Search Results

Search found 44742 results on 1790 pages for 'create'.

Page 242/1790 | < Previous Page | 238 239 240 241 242 243 244 245 246 247 248 249  | Next Page >

  • Looking for a free or open-source burner emulator [closed]

    - by Jared Harley
    Possible Duplicate: Virtual CDR driver I am looking for a free or open-source virtual CD/DVD emulator to run in a Windows environment. What I want is similar to what SlySoft's Virtual Clone Drive or Daemon Tools provides, but the emulated drive needs to be a burner of some type. The burner should be able to save disc images (.iso, .ccd, etc) to my harddrive - basically, the same as if I burned the files to a CD-R, and then ripped them back to a disc image. I have already looked around some and come across 2 - DVD neXt COPY iTurns and NoteBurner M4P. Both of these programs create a virtual CD-RW drive, but they are integrated into their product (for burning from iTunes to create mp3 files) and cannot create disc images. I am currently writing a piece of software that will have the capability to burn disc images onto CDs/DVDs, and I don't want to end up with a 100 coasters while I'm testing my software. Anyone have any ideas? Related ServerFault queston: Create netbook recovery image without DVD burner (virtual burner?)

    Read the article

  • Creating a FAT file system and save it into a file in GNU/linux?

    - by RubenT
    I tell you my problem: I want to create a FAT file system and save it into a so I can mount it in linux using something like: sudo mount -t msdos <file> <dest_folder> Maybe I'm wrong and this cannot be done. Anyway, the problem is this: I'm trying to create the file containing a FAT file system, and I'm running this command: sudo mkfs.vfat -F 32 -r 112 -S 512 -v -C "test.fat" 100 That, accordingly to the mkfs man page, will create a FAT32 file system with 112 rootdir entries, logical sector size of 512 bytes, 100 blocks in total, and save it into "test.fat". But it fails, and the bash tells me: mkfs.vfat: unable to create test.fat What is going on? I think I am misunderstanding how mkfs works and how to use it. It is possible to write a filesystem into a file?

    Read the article

  • dragonflyBSD NFS server and windows 2008 client promission deny

    - by altman
    I have setup a dragonflyBSD NFS server and a windows 2008 NFS client(it's in the linux-KVM). The dragonflyBSD exports file like this: /tank -mapall=root windows-client and i setup my windows 2008 a NFS client all right. There is my win cmd to mount NFS. mount \\dragonfly-server\tank e:\ After finished my configuration. I found the windows client can mount the remote tank partition. And i can create a file or a dir. But when i try to delete the file i just create. It alerts permission deny. You must have the permission.And the same result when i try to write to the text i create in the NFS partition I don't know why i just can create the file through NFS, but can't do any thing else. Is there any body can help?

    Read the article

  • Trunking between Juniper Ex3300 with Cisco Router

    - by danijuntak
    Hy Experts, Please tell how to create trunking with Juniper and Cisco. Cisco 2950 Juniper EX3300 Cisco 2621 I create VLAN 100,VLAN 200, VLAN 300 I have create trunk on juniper switch with : set interfaces ge-0/0/2 unit 0 family ethernet-switching vlan members root@switch# set interfaces ge-0/0/23 unit 0 family ethernet-switching port-mode trunk Now I want to telnet Juniper Switch from PC, but I don't know how to give IP address to Juniper switch and how to assign IP to vlan on Juniper switch.

    Read the article

  • How to keep group-writeable shares on Samba with OSX clients?

    - by Oliver Salzburg
    I have a FreeNAS server on a network with OSX and Windows clients. When the OSX clients interact with SMB/CIFS shares on the server, they are causing permission problems for all other clients. Update: I can no longer verify any answers because we abandoned the project, but feel free to post any help for future visitors. The details of this behavior seem to also be dependent on the version of OSX the client is running. For this question, let's assume a client running 10.8.2. When I mount the CIFS share on an OSX client and create a new directory on it, the directory will be created with drwxr-x-rx permissions. This is undesirable because it will not allow anyone but me to write to the directory. There are other users in my group which should have write permissions as well. This behavior happens even though the following settings are present in smb.conf on the server: [global] create mask= 0666 directory mask= 0777 [share] force directory mode= 0775 force create mode= 0660 I was under the impression that these settings should make sure that directories are at least created with rwxrwxr-x permissions. But, I guess, that doesn't stop the client from changing the permissions after creating the directory. When I create a folder on the same share from a Windows client, the new folder will have the desired access permissions (rwxrwxrwx), so I'm currently assuming that the problem lies with the OSX client. I guess this wouldn't be such an issue if you could easily change the permissions of the directories you've created, but you can't. When opening the directory info in Finder, I get the old "You have custom access" notice with no ability to make any changes. I'm assuming that this is caused because we're using Windows ACLs on the share, but that's just a wild guess. Changing the write permissions for the group through the terminal works fine, but this is unpractical for the deployment and unreasonable to expect from anyone to do. This is the complete smb.conf: [global] encrypt passwords = yes dns proxy = no strict locking = no read raw = yes write raw = yes oplocks = yes max xmit = 65535 deadtime = 15 display charset = LOCALE max log size = 10 syslog only = yes syslog = 1 load printers = no printing = bsd printcap name = /dev/null disable spoolss = yes smb passwd file = /var/etc/private/smbpasswd private dir = /var/etc/private getwd cache = yes guest account = nobody map to guest = Bad Password obey pam restrictions = Yes # NOTE: read smb.conf. directory name cache size = 0 max protocol = SMB2 netbios name = freenas workgroup = COMPANY server string = FreeNAS Server store dos attributes = yes hostname lookups = yes security = user passdb backend = ldapsam:ldap://ldap.company.local ldap admin dn = cn=admin,dc=company,dc=local ldap suffix = dc=company,dc=local ldap user suffix = ou=Users ldap group suffix = ou=Groups ldap machine suffix = ou=Computers ldap ssl = off ldap replication sleep = 1000 ldap passwd sync = yes #ldap debug level = 1 #ldap debug threshold = 1 ldapsam:trusted = yes idmap uid = 10000-39999 idmap gid = 10000-39999 create mask = 0666 directory mask = 0777 client ntlmv2 auth = yes dos charset = CP437 unix charset = UTF-8 log level = 1 [share] path = /mnt/zfs0 printable = no veto files = /.snap/.windows/.zfs/ writeable = yes browseable = yes inherit owner = no inherit permissions = no vfs objects = zfsacl guest ok = no inherit acls = Yes map archive = No map readonly = no nfs4:mode = special nfs4:acedup = merge nfs4:chown = yes hide dot files force directory mode = 0775 force create mode = 0660

    Read the article

  • How do I clone an Ubuntu server under VMWare

    - by dave
    I have a Ubuntu 12.04 server running under VMWare. As best as I can tell, the VMWare vmbk file has been corrupted. The server is operating normally, but this is preventing backups (using Veeam). To remedy this, I'd like to create a duplicate VM without the corruption issue. However, with the corrupted file VMWare can't help me, eg. create a simple clone. I can create a new VM. How do I clone the configuration / data from my problematic server into the new one? Updated: just to clarify: I realise I can't use the VMWare clone tools. I will manually create a new VM (with a base O/S if necessary). How to I replicate the O/S and data from one VM into another?

    Read the article

  • creating secure multicast with socat

    - by arash
    How we can create secure tunnels multicast with socat? Assume we have a list of ip address, CIDR network addresses that we want to create secure tunnel to them. I found this socat STDIO UDP4-DATAGRAM:224.1.0.1:6666,range=192.168.10.0/24 but I want a secure tunnel and different adds with net addrs I want to create script that give the IPs and net addresses and create secure tunnel ./myscript IP1 NetAdd1 IP2 NetAdd2 .... how can i send this parametersw to socat? Socat multicast hasn't any limits? Thanks for your help

    Read the article

  • glassfish - Unknown error when trying port 4848

    - by Majid Azimi
    I'm installing glassfish 3.1 on Windows XP service pack 3. but in configuration step it gives this error: PERFORMING THE REQUIRED CONFIGURATIONS ______________________________________ CREATING DOMAIN _______________ Executing command :C:\glassfish3\glassfish\bin\asadmin.bat --user admin --passwordfile C:\DOCUME~1\MAJIDA~1\LOCALS~1\Temp\glassfish-3.1-windows-ml.exe6\asadminTmp1079044298673991344.tmp create-domain --savelogin --checkports=false --adminport 4848 --instanceport 8080 --domainproperties=jms.port=7676:domain.jmxPort=8686:orb.listener.port=3700:http.ssl.port=8181:orb.ssl.port=3820:orb.mutualauth.port=3920 domain1 C:\glassfish3\glassfish\bin\asadmin.bat --user admin --passwordfile C:\DOCUME~1\MAJIDA~1\LOCALS~1\Temp\glassfish-3.1-windows-ml.exe6\asadminTmp5898014821156752751.tmp create-domain --savelogin --checkports=false --adminport 4848 --instanceport 8080 --domainproperties=jms.port=7676:domain.jmxPort=8686:orb.listener.port=3700:http.ssl.port=8181:orb.ssl.port=3820:orb.mutualauth.port=3920 domain1Unknown error when trying port 4848. Try a different port number. Command create-domain failed. CLI130 Could not create domain, domain1 I change 4848 to any other port. but it doesn't work. firewall is completely disabled. Could anyone help?

    Read the article

  • AWS autoscaling. Launch Config/Auto Scaling Group and VPC instance with two ifaces

    - by icalvete
    I want create an Launch Config/Auto Scaling Group to build instances inside an VPC with two subnets ("frontend" and "backend") I need that this instances have two ifaces. One in "frontend" subnet and one in "backend" subnet. I can't see how do that. It's no posible from AWS console and neither with aws cli. http://docs.aws.amazon.com/cli/latest/reference/autoscaling/create-launch-configuration.html http://docs.aws.amazon.com/cli/latest/reference/autoscaling/create-auto-scaling-group.html Launch Config don't say nothing about this. http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/create-lc-with-instanceID.html Ideas? Thanks!!!

    Read the article

  • FreeBSD and Linux VLAN

    - by mezgani
    I have a LAN and i need to create a LAB with three VLAN on my boxes, Linux and FreeBSD. so i create a VLAN 1 on the linux box as follow: sudo vconfig add eth0 1 sudo ifconfig eth0.1 inet6 add 2001:470:9b36:1:1::2/64 and i do the same on the FreeBSD box: sudo ifconfig vlan1 create sudo ifconfig vlan1 inet6 2001:470:9b36:1:1::1 prefixlen 64 vlan 1 vlandev bge0 But i still not able to ping the VLANs from each side ? NB: the eth0 and bge0 are up and running

    Read the article

  • I can't write to a folder which I'm a member of

    - by user3265472
    I'm trying to setup folder access to a group so that all members of that group can create/edit/delete files within the folder. # create my group and add a member sudo addgroup dev sudo adduser martyn dev Now, logged in as "martyn", check my user has been added to "dev" group groups martyn martyn : martyn dev Now I want to change the group ownership of my project folder so all members of that group can edit it and files/folders within it. sudo chgrp -R dev myproject Just to check: martyn@localhost:/var/www$ ls -l total 4 drwxrwxr-x 3 dev dev 4096 May 31 15:53 myproject Now here's where it fails. I want to create a file within myproject (logged in as "martyn", a member of "dev"): vi myproject/test ..but when I try to save the file I get the following error: "myproject/test" E212: Can't open file for writing Why, as user "martyn" which is a member of "dev", can I not write this file? Even if I create the file so it exists, change the ownership to "dev" then try to edit and save - I get the same error.

    Read the article

  • Can SQL Server (2008) transaction logs handle the database being dropped and re-created?

    - by Ben
    We're trying to restore a database (created programatically by running a hand-crafted SQL script we have). Our backup routine is to create a full backup of every database on the SQL Server 2008 instance on a Saturday then automatic transaction logs (I assume these are created automatically anyway - we appear to have lots of log files, possibly one per transaction after the full backup was taken?). On Tuesday this week the database in question was dropped and another one with the exact same name and schema was created. SQL Server has continued to create transaction log files but it hasn't had chance to create a new full backup (that won't happen until next Saturday). Now as it turns out we need to restore the database to how it was on Thursday. This is after the "drop and re-create". My question is, is this possible? If it isn't, what exactly does SQL Server think that it's writing to those transaction logs created since the drop and re-create? (I understood they were kind of files containing a binary delta, which makes me think maybe we can restore from them?) I'm no DBA but then neither is our IT department, so I'm doing the best I can to resolve this. Any advice much appreciated!

    Read the article

  • What is the proper way to set up the Apache document root in terms of privileges?

    - by racl101
    I have just installed Ubuntu 9.10 server edition on my machine and I wish to run my own personal local server with other users in the same LAN. First, I was wondering what folder directory structure is best for the web root? Should I just use: /var/www/ and start throwing web documents there or should I create a folder elsewhere (maybe the home directory)? Second, in the /var/www/ directory only the root user can create documents in there, however, I wish to have other users be able to create files in the document root and upload them via FTP. Should I change the permissions or the www/ folder? Or again, should I create the document root elsewhere with different permissions? What is the safest way of doing this?

    Read the article

  • Access denied for user 'diduser'@'localhost' to database 'diddata' (1044, 42000)

    - by Arlen Beiler
    I am trying to setup a MySQL server and when I went to create a second user it wouldn't give it permissions for the database. I can connect fine as long as I don't specify a database. Access denied for user 'user'@'localhost' to database 'diddata' The connection details are: { 'host' : 'localhost', 'user' : 'user', 'password' : 'password' , 'database': 'diddata' }; And to create the DB and table I did: CREATE DATABASE IF NOT exists diddata; CREATE USER 'user'@'localhost' IDENTIFIED BY 'password'; GRANT ALL ON user.* TO 'user'@'localhost'; Note that I've changed the username and password in this question. I've already checked the privileges in MySQL workbench and they are there.

    Read the article

  • Automatically creating volume partitions on boot

    - by Justin Meltzer
    I followed this guide: http://www.mongodb.org/display/DOCS/Amazon+EC2+Quickstart to set up Mongodb. It had me create a RAID 10 array out of the four devices on EBS. Then it had me create a physical volume, a volume group, and three logical volumes out of that RAID 10 array. Lastly it had me create ext4 filesystems out of the logical volumes and mount them. Now the quickstart guide had me put two things in place so that these steps would be replicated on reboot of the system. It had me add some instructions to the mdadm.conf file to automatically create the RAID 10 array, and it also had me add instructions to the fstab file to automatically mount the filesystem for each logical volume. However, the quickstart guide does not have anything for automatically creating the logical volumes from the RAID 10 array. I checked my system and see that each of the four devices are part of a RAID array: $ sudo mdadm -Q /dev/sdh1 /dev/sdh1: is not an md array /dev/sdh1: device 0 in 4 device unknown raid10 array. Use mdadm --examine for more detail. However, the filesystem is never created or mounted from fstab because it's trying to mount it from logical volumes that were never created (or so it seems). My question is, how can I automatically accomplish all the steps from the quickstart guide on a reboot of the system, and what config file do I need to add data to so that I can automatically create these volume partions after the RAID 10 is created but before the filesystem is mounted. Also I'm unsure whether fstab actually creates and mounts the filesystem or just mounts the filesystem.

    Read the article

  • VMWare Lab Manager: What's the best way to build Library Configurations?

    - by mcohen75
    We're using Lab Manager within our QA group. We use it to quickly deliver environments we need for testing. We have 25 Templates, 14 Library Configurations and counting. To build up our templates we: Create a base template that is a bare bones version of Server 2008 + basic configuration (Windows Update, Firewall exceptions) Create a linked clone for each Server template we need (SQL Server 08, 05, etc) Repeat for other OS's, like Windows 7 and Windows XP Then we create configurations: Create a workspace configuration with multiple images in it (Say Server 08 w/SQL Server and Windows 7) Deploy the configuration and make some minor configuration changes Undeploy and Capture to Library How do we keep this manageable? When I need to update a configuration, should I: Rebuild it from templates Clone it to a workspace, make changes, recapture it to the library keep the configuration in my workspace (don't delete it after capturing it to library), deploy it to make changes and then re-capture to library

    Read the article

  • How to deploy new instances of the same application (on 1 server) automatically?

    - by Intru
    I'm working on a SaaS application where each customer runs its own version of the application. All the application instances currently run on a single server. This works quite well for us (we need less resources in total). The application doesn't use a lot of resources, so even a small VPS would be overkill (and more expensive). Adding a new customer is currently quite a bit of work: Create a user that is allowed to ssh Create a new MySQL database and user Create a virtual host for the application Log in with the new user, do a git checkout of the application (in the right location) Create tables in the new database, and add some init data Add some cron jobs Create a first user that can log in Add this new instance to capistrano What would be the best way to automate these tasks? Are the applications that can (given proper configuration) do this? Ideally this should be usable for a sales-person (so something web-based). I could write a (bash) script that does most of these tasks, and then maybe add a small web-based wrapper where someone could provider the domain/default user information. Of course, this would also require a delete-script, since some customers will eventually leave, which means that you need a list of all existing customers/instances.

    Read the article

  • Delphi Speech recognition delphi

    - by XBasic3000
    I need create a programatic equivalent using delphi language... or could someone post a link on how to do grammars in peech recogniton using the delphi. sorry for my english... XML Grammar Sample(s): <GRAMMAR> <!-- Create a simple "hello world" rule --> <RULE NAME="HelloWorld" TOPLEVEL="ACTIVE"> <P>hello world</P> </RULE> <!-- Create a more advanced "hello world" rule that changes the display form. When the user says "hello world" the display text will be "Hiya there!" --> <RULE NAME="HelloWorld_Disp" TOPLEVEL="ACTIVE"> <P DISP="Hiya there!">hello world</P> </RULE> <!-- Create a rule that changes the pronunciation and the display form of the phrase. When the user says "eh" the display text will be "I don't understand?". Note the user didn't say "huh". The pronunciation for "what" is specific to this phrase tag and is not changed for the user or application lexicon, or even other instances of "what" in the grammar --> <RULE NAME="Question_Pron" TOPLEVEL="ACTIVE"> <P DISP="I don't understand" PRON="eh">what</P> </RULE> <!-- Create a rule demonstrating repetition --> <!-- the rule will only be recognized if the user says "hey diddle diddle" --> <RULE NAME="NurseryRhyme" TOPLEVEL="ACTIVE"> <P>hey</P> <P MIN="2" MAX="2">diddle</P> </RULE> <!-- Create a list with variable phrase weights --> <!-- If the user says similar phrases, the recognizer will use the weights to pick a match --> <RULE NAME="UseWeights" TOPLEVEL="ACTIVE"> <LIST> <!-- Note the higher likelihood that the user is expected to say "recognizer speech" --> <P WEIGHT=".95">recognize speech</P> <P WEIGHT=".05">wreck a nice beach</P> </LIST> </RULE> <!-- Create a phrase with an attached semantic property --> <!-- Speaking "one two three" will return three different unique semantic properties, with different names, and different values --> <RULE NAME="UseProps" TOPLEVEL="ACTIVE"> <!-- named property, without value --> <P PROPNAME="NOVALUE">one</P> <!-- named property, with numeric value --> <P PROPNAME="NUMBER" VAL="2">two</P> <!-- named property, with string value --> <P PROPNAME="STRING" VALSTR="three">three</P> </RULE> </GRAMMAR> **Programmatic Equivalent:** To add a phrase to a rule, SAPI provides an API called ISpGrammarBuilder::AddWordTransition. The application developer can add the sentences as follows: SPSTATEHANDLE hsHelloWorld; // Create new top-level rule called "HelloWorld" hr = cpRecoGrammar->GetRule(L"HelloWorld", NULL, SPRAF_TopLevel | SPRAF_Active, TRUE, &hsHelloWorld); // Check hr // Add the command words "hello world" // Note that the lexical delimiter is " ", a space character. // By using a space delimiter, the entire phrase can be added // in one method call hr = cpRecoGrammar->AddWordTransition(hsHelloWorld, NULL, L"hello world", L" ", SPWT_LEXICAL, NULL, NULL); // Check hr // Add the command words "hiya there" // Note that the lexical delimiter is "|", a pipe character. // By using a pipe delimiter, the entire phrase can be added // in one method call hr = cpRecoGrammar->AddWordTransition(hsHelloWorld, NULL, L"hiya|there", L"|", SPWT_LEXICAL, NULL, NULL); // Check hr // save/commit changes hr = cpRecoGrammar->Commit(NULL); // Check hr

    Read the article

  • PostgreSQL triggers and passing parameters

    - by iandouglas
    This is a multi-part question. I have a table similar to this: CREATE TABLE sales_data ( Company character(50), Contract character(50), top_revenue_sum integer, top_revenue_sales integer, last_sale timestamp) ; I'd like to create a trigger for new inserts into this table, something like this: CREATE OR REPLACE FUNCTION add_contract() RETURNS VOID DECLARE myCompany character(50), myContract character(50), BEGIN myCompany = TG_ARGV[0]; myContract = TG_ARGV[1]; IF (TG_OP = 'INSERT') THEN EXECUTE 'CREATE TABLE salesdata_' || $myCompany || '_' || $myContract || ' ( sale_amount integer, updated TIMESTAMP not null, some_data varchar(32), country varchar(2) ) ;' EXECUTE 'CREATE TRIGGER update_sales_data BEFORE INSERT OR DELETE ON salesdata_' || $myCompany || '_' || $myContract || ' FOR EACH ROW EXECUTE update_sales_data( ' || $myCompany || ',' || $myContract || ', revenue);' ; END IF; END; $add_contract$ LANGUAGE plpgsql; CREATE TRIGGER add_contract AFTER INSERT ON sales_data FOR EACH ROW EXECUTE add_contract() ; Basically, every time I insert a new row into sales_data, I want to generate a new table where the name of the table will be defined as something like "salesdata_Company_Contract" So my first question is how can I pass the Company and Contract data to the trigger so it can be passed to the add_contract() stored procedure? From my stored procedure, you'll see that I also want to update the original sales_data table whenever new data is inserted into the salesdata_Company_Contract table. This trigger will do something like this: CREATE OR REPLACE FUNCTION update_sales_data() RETURNS trigger as $update_sales_data$ DECLARE myCompany character(50) NOT NULL, myContract character(50) NOT NULL, myRevenue integer NOT NULL BEGIN myCompany = TG_ARGV[0] ; myContract = TG_ARGV[1] ; myRevenue = TG_ARGV[2] ; IF (TG_OP = 'INSERT') THEN UPDATE sales_data SET top_revenue_sales = top_revenue_sales + 1, top_revenue_sum = top_revenue_sum + $myRevenue, updated = now() WHERE Company = $myCompany AND Contract = $myContract ; ELSIF (TG_OP = 'DELETE') THEN UPDATE sales_data SET top_revenue_sales = top_revenue_sales - 1, top_revenue_sum = top_revenue_sum - $myRevenue, updated = now() WHERE Company = $myCompany AND Contract = $myContract ; END IF; END; $update_sales_data$ LANGUAGE plpgsql; This will, of course, require that I pass several parameters around within these stored procedures and triggers, and I'm not sure (a) if this is even possible, or (b) practical, or (c) best practice and we should just put this logic into our other software instead of asking the database to do this work for us. To keep our table sizes down, as we'll have hundreds of thousands of transactions per day, we've decided to partition our data using the Company and Contract strings as part of the table names themselves so they're all very small in size; file IO for us is faster and we felt we'd get better performance. Thanks for any thoughts or direction. My thinking, now that I've written all of this out, is that maybe we need to write stored procedures where we pass our insert data as parameters, and call that from our other software, and have the stored procedure do the insert into "sales_data" then create the other table. Then, have a second stored procedure to insert new data into the salesdata_Company_Contract tables, where the table name is passed to the stored proc as a parameter, and again have that stored proc do the insert, then update the main sales_data table afterward. What approach would you take?

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • ASP.Net Web API in Visual Studio 2010

    - by sreejukg
    Recently for one of my project, it was necessary to create couple of services. In the past I was using WCF, since my Services are going to be utilized through HTTP, I was thinking of ASP.Net web API. So I decided to create a Web API project. Now the real issue is that ASP.Net Web API launched after Visual Studio 2010 and I had to use ASP.Net web API in VS 2010 itself. By default there is no template available for Web API in Visual Studio 2010. Microsoft has made available an update that installs ASP.Net MVC 4 with web API in Visual Studio 2010. You can find the update from the below url. http://www.microsoft.com/en-us/download/details.aspx?id=30683 Though the update denotes ASP.Net MVC 4, this also includes ASP.Net Web API. Download the installation media and start the installer. As usual for any update, you need to agree on terms and conditions. The installation starts straight away, once you clicked the Install button. If everything goes ok, you will see the success message. Now open Visual Studio 2010, you can see ASP.Net MVC 4 Project template is available for you. Now you can create ASP.Net Web API project using Visual Studio 2010. When you create a new ASP.Net MVC 4 project, you can choose the Web API template. Further reading http://www.asp.net/web-api/overview/getting-started-with-aspnet-web-api/tutorial-your-first-web-api http://www.asp.net/mvc/mvc4

    Read the article

  • How about a new platform for your next API&hellip; a CMS?

    - by Elton Stoneman
    Originally posted on: http://geekswithblogs.net/EltonStoneman/archive/2014/05/22/how-about-a-new-platform-for-your-next-apihellip-a.aspxSay what? I’m seeing a type of API emerge which serves static or long-lived resources, which are mostly read-only and have a controlled process to update the data that gets served. Think of something like an app configuration API, where you want a central location for changeable settings. You could use this server side to store database connection strings and keep all your instances in sync, or it could be used client side to push changes out to all users (and potentially driving A/B or MVT testing). That’s a good candidate for a RESTful API which makes proper use of HTTP expiration and validation caching to minimise traffic, but really you want a front end UI where you can edit the current config that the API returns and publish your changes. Sound like a Content Mangement System would be a good fit? I’ve been looking at that and it’s a great fit for this scenario. You get a lot of what you need out of the box, the amount of custom code you need to write is minimal, and you get a whole lot of extra stuff from using CMS which is very useful, but probably not something you’d build if you had to put together a quick UI over your API content (like a publish workflow, fine-grained security and an audit trail). You typically use a CMS for HTML resources, but it’s simple to expose JSON instead – or to do content negotiation to support both, so you can open a resource in a browser and see a nice visual representation, or request it with: Accept=application/json and get the same content rendered as JSON for the app to use. Enter Umbraco Umbraco is an open source .NET CMS that’s been around for a while. It has very good adoption, a lively community and a good release cycle. It’s easy to use, has all the functionality you need for a CMS-driven API, and it’s scalable (although you won’t necessarily put much scale on the CMS layer). In the rest of this post, I’ll build out a simple app config API using Umbraco. We’ll define the structure of the configuration resource by creating a new Document Type and setting custom properties; then we’ll build a very simple Razor template to return configuration documents as JSON; then create a resource and see how it looks. And we’ll look at how you could build this into a wider solution. If you want to try this for yourself, it’s ultra easy – there’s an Umbraco image in the Azure Website gallery, so all you need to to is create a new Website, select Umbraco from the image and complete the installation. It will create a SQL Azure website to store all the content, as well as a Website instance for editing and accessing content. They’re standard Azure resources, so you can scale them as you need. The default install creates a starter site for some HTML content, which you can use to learn your way around (or just delete). 1. Create Configuration Document Type In Umbraco you manage content by creating and modifying documents, and every document has a known type, defining what properties it holds. We’ll create a new Document Type to describe some basic config settings. In the Settings section from the left navigation (spanner icon), expand Document Types and Master, hit the ellipsis and select to create a new Document Type: This will base your new type off the Master type, which gives you some existing properties that we’ll use – like the Page Title which will be the resource URL. In the Generic Properties tab for the new Document Type, you set the properties you’ll be able to edit and return for the resource: Here I’ve added a text string where I’ll set a default cache lifespan, an image which I can use for a banner display, and a date which could show the user when the next release is due. This is the sort of thing that sits nicely in an app config API. It’s likely to change during the life of the product, but not very often, so it’s good to have a centralised place where you can make and publish changes easily and safely. It also enables A/B and MVT testing, as you can change the response each client gets based on your set logic, and their apps will behave differently without needing a release. 2. Define the response template Now we’ve defined the structure of the resource (as a document), in Umbraco we can define a C# Razor template to say how that resource gets rendered to the client. If you only want to provide JSON, it’s easy to render the content of the document by building each property in the response (Umbraco uses dynamic objects so you can specify document properties as object properties), or you can support content negotiation with very little effort. Here’s a template to render the document as HTML or JSON depending on the Accept header, using JSON.NET for the API rendering: @inherits Umbraco.Web.Mvc.UmbracoTemplatePage @using Newtonsoft.Json @{ Layout = null; } @if(UmbracoContext.HttpContext.Request.Headers["accept"] != null &amp;&amp; UmbracoContext.HttpContext.Request.Headers["accept"] == "application/json") { Response.ContentType = "application/json"; @Html.Raw(JsonConvert.SerializeObject(new { cacheLifespan = CurrentPage.cacheLifespan, bannerImageUrl = CurrentPage.bannerImage, nextReleaseDate = CurrentPage.nextReleaseDate })) } else { <h1>App configuration</h1> <p>Cache lifespan: <b>@CurrentPage.cacheLifespan</b></p> <p>Banner Image: </p> <img src="@CurrentPage.bannerImage"> <p>Next Release Date: <b>@CurrentPage.nextReleaseDate</b></p> } That’s a rough-and ready example of what you can do. You could make it completely generic and just render all the document’s properties as JSON, but having a specific template for each resource gives you control over what gets sent out. And the templates are evaluated at run-time, so if you need to change the output – or extend it, say to add caching response headers – you just edit the template and save, and the next client request gets rendered from the new template. No code to build and ship. 3. Create the content With your document type created, in  the Content pane you can create a new instance of that document, where Umbraco gives you a nice UI to input values for the properties we set up on the Document Type: Here I’ve set the cache lifespan to an xs:duration value, uploaded an image for the banner and specified a release date. Each property gets the appropriate input control – text box, file upload and date picker. At the top of the page is the name of the resource – myapp in this example. That specifies the URL for the resource, so if I had a DNS entry pointing to my Umbraco instance, I could access the config with a URL like http://static.x.y.z.com/config/myapp. The setup is all done now, so when we publish this resource it’ll be available to access.  4. Access the resource Now if you open  that URL in the browser, you’ll see the HTML version rendered: - complete with the  image and formatted date. Umbraco lets you save changes and preview them before publishing, so the HTML view could be a good way of showing editors their changes in a usable view, before they confirm them. If you browse the same URL from a REST client, specifying the Accept=application/json request header, you get this response:   That’s the exact same resource, with a managed UI to publish it, being accessed as HTML or JSON with a tiny amount of effort. 5. The wider landscape If you have fairy stable content to expose as an API, I think  this approach is really worth considering. Umbraco scales very nicely, but in a typical solution you probably wouldn’t need it to. When you have additional requirements, like logging API access requests - but doing it out-of-band so clients aren’t impacted, you can put a very thin API layer on top of Umbraco, and cache the CMS responses in your API layer:   Here the API does a passthrough to CMS, so the CMS still controls the content, but it caches the response. If the response is cached for 1 minute, then Umbraco only needs to handle 1 request per minute (multiplied by the number of API instances), so if you need to support 1000s of request per second, you’re scaling a thin, simple API layer rather than having to scale the more complex CMS infrastructure (including the database). This diagram also shows an approach to logging, by asynchronously publishing a message to a queue (Redis in this case), which can be picked up later and persisted by a different process. Does it work? Beautifully. Using Azure, I spiked the solution above (including the Redis logging framework which I’ll blog about later) in half a day. That included setting up different roles in Umbraco to demonstrate a managed workflow for publishing changes, and a couple of document types representing different resources. Is it maintainable? We have three moving parts, which are all managed resources in Azure –  an Azure Website for Umbraco which may need a couple of instances for HA (or may not, depending on how long the content can be cached), a message queue (Redis is in preview in Azure, but you can easily use Service Bus Queues if performance is less of a concern), and the Web Role for the API. Two of the components are off-the-shelf, from open source projects, and the only custom code is the API which is very simple. Does it scale? Pretty nicely. With a single Umbraco instance running as an Azure Website, and with 4x instances for my API layer (Standard sized Web Roles), I got just under 4,000 requests per second served reliably, with a Worker Role in the background saving the access logs. So we had a nice UI to publish app config changes, with a friendly Web preview and a publishing workflow, capable of supporting 14 million requests in an hour, with less than a day’s effort. Worth considering if you’re publishing long-lived resources through your API.

    Read the article

  • How to design database for tests in online test application

    - by Kien Thanh
    I'm building an online test application, the purpose of app is, it can allow teacher create courses, topics of course, and questions (every question has mark), and they can create tests for students and students can do tests online. To create tests of any courses for students, first teacher need to create a test pattern for that course, test pattern actually is a general test includes the number of questions teacher want it has, then from that test pattern, teacher will generate number of tests corresponding with number of students will take tests of that course, and every test for student will has different number of questions, although the max mark of test in every test are the same. Example if teacher generate tests for two students, the max mark of test will be 20, like this: Student A take test with 20 questions, student B take test only has 10 questions, it means maybe every question in test of student A only has mark is 1, but questions in student B has mark is 2. So 20 = 10 x 2, sorry for my bad English but I don't know how to explain it better. I have designed tables for: - User (include students and teachers account) - Course - Topic - Question - Answer But I don't know how to define associations between user and test pattern, test, question. Currently I only can think these: Test pattern table: name, description, dateStart, dateFinish, numberOfMinutes, maxMarkOfTest Test table: test_pattern_id And when user (is Student) take tests, I think i will have one more table: Result: user_id, test_id, mark but I can't set up associations among test pattern and test and question. How to define associations?

    Read the article

  • ASP.NET MVC 2 RTM Unit Tests not compiling

    - by nmarun
    I found something weird this time when it came to ASP.NET MVC 2 release. A very handful of people ‘made noise’ about the release.. at least on the asp.net blog site, usually there’s a big ‘WOOHAA… <something> is released’, kind of a thing. Hmm… but here’s the reason I’m writing this post. I’m not sure how many of you read the release notes before downloading the version.. I did, I did, I did. Now there’s a ‘Known issues’ section in the document and I’m quoting the text as is from this section: Unit test project does not contain reference to ASP.NET MVC 2 project: If the Solution Explorer window is hidden in Visual Studio, when you create a new ASP.NET MVC 2 Web application project and you select the option Yes, create a unit test project in the Create Unit Test Project dialog box, the unit test project is created but does not have a reference to the associated ASP.NET MVC 2 project. When you build the solution, Visual Studio will display compilation errors and the unit tests will not run. There are two workarounds. The first workaround is to make sure that the Solution Explorer is displayed when you create a new ASP.NET MVC 2 Web application project. If you prefer to keep Solution Explorer hidden, the second workaround is to manually add a project reference from the unit test project to the ASP.NET MVC 2 project. This definitely looks like a bug to me and see below for a visual: At the top right corner you’ll see that the Solution Explorer is set to auto hide and there’s no reference for the TestMvc2 project and that is the reason we get compilation errors without even writing a single line of code. So thanks to <VeryBigFont>ME</VeryBigFont> and <VerySmallFont>Microsoft</VerySmallFont>) , we’ve shown the world how to resolve a major issue and to live in Peace with the rest of humanity!

    Read the article

< Previous Page | 238 239 240 241 242 243 244 245 246 247 248 249  | Next Page >