Search Results

Search found 36081 results on 1444 pages for 'object expected'.

Page 246/1444 | < Previous Page | 242 243 244 245 246 247 248 249 250 251 252 253  | Next Page >

  • Python4Delphi: Returning a python object in a function. (DelphiWrapper)

    - by Gabriel Fonseca
    I am using python4delphi. ow can I return an object from a wrapped Delphi class function? Code Snippet: I have a simple Delphi Class that i wrapped to Python Script, right? TSimple = Class Private function getvar1:string; Public Published property var1:string read getVar1; function getObj:TSimple; end; ... function TSimple.getVar1:string; begin result:='hello'; end; function TSimple.getObj:TSimple; begin result:=self; end; I made the TPySimple like the demo32 to give class access to the python code. My python module name is test. TPyDado = class(TPyDelphiPersistent) // Constructors & Destructors constructor Create( APythonType : TPythonType ); override; constructor CreateWith( PythonType : TPythonType; args : PPyObject ); override; // Basic services function Repr : PPyObject; override; class function DelphiObjectClass : TClass; override; end; ... { TPyDado } constructor TPyDado.Create(APythonType: TPythonType); begin inherited; // we need to set DelphiObject property DelphiObject := TDado.Create; with TDado(DelphiObject) do begin end; Owned := True; // We own the objects we create end; constructor TPyDado.CreateWith(PythonType: TPythonType; args: PPyObject); begin inherited; with GetPythonEngine, DelphiObject as TDado do begin if PyArg_ParseTuple( args, ':CreateDado' ) = 0 then Exit; end; end; class function TPyDado.DelphiObjectClass: TClass; begin Result := TDado; end; function TPyDado.Repr: PPyObject; begin with GetPythonEngine, DelphiObject as TDado do Result := VariantAsPyObject(Format('',[])); // or Result := PyString_FromString( PAnsiChar(Format('(%d, %d)',[x, y])) ); end; And now the python code: import test a = test.Simple() # try access the property var1 and everything is right print a.var1 # work's, but.. b = a.getObj(); # raise a exception that not find any attributes named getObj. # if the function returns a string for example, it's work.

    Read the article

  • Good object/DB set-up for CMS-esque app for managing content and user permissions?

    - by sah302
    Hi all, so I am writing a big CMS-esque app to allow users to manage web content through web applications, I've got a pretty good db-driven user permission system going, but am having trouble coming up with a good way to handle content groups and pages, I've got a couple options and not sure which one to take. Furthermore, I am not sure how to handle static page updates that have no 'widgets' in them. My current set-up for permissions is this: Objects: User, UserGroup, UserUserGroup, UserGroupType Standard many to many relationship User -> UserUserGroup <- UserGroup each Usergroup has a UserGroupType, which could be anything from Title, Department, to PermissionGroup. PermissionGroup manages the permissions. Right now on a per page basis I check permissions based on their PermissionsGroups. So for a page which has CMS features for a news widget, I check for permission groups of "Site Admin" and "News Admin". Now the issue I am coming to is, the site has many different departments involved. No problem I think, I can just have a EntityContentGroup so any widget app can be used for any departments. So my HR department, each of their news items would be in the EntityContentGroup with the news item ID, and content group of "HR" or "HR News". But maybe this isn't the most efficient way to go about it? I don't want to put the content group simply as a NewsItemType because some news items could apply to multiple areas, so I want to be able to assign them to as many areas as I want. Likewise, all of my widget apps have this, so that's why I decided to choose EntityContentGroup and not just NewsItemContentGroup. I was also thinking well instead of doing a contentGroup do a Page object that says which page some entity should be on. It seems almost like the same thing, but would I want to use Page for something else? I was thinking Page would be used for static pages with no widgets, a simple Rich Text Editor can edit the content of that page and I save that item to a page?? And then instead of doing a page level check for UserGroup permissions, would it be better to associate a usergroup to a contentgroup, and then just depending on what contentGroup content on the page is displayed, determine the permissions through that relationship? Is that better? I am not sure at this point. I guess I am just getting a tad overwhelmed at this is the largest app in scope and size that I have ever written. What is the best approach for this based on my current user permission set-up?

    Read the article

  • Is there any way to add a MouseListener to a Graphic object ?

    - by Fahad
    Hi, Is there any way to add a MouseListener to a Graphic object. I have this simple GUI that draw an oval. What I want is handling the event when the user clicks on the oval import java.awt.*; import java.awt.event.MouseEvent; import java.awt.event.MouseListener; import javax.swing.*; public class Gui2 extends JFrame { JFrame frame = new JFrame(); MyDrawPanel drawpanel = new MyDrawPanel(); public static void main(String[] args) { Gui2 gui = new Gui2(); gui.go(); } public void go() { frame.getContentPane().add(drawpanel); // frame.addMouseListener(this); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.setSize(300, 300); frame.setVisible(true); } } class MyDrawPanel extends JComponent implements MouseListener { public void paintComponent(Graphics g) { int red = (int) (Math.random() * 255); int green = (int) (Math.random() * 255); int blue = (int) (Math.random() * 255); Color startrandomColor = new Color(red, green, blue); red = (int) (Math.random() * 255); green = (int) (Math.random() * 255); blue = (int) (Math.random() * 255); Color endrandomColor = new Color(red, green, blue); Graphics2D g2d = (Graphics2D) g; this.addMouseListener(this); GradientPaint gradient = new GradientPaint(70, 70, startrandomColor, 150, 150, endrandomColor); g2d.setPaint(gradient); g2d.fillOval(70, 70, 100, 100); } @Override public void mouseClicked(MouseEvent e) { if ((e.getButton() == 1) && (e.getX() >= 70 && e.getX() <= 170 && e.getY() >= 70 && e .getY() <= 170)) { this.repaint(); // JOptionPane.showMessageDialog(null,e.getX()+ "\n" + e.getY()); } } @Override public void mouseEntered(MouseEvent e) { // TODO Auto-generated method stub } @Override public void mouseExited(MouseEvent e) { // TODO Auto-generated method stub } @Override public void mousePressed(MouseEvent e) { // TODO Auto-generated method stub } @Override public void mouseReleased(MouseEvent e) { // TODO Auto-generated method stub } } This Works Except it fires when the click is within a virtual box around the oval. Could anyone help me to have it fire when the click is EXACTLY on the oval. Thanks in advance.

    Read the article

  • WPF DataGrid, Help with Binding to a List<X> where each X has a Dictionary<Y,object> property.

    - by panamack
    I'm building an application which helps someone manage an event and works with data originating from Excel. I want to use the WPF Toolkit DataGrid to display the incoming data but can't guarantee how many Columns there are going to be or what information they will contain. I'd like to have an Info class that stores column information and have each Visitor at my Event own a Dictionary that uses shared references to Info objects for the keys. Here's the general gist: public class Info{ public string Name{get;set;} public int InfoType{get;set;} } public class Visitor{ public Dictionary<Info,object> VisitorInfo {get;set;} } public class Event{ public List<Visitor> Visitors{get;set;} public Event(){ Info i1 = new Info(){ Name = "ID", InfoType = 0};// type 0 for an id Info i2 = new Info(){ Name = "Name", InfoType = 1};// type 1 for a string Info i3 = new Info(){ Name = "City", InfoType = 1}; Visitor v1 = new Visitor(); v1.VisitorInfo.Add(i1, 0); v1.VisitorInfo.Add(i2, "Foo Harris"); v1.VisitorInfo.Add(i3, "Barsville"); Visitor v2 = new Visitor(); ... this.Visitors.Add(v1); this.Visitors.Add(v2); ... } } XAML: <!-- Window1.xaml --> ... <local:Event x:Key="MyEvent"/> ... <wpftk:DataGrid DataContext="{StaticResource MyEvent}" ItemsSource="{Binding Path=Visitors}" /> Disappointingly, DataGrid just sees a collection of Visitors each having a VisitorInfo property and displays one column called VisitorInfo with the string "(Collection)" once for each Visitor. As a workaround I've created a ListTVisitorToDataTableConverter that maps Infos to DataColumns and Visitors to DataRows and used it like this: <wpftk:DataGrid DataContext="{StaticResource Event}" ItemsSource{Binding Path=Visitors, Converter={StaticResource MySmellyListTVisitorToDataTableConverter}}" /> I don't think this is good though, I haven't started trying to convert back yet which I guess I'll need to do if I want to be able to edit any data! How can I do better? Thanks.

    Read the article

  • Why does std::map operator[] create an object if the key doesn't exist?

    - by n1ck
    Hi, I'm pretty sure I already saw this question somewhere (comp.lang.c++? Google doesn't seem to find it there either) but a quick search here doesn't seem to find it so here it is: Why does the std::map operator[] create an object if the key doesn't exist? I don't know but for me this seems counter-intuitive if you compare to most other operator[] (like std::vector) where if you use it you must be sure that the index exists. I'm wondering what's the rationale for implementing this behavior in std::map. Like I said wouldn't it be more intuitive to act more like an index in a vector and crash (well undefined behavior I guess) when accessed with an invalid key? Refining my question after seeing the answers: Ok so far I got a lot of answers saying basically it's cheap so why not or things similar. I totally agree with that but why not use a dedicated function for that (I think one of the comment said that in java there is no operator[] and the function is called put)? My point is why doesn't map operator[] work like a vector? If I use operator[] on an out of range index on a vector I wouldn't like it to insert an element even if it was cheap because that probably mean an error in my code. My point is why isn't it the same thing with map. I mean, for me, using operator[] on a map would mean: i know this key already exist (for whatever reason, i just inserted it, I have redundancy somewhere, whatever). I think it would be more intuitive that way. That said what are the advantage of doing the current behavior with operator[] (and only for that, I agree that a function with the current behavior should be there, just not operator[])? Maybe it give clearer code that way? I don't know. Another answer was that it already existed that way so why not keep it but then, probably when they (the ones before stl) choose to implement it that way they found it provided an advantage or something? So my question is basically: why choose to implement it that way, meaning a somewhat lack of consistency with other operator[]. What benefit do it give? Thanks

    Read the article

  • How do I write object classes effectively when dealing with table joins?

    - by Chris
    I should start by saying I'm not now, nor do I have any delusions I'll ever be a professional programmer so most of my skills have been learned from experience very much as a hobby. I learned PHP as it seemed a good simple introduction in certain areas and it allowed me to design simple web applications. When I learned about objects, classes etc the tutor's basic examnples covered the idea that as a rule of thumb each database table should have its own class. While that worked well for the photo gallery project we wrote, as it had very simple mysql queries, it's not working so well now my projects are getting more complex. If I require data from two separate tables which require a table join I've instead been ignoring the class altogether and handling it on a case by case basis, OR, even worse been combining some of the data into the class and the rest as a separate entity and doing two queries, which to me seems inefficient. As an example, when viewing content on a forum I wrote, if you view a thread, I retrieve data from the threads table, the posts table and the user table. The queries from the user and posts table are retrieved via a join and not instantiated as an object, whereas the thread data is called using my Threads class. So how do I get from my current state of affairs to something a little less 'stupid', for want of a better word. Right now I have a DB class that deals with connection and escaping values etc, a parent db query class that deals with the common queries and methods, and all of the other classes (Thread, Upload, Session, Photo and ones thats aren't used Post, User etc ) are children of that. Do I make a big posts class that has the relevant extra attributes that I retrieve from the users (and potentially threads) table? Do I have separate classes that populate each of their relevant attributes with a single query? If so how do I do that? Because of the way my classes are written, based on what I was taught, my db update row method, or insert method both just take the attributes as an array and update all of that, if I have extra attributes from other db tables in each class then how do I rewrite those methods as obbiously updating automatically like that would result in errors? In short I think my understanding is limited right now and I'd like some pointers when it comes to the fundamentals of how to write more complex classes.

    Read the article

  • Two collections and a for loop. (Urgent help needed) Checking an object variable against an inputted

    - by Elliott
    Hi there, I'm relatively new to java, I'm certain the error is trivial. But can't for the life of me spot it. I have an end of term exam on monday and currently trying to get to grips with past papers! Anyway heregoes, in another method (ALGO_1) I search over elements of and check the value H_NAME equals a value entered in the main. When I attempt to run the code I get a null pointer exception, also upon trying to print (with System.out.println etc) the H_NAME value after each for loop in the snippet I also get a null statement returned to me. I am fairly certain that the collection is simply not storing the data gathered up by the Scanner. But then again when I check the collection size with size() it is about the right size. Either way I'm pretty lost and would appreciate the help. Main questions I guess to ask are: from the readBackground method is the data.add in the wrong place? is the snippet simply structured wrongly? oh and another point when I use System.out.println to check the Background object values name, starttime, increment etc they print out fine. Thanks in advance.(PS im guessing the formatting is terrible, apologies.) snippet of code: for(Hydro hd: hydros){ System.out.println(hd.H_NAME); for(Background back : backgs){ System.out.println(back.H_NAME); if(back.H_NAME.equals(hydroName)){ //get error here public static Collection<Background> readBackground(String url) throws IOException { URL u = new URL(url); InputStream is = u.openStream(); InputStreamReader isr = new InputStreamReader(is); BufferedReader b = new BufferedReader(isr); String line =""; Vector<Background> data = new Vector<Background>(); while((line = b.readLine())!= null){ Scanner s = new Scanner(line); String name = s.next(); double starttime = Double.parseDouble(s.next()); double increment = Double.parseDouble(s.next()); double sum = 0; double p = 0; double nterms = 0; while((s.hasNextDouble())){ p = Double.parseDouble(s.next()); nterms++; sum += p; } double pbmean = sum/nterms; Background SAMP = new Background(name, starttime, increment, pbmean); data.add(SAMP); } return data; } Edit/Delete Message

    Read the article

  • Error #1009 Cannot access a property or method of a null object reference.

    - by user288920
    Hey everyone, I'm trying to import an external SWF with a scrollbar, calling out to an external .AS, into my main SWF. Someone told me, it's an issue that my scrollbar isn't instantiated yet, but stopped short of helping me how to fix the problem. Here's the error below: TypeError: Error #1009: Cannot access a property or method of a null object reference. at Scrollbar/init() at Sample2_fla::MainTimeline/scInit() at flash.display::DisplayObjectContainer/addChild() at Sample2_fla::MainTimeline/frame1() On my main SWF, I was to click a button and load my external SWF. I want to then click another button in the external SWF and reveal my scrollbar (alpha=1;). The scrollbar is the issue. Here's my script: Sample1.swf (main) this.addEventListener(MouseEvent.CLICK, clickListener); var oldSection=null; function clickListener(evt:Event) { if (evt.target.name=="button_btn") { loadSection("Sample2.swf"); } } function loadSection(filePath:String) { var url:URLRequest=new URLRequest(filePath); var ldr:Loader = new Loader(); ldr.contentLoaderInfo.addEventListener(Event.COMPLETE, sectionLoadedListener); ldr.load(url); } function sectionLoadedListener(evt:Event) { var section=evt.target.content; if (oldSection) { removeChild(oldSection); } oldSection=section; addChild(section); section.x=0; section.y=0; } Sample2.SWF (external): import com.greensock.*; import com.greensock.easing.*; import com.greensock.plugins.*; scroll_mc.alpha=0; import Scrollbar; var sc:Scrollbar=new Scrollbar(scroll_mc.text,scroll_mc.maskmc,scroll_mc.scrollbar.ruler,scroll_mc.scrollbar.background,scroll_mc.area,true,6); sc.addEventListener(Event.ADDED, scInit); addChild(sc); function scInit(e:Event):void { sc.init(); } button2_btn.addEventListener(MouseEvent.CLICK, clickListener); function clickListener(evt:MouseEvent){ TweenMax.to(this.scroll_mc, 1,{alpha:1}); } I really appreciate your help. Cheers!

    Read the article

  • How do you make the scale animation begin at the middle of the object instead of the top left?

    - by Roy
    What I am trying to accomplish: 10 percent increase scale transformation of a rectangle via Silverlight storyboard animation. What I currently doing: While in Expression Blend 3, I created a rectangle, created a storyboard, and created the scale transformation. The preview looked correct because the increase in scale begins in the middle of the object. When I run the project the scale transformation begins at the top left. Is there some piece of code missing? Here is my current code: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="TestingGroundsWebsite.MainPage" Width="640" Height="480"> <UserControl.Resources> <Storyboard x:Name="RectangleAppear"> <DoubleAnimationUsingKeyFrames BeginTime="00:00:00" Storyboard.TargetName="rectangle" Storyboard.TargetProperty="(UIElement.RenderTransform).(TransformGroup.Children)[0].(ScaleTransform.ScaleX)"> <EasingDoubleKeyFrame KeyTime="00:00:00" Value="0.1"/> <EasingDoubleKeyFrame KeyTime="00:00:01" Value="1.1"/> <EasingDoubleKeyFrame KeyTime="00:00:02" Value="1"/> </DoubleAnimationUsingKeyFrames> <DoubleAnimationUsingKeyFrames BeginTime="00:00:00" Storyboard.TargetName="rectangle" Storyboard.TargetProperty="(UIElement.RenderTransform).(TransformGroup.Children)[0].(ScaleTransform.ScaleY)"> <EasingDoubleKeyFrame KeyTime="00:00:00" Value="0.1"/> <EasingDoubleKeyFrame KeyTime="00:00:01" Value="1.1"/> <EasingDoubleKeyFrame KeyTime="00:00:02" Value="1"/> </DoubleAnimationUsingKeyFrames> </Storyboard> </UserControl.Resources> <Canvas x:Name="LayoutRoot" Background="White"> <Rectangle x:Name="rectangle" Fill="#FFE80000" Stroke="Black" Height="75" Width="76" Canvas.Left="227" Canvas.Top="167" RenderTransformOrigin="0.5,0.5"> <Rectangle.RenderTransform> <TransformGroup> <ScaleTransform/> <SkewTransform/> <RotateTransform/> <TranslateTransform/> </TransformGroup> </Rectangle.RenderTransform> </Rectangle> </Canvas> </UserControl> Thanks

    Read the article

  • When an active_record is saved, is it saved before or after its associated object(s)?

    - by SeeBees
    In rails, when saving an active_record object, its associated objects will be saved as well. But has_one and has_many association have different order in saving objects. I have three simplified models: class Team < ActiveRecord::Base has_many :players has_one :coach end class Player < ActiveRecord::Base belongs_to :team validates_presence_of :team_id end class Coach < ActiveRecord::Base belongs_to :team validates_presence_of :team_id end I use the following code to test these models: t = Team.new team.coach = Coach.new team.save! team.save! returns true. But in another test: t = Team.new team.players << Player.new team.save! team.save! gives the following error: > ActiveRecord::RecordInvalid: > Validation failed: Players is invalid I figured out that when team.save! is called, it first calls player.save!. player needs to validate the presence of the id of the associated team. But at the time player.save! is called, team hasn't been saved yet, and therefore, team_id doesn't yet exist for player. This fails the player's validation, so the error occurs. But on the other hand, team is saved before coach.save!, otherwise the first example will get the same error as the second one. So I've concluded that when a has_many bs, a.save! will save bs prior to a. When a has_one b, a.save! will save a prior to b. If I am right, why is this the case? It doesn't seem logical to me. Why do has_one and has_many association have different order in saving? Any ideas? And is there any way I can change the order? Say I want to have the same saving order for both has_one and has_many. Thanks.

    Read the article

  • Dynamic Types and DynamicObject References in C#

    - by Rick Strahl
    I've been working a bit with C# custom dynamic types for several customers recently and I've seen some confusion in understanding how dynamic types are referenced. This discussion specifically centers around types that implement IDynamicMetaObjectProvider or subclass from DynamicObject as opposed to arbitrary type casts of standard .NET types. IDynamicMetaObjectProvider types  are treated special when they are cast to the dynamic type. Assume for a second that I've created my own implementation of a custom dynamic type called DynamicFoo which is about as simple of a dynamic class that I can think of:public class DynamicFoo : DynamicObject { Dictionary<string, object> properties = new Dictionary<string, object>(); public string Bar { get; set; } public DateTime Entered { get; set; } public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; if (!properties.ContainsKey(binder.Name)) return false; result = properties[binder.Name]; return true; } public override bool TrySetMember(SetMemberBinder binder, object value) { properties[binder.Name] = value; return true; } } This class has an internal dictionary member and I'm exposing this dictionary member through a dynamic by implementing DynamicObject. This implementation exposes the properties dictionary so the dictionary keys can be referenced like properties (foo.NewProperty = "Cool!"). I override TryGetMember() and TrySetMember() which are fired at runtime every time you access a 'property' on a dynamic instance of this DynamicFoo type. Strong Typing and Dynamic Casting I now can instantiate and use DynamicFoo in a couple of different ways: Strong TypingDynamicFoo fooExplicit = new DynamicFoo(); var fooVar = new DynamicFoo(); These two commands are essentially identical and use strong typing. The compiler generates identical code for both of them. The var statement is merely a compiler directive to infer the type of fooVar at compile time and so the type of fooExplicit is DynamicFoo, just like fooExplicit. This is very static - nothing dynamic about it - and it completely ignores the IDynamicMetaObjectProvider implementation of my class above as it's never used. Using either of these I can access the native properties:DynamicFoo fooExplicit = new DynamicFoo();// static typing assignmentsfooVar.Bar = "Barred!"; fooExplicit.Entered = DateTime.Now; // echo back static values Console.WriteLine(fooVar.Bar); Console.WriteLine(fooExplicit.Entered); but I have no access whatsoever to the properties dictionary. Basically this creates a strongly typed instance of the type with access only to the strongly typed interface. You get no dynamic behavior at all. The IDynamicMetaObjectProvider features don't kick in until you cast the type to dynamic. If I try to access a non-existing property on fooExplicit I get a compilation error that tells me that the property doesn't exist. Again, it's clearly and utterly non-dynamic. Dynamicdynamic fooDynamic = new DynamicFoo(); fooDynamic on the other hand is created as a dynamic type and it's a completely different beast. I can also create a dynamic by simply casting any type to dynamic like this:DynamicFoo fooExplicit = new DynamicFoo(); dynamic fooDynamic = fooExplicit; Note that dynamic typically doesn't require an explicit cast as the compiler automatically performs the cast so there's no need to use as dynamic. Dynamic functionality works at runtime and allows for the dynamic wrapper to look up and call members dynamically. A dynamic type will look for members to access or call in two places: Using the strongly typed members of the object Using theIDynamicMetaObjectProvider Interface methods to access members So rather than statically linking and calling a method or retrieving a property, the dynamic type looks up - at runtime  - where the value actually comes from. It's essentially late-binding which allows runtime determination what action to take when a member is accessed at runtime *if* the member you are accessing does not exist on the object. Class members are checked first before IDynamicMetaObjectProvider interface methods are kick in. All of the following works with the dynamic type:dynamic fooDynamic = new DynamicFoo(); // dynamic typing assignments fooDynamic.NewProperty = "Something new!"; fooDynamic.LastAccess = DateTime.Now; // dynamic assigning static properties fooDynamic.Bar = "dynamic barred"; fooDynamic.Entered = DateTime.Now; // echo back dynamic values Console.WriteLine(fooDynamic.NewProperty); Console.WriteLine(fooDynamic.LastAccess); Console.WriteLine(fooDynamic.Bar); Console.WriteLine(fooDynamic.Entered); The dynamic type can access the native class properties (Bar and Entered) and create and read new ones (NewProperty,LastAccess) all using a single type instance which is pretty cool. As you can see it's pretty easy to create an extensible type this way that can dynamically add members at runtime dynamically. The Alter Ego of IDynamicObject The key point here is that all three statements - explicit, var and dynamic - declare a new DynamicFoo(), but the dynamic declaration results in completely different behavior than the first two simply because the type has been cast to dynamic. Dynamic binding means that the type loses its typical strong typing, compile time features. You can see this easily in the Visual Studio code editor. As soon as you assign a value to a dynamic you lose Intellisense and you see which means there's no Intellisense and no compiler type checking on any members you apply to this instance. If you're new to the dynamic type it might seem really confusing that a single type can behave differently depending on how it is cast, but that's exactly what happens when you use a type that implements IDynamicMetaObjectProvider. Declare the type as its strong type name and you only get to access the native instance members of the type. Declare or cast it to dynamic and you get dynamic behavior which accesses native members plus it uses IDynamicMetaObjectProvider implementation to handle any missing member definitions by running custom code. You can easily cast objects back and forth between dynamic and the original type:dynamic fooDynamic = new DynamicFoo(); fooDynamic.NewProperty = "New Property Value"; DynamicFoo foo = fooDynamic; foo.Bar = "Barred"; Here the code starts out with a dynamic cast and a dynamic assignment. The code then casts back the value to the DynamicFoo. Notice that when casting from dynamic to DynamicFoo and back we typically do not have to specify the cast explicitly - the compiler can induce the type so I don't need to specify as dynamic or as DynamicFoo. Moral of the Story This easy interchange between dynamic and the underlying type is actually super useful, because it allows you to create extensible objects that can expose non-member data stores and expose them as an object interface. You can create an object that hosts a number of strongly typed properties and then cast the object to dynamic and add additional dynamic properties to the same type at runtime. You can easily switch back and forth between the strongly typed instance to access the well-known strongly typed properties and to dynamic for the dynamic properties added at runtime. Keep in mind that dynamic object access has quite a bit of overhead and is definitely slower than strongly typed binding, so if you're accessing the strongly typed parts of your objects you definitely want to use a strongly typed reference. Reserve dynamic for the dynamic members to optimize your code. The real beauty of dynamic is that with very little effort you can build expandable objects or objects that expose different data stores to an object interface. I'll have more on this in my next post when I create a customized and extensible Expando object based on DynamicObject.© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Customizing Flowcharts in Oracle Tutor

    - by [email protected]
    Today we're going to look at how you can customize the flowcharts within Oracle Tutor procedures, and how you can share those changes with other authors within your company. Here is an image of a flowchart within a Tutor procedure with the default size and color scheme. You may want to change the size of your flowcharts as your end-users might have larger screens or need larger fonts. To change the size and number of columns, navigate to Tutor Author Author Options Flowcharts. The default is to have 4 columns appear in each flowchart, but, if I change it to six, my end-users will see a denser flowchart. This might be too dense for my end-users, so I will change it to 5 columns, and I will also deselect the option to have separate task boxes. Now let's look at how to customize the colors. Within the Flowchart options dialog, there is a button labeled "Colors." This brings up a dialog box of every object on a Tutor flowchart, and I can modify the color of each object, as well as the text within the object. If I click on the background, the "page" object appears in the Item field, and now I can customize the color and the title text by selecting Select Fill Color and/or Select Text Color. A dialog box with color choices appears. If I select Define Custom Colors, I can make my selections even more precise. Each time I change the color of an object, it appears in the selection screen. When the flowchart customization is finished, I can save my changes by naming the scheme. Although the color scheme I have chosen is rather silly looking, perhaps I want others to give me their feedback and make changes as they wish. I can share the color scheme with them by copying the FCP.INI file in the Tutor\Author directory into the same directory on their systems. If the other users have color schemes that they do not want to lose, they can copy the relevant lines from the FCP.INI file into their file. If I flowchart my document with the new scheme, I can see how it looks within the document. Sometimes just one or two changes to the default scheme are enough to customize the flowchart to your company's color palette. I have seen customers who have only changed the Start object to green and the End object to red, and I've seen another customer who changed every object to some variant of black and orange. Experiment! And let us know how you have customized your flowcharts. Mary R. Keane Senior Development Director, Oracle Tutor

    Read the article

  • What are the advantages of the delegate pattern over the observer pattern?

    - by JoJo
    In the delegate pattern, only one object can directly listen to another object's events. In the observer pattern, any number of objects can listen to a particular object's events. When designing a class that needs to notify other object(s) of events, why would you ever use the delegate pattern over the observer pattern? I see the observer pattern as more flexible. You may only have one observer now, but a future design may require multiple observers.

    Read the article

  • Configuring the iPlanet as web tier for Oracle WebCenter Content (UCM)

    - by Adao Junior
    If you are looking for configure the iPlanet as Web server/proxy to use with the Oracle WebCenter Content, you probably won’t found an specific documentation for that or will found some old complex notes related to the old 10gR3. This post will help you out with few simple steps. That’s the diagram of the test scenario, considering that you will deploy in production in an cluster environment. First you need the software, for our scenario you will need: - Oracle iPlanet Web Server 7.0.15+ (Installed) - Oracle WebCenter Content 11gR1 PS5 (Installed) - Oracle WebLogic Web Server Plugins 11g (1.1) - Supported JDK (Using Oracle Java JDK 7u4 for the test) - Certified Client OS - Certified Server OS (Using Oracle Solaris 11 for the test) - Certified Database (Using Oracle Database 11.2.0.3 for the test) Then the configuration: - Download the latest plugin: http://www.oracle.com/technetwork/middleware/ias/downloads/wls-plugins-096117.html - Extract the WLSPlugin11g-iPlanet7.0 in some folder, like <iPlanet_Home>/plugins/wls11 - Include the plugin reference to the magnus.conf: If Unix (Solaris or Linux), include the line: Init fn="load-modules" shlib="/apps/oracle/WebServer7/plugins/wls11/lib/mod_wl.so" If Windows, Include the line:        Init fn="load-modules" shlib="D:\\oracle\\WebServer7\\plugins\\wls11\\lib\\mod_wl.dll" - Include the proxy reference to the obj.conf of each instance: <Object name="weblogic" ppath="*/cs/*"> Service fn="wl-proxy" WebLogicCluster="wcc-node1:16201,wcc-node2:16202, wcc-node3:16203" </Object>   <Object name="weblogic" ppath="*/_dav/*"> Service fn="wl-proxy" WebLogicCluster="wcc-node1:16201,wcc-node2:16202, wcc-node3:16203" </Object>   <Object name="weblogic" ppath="*/_ocsh/*"> Service fn="wl-proxy" WebLogicCluster="wcc-node1:16201,wcc-node2:16202, wcc-node3:16203" </Object>   <Object name="weblogic" ppath="*/adfAuthentication/*"> Service fn="wl-proxy" WebLogicCluster="wcc-node1:16201,wcc-node2:16202, wcc-node3:16203" </Object> If you are using an single node setup, change the Service fn=…. line to something like: Service fn="wl-proxy" WebLogicHost=<wcc-server> WebLogicPort=16200 With these configurations, your should have the WebCenter Content UI working with the iPlanet, test it. [http://<web-server>/cs/] With the UI working, the last step is to configure the WebDav: - Go to the iPlanet Admin Console (usually https://<web-server>:8989) - Go to Configurations >> [instance] >> Virtual Servers >> [Virtual Server] >> WebDAV: - Click New - Populate the URI with /cs/idcplg/webdav: - Select “Anyone (No Authentication)”, the wc Content will take care of the security: This will allow you to use the WebDav feature and the Desktop Integration Suite, including double-byte characters. Anothers iPlanet tunes could be done, I can cover in the next post related to the iPlanet. Cross-posted on the ContentrA.com Blog Related posts:  - Using a Web Proxy Server with WebCenter Family

    Read the article

  • how this code works and how to modify this code to get my desrire work? [closed]

    - by imon_bayazid
    I dont understand how these code works here : m_MouseHookManager.MouseDoubleClick+=HookManager_MouseDoubleClick; m_MouseHookManager.MouseDoubleClick -= HookManager_MouseDoubleClick; m_KeyboardHookManager.KeyPress +=HookManager_KeyPress; m_KeyboardHookManager.KeyPress -=HookManager_KeyPress; My full Code is here : using System; using System.Windows.Forms; using MouseKeyboardActivityMonitor.WinApi; namespace MouseKeyboardActivityMonitor.Demo { public partial class TestFormHookListeners : Form { private readonly KeyboardHookListener m_KeyboardHookManager; private readonly MouseHookListener m_MouseHookManager; public TestFormHookListeners() { InitializeComponent(); m_KeyboardHookManager = new KeyboardHookListener(new GlobalHooker()); // Hooks are not active after instantiation. You need to use either Enabled property or call Start()()()() method m_KeyboardHookManager.Enabled = true;//True - The Hook is presently installed, activated, and will fire events. m_MouseHookManager = new MouseHookListener(new GlobalHooker()); m_MouseHookManager.Enabled = true; } #region Check boxes to set or remove particular event handlers. private void checkBoxMouseDoubleClick_CheckedChanged(object sender, EventArgs e) { if (checkBoxMouseDoubleClick.Checked) { m_MouseHookManager.MouseDoubleClick += HookManager_MouseDoubleClick; } else { m_MouseHookManager.MouseDoubleClick -= HookManager_MouseDoubleClick; } } private void checkBoxKeyPress_CheckedChanged(object sender, EventArgs e) { if (checkBoxKeyPress.Checked) { m_KeyboardHookManager.KeyPress +=HookManager_KeyPress; } else { m_KeyboardHookManager.KeyPress -=HookManager_KeyPress; } } #endregion #region Event handlers of particular events. They will be activated when an appropriate checkbox is checked. private void HookManager_KeyPress(object sender, KeyPressEventArgs e) { Log(string.Format("KeyPress \t\t {0}\n", e.KeyChar)); } private void HookManager_MouseDoubleClick(object sender, MouseEventArgs e) { Log(string.Format("MouseDoubleClick \t\t {0}\n", e.Button)); } private void Log(string text) { textBoxLog.AppendText(text); textBoxLog.ScrollToCaret(); } #endregion private void checkBoxEnabled_CheckedChanged(object sender, EventArgs e) { m_MouseHookManager.Enabled = checkBoxEnabled.Checked; m_KeyboardHookManager.Enabled = checkBoxEnabled.Checked; } private void radioHooksType_CheckedChanged(object sender, EventArgs e) { Hooker hook; if (radioApplication.Checked) { hook = new AppHooker();//Provides methods for subscription and unsubscription to application mouse and keyboard hooks. } else { hook = new GlobalHooker();//Provides methods for subscription and unsubscription to global mouse and keyboard hooks. } m_KeyboardHookManager.Replace(hook); m_MouseHookManager.Replace(hook);//hook->An AppHooker or GlobalHooker object. //Enables you to switch from application hooks to global hooks //and vice versa on the fly without unsubscribing from events. //Component remains enabled or disabled state after this call as it was before. //Declaration Syntax } private void HookManager_Supress(object sender, MouseEventExtArgs e) { if (e.Button != MouseButtons.Right) { return; } Log("Suppressed.\n"); e.Handled = true; } } } Can anybody help to understand that??? I want by this that whenever a F5 key-pressed my application will be active and then it checks if double-click happen it gives a message .... **How can i modify that.....??????**

    Read the article

  • When working with gems in Rails, what does 'cannot remove Object::ClassMethods' stem from?

    - by Matt
    Frequently I have run into a problem when installing gems that provides a problem like: Does anyone know what this stems from? I've seen in it several different cases, yet still haven't learned what exactly is causing it. $ sudo rake gems:install --trace (in /u/app/releases/20100213003957) ** Invoke gems:install (first_time) ** Invoke gems:base (first_time) ** Execute gems:base ** Invoke environment (first_time) ** Execute environment rake aborted! cannot remove Object::ClassMethods /u/app/releases/20100213003957/vendor/rails/activesupport/lib/active_support/dependencies.rb:603:in `remove_const' /u/app/releases/20100213003957/vendor/rails/activesupport/lib/active_support/dependencies.rb:603:in `remove_constant' /u/app/releases/20100213003957/vendor/rails/activesupport/lib/active_support/dependencies.rb:603:in `instance_eval' /u/app/releases/20100213003957/vendor/rails/activesupport/lib/active_support/dependencies.rb:603:in `remove_constant' /u/app/releases/20100213003957/vendor/rails/activesupport/lib/active_support/dependencies.rb:549:in `new_constants_in' /u/app/releases/20100213003957/vendor/rails/activesupport/lib/active_support/dependencies.rb:549:in `each' /u/app/releases/20100213003957/vendor/rails/activesupport/lib/active_support/dependencies.rb:549:in `new_constants_in' /u/app/releases/20100213003957/vendor/rails/activesupport/lib/active_support/dependencies.rb:156:in `require' /u/app/releases/20100213003957/vendor/rails/railties/lib/tasks/misc.rake:4 /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:617:in `call' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:617:in `execute' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:612:in `each' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:612:in `execute' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:578:in `invoke_with_call_chain' /usr/lib64/ruby/1.8/monitor.rb:242:in `synchronize' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:571:in `invoke_with_call_chain' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:564:in `invoke' /u/app/releases/20100213003957/vendor/rails/railties/lib/tasks/gems.rake:17 /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:617:in `call' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:617:in `execute' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:612:in `each' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:612:in `execute' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:578:in `invoke_with_call_chain' /usr/lib64/ruby/1.8/monitor.rb:242:in `synchronize' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:571:in `invoke_with_call_chain' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:588:in `invoke_prerequisites' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:585:in `each' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:585:in `invoke_prerequisites' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:577:in `invoke_with_call_chain' /usr/lib64/ruby/1.8/monitor.rb:242:in `synchronize' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:571:in `invoke_with_call_chain' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:564:in `invoke' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:2027:in `invoke_task' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:2005:in `top_level' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:2005:in `each' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:2005:in `top_level' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:2044:in `standard_exception_handling' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:1999:in `top_level' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:1977:in `run' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:2044:in `standard_exception_handling' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/lib/rake.rb:1974:in `run' /usr/lib64/ruby/gems/1.8/gems/rake-0.8.4/bin/rake:31 /usr/bin/rake:19:in `load' /usr/bin/rake:19

    Read the article

  • Why might a System.String object not cache its hash code?

    - by Dan Tao
    A glance at the source code for string.GetHashCode using Reflector reveals the following (for mscorlib.dll version 4.0): public override unsafe int GetHashCode() { fixed (char* str = ((char*) this)) { char* chPtr = str; int num = 0x15051505; int num2 = num; int* numPtr = (int*) chPtr; for (int i = this.Length; i > 0; i -= 4) { num = (((num << 5) + num) + (num >> 0x1b)) ^ numPtr[0]; if (i <= 2) { break; } num2 = (((num2 << 5) + num2) + (num2 >> 0x1b)) ^ numPtr[1]; numPtr += 2; } return (num + (num2 * 0x5d588b65)); } } Now, I realize that the implementation of GetHashCode is not specified and is implementation-dependent, so the question "is GetHashCode implemented in the form of X or Y?" is not really answerable. I'm just curious about a few things: If Reflector has disassembled the DLL correctly and this is the implementation of GetHashCode (in my environment), am I correct in interpreting this code to indicate that a string object, based on this particular implementation, would not cache its hash code? Assuming the answer is yes, why would this be? It seems to me that the memory cost would be minimal (one more 32-bit integer, a drop in the pond compared to the size of the string itself) whereas the savings would be significant, especially in cases where, e.g., strings are used as keys in a hashtable-based collection like a Dictionary<string, [...]>. And since the string class is immutable, it isn't like the value returned by GetHashCode will ever even change. What could I be missing? UPDATE: In response to Andras Zoltan's closing remark: There's also the point made in Tim's answer(+1 there). If he's right, and I think he is, then there's no guarantee that a string is actually immutable after construction, therefore to cache the result would be wrong. Whoa, whoa there! This is an interesting point to make (and yes it's very true), but I really doubt that this was taken into consideration in the implementation of GetHashCode. The statement "therefore to cache the result would be wrong" implies to me that the framework's attitude regarding strings is "Well, they're supposed to be immutable, but really if developers want to get sneaky they're mutable so we'll treat them as such." This is definitely not how the framework views strings. It fully relies on their immutability in so many ways (interning of string literals, assignment of all zero-length strings to string.Empty, etc.) that, basically, if you mutate a string, you're writing code whose behavior is entirely undefined and unpredictable. I guess my point is that for the author(s) of this implementation to worry, "What if this string instance is modified between calls, even though the class as it is publicly exposed is immutable?" would be like for someone planning a casual outdoor BBQ to think to him-/herself, "What if someone brings an atomic bomb to the party?" Look, if someone brings an atom bomb, party's over.

    Read the article

  • convert remote object result to array collection in flex...........

    - by user364199
    HI guys, im using zend_amf and flex. My problem is i have to populate my advance datagrid using array collection. this array collection have a children. example: [Bindable] private var dpHierarchy:ArrayCollection = new ArrayCollection([ {trucks:"Truck", children: [ {trucks:"AMC841", total_trip:1, start_time:'3:46:40 AM'}, {trucks:"AMC841", total_trip:1, start_time:'3:46:40 AM'}]) ]}; but the datasource of my datagrid should come from a database, how can i convert the result from remote object to array collection that has the same format like in my example, or any other way. here is my advance datagrid <mx:AdvancedDataGrid id="datagrid" width="500" height="200" lockedColumnCount="1" lockedRowCount="0" horizontalScrollPolicy="on" includeIn="loggedIn" x="67" y="131"> <mx:dataProvider> <mx:HierarchicalData id="dpHierarchytest" source="{dp}"/> </mx:dataProvider> <mx:groupedColumns> <mx:AdvancedDataGridColumn dataField="trucks" headerText="Trucks"/> <mx:AdvancedDataGridColumn dataField="total_trip" headerText="Total Trip"/> <mx:AdvancedDataGridColumnGroup headerText="PRECOOLING"> <mx:AdvancedDataGridColumnGroup headerText="Before Loading"> <mx:AdvancedDataGridColumn dataField="start_time" headerText="Start Time"/> <mx:AdvancedDataGridColumn dataField="end_time" headerText="End Time"/> <mx:AdvancedDataGridColumn dataField="precooling_time" headerText="Precooling Time"/> <mx:AdvancedDataGridColumn dataField="precooling_temp" headerText="Precooling Temp"/> </mx:AdvancedDataGridColumnGroup> <mx:AdvancedDataGridColumnGroup headerText="Before Dispatch"> <mx:AdvancedDataGridColumn dataField="bd_start_time" headerText="Start Time"/> <mx:AdvancedDataGridColumn dataField="bd_end_time" headerText="End Time"/> <mx:AdvancedDataGridColumn dataField="bd_precooling_time" headerText="Precooling Time"/> <mx:AdvancedDataGridColumn dataField="bd_precooling_temp" headerText="Precooling Temp"/> </mx:AdvancedDataGridColumnGroup> <mx:AdvancedDataGridColumn dataField="remarks" headerText="Remarks"/> </mx:AdvancedDataGridColumnGroup> <mx:AdvancedDataGridColumnGroup headerText="Temperature Compliance"> <mx:AdvancedDataGridColumn dataField="total_hit" headerText="Total Hit"/> <mx:AdvancedDataGridColumn dataField="total_miss" headerText="Total Miss"/> <mx:AdvancedDataGridColumn dataField="cold_chain_compliance" headerText="Cold Chain Compliance"/> <mx:AdvancedDataGridColumn dataField="average_temp" headerText="Average Temp"/> </mx:AdvancedDataGridColumnGroup> <mx:AdvancedDataGridColumnGroup headerText="Productivity"> <mx:AdvancedDataGridColumn dataField="total_drop_points" headerText="Total Drop Points"/> <mx:AdvancedDataGridColumn dataField="total_delivery_time" headerText="Total Delivery Time"/> <mx:AdvancedDataGridColumn dataField="total_distance" headerText="Total Distance"/> </mx:AdvancedDataGridColumnGroup> <mx:AdvancedDataGridColumnGroup headerText="Trip Exceptions"> <mx:AdvancedDataGridColumn dataField="total_doc" headerText="Total DOC"/> <mx:AdvancedDataGridColumn dataField="total_eng" headerText="Total ENG"/> <mx:AdvancedDataGridColumn dataField="total_fenv" headerText="Total FENV"/> <mx:AdvancedDataGridColumn dataField="average_speed" headerText="Average Speed"/> </mx:AdvancedDataGridColumnGroup> </mx:groupedColumns> </mx:AdvancedDataGrid> Thanks, and i really need some help.

    Read the article

  • WPF unity Activation error occured while trying to get instance of type

    - by Traci
    I am getting the following error when trying to Initialise the Module using Unity and Prism. The DLL is found by return new DirectoryModuleCatalog() { ModulePath = @".\Modules" }; The dll is found and the Name is Found #region Constructors public AdminModule( IUnityContainer container, IScreenFactoryRegistry screenFactoryRegistry, IEventAggregator eventAggregator, IBusyService busyService ) : base(container, screenFactoryRegistry) { this.EventAggregator = eventAggregator; this.BusyService = busyService; } #endregion #region Properties protected IEventAggregator EventAggregator { get; set; } protected IBusyService BusyService { get; set; } #endregion public override void Initialize() { base.Initialize(); } #region Register Screen Factories protected override void RegisterScreenFactories() { this.ScreenFactoryRegistry.Register(ScreenKeyType.ApplicationAdmin, typeof(AdminScreenFactory)); } #endregion #region Register Views and Various Services protected override void RegisterViewsAndServices() { //View Models this.Container.RegisterType<IAdminViewModel, AdminViewModel>(); } #endregion the code that produces the error is: namespace Microsoft.Practices.Composite.Modularity protected virtual IModule CreateModule(string typeName) { Type moduleType = Type.GetType(typeName); if (moduleType == null) { throw new ModuleInitializeException(string.Format(CultureInfo.CurrentCulture, Properties.Resources.FailedToGetType, typeName)); } return (IModule)this.serviceLocator.GetInstance(moduleType); <-- Error Here } Can Anyone Help Me Error Log Below: General Information Additional Info: ExceptionManager.MachineName: xxxxx ExceptionManager.TimeStamp: 22/02/2010 10:16:55 AM ExceptionManager.FullName: Microsoft.ApplicationBlocks.ExceptionManagement, Version=1.0.3591.32238, Culture=neutral, PublicKeyToken=null ExceptionManager.AppDomainName: Infinity.vshost.exe ExceptionManager.ThreadIdentity: ExceptionManager.WindowsIdentity: xxxxx 1) Exception Information Exception Type: Microsoft.Practices.Composite.Modularity.ModuleInitializeException ModuleName: AdminModule Message: An exception occurred while initializing module 'AdminModule'. - The exception message was: Activation error occured while trying to get instance of type AdminModule, key "" Check the InnerException property of the exception for more information. If the exception occurred while creating an object in a DI container, you can exception.GetRootException() to help locate the root cause of the problem. Data: System.Collections.ListDictionaryInternal TargetSite: Void HandleModuleInitializationError(Microsoft.Practices.Composite.Modularity.ModuleInfo, System.String, System.Exception) HelpLink: NULL Source: Microsoft.Practices.Composite StackTrace Information at Microsoft.Practices.Composite.Modularity.ModuleInitializer.HandleModuleInitializationError(ModuleInfo moduleInfo, String assemblyName, Exception exception) at Microsoft.Practices.Composite.Modularity.ModuleInitializer.Initialize(ModuleInfo moduleInfo) at Microsoft.Practices.Composite.Modularity.ModuleManager.InitializeModule(ModuleInfo moduleInfo) at Microsoft.Practices.Composite.Modularity.ModuleManager.LoadModulesThatAreReadyForLoad() at Microsoft.Practices.Composite.Modularity.ModuleManager.OnModuleTypeLoaded(ModuleInfo typeLoadedModuleInfo, Exception error) at Microsoft.Practices.Composite.Modularity.FileModuleTypeLoader.BeginLoadModuleType(ModuleInfo moduleInfo, ModuleTypeLoadedCallback callback) at Microsoft.Practices.Composite.Modularity.ModuleManager.BeginRetrievingModule(ModuleInfo moduleInfo) at Microsoft.Practices.Composite.Modularity.ModuleManager.LoadModuleTypes(IEnumerable`1 moduleInfos) at Microsoft.Practices.Composite.Modularity.ModuleManager.LoadModulesWhenAvailable() at Microsoft.Practices.Composite.Modularity.ModuleManager.Run() at Microsoft.Practices.Composite.UnityExtensions.UnityBootstrapper.InitializeModules() at Infinity.Bootstrapper.InitializeModules() in D:\Projects\dotNet\Infinity\source\Inifinty\Infinity\Application Modules\BootStrapper.cs:line 75 at Microsoft.Practices.Composite.UnityExtensions.UnityBootstrapper.Run(Boolean runWithDefaultConfiguration) at Microsoft.Practices.Composite.UnityExtensions.UnityBootstrapper.Run() at Infinity.App.Application_Startup(Object sender, StartupEventArgs e) in D:\Projects\dotNet\Infinity\source\Inifinty\Infinity\App.xaml.cs:line 37 at System.Windows.Application.OnStartup(StartupEventArgs e) at System.Windows.Application.<.ctorb__0(Object unused) at System.Windows.Threading.ExceptionWrapper.InternalRealCall(Delegate callback, Object args, Boolean isSingleParameter) at System.Windows.Threading.ExceptionWrapper.TryCatchWhen(Object source, Delegate callback, Object args, Boolean isSingleParameter, Delegate catchHandler) 2) Exception Information Exception Type: Microsoft.Practices.ServiceLocation.ActivationException Message: Activation error occured while trying to get instance of type AdminModule, key "" Data: System.Collections.ListDictionaryInternal TargetSite: System.Object GetInstance(System.Type, System.String) HelpLink: NULL Source: Microsoft.Practices.ServiceLocation StackTrace Information at Microsoft.Practices.ServiceLocation.ServiceLocatorImplBase.GetInstance(Type serviceType, String key) at Microsoft.Practices.ServiceLocation.ServiceLocatorImplBase.GetInstance(Type serviceType) at Microsoft.Practices.Composite.Modularity.ModuleInitializer.CreateModule(String typeName) at Microsoft.Practices.Composite.Modularity.ModuleInitializer.Initialize(ModuleInfo moduleInfo) 3) Exception Information Exception Type: Microsoft.Practices.Unity.ResolutionFailedException TypeRequested: AdminModule NameRequested: NULL Message: Resolution of the dependency failed, type = "Infinity.Modules.Admin.AdminModule", name = "". Exception message is: The current build operation (build key Build Key[Infinity.Modules.Admin.AdminModule, null]) failed: The parameter screenFactoryRegistry could not be resolved when attempting to call constructor Infinity.Modules.Admin.AdminModule(Microsoft.Practices.Unity.IUnityContainer container, PhoenixIT.IScreenFactoryRegistry screenFactoryRegistry, Microsoft.Practices.Composite.Events.IEventAggregator eventAggregator, PhoenixIT.IBusyService busyService). (Strategy type BuildPlanStrategy, index 3) Data: System.Collections.ListDictionaryInternal TargetSite: System.Object DoBuildUp(System.Type, System.Object, System.String) HelpLink: NULL Source: Microsoft.Practices.Unity StackTrace Information at Microsoft.Practices.Unity.UnityContainer.DoBuildUp(Type t, Object existing, String name) at Microsoft.Practices.Unity.UnityContainer.DoBuildUp(Type t, String name) at Microsoft.Practices.Unity.UnityContainer.Resolve(Type t, String name) at Microsoft.Practices.Composite.UnityExtensions.UnityServiceLocatorAdapter.DoGetInstance(Type serviceType, String key) at Microsoft.Practices.ServiceLocation.ServiceLocatorImplBase.GetInstance(Type serviceType, String key) 4) Exception Information Exception Type: Microsoft.Practices.ObjectBuilder2.BuildFailedException ExecutingStrategyTypeName: BuildPlanStrategy ExecutingStrategyIndex: 3 BuildKey: Build Key[Infinity.Modules.Admin.AdminModule, null] Message: The current build operation (build key Build Key[Infinity.Modules.Admin.AdminModule, null]) failed: The parameter screenFactoryRegistry could not be resolved when attempting to call constructor Infinity.Modules.Admin.AdminModule(Microsoft.Practices.Unity.IUnityContainer container, PhoenixIT.IScreenFactoryRegistry screenFactoryRegistry, Microsoft.Practices.Composite.Events.IEventAggregator eventAggregator, PhoenixIT.IBusyService busyService). (Strategy type BuildPlanStrategy, index 3) Data: System.Collections.ListDictionaryInternal TargetSite: System.Object ExecuteBuildUp(Microsoft.Practices.ObjectBuilder2.IBuilderContext) HelpLink: NULL Source: Microsoft.Practices.ObjectBuilder2 StackTrace Information at Microsoft.Practices.ObjectBuilder2.StrategyChain.ExecuteBuildUp(IBuilderContext context) at Microsoft.Practices.ObjectBuilder2.Builder.BuildUp(IReadWriteLocator locator, ILifetimeContainer lifetime, IPolicyList policies, IStrategyChain strategies, Object buildKey, Object existing) at Microsoft.Practices.Unity.UnityContainer.DoBuildUp(Type t, Object existing, String name) 5) Exception Information Exception Type: System.InvalidOperationException Message: The parameter screenFactoryRegistry could not be resolved when attempting to call constructor Infinity.Modules.Admin.AdminModule(Microsoft.Practices.Unity.IUnityContainer container, PhoenixIT.IScreenFactoryRegistry screenFactoryRegistry, Microsoft.Practices.Composite.Events.IEventAggregator eventAggregator, PhoenixIT.IBusyService busyService). Data: System.Collections.ListDictionaryInternal TargetSite: Void ThrowForResolutionFailed(System.Exception, System.String, System.String, Microsoft.Practices.ObjectBuilder2.IBuilderContext) HelpLink: NULL Source: Microsoft.Practices.ObjectBuilder2 StackTrace Information at Microsoft.Practices.ObjectBuilder2.DynamicMethodConstructorStrategy.ThrowForResolutionFailed(Exception inner, String parameterName, String constructorSignature, IBuilderContext context) at BuildUp_Infinity.Modules.Admin.AdminModule(IBuilderContext ) at Microsoft.Practices.ObjectBuilder2.DynamicMethodBuildPlan.BuildUp(IBuilderContext context) at Microsoft.Practices.ObjectBuilder2.BuildPlanStrategy.PreBuildUp(IBuilderContext context) at Microsoft.Practices.ObjectBuilder2.StrategyChain.ExecuteBuildUp(IBuilderContext context) 6) Exception Information Exception Type: Microsoft.Practices.ObjectBuilder2.BuildFailedException ExecutingStrategyTypeName: BuildPlanStrategy ExecutingStrategyIndex: 3 BuildKey: Build Key[PhoenixIT.IScreenFactoryRegistry, null] Message: The current build operation (build key Build Key[PhoenixIT.IScreenFactoryRegistry, null]) failed: The current type, PhoenixIT.IScreenFactoryRegistry, is an interface and cannot be constructed. Are you missing a type mapping? (Strategy type BuildPlanStrategy, index 3) Data: System.Collections.ListDictionaryInternal TargetSite: System.Object ExecuteBuildUp(Microsoft.Practices.ObjectBuilder2.IBuilderContext) HelpLink: NULL Source: Microsoft.Practices.ObjectBuilder2 StackTrace Information at Microsoft.Practices.ObjectBuilder2.StrategyChain.ExecuteBuildUp(IBuilderContext context) at Microsoft.Practices.Unity.ObjectBuilder.NamedTypeDependencyResolverPolicy.Resolve(IBuilderContext context) at BuildUp_Infinity.Modules.Admin.AdminModule(IBuilderContext ) 7) Exception Information Exception Type: System.InvalidOperationException Message: The current type, PhoenixIT.IScreenFactoryRegistry, is an interface and cannot be constructed. Are you missing a type mapping? Data: System.Collections.ListDictionaryInternal TargetSite: Void ThrowForAttemptingToConstructInterface(Microsoft.Practices.ObjectBuilder2.IBuilderContext) HelpLink: NULL Source: Microsoft.Practices.ObjectBuilder2 StackTrace Information at Microsoft.Practices.ObjectBuilder2.DynamicMethodConstructorStrategy.ThrowForAttemptingToConstructInterface(IBuilderContext context) at BuildUp_PhoenixIT.IScreenFactoryRegistry(IBuilderContext ) at Microsoft.Practices.ObjectBuilder2.DynamicMethodBuildPlan.BuildUp(IBuilderContext context) at Microsoft.Practices.ObjectBuilder2.BuildPlanStrategy.PreBuildUp(IBuilderContext context) at Microsoft.Practices.ObjectBuilder2.StrategyChain.ExecuteBuildUp(IBuilderContext context) For more information, see Help and Support Center at http://go.microsoft.com/fwlink/events.asp.

    Read the article

  • Entity Framework 4.0 and DDD patterns

    - by Voice
    Hi everybody I use EntityFramework as ORM and I have simple POCO Domain Model with two base classes that represent Value Object and Entity Object Patterns (Evans). These two patterns is all about equality of two objects, so I overrode Equals and GetHashCode methods. Here are these two classes: public abstract class EntityObject<T>{ protected T _ID = default(T); public T ID { get { return _ID; } protected set { _ID = value; } } public sealed override bool Equals(object obj) { EntityObject<T> compareTo = obj as EntityObject<T>; return (compareTo != null) && ((HasSameNonDefaultIdAs(compareTo) || (IsTransient && compareTo.IsTransient)) && HasSameBusinessSignatureAs(compareTo)); } public virtual void MakeTransient() { _ID = default(T); } public bool IsTransient { get { return _ID == null || _ID.Equals(default(T)); } } public override int GetHashCode() { if (default(T).Equals(_ID)) return 0; return _ID.GetHashCode(); } private bool HasSameBusinessSignatureAs(EntityObject<T> compareTo) { return ToString().Equals(compareTo.ToString()); } private bool HasSameNonDefaultIdAs(EntityObject<T> compareTo) { return (_ID != null && !_ID.Equals(default(T))) && (compareTo._ID != null && !compareTo._ID.Equals(default(T))) && _ID.Equals(compareTo._ID); } public override string ToString() { StringBuilder str = new StringBuilder(); str.Append(" Class: ").Append(GetType().FullName); if (!IsTransient) str.Append(" ID: " + _ID); return str.ToString(); } } public abstract class ValueObject<T, U> : IEquatable<T> where T : ValueObject<T, U> { private static List<PropertyInfo> Properties { get; set; } private static Func<ValueObject<T, U>, PropertyInfo, object[], object> _GetPropValue; static ValueObject() { Properties = new List<PropertyInfo>(); var propParam = Expression.Parameter(typeof(PropertyInfo), "propParam"); var target = Expression.Parameter(typeof(ValueObject<T, U>), "target"); var indexPar = Expression.Parameter(typeof(object[]), "indexPar"); var call = Expression.Call(propParam, typeof(PropertyInfo).GetMethod("GetValue", new[] { typeof(object), typeof(object[]) }), new[] { target, indexPar }); var lambda = Expression.Lambda<Func<ValueObject<T, U>, PropertyInfo, object[], object>>(call, target, propParam, indexPar); _GetPropValue = lambda.Compile(); } public U ID { get; protected set; } public override Boolean Equals(Object obj) { if (ReferenceEquals(null, obj)) return false; if (obj.GetType() != GetType()) return false; return Equals(obj as T); } public Boolean Equals(T other) { if (ReferenceEquals(null, other)) return false; if (ReferenceEquals(this, other)) return true; foreach (var property in Properties) { var oneValue = _GetPropValue(this, property, null); var otherValue = _GetPropValue(other, property, null); if (null == oneValue && null == otherValue) return false; if (false == oneValue.Equals(otherValue)) return false; } return true; } public override Int32 GetHashCode() { var hashCode = 36; foreach (var property in Properties) { var propertyValue = _GetPropValue(this, property, null); if (null == propertyValue) continue; hashCode = hashCode ^ propertyValue.GetHashCode(); } return hashCode; } public override String ToString() { var stringBuilder = new StringBuilder(); foreach (var property in Properties) { var propertyValue = _GetPropValue(this, property, null); if (null == propertyValue) continue; stringBuilder.Append(propertyValue.ToString()); } return stringBuilder.ToString(); } protected static void RegisterProperty(Expression<Func<T, Object>> expression) { MemberExpression memberExpression; if (ExpressionType.Convert == expression.Body.NodeType) { var body = (UnaryExpression)expression.Body; memberExpression = body.Operand as MemberExpression; } else memberExpression = expression.Body as MemberExpression; if (null == memberExpression) throw new InvalidOperationException("InvalidMemberExpression"); Properties.Add(memberExpression.Member as PropertyInfo); } } Everything was OK until I tried to delete some related objects (aggregate root object with two dependent objects which was marked for cascade deletion): I've got an exception "The relationship could not be changed because one or more of the foreign-key properties is non-nullable". I googled this and found http://blog.abodit.com/2010/05/the-relationship-could-not-be-changed-because-one-or-more-of-the-foreign-key-properties-is-non-nullable/ I changed GetHashCode to base.GetHashCode() and error disappeared. But now it breaks all my code: I can't override GetHashCode for my POCO objects = I can't override Equals = I can't implement Value Object and Entity Object patters for my POCO objects. So, I appreciate any solutions, workarounds here etc.

    Read the article

  • Object allocations in the cellForRowAtIndexPath method is increasing? Is dealloc not called in prese

    - by Madan Mohan
    Hi Guys, This is PresentModelViewController, when click a button i will get this "DoctorListViewController" controller from down. object allocation are not releasing in this controller specially in cellForRowAtIndexPath delegate method. UITableViewCell and two labels allocated in this is not releasing. In the previous view The allocation count of this " UITableViewCell and two labels" is increasing.Also the dealloc method in this view controller is not called when I dismiss the modelviewcontrller, that is way I have released in the close method. please suggest me a right solution Thank you. import "DoctorListViewController.h" @implementation DoctorListViewController @synthesize doctorList; - (id)init { if (self = [super init]) { self.title=@"Doctors List"; UIView *myView = [[UIView alloc] initWithFrame:[[UIScreen mainScreen] applicationFrame]]; myView.autoresizingMask=YES; [myView setBackgroundColor:[UIColor groupTableViewBackgroundColor]]; myTableView=nil; myTableView = [[UITableView alloc]initWithFrame:CGRectMake(0,0,320,420) style:UITableViewStylePlain]; myTableView.delegate = self; myTableView.dataSource=self; [myTableView setSectionFooterHeight:5]; [myTableView setSectionHeaderHeight:15]; [myTableView setSeparatorColor:[UIColor greenColor]]; [myView addSubview: myTableView]; UIBarButtonItem *addButton = [[UIBarButtonItem alloc]initWithTitle:@"Close" style:UIBarButtonItemStyleBordered target:self action:@selector(closeAction)]; self.navigationItem.leftBarButtonItem = addButton; [addButton release]; self.view = myView; [myView release]; } return self; } -(void)viewWillAppear:(BOOL)animated { DoctorsAppDelegate *appDelegate = (DoctorsAppDelegate *) [ [UIApplication sharedApplication] delegate]; [self setToPortrait:appDelegate.isPortrait]; } -(void)setToPortrait:(BOOL)isPortrait { if(isPortrait == YES) { printf("\n hai i am in setToPortrait method"); [self shouldAutorotateToInterfaceOrientation:UIInterfaceOrientationPortrait]; } } -(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation { DoctorsAppDelegate *appDelegate = (DoctorsAppDelegate *) [ [UIApplication sharedApplication] delegate]; if(interfaceOrientation == UIInterfaceOrientationLandscapeLeft || interfaceOrientation == UIInterfaceOrientationLandscapeRight ) { myTableView.frame=CGRectMake(0,0,480,265); appDelegate.isPortrait=NO; } else if(interfaceOrientation == UIInterfaceOrientationPortrait) { myTableView.frame=CGRectMake(0,0,320,415); appDelegate.isPortrait=YES; } return YES; } -(void)closeAction { printf("\n hai i am in close action*****************"); [doctorList release]; [myTableView release]; myTableView=nil; printf("\n myTableView retainCount :%d",[myTableView retainCount]); [[self navigationController] dismissModalViewControllerAnimated:YES]; } pragma mark methods for dataSource and delegate (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView { return 1; } (NSInteger)tableView:(UITableView )tableView numberOfRowsInSection:(NSInteger)section { / int numberOfRows = [doctorList count]; if(numberOfRows =[doctorList count]){ numberOfRows++; } return numberOfRows; */ return [doctorList count]; } (CGFloat)tableView:(UITableView *)tableView heightForRowAtIndexPath:(NSIndexPath *)indexPath { return 50; } (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { UITableViewCell *cell = (UITableViewCell *)[myTableView dequeueReusableCellWithIdentifier:@"MyIdentifier"]; if (cell == nil) { cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero reuseIdentifier:@"MyIdentifier"]autorelease]; UIView* elementView = [ [UIView alloc] initWithFrame:CGRectMake(5,5,300,480)]; elementView.tag = 0; [cell.contentView addSubview:elementView]; [elementView release]; } UIView* elementView = [cell.contentView viewWithTag:0]; for(UIView* subView in elementView.subviews) { [subView removeFromSuperview]; } if(indexPath.row != [doctorList count]) { cell.accessoryType=UITableViewCellAccessoryDisclosureIndicator; Doctor *obj= [doctorList objectAtIndex:indexPath.row]; UILabel *firstNameLabel =[[[UILabel alloc] initWithFrame:CGRectMake(5,2,300,15)]autorelease]; [firstNameLabel setFont:[UIFont boldSystemFontOfSize:12]]; firstNameLabel.textColor = [UIColor blackColor]; firstNameLabel.textColor =[UIColor blackColor]; firstNameLabel.numberOfLines = 0; firstNameLabel.tag=1; firstNameLabel.backgroundColor = [UIColor clearColor]; NSString *str=obj.firstName; str=[str stringByAppendingString:@" "]; str=[str stringByAppendingString:obj.lastName]; firstNameLabel.text=str; [elementView addSubview:firstNameLabel]; //[firstNameLabel release]; firstNameLabel=nil; UILabel *streetLabel =[[[UILabel alloc] initWithFrame:CGRectMake(5,20,300,15)]autorelease]; [streetLabel setFont:[UIFont systemFontOfSize:12]]; streetLabel.textColor = [UIColor blackColor]; streetLabel.numberOfLines = 0; streetLabel.tag=2; streetLabel.backgroundColor = [UIColor clearColor]; streetLabel.text=obj.streetAddress; [elementView addSubview:streetLabel]; //[streetLabel release]; streetLabel=nil; printf("\n retainCount count of firstNameLabel %d",[firstNameLabel retainCount]); printf("\n retainCount count of streetLabel %d",[streetLabel retainCount]); printf("\n retainCount count of cell %d",[cell retainCount]); } return cell; } (void )tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)indexPath { [myTableView deselectRowAtIndexPath:indexPath animated:YES]; DoctorDetailsViewController *doctorDetailsViewController=[[DoctorDetailsViewController alloc]init]; Doctor *obj= [doctorList objectAtIndex:indexPath.row]; BOOL isList=YES; doctorDetailsViewController.isList=isList; doctorDetailsViewController.doctorObj=obj; [[self navigationController] pushViewController:doctorDetailsViewController animated:YES]; [doctorDetailsViewController release]; } (void)didReceiveMemoryWarning { // Releases the view if it doesn't have a superview. [super didReceiveMemoryWarning]; // Release any cached data, images, etc that aren't in use. } (void)dealloc { printf("\n hai i am in dealloc of Doctor list view contrller"); //[doctorList release]; //[myTableView release]; [super dealloc]; } @end

    Read the article

  • Core Data: Fetch all entities in a to-many-relationship of a particular object?

    - by Björn Marschollek
    Hi there, in my iPhone application I am using simple Core Data Model with two entities (Item and Property): Item name properties Property name value item Item has one attribute (name) and one one-to-many-relationship (properties). Its inverse relationship is item. Property has two attributes the according inverse relationship. Now I want to show my data in table views on two levels. The first one lists all items; when one row is selected, a new UITableViewController is pushed onto my UINavigationController's stack. The new UITableView is supposed to show all properties (i.e. their names) of the selected item. To achieve this, I use a NSFetchedResultsController stored in an instance variable. On the first level, everything works fine when setting up the NSFetchedResultsController like this: -(NSFetchedResultsController *) fetchedResultsController { if (fetchedResultsController) return fetchedResultsController; // goal: tell the FRC to fetch all item objects. NSFetchRequest *fetch = [[NSFetchRequest alloc] init]; NSEntityDescription *entity = [NSEntityDescription entityForName:@"Item" inManagedObjectContext:self.moContext]; [fetch setEntity:entity]; NSSortDescriptor *sort = [[NSSortDescriptor alloc] initWithKey:@"name" ascending:YES]; [fetch setSortDescriptors:[NSArray arrayWithObject:sort]]; [fetch setFetchBatchSize:10]; NSFetchedResultsController *frController = [[NSFetchedResultsController alloc] initWithFetchRequest:fetch managedObjectContext:self.moContext sectionNameKeyPath:nil cacheName:@"cache"]; self.fetchedResultsController = frController; fetchedResultsController.delegate = self; [sort release]; [frController release]; [fetch release]; return fetchedResultsController; } However, on the second-level UITableView, I seem to do something wrong. I implemented the fetchedresultsController in a similar way: -(NSFetchedResultsController *) fetchedResultsController { if (fetchedResultsController) return fetchedResultsController; // goal: tell the FRC to fetch all property objects that belong to the previously selected item NSFetchRequest *fetch = [[NSFetchRequest alloc] init]; // fetch all Property entities. NSEntityDescription *entity = [NSEntityDescription entityForName:@"Property" inManagedObjectContext:self.moContext]; [fetch setEntity:entity]; // limit to those entities that belong to the particular item NSPredicate *predicate = [NSPredicate predicateWithFormat:[NSString stringWithFormat:@"item.name like '%@'",self.item.name]]; [fetch setPredicate:predicate]; // sort it. Boring. NSSortDescriptor *sort = [[NSSortDescriptor alloc] initWithKey:@"name" ascending:YES]; [fetch setSortDescriptors:[NSArray arrayWithObject:sort]]; NSError *error = nil; NSLog(@"%d entities found.",[self.moContext countForFetchRequest:fetch error:&error]); // logs "3 entities found."; I added those properties before. See below for my saving "problem". if (error) NSLog("%@",error); // no error, thus nothing logged. [fetch setFetchBatchSize:20]; NSFetchedResultsController *frController = [[NSFetchedResultsController alloc] initWithFetchRequest:fetch managedObjectContext:self.moContext sectionNameKeyPath:nil cacheName:@"cache"]; self.fetchedResultsController = frController; fetchedResultsController.delegate = self; [sort release]; [frController release]; [fetch release]; return fetchedResultsController; } Now it's getting weird. The above NSLog statement returns me the correct number of properties for the selected item. However, the UITableViewDelegate method tells me that there are no properties: -(NSInteger) tableView:(UITableView *)table numberOfRowsInSection:(NSInteger)section { id <NSFetchedResultsSectionInfo> sectionInfo = [[self.fetchedResultsController sections] objectAtIndex:section]; NSLog(@"Found %d properties for item \"%@\". Should have found %d.",[sectionInfo numberOfObjects], self.item.name, [self.item.properties count]); // logs "Found 0 properties for item "item". Should have found 3." return [sectionInfo numberOfObjects]; } The same implementation works fine on the first level. It's getting even weirder. I implemented some kind of UI to add properties. I create a new Property instance via Property *p = [NSEntityDescription insertNewObjectForEntityForName:@"Property" inManagedObjectContext:self.moContext];, set up the relationships and call [self.moContext save:&error]. This seems to work, as error is still nil and the object gets saved (I can see the number of properties when logging the Item instance, see above). However, the delegate methods are not fired. This seems to me due to the possibly messed up fetchRequest(Controller). Any ideas? Did I mess up the second fetch request? Is this the right way to fetch all entities in a to-many-relationship for a particular instance at all?

    Read the article

  • Mapping UrlEncoded POST Values in ASP.NET Web API

    - by Rick Strahl
    If there's one thing that's a bit unexpected in ASP.NET Web API, it's the limited support for mapping url encoded POST data values to simple parameters of ApiController methods. When I first looked at this I thought I was doing something wrong, because it seems mighty odd that you can bind query string values to parameters by name, but can't bind POST values to parameters in the same way. To demonstrate here's a simple example. If you have a Web API method like this:[HttpGet] public HttpResponseMessage Authenticate(string username, string password) { …} and then hit with a URL like this: http://localhost:88/samples/authenticate?Username=ricks&Password=sekrit it works just fine. The query string values are mapped to the username and password parameters of our API method. But if you now change the method to work with [HttpPost] instead like this:[HttpPost] public HttpResponseMessage Authenticate(string username, string password) { …} and hit it with a POST HTTP Request like this: POST http://localhost:88/samples/authenticate HTTP/1.1 Host: localhost:88 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Content-type: application/x-www-form-urlencoded Content-Length: 30 Username=ricks&Password=sekrit you'll find that while the request works, it doesn't actually receive the two string parameters. The username and password parameters are null and so the method is definitely going to fail. When I mentioned this over Twitter a few days ago I got a lot of responses back of why I'd want to do this in the first place - after all HTML Form submissions are the domain of MVC and not WebAPI which is a valid point. However, the more common use case is using POST Variables with AJAX calls. The following is quite common for passing simple values:$.post(url,{ Username: "Rick", Password: "sekrit" },function(result) {…}); but alas that doesn't work. How ASP.NET Web API handles Content Bodies Web API supports parsing content data in a variety of ways, but it does not deal with multiple posted content values. In effect you can only post a single content value to a Web API Action method. That one parameter can be very complex and you can bind it in a variety of ways, but ultimately you're tied to a single POST content value in your parameter definition. While it's possible to support multiple parameters on a POST/PUT operation, only one parameter can be mapped to the actual content - the rest have to be mapped to route values or the query string. Web API treats the whole request body as one big chunk of data that is sent to a Media Type Formatter that's responsible for de-serializing the content into whatever value the method requires. The restriction comes from async nature of Web API where the request data is read only once inside of the formatter that retrieves and deserializes it. Because it's read once, checking for content (like individual POST variables) first is not possible. However, Web API does provide a couple of ways to access the form POST data: Model Binding - object property mapping to bind POST values FormDataCollection - collection of POST keys/values ModelBinding POST Values - Binding POST data to Object Properties The recommended way to handle POST values in Web API is to use Model Binding, which maps individual urlencoded POST values to properties of a model object provided as the parameter. Model binding requires a single object as input to be bound to the POST data, with each POST key that matches a property name (including nested properties like Address.Street) being mapped and updated including automatic type conversion of simple types. This is a very nice feature - and a familiar one from MVC - that makes it very easy to have model objects mapped directly from inbound data. The obvious drawback with Model Binding is that you need a model for it to work: You have to provide a strongly typed object that can receive the data and this object has to map the inbound data. To rewrite the example above to use ModelBinding I have to create a class maps the properties that I need as parameters:public class LoginData { public string Username { get; set; } public string Password { get; set; } } and then accept the data like this in the API method:[HttpPost] public HttpResponseMessage Authenticate(LoginData login) { string username = login.Username; string password = login.Password; … } This works fine mapping the POST values to the properties of the login object. As a side benefit of this method definition, the method now also allows posting of JSON or XML to the same endpoint. If I change my request to send JSON like this: POST http://localhost:88/samples/authenticate HTTP/1.1 Host: localhost:88 Accept: application/jsonContent-type: application/json Content-Length: 40 {"Username":"ricks","Password":"sekrit"} it works as well and transparently, courtesy of the nice Content Negotiation features of Web API. There's nothing wrong with using Model binding and in fact it's a common practice to use (view) model object for inputs coming back from the client and mapping them into these models. But it can be  kind of a hassle if you have AJAX applications with a ton of backend hits, especially if many methods are very atomic and focused and don't effectively require a model or view. Not always do you have to pass structured data, but sometimes there are just a couple of simple response values that need to be sent back. If all you need is to pass a couple operational parameters, creating a view model object just for parameter purposes seems like overkill. Maybe you can use the query string instead (if that makes sense), but if you can't then you can often end up with a plethora of 'message objects' that serve no further  purpose than to make Model Binding work. Note that you can accept multiple parameters with ModelBinding so the following would still work:[HttpPost] public HttpResponseMessage Authenticate(LoginData login, string loginDomain) but only the object will be bound to POST data. As long as loginDomain comes from the querystring or route data this will work. Collecting POST values with FormDataCollection Another more dynamic approach to handle POST values is to collect POST data into a FormDataCollection. FormDataCollection is a very basic key/value collection (like FormCollection in MVC and Request.Form in ASP.NET in general) and then read the values out individually by querying each. [HttpPost] public HttpResponseMessage Authenticate(FormDataCollection form) { var username = form.Get("Username"); var password = form.Get("Password"); …} The downside to this approach is that it's not strongly typed, you have to handle type conversions on non-string parameters, and it gets a bit more complicated to test such as setup as you have to seed a FormDataCollection with data. On the other hand it's flexible and easy to use and especially with string parameters is easy to deal with. It's also dynamic, so if the client sends you a variety of combinations of values on which you make operating decisions, this is much easier to work with than a strongly typed object that would have to account for all possible values up front. The downside is that the code looks old school and isn't as self-documenting as a parameter list or object parameter would be. Nevertheless it's totally functionality and a viable choice for collecting POST values. What about [FromBody]? Web API also has a [FromBody] attribute that can be assigned to parameters. If you have multiple parameters on a Web API method signature you can use [FromBody] to specify which one will be parsed from the POST content. Unfortunately it's not terribly useful as it only returns content in raw format and requires a totally non-standard format ("=content") to specify your content. For more info in how FromBody works and several related issues to how POST data is mapped, you can check out Mike Stalls post: How WebAPI does Parameter Binding Not really sure where the Web API team thought [FromBody] would really be a good fit other than a down and dirty way to send a full string buffer. Extending Web API to make multiple POST Vars work? Don't think so Clearly there's no native support for multiple POST variables being mapped to parameters, which is a bit of a bummer. I know in my own work on one project my customer actually found this to be a real sticking point in their AJAX backend work, and we ended up not using Web API and using MVC JSON features instead. That's kind of sad because Web API is supposed to be the proper solution for AJAX backends. With all of ASP.NET Web API's extensibility you'd think there would be some way to build this functionality on our own, but after spending a bit of time digging and asking some of the experts from the team and Web API community I didn't hear anything that even suggests that this is possible. From what I could find I'd say it's not possible primarily because Web API's Routing engine does not account for the POST variable mapping. This means [HttpPost] methods with url encoded POST buffers are not mapped to the parameters of the endpoint, and so the routes would never even trigger a request that could be intercepted. Once the routing doesn't work there's not much that can be done. If somebody has an idea how this could be accomplished I would love to hear about it. Do we really need multi-value POST mapping? I think that that POST value mapping is a feature that one would expect of any API tool to have. If you look at common APIs out there like Flicker and Google Maps etc. they all work with POST data. POST data is very prominent much more so than JSON inputs and so supporting as many options that enable would seem to be crucial. All that aside, Web API does provide very nice features with Model Binding that allows you to capture many POST variables easily enough, and logistically this will let you build whatever you need with POST data of all shapes as long as you map objects. But having to have an object for every operation that receives a data input is going to take its toll in heavy AJAX applications, with a lot of types created that do nothing more than act as parameter containers. I also think that POST variable mapping is an expected behavior and Web APIs non-support will likely result in many, many questions like this one: How do I bind a simple POST value in ASP.NET WebAPI RC? with no clear answer to this question. I hope for V.next of WebAPI Microsoft will consider this a feature that's worth adding. Related Articles Passing multiple POST parameters to Web API Controller Methods Mike Stall's post: How Web API does Parameter Binding Where does ASP.NET Web API Fit?© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Passing javascript array of objects to WebService

    - by Yousef_Jadallah
    Hi folks. In the topic I will illustrate how to pass array of objects to WebService and how to deal with it in your WebService.   suppose we have this javascript code :  <script language="javascript" type="text/javascript"> var people = new Array(); function person(playerID, playerName, playerPPD) { this.PlayerID = playerID; this.PlayerName = playerName; this.PlayerPPD = parseFloat(playerPPD); } function saveSignup() { addSomeSampleInfo(); WebService.SaveSignups(people, SucceededCallback); } function SucceededCallback(result, eventArgs) { var RsltElem = document.getElementById("divStatusMessage"); RsltElem.innerHTML = result; } function OnError(error) { alert("Service Error: " + error.get_message()); } function addSomeSampleInfo() { people[people.length++] = new person(123, "Person 1 Name", 10); people[people.length++] = new person(234, "Person 2 Name", 20); people[people.length++] = new person(345, "Person 3 Name", 10.5); } </script> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } poeple :is the array that we want to send to the WebService. person :The function –constructor- that we are using to create object to our array. SucceededCallback : This is the callback function invoked if the Web service succeeded. OnError : this is the Error callback function so any errors that occur when the Web Service is called will trigger this function. saveSignup : This function used to call the WebSercie Method (SaveSignups), the first parameter that we pass to the WebService and the second is the name of the callback function.   Here is the body of the Page :<body> <form id="form1" runat="server"> <asp:ScriptManager ID="ScriptManager1" runat="server"> <Services> <asp:ServiceReference Path="WebService.asmx" /> </Services> </asp:ScriptManager> <input type="button" id="btn1" onclick="saveSignup()" value="Click" /> <div id="divStatusMessage"> </div> </form> </body> </html> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }     Then main thing is the ServiceReference and it’s path "WebService.asmx” , this is the Web Service that we are using in this example.     A web service will be used to receive the javascript array and handle it in our code :using System; using System.Web; using System.Web.Services; using System.Xml; using System.Web.Services.Protocols; using System.Web.Script.Services; using System.Data.SqlClient; using System.Collections.Generic; [WebService(Namespace = "http://tempuri.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] [ScriptService] public class WebService : System.Web.Services.WebService { [WebMethod] public string SaveSignups(object [] values) { string strOutput=""; string PlayerID="", PlayerName="", PlayerPPD=""; foreach (object value in values) { Dictionary<string, object> dicValues = new Dictionary<string, object>(); dicValues = (Dictionary<string, object>)value; PlayerID = dicValues["PlayerID"].ToString(); PlayerName = dicValues["PlayerName"].ToString(); PlayerPPD = dicValues["PlayerPPD"].ToString(); strOutput += "PlayerID = " + PlayerID + ", PlayerName=" + PlayerName + ",PlayerPPD= " + PlayerPPD +"<br>"; } return strOutput; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The first thing I implement System.Collections.Generic Namespace, we need it to use the Dictionary Class. you can find in this code that I pass the javascript objects to array of object called values, then we need to deal with every separate Object and implicit it to Dictionary<string, object> . The Dictionary Represents a collection of keys and values Dictionary<TKey, TValue> TKey : The type of the keys in the dictionary TValue : The type of the values in the dictionary. For more information about Dictionary check this link : http://msdn.microsoft.com/en-us/library/xfhwa508(VS.80).aspx   Now we can get the value for every element because we have mapping from a set of keys to a set of values, the keys of this example is :  PlayerID ,PlayerName,PlayerPPD, this created from the original object person.    Ultimately,this Web method return the values as string, but the main idea of this method to show you how to deal with array of object and convert it to  Dictionary<string, object> object , and get the values of this Dictionary.   Hope this helps,

    Read the article

< Previous Page | 242 243 244 245 246 247 248 249 250 251 252 253  | Next Page >