard class that stores information about the board. This information could be things such as: Location Size Details about cells on the board (occupied/not occupied) etc This object should either know how to draw itself, or describe how to draw itself to some other entity (renderer) in order to be displayed. I believe that since the board only contains the data+logic for things regarding it or cells on it, it should not provide the logic of how to draw things (separation of concerns). How can i achieve a good partitioning and easily allow some other entity to draw it properly? My motivations for doing so are: Allow multiple "implementations" of presentation for a single game entity Easier porting to other environments where the presentation code is not available (for example - porting my code to Unity or other game technology that does not rely on XNA).

    Read the article

  • Structuring game world entities and their rendering objects

    - by keithjgrant
    I'm putting together a simple 2d tile-based game. I'm finding myself spinning circles on some design decisions, and I think I'm in danger of over-engineering. After all, the game is simple enough that I had a working prototype inside of four hours with fewer than ten classes, it just wasn't scalable or flexible enough for a polished game. My question is about how to structure flow of control between game entity objects and their rendering objects. Should each renderer have a reference to their entity or vice-versa? Or both? Should the entity be in control of calling the render() method, or be completely oblivious? I know there are several valid approaches here, but I'm kind of feeling decision paralysis. What are the pros and cons of each approach?

    Read the article

  • Rotating a child shape relative to its parent's orientation

    - by user1423893
    When rotating a shape using a quaternion value I also wish rotate its child shape. The parent and child shapes both start with different orientations but their relative orientations should always be the same. How can I use the difference between the previous and current quaternions of the parent shape in order to transform the child segment and rotate it relative to its parent shape? public Quaternion Orientation { get { return entity.Orientation; } set { Quaternion previousValue = entity.Orientation; entity.Orientation = value; // Use the difference between the quaternion values to update child orientation } }

    Read the article

  • HTTP events? Is there a standard / precedent for this?

    - by user619818
    Our architecture is HTTP servers (custom written) which whereby custom clients send a HTTP request for some information and information is returned just as HTTP works. But we need a special custom 'extension' which is a request which is a subscription for receiving asynchronous 'events' on a resource. For example the client sends an http request subscribing for events on some entity. As the 'entity' generates events they are passed to the http server and the http server must then lookup subscriptions for that entity and send the event message to all subscribed clients. Hope that makes sense. So my questions are: Has this been done before / or is there a standard I should be looking at? If no standard, any suggestions on how to implement? How does a http server send an unsolicited 'message' to a client?

    Read the article

  • Type Conversion in JPA 2.1

    - by delabassee
    The Java Persistence 2.1 specification (JSR 338) adds support for various new features such as schema generation, stored procedure invocation, use of entity graphs in queries and find operations, unsynchronized persistence contexts, injection into entity listener classes, etc. JPA 2.1 also add support for Type Conversion methods, sometime called Type Converter. This new facility let developers specify methods to convert between the entity attribute representation and the database representation for attributes of basic types. For additional details on Type Conversion, you can check the JSR 338 Specification and its corresponding JPA 2.1 Javadocs. In addition, you can also check those 2 articles. The first article ('How to implement a Type Converter') gives a short overview on Type Conversion while the second article ('How to use a JPA Type Converter to encrypt your data') implements a simple use-case (encrypting data) to illustrate Type Conversion. Mission critical applications would probably rely on transparent database encryption facilities provided by the database but that's not the point here, this use-case is easy enough to illustrate JPA 2.1 Type Conversion.

    Read the article

  • What would one call this architecture?

    - by Chris
    I have developed a distributed test automation system which consists of two different entities. One entity is responsible for triggering tests runs and monitoring/displaying their progress. The other is responsible for carrying out tests on that host. Both of these entities retrieve data from a central DB. Now, my first thought is that this is clearly a server-client architecture. After all, you have exactly one organizing entity and many entities that communicate with said entity. However, while the supposed clients to communicate to the server via RPC, they are not actually requesting services or information, rather they are simply reporting back test progress, in fact, once the test run has been triggered they can complete their tasks without connection to the server. The request for a service is actually made by the supposed server which triggers the clients to carry out tests. So would this still be considered a server-client architecture or is this something different?

    Read the article

  • Retrieve data from an ASP.Net application using ADO.Net 2.0 connected model

    - by nikolaosk
    I have been teaching Entity Framework,LINQ to SQL,LINQ to objects,LINQ to XML for some time now. I am huge fan of LINQ to Entities and I am using Entity Framework as my main data access technology. Entity framework is in the second version right now and I can accomplish most of the things I need. I am sure the guys in the ADO.Net team will implement many more features in the future. I am a strong believer that you cannot really understand the benefits of LINQ to SQL or LINQ to Entities unless you...(read more)

    Read the article

  • Stumbling Through: Visual Studio 2010 (Part II)

    I would now like to expand a little on what I stumbled through in part I of my Visual Studio 2010 post and touch on a few other features of VS 2010.  Specifically, I want to generate some code based off of an Entity Framework model and tie it up to an actual data source.  Im not going to take the easy way and tie to a SQL Server data source, though, I will tie it to an XML data file instead.  Why?  Well, why not?  This is purely for learning, there are probably much better ways to get strongly-typed classes around XML but it will force us to go down a path less travelled and maybe learn a few things along the way.  Once we get this XML data and the means to interact with it, I will revisit data binding to this data in a WPF form and see if I cant get reading, adding, deleting, and updating working smoothly with minimal code.  To begin, I will use what was learned in the first part of this blog topic and draw out a data model for the MFL (My Football League) - I dont want the NFL to come down and sue me for using their name in this totally football-related article.  The data model looks as follows, with Teams having Players, and Players having a position and statistics for each season they played: Note that when making the associations between these entities, I was given the option to create the foreign key but I only chose to select this option for the association between Player and Position.  The reason for this is that I am picturing the XML that will contain this data to look somewhat like this: <MFL> <Position/> <Position/> <Position/> <Team>     <Player>         <Statistic/>     </Player> </Team> </MFL> Statistic will be under its associated Player node, and Player will be under its associated Team node no need to have an Id to reference it if we know it will always fall under its parent.  Position, however, is more of a lookup value that will not have any hierarchical relationship to the player.  In fact, the Position data itself may be in a completely different xml file (something Id like to play around with), so in any case, a player will need to reference the position by its Id. So now that we have a simple data model laid out, I would like to generate two things based on it:  A class for each entity with properties corresponding to each entity property An IO class with methods to get data for each entity, either all instances, by Id or by parent. Now my experience with code generation in the past has consisted of writing up little apps that use the code dom directly to regenerate code on demand (or using tools like CodeSmith).  Surely, there has got to be a more fun way to do this given that we are using the Entity Framework which already has built-in code generation for SQL Server support.  Lets start with that built-in stuff to give us a base to work off of.  Right click anywhere in the canvas of our model and select Add Code Generation Item: So just adding that code item seemed to do quite a bit towards what I was intending: It apparently generated a class for each entity, but also a whole ton more.  I mean a TON more.  Way too much complicated code was generated now that code is likely to be a black box anyway so it shouldnt matter, but we need to understand how to make this work the way we want it to work, so lets get ready to do some stumbling through that text template (tt) file. When I open the .tt file that was generated, right off the bat I realize there is going to be trouble there is no color coding, no intellisense no nothing!  That is going to make stumbling through more like groping blindly in the dark while handcuffed and hopping on one foot, which was one of the alternate titles I was considering for this blog.  Thankfully, the community comes to my rescue and I wont have to cast my mind back to the glory days of coding in VI (look it up, kids).  Using the Extension Manager (Available under the Tools menu), I did a quick search for tt editor in the Online Gallery and quickly found the Tangible T4 Editor: Downloading and installing this was a breeze, and after doing so I got some color coding and intellisense while editing the tt files.  If you will be doing any customizing of tt files, I highly recommend installing this extension.  Next, well see if that is enough help for us to tweak that tt file to do the kind of code generation that we wantDid you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • What would one call this architecture?

    - by Chris
    I have developed a distributed test automation system which consists of two different entities. One entity is responsible for triggering tests runs and monitoring/displaying their progress. The other is responsible for carrying out tests on that host. Both of these entities retrieve data from a central DB. Now, my first thought is that this is clearly a server-client architecture. After all, you have exactly one organizing entity and many entities that communicate with said entity. However, while the supposed clients to communicate to the server via RPC, they are not actually requesting services or information, rather they are simply reporting back test progress, in fact, once the test run has been triggered they can complete their tasks without connection to the server. The request for a service is actually made by the supposed server which triggers the clients to carry out tests. So would this still be considered a server-client architecture or is this something different?

    Read the article

  • how should I change the representation (not mimetype) of a resource?

    - by xenoterracide
    I'm looking at how I can change the representation of a payload at runtime for varied potential advantages, but I'm not sure how to do it. Specifically collections. Array of Pairs [{ <resource_uri> : { <entity> }, ...}] Array of Objects [<entity>,...] Array of Resources [<resource_uri>] Map of entities { <resource_uri> : { <entity> }, ... } My problem is, I'm not sure if I should put these different representations of the sets at different URI's, give them slightly varied mime types, e.g. application/foomap+json or perhaps use an optional query parameter ?format=map, or resource /entities/map. The UI is going to hide this, this is for programmatic web service access only (which the "UI's JS will have to call).

    Read the article

  • VS2010 (older) installer project - two or more objects have the same target location.

    - by Hamish Grubijan
    This installer project was created back in 2004 and upgraded ever since. There are two offending dll files, which produce a total of 4 errors. I have searched online for this warning message and did not find a permanent fix (I did manage to make it go away once until I have done something like a clean, or built in Release, and then in Debug). I also tried cleaning, and then refreshing the dependencies. The duplicated entries are still in there. I also did not find a good explanation for what this error means. Additional warnings are of this nature: Warning 36 The version of the .NET Framework launch condition '.NET Framework 4' does not match the selected .NET Framework bootstrapper package. Update the .NET Framework launch condition to match the version of the .NET Framework selected in the Prerequisites Dialog Box. So, where is this prerequisites box? I want to make both things agree on .Net 4.0, just having a hard time locating both of them.

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

< Previous Page | 233 234 235 236 237 238 239 240 241 242 243 244  | Next Page >