Search Results

Search found 23555 results on 943 pages for 'command timeout'.

Page 270/943 | < Previous Page | 266 267 268 269 270 271 272 273 274 275 276 277  | Next Page >

  • How to Run Apache Commands From Oracle HTTP Server 11g Home

    - by Daniel Mortimer
    Every now and then you come across a problem when there is nothing in the "troubleshooting manual" which can help you. Instead you need to think outside the box. This happened to me two or three years back. Oracle HTTP Server (OHS) 11g did not start. The error reported back by OPMN was generic and gave no clue, and worse the HTTP Server error log was empty, and remained so even after I had increased the OPMN and HTTP Server log levels. After checking configuration files, operating system resources, etc I was still no nearer the solution. And then the light bulb moment! OHS is based on Apache - what happens if I attempt to start HTTP Server using the native apache command. Trouble was the OHS 11g solution has its binaries and configuration files in separate "home" directories ORACLE_HOME contains the binaries ORACLE_INSTANCE contains the configuration files How to set the environment so that native apache commands run without error? Eventually, with help from a colleague, the knowledge articleHow to Start Oracle HTTP Server 11g Without Using opmnctl [ID 946532.1]was born! To be honest, I cannot remember the exact cause and solution to that OHS problem two or three years ago. But, I do remember that an attempt to start HTTP Server using the native apache command threw back an error to the console which led me to discover the culprit was some unusual filesystem fault.The other day, I was asked to review and publish a new knowledge article which described how to use the apache command to dump a list of static and shared loaded modules. This got me thinking that it was time [ID 946532.1] was given an update. The resultHow To Run Native Apache Commands in an Oracle HTTP Server 11g Environment [ID 946532.1] Highlights: Title change Improved environment setting scripts Interactive, should be no need to manually edit the scripts (although readers are welcome to do so) Automatically dump out some diagnostic information Inclusion of some links to other troubleshooting collateral To view the knowledge article you need a My Oracle Support login. For convenience, you can obtain the scripts via the links below.MS Windows:Wrapper cmd script - calls main cmd script [After download, remove the ".txt" file extension]Main cmd script - sets OHS 11g environment to run Apache commands [After download, remove the ".txt" file extension]Unix:Shell script - sets OHS 11g environment to run Apache commands on Unix Please note: I cannot guarantee that the scripts held in the blog repository will be maintained. Any enhancements or faults will applied to the scripts attached to the knowledge article. Lastly, to find out more about native apache commands, refer to the Apache Documentation apachectl - Apache HTTP Server Control Interface[http://httpd.apache.org/docs/2.2/programs/apachectl.html]httpd - Apache Hypertext Transfer Protocol Server[http://httpd.apache.org/docs/2.2/programs/httpd.html]

    Read the article

  • Weblogic domain scale up using EM Grid Control 11gR1

    - by dmitry.nefedkin(at)oracle.com
    As you know a weblogic domain consists of set of servers running independently or in a cluster mode, sharing the distributed resources. And in most environments weblogic  cluster consists of multiple managed servers running simultaneously and working together to provide increased scalability and reliability.  These servers can run on the same machine, or be located on different machines.  It's a common task to increase a cluster's capacity by adding new machines to the cluster to host the new server instances.  You can do it by manually installing weblogic binaries to the new host and use pack/unpack commands to add a managed server to this new host.  But with Enterprise Manager Grid Control 11gR1 (EMGC) there is  another way - Fusion Middleware Domain Scale Up  procedure. I'm going to show you how it works.Here is a picture of  my medrec_oradb weblogic domain, what is registered in EMGC. It contains an admin server and a cluster MedRecCluster with  the single managed server MS1. Both admin and managed servers are on the same host oel46-vmware, it's a virtual machine with OEL 4.6 that runs inside our Oracle VM infrastructure.  And here are the application deployments, note that couple of applications are deployed to the cluster.First of all I have to prepare a new machine that will host new managed sever of my cluster. I created new VM with OEL 5.4 using the corresponding Oracle VM template available in Oracle E-Delivery site for Oracle Linux and Oracle VM and named it wls1032. Next step is to install Oracle EM Grid Control 11gR1 Agent to this new host.  You can download it from the OTN page and install it manually,  or you can use Agent Installation Deployment procedure available in EMGC  (Deployments->Agent Installation->Install Agent). Anyway, when you agent is up and running on the new machine, you will see it in EMGC Console in the Targets->Hosts subtab.Now we are ready to scale up our weblogic domain. Click the Deployments tab in Oracle Enterprise Manager Grid Control, and then click Deployment Procedure. Select a Fusion Middleware Domain Scale Up procedure from the list, and click Schedule Deployment. The first page of the FMW Domain Scale Up Wizard is displayed and you can proceed with the deployment process.Select the domain from list, enter the working directory on the admin server host, and also fill the weblogic credentials for the administration server console and the OS credentials for the  admin server host.  Click Next button.  The next step allows you to configure you domain, to add a new manager server to the cluster you should select the cluster in the tree and click Add Server button. Select the newly added server in a tree, choose the target host and  enter the configuration details of your managed server. You can also add new machine and node manager details.  Please note that you cannot change the values in  Domain Location and Fusion Middleware Home fields, so these locations on the target host will be the same as for the admin server host.   Working directory on the target host should have enough free space to store FMW home binaries and domain configuration files.  In my experience the working directories should have at least 3 Gb of free space.  The last thing you should fill is the OS credentials for the target host. The next steps allows you to schedule the execution of the procedure, it is started immediately in my example. The last step is just a review the configuration for the domain scale up. Click Submit to launch the process. You can track the status of the procedure execution by selecting Deployments->Deployment Procedures->Procedure Completion Status in the EMGC Console.As you can see in the picture below, the procedure consists of the many steps, and I'm going to share my experience about the issues that I had at some of the steps. Please keep in mind that you can always continue the execution from the last successfully completed step by clicking Retry button.Check OUI Prerequisites  step may fail if the target host does  not pass prerequisites checks for Weblogic Server installation such as amount of RAM, linux packages installed, etc. Create FMW Clone Archive step may fail if you do not have enough free space in the working directory on the administration server host.Transfer cloning archive to targets  step  may fail if the EMGC agents on the admin server host or on target host are not secured.   You should secure the agent by issuing ./emctl secure agent  command from $AGENT_HOME/bin directory and entering the agent registration password.Both Transfer cloning archive to targets and Apply Clone at target hosts steps may fail if you do not have enough free space in the working directory on the target host. The most complicated issue I had on the Run Inventory Collection  step. The step failed and I noticed that the agent on the target server is also failed with the following error in the $AGENT_HOME/sysman/log/emagent.trc  log file:2010-12-28 11:50:34,310 Thread-2838952848 ERROR upload: Failed to upload file A0000008.xml: Fatal Error.Response received: 500|ORA-20603: The timezone of the multiagent target (/Farm_Localhost_MedRec_medrec_oradb/medrec_oradb,weblogic_domain)is not consistent with the timezone (America/Los_Angeles) reported by other agents.2010-12-28 11:50:34,310 Thread-2838952848 ERROR upload: 1 Failure(s) in a row or XML error for A0000008.xml, retcode = -6, we give up2010-12-28 11:50:35,552 Thread-2838952848 WARN  upload: FxferSend: received fatal error in header from repository: https://oel46-vmware:1159/em/uploadFATAL_ERROR::500|ORA-20603: The timezone of the multiagent target (/Farm_Localhost_MedRec_medrec_oradb/medrec_oradb,weblogic_domain)is not consistent with the timezone (America/Los_Angeles) reported by other agents.2010-12-28 11:50:35,552 Thread-2838952848 ERROR upload: number of fatal error exceeds the limit 32010-12-28 11:50:35,552 Thread-2838952848 ERROR upload: agent will shutdown now2010-12-28 11:50:35,552 Thread-2838952848 ERROR : Signalled to Exit with status 55. Too many fatal upload failures2010-12-28 11:50:35,552 Thread-2838952848 ERROR upload: 1 Failure(s) in a row or XML error for A0000008.xml, retcode = -6, we give up2010-12-28 11:50:35,552 Thread-3044607680 ERROR main: EMAgent abnormal terminatingI checked the timezone of my domain target inside EMGC repositoryselect timezone_regionfrom mgmt_targets where target_type = 'weblogic_domain'  and display_name = 'medrec_oradb'"TIMEZONE_REGION""America/Los_Angeles"Then checked the timezone of my agents and indeed, they differedselect target_name, timezone_region from mgmt_targets where type_display_name = 'Agent'"TARGET_NAME"    "TIMEZONE_REGION""oel46-vmware:3872"    "America/Los_Angeles""wls1032.imc.fors.ru:3872"    "America/New_York"So I had to change the timezone on the wls1032 host and propagate this changes to the agent and to the EMGC repository. Here was the steps:issued system-config-date command on wls1032.imc.fors.ru  and set timezone to "America/Los_Angeles"propagated the changes to the agent bu executing ./emctl resetTZ agent  command from $AGENT_HOME/bin directoryconnected to EMGC repository as sysman and executed the following PL/SQL block:   begin      mgmt_target.set_agent_tzrgn('wls1032.imc.fors.ru:3872','America/Los_Angeles');      commit;   end;After that I had to clear the pending uploads on wls1032.imc.fors.ru:  rm -r $AGENT_HOME/sysman/emd/state/*  rm -r $AGENT_HOME/sysman/emd/collection/*  rm -r $AGENT_HOME/sysman/emd/upload/*  rm $AGENT_HOME/sysman/emd/lastupld.xml  rm $AGENT_HOME/sysman/emd/agntstmp.txt  $AGENT_HOME/bin/emctl start agent  $AGENT_HOME/bin/emctl clearstate agentThe last part of this solution was to resync the agent in EMGC console by clicking Agent Resynchronization button (please leave "Unblock agent on successful completion of agent resynchronization" checkbox checked in the next screen).After that I issued ./emctl upload command from $AGENT_HOME/bin on the wls1032 host,  and my previous error disappeared,  but I catched another one: EMD upload error: Failed to upload file A0000004.xml: HTTP error.Response received: ERROR-400|Data will be rejected for upload from agent 'https://wls1032.imc.fors.ru:3872/emd/main/', max size limit for direct load exceeded [7544731/5242880]So the uploading XML file size was 7 Mb, and the limit on OMS was 5 Mb.  To increase the max file size limit to 20 Mb I had to connect to the OMS host and execute the following commands from $OMS_HOME/bin directory: ./emctl set property -name em.loader.maxDirectLoadFileSz -value 20971520 -module emoms ./emctl stop oms ./emctl start omsAfter that I issued ./emctl upload command from $AGENT_HOME/bin on the wls1032 one more time and it completed successfully.   The agent uploaded the configuration information to the EMGC  repository and I was able to see the results of my weblogic domain scale-up in EMGC Console.DeploymentsSo, now the weblogic cluster contains 2 managed servers located on the different hosts. This powerful feature of the Enterprise Manager Grid Control  is a part of  the WebLogic Server Management Pack Enterprise Edition.

    Read the article

  • How to make Connect Communications VPN connection in 10.10?

    - by Bilal Mohammad Qazi
    these steps were send by my iSP admin for ver10.10 and i'm using 11.10... step 1 sucessfully implemented till point 7 after that the problems are marked after '//' Step 2 i cannot completely do the step 2 How to make Connect Communications VPN connection in Ubuntu 10.10. 1st Step:- 1- Go to System > Administration > Synaptic Package Manage 2- Search for “PPTP”, check “network-manager-PPTP” and click “Apply” 3- Click on the Network Manager tray icon with your right mouse button and choose “Edit Connections…”. 4- Go to the “VPN” tab and click “Add”. 5- Choose “Point-to-Point Tunneling Protocol (PPTP)” as the VPN Connection Type 6- Check the VPN Connection Type and click “Create”. 7- Give your VPN connection a name and assign all the necessary information • Gateway = blue.connect.net.pk if you got Blue Package or • Gateway = green.connect.net.pk if you got Green Package or • Gateway = blueplus.connect.net.pk if you got BluePlus Package or • Gateway = red.connect.net.pk if you got Red Package • User name = Connect Communications Userid • Password = Connect Communications Password 8- Now Click on “Advanced” Authentication • Unchecked “PAP" // cannot uncheck • Unchecked “MSCHAP" // cannot uncheck • Unchecked “CHAP" • Checked only “MSCHAPv2" EAP shown in ver11.10 and cannot be unchecked Security And Compression. • Unchecked “Use Point-to-Point encryption (MPPE)”. • Unchecked “Allow statefull encryption”. • Unchecked “Allow BSD data Compression”. • Unchecked “Allow Deflate data Compression”. • Unchecked “Use TCP Header Compression”. • Unchecked “Send PPP echo Packets” Then Press “OK” then “Apply”. 9-Now you are able to connect to the specified VPN connection via the Networking Manager Then you can connect to VPN in the menu bar and your Internet icon will have a lock when the connection is successful. 2nd Step:- Open Terminal window. First, you open a terminal (Applications > Accessories > Terminal): Run command “sudo” Now gave root Password. Then run command “netstat -r -n” It will show some lines and for example from the last line pick the IP from 2nd column like 10.111.0.1 0.0.0.0 10.111.0.1 0.0.0.0 UG 0 0 0 eth0 Now run the fallowing command. echo “route add -net 10.101.8.0 netmask 255.255.252.0 gw 10.152.24.1” > /etc/rc.local note :- 10.111.0.1 is an example IP now run “ sh /etc/rc.local “

    Read the article

  • How do I install MATLAB R2012a?

    - by Mehdi
    I have downloaded MATLAB R2012a for Unix platform and i want to install it on my ubuntu 11.10. To install i try this command: /<matlab_installation_file_directory>/install and it says: install: missing file operand According to it's manual i must give it an input file, So i create an input file like this to install in 'Stand Alone' mode: destinationFolder=usr/local/R2012a fileInstallationKey=xxxxx-xxxxx-xxxxx-xxxxx-xxxxx agreeToLicense=yes outputFile=/tmp/mathworks_usr.log mode=interactive activationPropertiesFile=home/.../lic_standalone.dat Acctually i'm not sure in "activationPropertiesFile" field what file is required, so i supposed it requires license file. I saved this file as txt format in the same directory which installation files are. Then i tried this command: install -inputFile my_input_file.txt and it gets this error: install: invalid option -- 'i' I know there is some helps in other websites and also some questions here about this topic, but i can't figure out what's the problem, Please help me, i'm a real noob on linux . Thank you guys

    Read the article

  • Hosting a website on Heroku.... I know how to, but im running into problems!

    - by Thomas Miller
    I'm starting to learn more on the back-end scale of programing. Recently I started up Heroku for the second or third time. This time I actually installed the Git update to my Mac and installed Heroku in the terminal. I wanted to upload a static html site with the Sinatra gem. Everything worked out fine inside the terminal, though I added Sinatra after I got everything working and the file with the site hooked up to Heroku. In my logs I did see that I was missing the Sinatra gem, so I installed it. My site contains both the proper app.rb and config.ru files. I have nothing showing up online. Just a blank screen! Contacting Heroku on this problem has been very difficult. I get a response every day, and on every day I respond with a question to the answer that didn't help me at all. 2011-05-18T00:25:20+00:00 app[web.1]: 71.198.0.51 - - [17/May/2011 17:25:20] "GET /favicon.ico HTTP/1.1" 404 18 0.0008 2011-05-18T00:25:20+00:00 heroku[router]: GET pxlc.heroku.com/favicon.ico dyno=web.1 queue=0 wait=0ms service=2ms bytes=313 2011-05-18T00:25:26+00:00 app[web.1]: 71.198.0.51 - - [17/May/2011 17:25:26] "GET /favicon.ico HTTP/1.1" 404 18 0.0008 2011-05-18T00:25:26+00:00 heroku[router]: GET pxlc.heroku.com/favicon.ico dyno=web.1 queue=0 wait=0ms service=5ms bytes=313 2011-05-17T18:25:51-07:00 heroku[web.1]: Idling 2011-05-17T18:26:01-07:00 heroku[web.1]: State changed from up to down 2011-05-18T01:26:01+00:00 heroku[web.1]: Stopping process with SIGTERM 2011-05-18T01:26:01+00:00 app[web.1]: >> Stopping ... 2011-05-18T01:26:02+00:00 heroku[web.1]: Process exited 2011-05-17T20:12:46-07:00 heroku[web.1]: Unidling 2011-05-17T20:12:47-07:00 heroku[web.1]: State changed from created to starting 2011-05-18T03:12:48+00:00 heroku[web.1]: Starting process with command: `thin -p 40055 -e production -R /home/heroku_rack/heroku.ru start` 2011-05-18T03:12:49+00:00 app[web.1]: >> Thin web server (v1.2.6 codename Crazy Delicious) 2011-05-18T03:12:49+00:00 app[web.1]: >> Maximum connections set to 1024 2011-05-18T03:12:49+00:00 app[web.1]: >> Listening on 0.0.0.0:40055, CTRL+C to stop 2011-05-18T03:12:50+00:00 heroku[router]: GET pxlc.heroku.com/ dyno=web.1 queue=0 wait=9954ms service=6ms bytes=565 2011-05-18T03:12:50+00:00 app[web.1]: 70.91.206.114 - - [17/May/2011 20:12:50] "GET /style.css HTTP/1.1" 200 - 0.0012 2011-05-18T03:12:50+00:00 heroku[router]: GET pxlc.heroku.com/style.css dyno=web.1 queue=0 wait=0ms service=2ms bytes=269 2011-05-17T20:12:50-07:00 heroku[web.1]: State changed from starting to up 2011-05-18T03:12:51+00:00 app[web.1]: 70.91.206.114 - - [17/May/2011 20:12:51] "GET /favicon.ico HTTP/1.1" 404 18 0.0008 2011-05-18T03:12:51+00:00 heroku[router]: GET pxlc.heroku.com/favicon.ico dyno=web.1 queue=0 wait=0ms service=4ms bytes=313 2011-05-18T03:13:05+00:00 heroku[router]: GET pxlc.heroku.com/ dyno=web.1 queue=0 wait=0ms service=5ms bytes=565 2011-05-18T03:13:05+00:00 app[web.1]: 70.91.206.114 - - [17/May/2011 20:13:05] "GET / HTTP/1.1" 200 293 0.0011 2011-05-18T03:13:05+00:00 heroku[router]: GET pxlc.heroku.com/favicon.ico dyno=web.1 queue=0 wait=0ms service=2ms bytes=313 2011-05-18T03:13:05+00:00 app[web.1]: 70.91.206.114 - - [17/May/2011 20:13:05] "GET /favicon.ico HTTP/1.1" 404 18 0.0007 2011-05-18T03:57:05+00:00 app[web.1]: 172.18.33.56, 58.96.134.66 - - [17/May/2011 20:57:05] "GET / HTTP/1.1" 200 293 0.0007 2011-05-18T03:57:05+00:00 heroku[router]: GET pxlc.heroku.com/ dyno=web.1 queue=0 wait=0ms service=4ms bytes=565 2011-05-18T03:57:05+00:00 app[web.1]: 172.18.33.56, 58.96.134.66 - - [17/May/2011 20:57:05] "GET /style.css HTTP/1.1" 200 - 0.0007 2011-05-18T03:57:05+00:00 heroku[router]: GET pxlc.heroku.com/style.css dyno=web.1 queue=0 wait=0ms service=2ms bytes=269 2011-05-18T03:57:08+00:00 app[web.1]: 172.18.33.56, 58.96.134.66 - - [17/May/2011 20:57:08] "GET /favicon.ico HTTP/1.1" 404 18 0.0008 2011-05-17T21:58:27-07:00 heroku[web.1]: Idling 2011-05-18T04:58:30+00:00 heroku[web.1]: Stopping process with SIGTERM 2011-05-18T04:58:30+00:00 app[web.1]: >> Stopping ... 2011-05-18T04:58:30+00:00 heroku[web.1]: Process exited 2011-05-17T21:58:33-07:00 heroku[web.1]: State changed from up to down 2011-05-17T23:11:58-07:00 heroku[web.1]: Unidling 2011-05-17T23:11:58-07:00 heroku[web.1]: State changed from created to starting 2011-05-18T06:12:00+00:00 heroku[web.1]: Starting process with command: `thin -p 40091 -e production -R /home/heroku_rack/heroku.ru start` 2011-05-18T06:12:01+00:00 app[web.1]: >> Thin web server (v1.2.6 codename Crazy Delicious) 2011-05-18T06:12:01+00:00 app[web.1]: >> Maximum connections set to 1024 2011-05-18T06:12:01+00:00 app[web.1]: >> Listening on 0.0.0.0:40091, CTRL+C to stop 2011-05-18T06:12:01+00:00 app[web.1]: 183.97.156.226 - - [17/May/2011 23:12:01] "GET / HTTP/1.1" 200 293 0.0017 2011-05-18T06:12:02+00:00 heroku[router]: GET pxlc.heroku.com/ dyno=web.1 queue=0 wait=3209ms service=5ms bytes=565 2011-05-18T06:12:03+00:00 app[web.1]: 183.97.156.226 - - [17/May/2011 23:12:03] "GET /style.css HTTP/1.1" 200 - 0.0019 2011-05-17T23:12:08-07:00 heroku[web.1]: State changed from starting to up 2011-05-18T00:13:13-07:00 heroku[web.1]: Idling 2011-05-18T00:13:16-07:00 heroku[web.1]: State changed from up to down 2011-05-18T07:13:16+00:00 heroku[web.1]: Stopping process with SIGTERM 2011-05-18T07:13:16+00:00 app[web.1]: >> Stopping ... 2011-05-18T07:13:17+00:00 heroku[web.1]: Process exited 2011-05-18T01:54:21-07:00 heroku[web.1]: Unidling 2011-05-18T01:54:21-07:00 heroku[web.1]: State changed from created to starting 2011-05-18T08:54:23+00:00 heroku[web.1]: Starting process with command: `thin -p 59491 -e production -R /home/heroku_rack/heroku.ru start` 2011-05-18T08:54:24+00:00 app[web.1]: >> Thin web server (v1.2.6 codename Crazy Delicious) 2011-05-18T08:54:24+00:00 app[web.1]: >> Maximum connections set to 1024 2011-05-18T08:54:24+00:00 app[web.1]: >> Listening on 0.0.0.0:59491, CTRL+C to stop 2011-05-18T01:54:28-07:00 heroku[web.1]: State changed from starting to up 2011-05-18T08:54:28+00:00 heroku[router]: GET pxlc.heroku.com/ dyno=web.1 queue=0 wait=6943ms service=6ms bytes=565 2011-05-18T08:54:28+00:00 app[web.1]: 62.244.82.72 - - [18/May/2011 01:54:28] "GET / HTTP/1.1" 200 293 0.0018 2011-05-18T08:54:28+00:00 heroku[router]: GET pxlc.heroku.com/style.css dyno=web.1 queue=0 wait=0ms service=2ms bytes=269 2011-05-18T08:54:28+00:00 app[web.1]: 62.244.82.72 - - [18/May/2011 01:54:28] "GET /style.css HTTP/1.1" 200 - 0.0014 2011-05-18T08:54:28+00:00 app[web.1]: 62.244.82.72 - - [18/May/2011 01:54:28] "GET /favicon.ico HTTP/1.1" 404 18 0.0008 2011-05-18T08:54:28+00:00 heroku[router]: GET pxlc.heroku.com/favicon.ico dyno=web.1 queue=0 wait=0ms service=1ms bytes=313 2011-05-18T08:54:28+00:00 heroku[router]: GET pxlc.heroku.com/favicon.ico dyno=web.1 queue=0 wait=0ms service=4ms bytes=313 2011-05-18T08:54:28+00:00 app[web.1]: 62.244.82.72 - - [18/May/2011 01:54:28] "GET /favicon.ico HTTP/1.1" 404 18 0.0008 2011-05-18T08:54:28+00:00 app[web.1]: 62.244.82.72 - - [18/May/2011 01:54:28] "GET /favicon.ico HTTP/1.1" 404 18 0.0008 2011-05-18T08:54:28+00:00 heroku[router]: GET pxlc.heroku.com/favicon.ico dyno=web.1 queue=0 wait=0ms service=1ms bytes=313 2011-05-18T02:55:23-07:00 heroku[web.1]: Idling 2011-05-18T02:55:33-07:00 heroku[web.1]: State changed from up to down 2011-05-18T09:55:34+00:00 heroku[web.1]: Stopping process with SIGTERM 2011-05-18T09:55:34+00:00 app[web.1]: >> Stopping ... 2011-05-18T09:55:34+00:00 heroku[web.1]: Process exited 2011-05-18T07:23:10-07:00 heroku[web.1]: State changed from created to starting 2011-05-18T14:23:12+00:00 heroku[web.1]: Starting process with command: `thin -p 20560 -e production -R /home/heroku_rack/heroku.ru start` 2011-05-18T14:23:13+00:00 app[web.1]: >> Thin web server (v1.2.6 codename Crazy Delicious) 2011-05-18T14:23:13+00:00 app[web.1]: >> Maximum connections set to 1024 2011-05-18T14:23:13+00:00 app[web.1]: >> Listening on 0.0.0.0:20560, CTRL+C to stop 2011-05-18T07:23:13-07:00 heroku[web.1]: State changed from starting to up 2011-05-18T14:23:14+00:00 app[web.1]: 12.183.19.10 - - [18/May/2011 07:23:14] "GET / HTTP/1.1" 200 293 0.0018 2011-05-18T14:23:14+00:00 heroku[router]: GET pxlc.heroku.com/ dyno=web.1 queue=0 wait=0ms service=7ms bytes=565 2011-05-18T14:23:14+00:00 app[web.1]: 12.183.19.10 - - [18/May/2011 07:23:14] "GET /style.css HTTP/1.1" 200 - 0.0015 2011-05-18T14:23:14+00:00 heroku[router]: GET pxlc.heroku.com/style.css dyno=web.1 queue=0 wait=0ms service=2ms bytes=269 2011-05-18T14:23:14+00:00 app[web.1]: 12.183.19.10 - - [18/May/2011 07:23:14] "GET /favicon.ico HTTP/1.1" 404 18 0.0009 2011-05-18T14:23:14+00:00 heroku[router]: GET pxlc.heroku.com/favicon.ico dyno=web.1 queue=0 wait=0ms service=2ms bytes=313 2011-05-18T08:24:03-07:00 heroku[web.1]: Idling 2011-05-18T08:24:07-07:00 heroku[web.1]: State changed from up to down 2011-05-18T15:24:07+00:00 heroku[web.1]: Stopping process with SIGTERM 2011-05-18T15:24:07+00:00 app[web.1]: >> Stopping ... 2011-05-18T17:34:27-07:00 heroku[web.1]: Unidling 2011-05-18T17:34:28-07:00 heroku[web.1]: State changed from created to starting 2011-05-19T00:34:29+00:00 heroku[web.1]: Starting process with command: `thin -p 57621 -e production -R /home/heroku_rack/heroku.ru start` 2011-05-18T17:34:31-07:00 heroku[web.1]: State changed from starting to up 2011-05-19T00:34:32+00:00 heroku[router]: GET pxlc.heroku.com/ dyno=web.1 queue=0 wait=0ms service=5ms bytes=565 2011-05-19T00:34:32+00:00 app[web.1]: 97.83.58.74 - - [18/May/2011 17:34:32] "GET / HTTP/1.1" 200 293 0.0016 2011-05-19T00:34:32+00:00 app[web.1]: 97.83.58.74 - - [18/May/2011 17:34:32] "GET /style.css HTTP/1.1" 200 - 0.0011 2011-05-19T00:34:32+00:00 heroku[router]: GET pxlc.heroku.com/style.css dyno=web.1 queue=0 wait=0ms service=2ms bytes=269 2011-05-19T00:34:34+00:00 heroku[router]: GET pxlc.heroku.com/favicon.ico dyno=web.1 queue=0 wait=0ms service=4ms bytes=313 2011-05-19T00:34:34+00:00 app[web.1]: 97.83.58.74 - - [18/May/2011 17:34:34] "GET /favicon.ico HTTP/1.1" 404 18 0.0007 2011-05-18T18:35:48-07:00 heroku[web.1]: Idling 2011-05-18T18:35:51-07:00 heroku[web.1]: State changed from up to down

    Read the article

  • Optimizing Solaris 11 SHA-1 on Intel Processors

    - by danx
    SHA-1 is a "hash" or "digest" operation that produces a 160 bit (20 byte) checksum value on arbitrary data, such as a file. It is intended to uniquely identify text and to verify it hasn't been modified. Max Locktyukhin and others at Intel have improved the performance of the SHA-1 digest algorithm using multiple techniques. This code has been incorporated into Solaris 11 and is available in the Solaris Crypto Framework via the libmd(3LIB), the industry-standard libpkcs11(3LIB) library, and Solaris kernel module sha1. The optimized code is used automatically on systems with a x86 CPU supporting SSSE3 (Intel Supplemental SSSE3). Intel microprocessor architectures that support SSSE3 include Nehalem, Westmere, Sandy Bridge microprocessor families. Further optimizations are available for microprocessors that support AVX (such as Sandy Bridge). Although SHA-1 is considered obsolete because of weaknesses found in the SHA-1 algorithm—NIST recommends using at least SHA-256, SHA-1 is still widely used and will be with us for awhile more. Collisions (the same SHA-1 result for two different inputs) can be found with moderate effort. SHA-1 is used heavily though in SSL/TLS, for example. And SHA-1 is stronger than the older MD5 digest algorithm, another digest option defined in SSL/TLS. Optimizations Review SHA-1 operates by reading an arbitrary amount of data. The data is read in 512 bit (64 byte) blocks (the last block is padded in a specific way to ensure it's a full 64 bytes). Each 64 byte block has 80 "rounds" of calculations (consisting of a mixture of "ROTATE-LEFT", "AND", and "XOR") applied to the block. Each round produces a 32-bit intermediate result, called W[i]. Here's what each round operates: The first 16 rounds, rounds 0 to 15, read the 512 bit block 32 bits at-a-time. These 32 bits is used as input to the round. The remaining rounds, rounds 16 to 79, use the results from the previous rounds as input. Specifically for round i it XORs the results of rounds i-3, i-8, i-14, and i-16 and rotates the result left 1 bit. The remaining calculations for the round is a series of AND, XOR, and ROTATE-LEFT operators on the 32-bit input and some constants. The 32-bit result is saved as W[i] for round i. The 32-bit result of the final round, W[79], is the SHA-1 checksum. Optimization: Vectorization The first 16 rounds can be vectorized (computed in parallel) because they don't depend on the output of a previous round. As for the remaining rounds, because of step 2 above, computing round i depends on the results of round i-3, W[i-3], one can vectorize 3 rounds at-a-time. Max Locktyukhin found through simple factoring, explained in detail in his article referenced below, that the dependencies of round i on the results of rounds i-3, i-8, i-14, and i-16 can be replaced instead with dependencies on the results of rounds i-6, i-16, i-28, and i-32. That is, instead of initializing intermediate result W[i] with: W[i] = (W[i-3] XOR W[i-8] XOR W[i-14] XOR W[i-16]) ROTATE-LEFT 1 Initialize W[i] as follows: W[i] = (W[i-6] XOR W[i-16] XOR W[i-28] XOR W[i-32]) ROTATE-LEFT 2 That means that 6 rounds could be vectorized at once, with no additional calculations, instead of just 3! This optimization is independent of Intel or any other microprocessor architecture, although the microprocessor has to support vectorization to use it, and exploits one of the weaknesses of SHA-1. Optimization: SSSE3 Intel SSSE3 makes use of 16 %xmm registers, each 128 bits wide. The 4 32-bit inputs to a round, W[i-6], W[i-16], W[i-28], W[i-32], all fit in one %xmm register. The following code snippet, from Max Locktyukhin's article, converted to ATT assembly syntax, computes 4 rounds in parallel with just a dozen or so SSSE3 instructions: movdqa W_minus_04, W_TMP pxor W_minus_28, W // W equals W[i-32:i-29] before XOR // W = W[i-32:i-29] ^ W[i-28:i-25] palignr $8, W_minus_08, W_TMP // W_TMP = W[i-6:i-3], combined from // W[i-4:i-1] and W[i-8:i-5] vectors pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) movdqa W, W_TMP // 4 dwords in W are rotated left by 2 psrld $30, W // rotate left by 2 W = (W >> 30) | (W << 2) pslld $2, W_TMP por W, W_TMP movdqa W_TMP, W // four new W values W[i:i+3] are now calculated paddd (K_XMM), W_TMP // adding 4 current round's values of K movdqa W_TMP, (WK(i)) // storing for downstream GPR instructions to read A window of the 32 previous results, W[i-1] to W[i-32] is saved in memory on the stack. This is best illustrated with a chart. Without vectorization, computing the rounds is like this (each "R" represents 1 round of SHA-1 computation): RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR With vectorization, 4 rounds can be computed in parallel: RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR Optimization: AVX The new "Sandy Bridge" microprocessor architecture, which supports AVX, allows another interesting optimization. SSSE3 instructions have two operands, a input and an output. AVX allows three operands, two inputs and an output. In many cases two SSSE3 instructions can be combined into one AVX instruction. The difference is best illustrated with an example. Consider these two instructions from the snippet above: pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) With AVX they can be combined in one instruction: vpxor W_minus_16, W, W_TMP // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) This optimization is also in Solaris, although Sandy Bridge-based systems aren't widely available yet. As an exercise for the reader, AVX also has 256-bit media registers, %ymm0 - %ymm15 (a superset of 128-bit %xmm0 - %xmm15). Can %ymm registers be used to parallelize the code even more? Optimization: Solaris-specific In addition to using the Intel code described above, I performed other minor optimizations to the Solaris SHA-1 code: Increased the digest(1) and mac(1) command's buffer size from 4K to 64K, as previously done for decrypt(1) and encrypt(1). This size is well suited for ZFS file systems, but helps for other file systems as well. Optimized encode functions, which byte swap the input and output data, to copy/byte-swap 4 or 8 bytes at-a-time instead of 1 byte-at-a-time. Enhanced the Solaris mdb(1) and kmdb(1) debuggers to display all 16 %xmm and %ymm registers (mdb "$x" command). Previously they only displayed the first 8 that are available in 32-bit mode. Can't optimize if you can't debug :-). Changed the SHA-1 code to allow processing in "chunks" greater than 2 Gigabytes (64-bits) Performance I measured performance on a Sun Ultra 27 (which has a Nehalem-class Xeon 5500 Intel W3570 microprocessor @3.2GHz). Turbo mode is disabled for consistent performance measurement. Graphs are better than words and numbers, so here they are: The first graph shows the Solaris digest(1) command before and after the optimizations discussed here, contained in libmd(3LIB). I ran the digest command on a half GByte file in swapfs (/tmp) and execution time decreased from 1.35 seconds to 0.98 seconds. The second graph shows the the results of an internal microbenchmark that uses the Solaris libpkcs11(3LIB) library. The operations are on a 128 byte buffer with 10,000 iterations. The results show operations increased from 320,000 to 416,000 operations per second. Finally the third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. The results show for 1 kernel thread, operations increased from 410 to 600 MBytes/second. For 8 kernel threads, operations increase from 1540 to 1940 MBytes/second. Availability This code is in Solaris 11 FCS. It is available in the 64-bit libmd(3LIB) library for 64-bit programs and is in the Solaris kernel. You must be running hardware that supports Intel's SSSE3 instructions (for example, Intel Nehalem, Westmere, or Sandy Bridge microprocessor architectures). The easiest way to determine if SSSE3 is available is with the isainfo(1) command. For example, nehalem $ isainfo -v $ isainfo -v 64-bit amd64 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu If the output also shows "avx", the Solaris executes the even-more optimized 3-operand AVX instructions for SHA-1 mentioned above: sandybridge $ isainfo -v 64-bit amd64 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this code. Solaris libraries and kernel automatically determine if it's running on SSSE3 or AVX-capable machines and execute the correctly-tuned code for that microprocessor. Summary The Solaris 11 Crypto Framework, via the sha1 kernel module and libmd(3LIB) and libpkcs11(3LIB) libraries, incorporated a useful SHA-1 optimization from Intel for SSSE3-capable microprocessors. As with other Solaris optimizations, they come automatically "under the hood" with the current Solaris release. References "Improving the Performance of the Secure Hash Algorithm (SHA-1)" by Max Locktyukhin (Intel, March 2010). The source for these SHA-1 optimizations used in Solaris "SHA-1", Wikipedia Good overview of SHA-1 FIPS 180-1 SHA-1 standard (FIPS, 1995) NIST Comments on Cryptanalytic Attacks on SHA-1 (2005, revised 2006)

    Read the article

  • Doing Time Limited Flight Recordings Using Start Up Parameters

    - by Marcus Hirt
    Just like with the old JRockit Runtime Analyzer, it is possible to start up recordings using command line parameters to JRockit. The parameter is called -XX:StartFlightRecording in R28. Below is an example that starts a flight recording half a minute after the JVM has been started. The recording will last for a minute. The name when viewing the ongoing recordings will be MyRecording, and the resulting file will be written to C:\tmp\myrecording.jfr. The recording will use the settings in jre\lib\jfr\profile.jfs. -XX:StartFlightRecording=delay=30s,duration=60s,name=MyRecording,filename=C:\tmp\myrecording.jfr,settings=profile For more information, see the JRockit R28 command line parameter documentation.

    Read the article

  • MYSQL – Identifying Current Version of MySQL Server Installation – Part 2

    - by Pinal Dave
    Earlier I wrote an article about Detecting Current Version of MySQL Server Installation. After the post quite a few emails I received where various users suggested that there are many more ways to figure out the version of MySQL. Here are few of the methods which I received in the email. Method 1: This method retrieves value with the help of Information Functions. SELECT VERSION(); Method 2: This method is very similar to SQL Server. SELECT @@Version Method 3: You can connect to MySQL with command prompt and type following command: STATUS; Method 4: Please refer my earlier blog post. SHOW VARIABLES LIKE "%version%"; Let me know if you know any more method and I will extend this blog post. Reference : Pinal Dave (http://blog.SQLAuthority.com)Filed under: MySQL, PostADay, SQL, SQL Authority, SQL Query, SQL Tips and Tricks, T SQL

    Read the article

  • How to install Eclipse in Ubuntu 12.04?

    - by Ant's
    I downloaded the Eclipse setup from their homepage. And I followed the instructions on this page. But I couldn't able to follow the last instruction, which ask me to do so : /opt/eclipse/eclipse -clean If do so, I get an error message like this : sudo: /opt/eclipse/eclipse: command not found But notably I can see the Eclipse Icon on my Dash Home (if I search for "Eclipse"). But clicking on that icon doesn't open the IDE. Where I'm making the mistake? And also running this command in terminal : eclipse throws this output: /usr/bin/eclipse: 5: /usr/bin/eclipse: /opt/eclipse/eclipse: Permission denied Thanks in advance.

    Read the article

  • How to copy a folder from /home/kevin to /opt

    - by lambda23
    I have a new computer installed with Ubuntu 12.04. Then I want to install wireless driver named compat-wireless-3.5-3. Before that, the driver folder to /home/kevin. I want to install it on /opt directory. Before install the driver, i want to copy the driver folder from /home/kevin to /opt. I try to use ordinary copy (Right Click Copy Paste), but the paste is blured. After that, i tried using this on terminal: sudo cp /home/kevin/compat-wireless-3.5-3 /opt But i get this command: cp: omitting directory `home/kevin/compat-wireless-3.5-3' What does the command mean? I can't copy the driver until now.

    Read the article

  • Solaris X86 64-bit Assembly Programming

    - by danx
    Solaris X86 64-bit Assembly Programming This is a simple example on writing, compiling, and debugging Solaris 64-bit x86 assembly language with a C program. This is also referred to as "AMD64" assembly. The term "AMD64" is used in an inclusive sense to refer to all X86 64-bit processors, whether AMD Opteron family or Intel 64 processor family. Both run Solaris x86. I'm keeping this example simple mainly to illustrate how everything comes together—compiler, assembler, linker, and debugger when using assembly language. The example I'm using here is a C program that calls an assembly language program passing a C string. The assembly language program takes the C string and calls printf() with it to print the string. AMD64 Register Usage But first let's review the use of AMD64 registers. AMD64 has several 64-bit registers, some special purpose (such as the stack pointer) and others general purpose. By convention, Solaris follows the AMD64 ABI in register usage, which is the same used by Linux, but different from Microsoft Windows in usage (such as which registers are used to pass parameters). This blog will only discuss conventions for Linux and Solaris. The following chart shows how AMD64 registers are used. The first six parameters to a function are passed through registers. If there's more than six parameters, parameter 7 and above are pushed on the stack before calling the function. The stack is also used to save temporary "stack" variables for use by a function. 64-bit Register Usage %rip Instruction Pointer points to the current instruction %rsp Stack Pointer %rbp Frame Pointer (saved stack pointer pointing to parameters on stack) %rdi Function Parameter 1 %rsi Function Parameter 2 %rdx Function Parameter 3 %rcx Function Parameter 4 %r8 Function Parameter 5 %r9 Function Parameter 6 %rax Function return value %r10, %r11 Temporary registers (need not be saved before used) %rbx, %r12, %r13, %r14, %r15 Temporary registers, but must be saved before use and restored before returning from the current function (usually with the push and pop instructions). 32-, 16-, and 8-bit registers To access the lower 32-, 16-, or 8-bits of a 64-bit register use the following: 64-bit register Least significant 32-bits Least significant 16-bits Least significant 8-bits %rax%eax%ax%al %rbx%ebx%bx%bl %rcx%ecx%cx%cl %rdx%edx%dx%dl %rsi%esi%si%sil %rdi%edi%di%axl %rbp%ebp%bp%bp %rsp%esp%sp%spl %r9%r9d%r9w%r9b %r10%r10d%r10w%r10b %r11%r11d%r11w%r11b %r12%r12d%r12w%r12b %r13%r13d%r13w%r13b %r14%r14d%r14w%r14b %r15%r15d%r15w%r15b %r16%r16d%r16w%r16b There's other registers present, such as the 64-bit %mm registers, 128-bit %xmm registers, 256-bit %ymm registers, and 512-bit %zmm registers. Except for %mm registers, these registers may not present on older AMD64 processors. Assembly Source The following is the source for a C program, helloas1.c, that calls an assembly function, hello_asm(). $ cat helloas1.c extern void hello_asm(char *s); int main(void) { hello_asm("Hello, World!"); } The assembly function called above, hello_asm(), is defined below. $ cat helloas2.s /* * helloas2.s * To build: * cc -m64 -o helloas2-cpp.s -D_ASM -E helloas2.s * cc -m64 -c -o helloas2.o helloas2-cpp.s */ #if defined(lint) || defined(__lint) /* ARGSUSED */ void hello_asm(char *s) { } #else /* lint */ #include <sys/asm_linkage.h> .extern printf ENTRY_NP(hello_asm) // Setup printf parameters on stack mov %rdi, %rsi // P2 (%rsi) is string variable lea .printf_string, %rdi // P1 (%rdi) is printf format string call printf ret SET_SIZE(hello_asm) // Read-only data .text .align 16 .type .printf_string, @object .printf_string: .ascii "The string is: %s.\n\0" #endif /* lint || __lint */ In the assembly source above, the C skeleton code under "#if defined(lint)" is optionally used for lint to check the interfaces with your C program--very useful to catch nasty interface bugs. The "asm_linkage.h" file includes some handy macros useful for assembly, such as ENTRY_NP(), used to define a program entry point, and SET_SIZE(), used to set the function size in the symbol table. The function hello_asm calls C function printf() by passing two parameters, Parameter 1 (P1) is a printf format string, and P2 is a string variable. The function begins by moving %rdi, which contains Parameter 1 (P1) passed hello_asm, to printf()'s P2, %rsi. Then it sets printf's P1, the format string, by loading the address the address of the format string in %rdi, P1. Finally it calls printf. After returning from printf, the hello_asm function returns itself. Larger, more complex assembly functions usually do more setup than the example above. If a function is returning a value, it would set %rax to the return value. Also, it's typical for a function to save the %rbp and %rsp registers of the calling function and to restore these registers before returning. %rsp contains the stack pointer and %rbp contains the frame pointer. Here is the typical function setup and return sequence for a function: ENTRY_NP(sample_assembly_function) push %rbp // save frame pointer on stack mov %rsp, %rbp // save stack pointer in frame pointer xor %rax, %r4ax // set function return value to 0. mov %rbp, %rsp // restore stack pointer pop %rbp // restore frame pointer ret // return to calling function SET_SIZE(sample_assembly_function) Compiling and Running Assembly Use the Solaris cc command to compile both C and assembly source, and to pre-process assembly source. You can also use GNU gcc instead of cc to compile, if you prefer. The "-m64" option tells the compiler to compile in 64-bit address mode (instead of 32-bit). $ cc -m64 -o helloas2-cpp.s -D_ASM -E helloas2.s $ cc -m64 -c -o helloas2.o helloas2-cpp.s $ cc -m64 -c helloas1.c $ cc -m64 -o hello-asm helloas1.o helloas2.o $ file hello-asm helloas1.o helloas2.o hello-asm: ELF 64-bit LSB executable AMD64 Version 1 [SSE FXSR FPU], dynamically linked, not stripped helloas1.o: ELF 64-bit LSB relocatable AMD64 Version 1 helloas2.o: ELF 64-bit LSB relocatable AMD64 Version 1 $ hello-asm The string is: Hello, World!. Debugging Assembly with MDB MDB is the Solaris system debugger. It can also be used to debug user programs, including assembly and C. The following example runs the above program, hello-asm, under control of the debugger. In the example below I load the program, set a breakpoint at the assembly function hello_asm, display the registers and the first parameter, step through the assembly function, and continue execution. $ mdb hello-asm # Start the debugger > hello_asm:b # Set a breakpoint > ::run # Run the program under the debugger mdb: stop at hello_asm mdb: target stopped at: hello_asm: movq %rdi,%rsi > $C # display function stack ffff80ffbffff6e0 hello_asm() ffff80ffbffff6f0 0x400adc() > $r # display registers %rax = 0x0000000000000000 %r8 = 0x0000000000000000 %rbx = 0xffff80ffbf7f8e70 %r9 = 0x0000000000000000 %rcx = 0x0000000000000000 %r10 = 0x0000000000000000 %rdx = 0xffff80ffbffff718 %r11 = 0xffff80ffbf537db8 %rsi = 0xffff80ffbffff708 %r12 = 0x0000000000000000 %rdi = 0x0000000000400cf8 %r13 = 0x0000000000000000 %r14 = 0x0000000000000000 %r15 = 0x0000000000000000 %cs = 0x0053 %fs = 0x0000 %gs = 0x0000 %ds = 0x0000 %es = 0x0000 %ss = 0x004b %rip = 0x0000000000400c70 hello_asm %rbp = 0xffff80ffbffff6e0 %rsp = 0xffff80ffbffff6c8 %rflags = 0x00000282 id=0 vip=0 vif=0 ac=0 vm=0 rf=0 nt=0 iopl=0x0 status=<of,df,IF,tf,SF,zf,af,pf,cf> %gsbase = 0x0000000000000000 %fsbase = 0xffff80ffbf782a40 %trapno = 0x3 %err = 0x0 > ::dis # disassemble the current instructions hello_asm: movq %rdi,%rsi hello_asm+3: leaq 0x400c90,%rdi hello_asm+0xb: call -0x220 <PLT:printf> hello_asm+0x10: ret 0x400c81: nop 0x400c85: nop 0x400c88: nop 0x400c8c: nop 0x400c90: pushq %rsp 0x400c91: pushq $0x74732065 0x400c96: jb +0x69 <0x400d01> > 0x0000000000400cf8/S # %rdi contains Parameter 1 0x400cf8: Hello, World! > [ # Step and execute 1 instruction mdb: target stopped at: hello_asm+3: leaq 0x400c90,%rdi > [ mdb: target stopped at: hello_asm+0xb: call -0x220 <PLT:printf> > [ The string is: Hello, World!. mdb: target stopped at: hello_asm+0x10: ret > [ mdb: target stopped at: main+0x19: movl $0x0,-0x4(%rbp) > :c # continue program execution mdb: target has terminated > $q # quit the MDB debugger $ In the example above, at the start of function hello_asm(), I display the stack contents with "$C", display the registers contents with "$r", then disassemble the current function with "::dis". The first function parameter, which is a C string, is passed by reference with the string address in %rdi (see the register usage chart above). The address is 0x400cf8, so I print the value of the string with the "/S" MDB command: "0x0000000000400cf8/S". I can also print the contents at an address in several other formats. Here's a few popular formats. For more, see the mdb(1) man page for details. address/S C string address/C ASCII character (1 byte) address/E unsigned decimal (8 bytes) address/U unsigned decimal (4 bytes) address/D signed decimal (4 bytes) address/J hexadecimal (8 bytes) address/X hexadecimal (4 bytes) address/B hexadecimal (1 bytes) address/K pointer in hexadecimal (4 or 8 bytes) address/I disassembled instruction Finally, I step through each machine instruction with the "[" command, which steps over functions. If I wanted to enter a function, I would use the "]" command. Then I continue program execution with ":c", which continues until the program terminates. MDB Basic Cheat Sheet Here's a brief cheat sheet of some of the more common MDB commands useful for assembly debugging. There's an entire set of macros and more powerful commands, especially some for debugging the Solaris kernel, but that's beyond the scope of this example. $C Display function stack with pointers $c Display function stack $e Display external function names $v Display non-zero variables and registers $r Display registers ::fpregs Display floating point (or "media" registers). Includes %st, %xmm, and %ymm registers. ::status Display program status ::run Run the program (followed by optional command line parameters) $q Quit the debugger address:b Set a breakpoint address:d Delete a breakpoint $b Display breakpoints :c Continue program execution after a breakpoint [ Step 1 instruction, but step over function calls ] Step 1 instruction address::dis Disassemble instructions at an address ::events Display events Further Information "Assembly Language Techniques for Oracle Solaris on x86 Platforms" by Paul Lowik (2004). Good tutorial on Solaris x86 optimization with assembly. The Solaris Operating System on x86 Platforms An excellent, detailed tutorial on X86 architecture, with Solaris specifics. By an ex-Sun employee, Frank Hofmann (2005). "AMD64 ABI Features", Solaris 64-bit Developer's Guide contains rules on data types and register usage for Intel 64/AMD64-class processors. (available at docs.oracle.com) Solaris X86 Assembly Language Reference Manual (available at docs.oracle.com) SPARC Assembly Language Reference Manual (available at docs.oracle.com) System V Application Binary Interface (2003) defines the AMD64 ABI for UNIX-class operating systems, including Solaris, Linux, and BSD. Google for it—the original website is gone. cc(1), gcc(1), and mdb(1) man pages.

    Read the article

  • Can I do filename pattern matching in a bash script?

    - by Bob Bowden
    Can I do filename pattern matching in a bash script? "test" is a directory with the following files ... bob@bob-laptop:~/test$ ls exclude exclude1 exclude2 include1 include2 from the command line, if I want to exclude some of the files, I can do ... bob@bob-laptop:~/test$ echo !(exclude*) include1 include2 but, if I put that command in a script (named exclude) ... bob@bob-laptop:~/test$ cat exclude echo !(exclude*) when I execute it, I get an error ... bob@bob-laptop:~/test$ ./exclude ./exclude: line 1: syntax error near unexpected token (' ./exclude: line 1:echo !(exclude*)' I've tried every (I think) variation of escaping some, all or none of the special characters and I still get an error. What am I missing here? If I can't do this, would someone please be so kind as to explain why?

    Read the article

  • SQL SERVER – The Story of a Lesser Known Startup Parameter in SQL Server – Guest Post by Balmukund Lakhani

    - by Pinal Dave
    This is a fantastic blog post from my dear friend Balmukund ( blog | twitter | facebook ). He had presented a fantastic session in our last UG and there were lots of requests from attendees that he blogs about it. Well, here is the blog post about the same very popular UG session. Let us read the entire blog post in the voice of the Balmukund himself. During my last session in SQL Bangalore User Group (Facebook) meeting, I was lucky enough to deliver a session on SQL Server Startup issue. The name of the session was “SQL Engine Starting Trouble – How to start?” From the feedback, I realized that one of the “not well known” startup parameter is “-m”. Okay, you might say “I know that this is used to start the SQL in single user mode”. But what you might not know is that you can pass a string with -m which has special meaning and use. I have used this parameter in my blog here but looks like not many of you have seen that. It happens most of the time when we want to start SQL Server in single user mode, someone else makes connection before you can. The only choice you have is to repeat same process again till you succeed. Some smart DBAs may disable the remote network protocols (TCP/IP and Named Pipes) of SQL Instance and allow only local connections to SQL. Once the activity is complete, our dear smart DBA has to remember to re-enable network protocols. Sometimes, it may be a local service or application getting connection to SQL before we can. There is a better way to deal with it. Yes, you have guessed it correctly: -m parameter which a string. Since I work with SQL Product Support team, I may know little more undocumented commands and parameters, but this is not an undocumented stuff. It’s already documented in books online. So in this blog, I am going to show a demo of its usage. As documentation shows, “Do not use this option as a security feature.” So please read this blog as knowledge enhancer and troubleshooting issues not security feature. In my laptop, I have a default instance of SQL Server 2012 and here is what we would in the configuration manager. Now, I would go ahead and stop SQL Service by selecting SQL Server (MSSQLServer) > Right Click > Stop. There are multiple ways to start SQL with startup parameter. 1) Use Net Start Command from command prompt Net Start MSSQLServer /mSQLCMD The above command is the simplest way to add startup parameter to SQL. This parameter would be cleared once we stop and start SQL. 2) Add Startup Parameter via configuration manager. Step is already listed here. We need to add -mSQLCMD If we compare 1 and 2, it’s clear that unless we modify startup parameter and remove -m, it would be in effect. 3) Start SQL Service via command line SQLServr.exe –mSQLCMD –s<InstanceName> Wait, what does SQLCMD mean with /m? It’s the instruction to SQL that start SQL Server in Single User Mode and allow only the application which is SQLCMD. Any other application would fail with Login Failed for User Error message. It would be important to note that string is case sensitive. This value should be picked up from application_name column from sys.dm_exec_sessions. I have made a connection using SQLCMD and as we can see it comes as upper case “SQLCMD”. If we want only management studio query windows to connect then we need to give -m” Microsoft SQL Server Management Studio – Query” as startup parameter. In below example, I have given it as SQLCMd (lower case d at the end) and we would notice that we would not be able to connect to SQL Instance. Above proves that parameter works as expected and it’s case sensitive. Error Log would show below information. How to get error log location? I have already blogged about it. Hope you have learned something new. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Typing commands into a terminal always returns "-bash: /usr/bin/python: is a directory"

    - by Artur Sapek
    I think I messed something up on my Ubuntu server while trying to upgrade to Python 2.7.2. Every time I type in a command that doesn't have a response, the default from bash is this: -bash: /usr/bin/python: is a directory Just like it would say if I typed the name of a directory. But this happens every time I enter a command that doesn't do anything. artur@SERVER:~$ dslkfjdsklfdshjk -bash: /usr/bin/python: is a directory I remember messing with the update-alternatives to point at python at some point, perhaps that could be it? Any inklings as to why this is happening? Related to this problem is also the fact that when I try using easy_install it tells me -bash: /usr/bin/easy_install: /usr/bin/python: bad interpeter: Permission denied /etc/fstab/ is set to exec. I've read that could fix the second problem but it hasn't.

    Read the article

  • I am trying to build libmtp 1.1.14 but I cannot fix this error

    - by Kristoffer
    I have run this in a terminal. git clone git://libmtp.git.sourceforge.net/gitroot/libmtp/libmtp cd libmtp ./autogen.sh (answering yes to all questions) But when I try to run the ./configure --prefix=/usr/ I get this error: checking whether to build static libraries... yes ./configure: line 11739: AC_LIB_PREPARE_PREFIX: command not found ./configure: line 11740: AC_LIB_RPATH: command not found ./configure: line 11745: syntax error near unexpected token `iconv' ./configure: line 11745: ` AC_LIB_LINKFLAGS_BODY(iconv)' I have built and installed the libiconv from here. I do not know what to do, been trying for a few hours but I am pretty noob to Linux. How can i fix this? The lines 11739 to 11745 in the configure file looks like this: AC_LIB_PREPARE_PREFIX AC_LIB_RPATH AC_LIB_LINKFLAGS_BODY(iconv)

    Read the article

  • GNU Smalltalk package

    - by Peter
    I've installed the GNU Smalltalk package and can get to the SmallTalk command line with the command 'gst'. However, I can't start the visual gst browser using the command: $ gst-browser When I try, this is what I get: peter@peredur:~$ gst-browser Object: CFunctionDescriptor new: 1 "<0x40488720>" error: Invalid C call-out gdk_colormap_get_type SystemExceptions.CInterfaceError(Smalltalk.Exception)>>signal (ExcHandling.st:254) SystemExceptions.CInterfaceError class(Smalltalk.Exception class)>>signal: (ExcHandling.st:161) Smalltalk.CFunctionDescriptor(Smalltalk.CCallable)>>callInto: (CCallable.st:165) GdkColormap class>>getType (GTK.star#VFS.ZipFile/Funcs.st:1) optimized [] in GLib class>>registerAllTypes (GTK.star#VFS.ZipFile/GtkDecl.st:78) Smalltalk.OrderedCollection>>do: (OrderColl.st:68) GLib class>>registerAllTypes (GTK.star#VFS.ZipFile/GtkDecl.st:78) Smalltalk.UndefinedObject>>executeStatements (GTK.star#VFS.ZipFile/GtkImpl.st:1078) Object: CFunctionDescriptor new: 1 "<0x404a7c28>" error: Invalid C call-out gtk_window_new SystemExceptions.CInterfaceError(Exception)>>signal (ExcHandling.st:254) SystemExceptions.CInterfaceError class(Exception class)>>signal: (ExcHandling.st:161) CFunctionDescriptor(CCallable)>>callInto: (CCallable.st:165) GTK.GtkWindow class>>new: (GTK.star#VFS.ZipFile/Funcs.st:1) VisualGST.GtkDebugger(VisualGST.GtkMainWindow)>>initialize (VisualGST.star#VFS.ZipFile/GtkMainWindow.st:131) VisualGST.GtkDebugger class(VisualGST.GtkMainWindow class)>>openSized: (VisualGST.star#VFS.ZipFile/GtkMainWindow.st:19) [] in VisualGST.GtkDebugger class>>open: (VisualGST.star#VFS.ZipFile/Debugger/GtkDebugger.st:16) [] in BlockClosure>>forkDebugger (DebugTools.star#VFS.ZipFile/DebugTools.st:380) [] in Process>>onBlock:at:suspend: (Process.st:392) BlockClosure>>on:do: (BlkClosure.st:193) [] in Process>>onBlock:at:suspend: (Process.st:393) BlockClosure>>ensure: (BlkClosure.st:269) [] in Process>>onBlock:at:suspend: (Process.st:370) [] in BlockClosure>>asContext: (BlkClosure.st:179) BlockContext class>>fromClosure:parent: (BlkContext.st:68) Everything hangs at this point until I hit ^C, after which, I get: Object: CFunctionDescriptor new: 1 "<0x404a7c28>" error: Invalid C call-out gtk_window_new SystemExceptions.CInterfaceError(Exception)>>signal (ExcHandling.st:254) SystemExceptions.CInterfaceError class(Exception class)>>signal: (ExcHandling.st:161) CFunctionDescriptor(CCallable)>>callInto: (CCallable.st:165) GTK.GtkWindow class>>new: (GTK.star#VFS.ZipFile/Funcs.st:1) VisualGST.GtkDebugger(VisualGST.GtkMainWindow)>>initialize (VisualGST.star#VFS.ZipFile/GtkMainWindow.st:131) VisualGST.GtkDebugger class(VisualGST.GtkMainWindow class)>>openSized: (VisualGST.star#VFS.ZipFile/GtkMainWindow.st:19) [] in VisualGST.GtkDebugger class>>open: (VisualGST.star#VFS.ZipFile/Debugger/GtkDebugger.st:16) [] in BlockClosure>>forkDebugger (DebugTools.star#VFS.ZipFile/DebugTools.st:380) [] in Process>>onBlock:at:suspend: (Process.st:392) BlockClosure>>on:do: (BlkClosure.st:193) [] in Process>>onBlock:at:suspend: (Process.st:393) BlockClosure>>ensure: (BlkClosure.st:269) [] in Process>>onBlock:at:suspend: (Process.st:370) [] in BlockClosure>>asContext: (BlkClosure.st:179) BlockContext class>>fromClosure:parent: (BlkContext.st:68) peter@peredur:~$ Is there a problem with this package?

    Read the article

  • What 'ordinary' packages does 'sudo apt-get purge wine*' removes?

    - by an_ant
    Ok, here's one silly question - I've actually run that command trying to lose configuraion of current installation of wine, so I can install it from zero. I didn't quite read but I've noticed that some packages that 'shouldn't be uninstalled' were getting uninstalled, like compiz for example... Now, my problem is that I don't know what are the other packages that got uninstalled. I can't enter Ubuntu at all. Help, please. Command was sudo apt-get purge wine*. Thank you. Please be nice; I was really tired :)

    Read the article

  • Unable to sign in. How to debug?

    - by Dmitriy Budnik
    I had to reboot system with reset button. After reboot I can't sign in. When I enter my password It seems like X-server just restarts. I can sing in as guest and also I can sign in in text TTY. Here is first 150 lines of my lightdm.log: [+0.04s] DEBUG: Logging to /var/log/lightdm/lightdm.log [+0.04s] DEBUG: Starting Light Display Manager 1.2.1, UID=0 PID=1070 [+0.04s] DEBUG: Loaded configuration from /etc/lightdm/lightdm.conf [+0.04s] DEBUG: Using D-Bus name org.freedesktop.DisplayManager [+0.04s] DEBUG: Registered seat module xlocal [+0.04s] DEBUG: Registered seat module xremote [+0.04s] DEBUG: Adding default seat [+0.04s] DEBUG: Starting seat [+0.04s] DEBUG: Starting new display for automatic login as user dmytro [+0.04s] DEBUG: Starting local X display [+3.64s] DEBUG: X server :0 will replace Plymouth [+3.66s] DEBUG: Using VT 7 [+3.66s] DEBUG: Activating VT 7 [+3.66s] DEBUG: Logging to /var/log/lightdm/x-0.log [+3.66s] DEBUG: Writing X server authority to /var/run/lightdm/root/:0 [+3.66s] DEBUG: Launching X Server [+3.66s] DEBUG: Launching process 1154: /usr/bin/X :0 -auth /var/run/lightdm/root/:0 -nolisten tcp vt7 -novtswitch -background none [+3.66s] DEBUG: Waiting for ready signal from X server :0 [+3.66s] DEBUG: Acquired bus name org.freedesktop.DisplayManager [+3.66s] DEBUG: Registering seat with bus path /org/freedesktop/DisplayManager/Seat0 [+10.78s] DEBUG: Got signal 10 from process 1154 [+10.78s] DEBUG: Got signal from X server :0 [+10.78s] DEBUG: Stopping Plymouth, X server is ready [+10.80s] DEBUG: Connecting to XServer :0 [+10.80s] DEBUG: Automatically logging in user dmytro [+10.80s] DEBUG: Started session 1303 with service 'lightdm-autologin', username 'dmytro' [+13.22s] DEBUG: Session 1303 authentication complete with return value 0: Success [+13.26s] DEBUG: Autologin user dmytro authorized [+13.27s] DEBUG: Autologin using session ubuntu [+14.44s] DEBUG: Dropping privileges to uid 1000 [+14.48s] DEBUG: Restoring privileges [+14.49s] DEBUG: Dropping privileges to uid 1000 [+14.49s] DEBUG: Writing /home/dmytro/.dmrc [+14.61s] DEBUG: Restoring privileges [+14.81s] DEBUG: Starting session ubuntu as user dmytro [+14.81s] DEBUG: Session 1303 running command /usr/sbin/lightdm-session gnome-session --session=ubuntu [+15.76s] DEBUG: New display ready, switching to it [+15.76s] DEBUG: Activating VT 7 [+15.76s] DEBUG: Registering session with bus path /org/freedesktop/DisplayManager/Session0 [+16.63s] DEBUG: Session 1303 exited with return value 0 [+16.63s] DEBUG: User session quit [+16.63s] DEBUG: Stopping display [+16.63s] DEBUG: Sending signal 15 to process 1154 [+17.19s] DEBUG: Process 1154 exited with return value 0 [+17.19s] DEBUG: X server stopped [+17.19s] DEBUG: Removing X server authority /var/run/lightdm/root/:0 [+17.19s] DEBUG: Releasing VT 7 [+17.19s] DEBUG: Display server stopped [+17.19s] DEBUG: Display stopped [+17.19s] DEBUG: Active display stopped, switching to greeter [+17.19s] DEBUG: Switching to greeter [+17.19s] DEBUG: Starting new display for greeter [+17.19s] DEBUG: Starting local X display [+17.19s] DEBUG: Using VT 7 [+17.19s] DEBUG: Logging to /var/log/lightdm/x-0.log [+17.19s] DEBUG: Writing X server authority to /var/run/lightdm/root/:0 [+17.19s] DEBUG: Launching X Server [+17.19s] DEBUG: Launching process 1563: /usr/bin/X :0 -auth /var/run/lightdm/root/:0 -nolisten tcp vt7 -novtswitch [+17.19s] DEBUG: Waiting for ready signal from X server :0 [+17.48s] DEBUG: Got signal 10 from process 1563 [+17.48s] DEBUG: Got signal from X server :0 [+17.48s] DEBUG: Connecting to XServer :0 [+17.48s] DEBUG: Starting greeter [+17.48s] DEBUG: Started session 1575 with service 'lightdm', username 'lightdm' [+17.61s] DEBUG: Session 1575 authentication complete with return value 0: Success [+17.61s] DEBUG: Greeter authorized [+17.61s] DEBUG: Logging to /var/log/lightdm/x-0-greeter.log [+17.68s] DEBUG: Session 1575 running command /usr/lib/lightdm/lightdm-greeter-session /usr/sbin/unity-greeter [+20.86s] DEBUG: Greeter connected version=1.2.1 [+20.86s] DEBUG: Greeter connected, display is ready [+20.86s] DEBUG: New display ready, switching to it [+20.86s] DEBUG: Activating VT 7 [+20.86s] DEBUG: Stopping greeter display being switched from [+24.90s] DEBUG: Greeter start authentication for dmytro [+24.90s] DEBUG: Started session 1746 with service 'lightdm', username 'dmytro' [+25.10s] DEBUG: Session 1746 got 1 message(s) from PAM [+25.10s] DEBUG: Prompt greeter with 1 message(s) [+31.87s] DEBUG: Continue authentication [+33.75s] DEBUG: Session 1746 authentication complete with return value 7: Authentication failure [+33.75s] DEBUG: Authenticate result for user dmytro: Authentication failure [+33.75s] DEBUG: Greeter start authentication for dmytro [+33.75s] DEBUG: Session 1746: Sending SIGTERM [+33.75s] DEBUG: Started session 2264 with service 'lightdm', username 'dmytro' [+33.75s] DEBUG: Session 2264 got 1 message(s) from PAM [+33.75s] DEBUG: Prompt greeter with 1 message(s) [+36.41s] DEBUG: Continue authentication [+36.53s] DEBUG: Session 2264 authentication complete with return value 0: Success [+36.53s] DEBUG: Authenticate result for user dmytro: Success [+36.54s] DEBUG: User dmytro authorized [+36.54s] DEBUG: Greeter requests session ubuntu [+36.54s] DEBUG: Using session ubuntu [+36.54s] DEBUG: Stopping greeter [+36.54s] DEBUG: Session 1575: Sending SIGTERM [+37.41s] DEBUG: Greeter closed communication channel [+37.41s] DEBUG: Session 1575 exited with return value 0 [+37.41s] DEBUG: Greeter quit [+37.42s] DEBUG: Dropping privileges to uid 1000 [+37.42s] DEBUG: Restoring privileges [+37.43s] DEBUG: Dropping privileges to uid 1000 [+37.43s] DEBUG: Writing /home/dmytro/.dmrc [+38.35s] DEBUG: Restoring privileges [+40.37s] DEBUG: Starting session ubuntu as user dmytro [+40.37s] DEBUG: Session 2264 running command /usr/sbin/lightdm-session gnome-session --session=ubuntu [+40.39s] DEBUG: Registering session with bus path /org/freedesktop/DisplayManager/Session1 [+50.78s] DEBUG: Session 2264 exited with return value 0 [+50.78s] DEBUG: User session quit [+50.78s] DEBUG: Stopping display [+50.78s] DEBUG: Sending signal 15 to process 1563 [+51.53s] DEBUG: Process 1563 exited with return value 0 [+51.53s] DEBUG: X server stopped [+51.53s] DEBUG: Removing X server authority /var/run/lightdm/root/:0 [+51.53s] DEBUG: Releasing VT 7 [+51.53s] DEBUG: Display server stopped [+51.53s] DEBUG: Display stopped [+51.53s] DEBUG: Active display stopped, switching to greeter [+51.53s] DEBUG: Switching to greeter [+51.53s] DEBUG: Starting new display for greeter [+51.53s] DEBUG: Starting local X display [+51.53s] DEBUG: Using VT 7 [+51.53s] DEBUG: Logging to /var/log/lightdm/x-0.log [+51.53s] DEBUG: Writing X server authority to /var/run/lightdm/root/:0 [+51.53s] DEBUG: Launching X Server [+51.53s] DEBUG: Launching process 2894: /usr/bin/X :0 -auth /var/run/lightdm/root/:0 -nolisten tcp vt7 -novtswitch [+51.53s] DEBUG: Waiting for ready signal from X server :0 [+51.75s] DEBUG: Got signal 10 from process 2894 [+51.75s] DEBUG: Got signal from X server :0 [+51.75s] DEBUG: Connecting to XServer :0 [+51.75s] DEBUG: Starting greeter [+51.75s] DEBUG: Started session 2898 with service 'lightdm', username 'lightdm' [+51.76s] DEBUG: Session 2898 authentication complete with return value 0: Success [+51.76s] DEBUG: Greeter authorized [+51.76s] DEBUG: Logging to /var/log/lightdm/x-0-greeter.log [+51.76s] DEBUG: Session 2898 running command /usr/lib/lightdm/lightdm-greeter-session /usr/sbin/unity-greeter [+53.26s] DEBUG: Greeter connected version=1.2.1 [+53.26s] DEBUG: Greeter connected, display is ready [+53.26s] DEBUG: New display ready, switching to it [+53.26s] DEBUG: Activating VT 7 [+53.26s] DEBUG: Stopping greeter display being switched from [+54.17s] DEBUG: Greeter start authentication for dmytro [+54.17s] DEBUG: Started session 3152 with service 'lightdm', username 'dmytro' [+54.18s] DEBUG: Session 3152 got 1 message(s) from PAM [+54.18s] DEBUG: Prompt greeter with 1 message(s) [+58.61s] DEBUG: Continue authentication [+58.65s] DEBUG: Session 3152 authentication complete with return value 0: Success [+58.65s] DEBUG: Authenticate result for user dmytro: Success [+58.66s] DEBUG: User dmytro authorized [+58.66s] DEBUG: Greeter requests session ubuntu [+58.66s] DEBUG: Using session ubuntu [+58.66s] DEBUG: Stopping greeter [+58.66s] DEBUG: Session 2898: Sending SIGTERM How can I fix it? What other .log files could possibly give me a clue? Update: Possibly it's duplicate of Desktop login fails, terminal works

    Read the article

  • database api commands

    - by Rahul Mehta
    As I am developing database api for a project. I am developing commands for getting data from database. e.g. i have one gib table so command for that is getgib name alias limit fields if user pass the name e.g. getgib rahul than it will return all the gib data whose name is like rahul. if alias is given than it will return the all the gib owned by the user whose alias(userid) given . So i want to design the commands. limit : is to limit the record in query, fields : is the extra fields i want to add in the select query . so as now commands are set but now Question 1 : i want the gibs by the gibid , so how to make this or any suggestion to improve my command is welcome. Question 2 : if user don't want to specify the name , and he want only the gibs by providing alias then at this what separator at the place of name i should used.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Winetricks fails to find program files directory

    - by EgyptLovesUbuntu
    I installed a fresh copy of Ubuntu 12 desktop then: Installed WINE from the Ubuntu Software Center. Installed WineTricks from the Ubuntu Software Center. When I type the following commands in the terminal: sudo winetricks dotnet40 I get this error message: wine cmd.exe /c echo '%ProgramFiles%' returned empty string If i try the command without sudo winetricks dotnet40 The output is as follows Executing w_do_call dotnet40 Executing load_dotnet40 ------------------------------------------------------ dotnet40 does not yet fully work or install on wine. Caveat emptor. ------------------------------------------------------ Executing mkdir -p /home/vectoruser/.cache/winetricks/dotnet40 mkdir: cannot create directory `/home/vectoruser/.cache/winetricks/dotnet40': Permission denied ------------------------------------------------------ Note: command 'mkdir -p /home/vectoruser/.cache/winetricks/dotnet40' returned status 1. Aborting. ------------------------------------------------------ My current user is vectoruser which i use to logon to Ubuntu The output of ls -ld /home/vectoruser /home/vectoruser/.cache /home/vectoruser/.cache/winetricks Gives: drwxr-xr-x 32 vectoruser vectoruser 4096 Aug 2 19:26 /home/vectoruser drwx------ 19 vectoruser vectoruser 4096 Aug 2 19:25 /home/vectoruser/.cache drwxr-xr-x 2 root root 4096 Aug 2 18:09 /home/vectoruser/.cache/winetricks

    Read the article

  • Can't log to mySQL

    - by Reza
    Even after I reset root password with following command I can not log to mySQL: (other command listed to provide additional info) # sudo dpkg-reconfigure mysql-server-5.1 # mysql -u root -p Enter password: ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES) # telnet 127.0.0.1 3306 Trying 127.0.0.1... telnet: Unable to connect to remote host: Connection refused # ps -Aw |grep mysql 26522 ? 00:00:00 mysqld # /etc/init.d/mysql start Rather than invoking init scripts through /etc/init.d, use the service(8) utility, e.g. service mysql start Since the script you are attempting to invoke has been converted to an Upstart job, you may also use the start(8) utility, e.g. start mysql update: # sudo mysqladmin -u root password 123 mysqladmin: connect to server at 'localhost' failed it seems mysql is not ruining properly

    Read the article

  • How does landscape calculate memory usage?

    - by David Planella
    I'm trying to debug an OOM situation in an Ubuntu 12.04 server, and looking at the Memory graphs in Landscape, I noticed that there wasn't any serious memory usage spike. Then I looked at the output of the free command and I wasn't quite sure how both memory usage results relate to each other. Here's landscape's output on the server: $ landscape-sysinfo System load: 0.0 Processes: 93 Usage of /: 5.6% of 19.48GB Users logged in: 1 Memory usage: 26% IP address for eth0: - Swap usage: 2% Then I ran the free command and I get: $ free -m total used free shared buffers cached Mem: 486 381 105 0 4 165 -/+ buffers/cache: 212 274 Swap: 255 7 248 I can understand the 2% swap usage, but where does the 26% memory usage come from?

    Read the article

  • How to repair an external harddrive?

    - by dodohjk
    I would like to reformat my hard disk, and if possible recover the (somewhat unimportant) contents if possible. I have a Western Digital 1TB hard drive which had a NTFS partition. I unplugged the drive without safely removing it first. At first a pop up was asking me to use a Windows OS to run the chkdsk /f command, however, in the effort to keep using a Linux OS I used the ntfsfix command on the ubuntu terminal Now, when I try to access the hard drive, it doesn't show up anymore in Nautilus. I tried reformatting it using Disk Utility, but it gives me an error message, and Gparted would hang on the "Scanning devices" step infinitely. Please comment any output that you would like to see and I will add it to my question. EDIT disk utility tells me is on /dev/sdb the command sudo fdisk -l gives dodohjk@DodosPC:~$ sudo fdisk -l [sudo] password for dodohjk: Disk /dev/sda: 250.1 GB, 250059350016 bytes 255 heads, 63 sectors/track, 30401 cylinders, total 488397168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x0006fa8c Device Boot Start End Blocks Id System /dev/sda1 * 4094 482344959 241170433 5 Extended /dev/sda2 482344960 488396799 3025920 82 Linux swap / Solaris /dev/sda5 4096 31461127 15728516 83 Linux /dev/sda6 31463424 52434943 10485760 83 Linux /dev/sda7 52436992 62923320 5243164+ 83 Linux /dev/sda8 62924800 482344959 209710080 83 Linux Disk /dev/sdb: 1000.2 GB, 1000202043392 bytes 255 heads, 63 sectors/track, 121600 cylinders, total 1953519616 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x6e697373 This doesn't look like a partition table Probably you selected the wrong device. Device Boot Start End Blocks Id System /dev/sdb1 ? 1936269394 3772285809 918008208 4f QNX4.x 3rd part /dev/sdb2 ? 1917848077 2462285169 272218546+ 73 Unknown /dev/sdb3 ? 1818575915 2362751050 272087568 2b Unknown /dev/sdb4 ? 2844524554 2844579527 27487 61 SpeedStor Partition table entries are not in disk order I wrote something wrong here, however here the output of fsck /dev/sbd is dodohjk@DodosPC:~$ sudo fsck /dev/sdb fsck from util-linux 2.20.1 e2fsck 1.42.5 (29-Jul-2012) ext2fs_open2: Bad magic number in super-block fsck.ext2: Superblock invalid, trying backup blocks... fsck.ext2: Bad magic number in super-block while trying to open /dev/sdb The superblock could not be read or does not describe a correct ext2 filesystem. If the device is valid and it really contains an ext2 filesystem (and not swap or ufs or something else), then the superblock is corrupt, and you might try running e2fsck with an alternate superblock: e2fsck -b 8193 <device&gt;

    Read the article

  • Using commands with ApplicationBarMenuItem and ApplicationBarButton in Windows Phone 7

    - by Laurent Bugnion
    Unfortunately, in the current version of the Windows Phone 7 Silverlight framework, it is not possible to attach any command on the ApplicationBarMenuItem and ApplicationBarButton controls. These two controls appear in the Application Bar, for example with the following markup: <phoneNavigation:PhoneApplicationPage.ApplicationBar> <shell:ApplicationBar x:Name="MainPageApplicationBar"> <shell:ApplicationBar.MenuItems> <shell:ApplicationBarMenuItem Text="Add City" /> <shell:ApplicationBarMenuItem Text="Add Country" /> </shell:ApplicationBar.MenuItems> <shell:ApplicationBar.Buttons> <shell:ApplicationBarIconButton IconUri="/Resources/appbar.feature.video.rest.png" /> <shell:ApplicationBarIconButton IconUri="/Resources/appbar.feature.settings.rest.png" /> <shell:ApplicationBarIconButton IconUri="/Resources/appbar.refresh.rest.png" /> </shell:ApplicationBar.Buttons> </shell:ApplicationBar> </phoneNavigation:PhoneApplicationPage.ApplicationBar> This code will create the following UI: Application bar, collapsed Application bar, expanded ApplicationBarItems are not, however, controls. A quick look in MSDN shows the following hierarchy for ApplicationBarMenuItem, for example: Unfortunately, this prevents all the mechanisms that are normally used to attach a Command (for example a RelayCommand) to a control. For example, the attached behavior present in the class ButtonBaseExtension (from the Silverlight 3 version of the MVVM Light toolkit) can only be attached to a DependencyObject. Similarly, Blend behaviors (such as EventToCommand from the toolkit’s Extras library) needs a FrameworkElement to work. Using code behind The alternative is to use code behind. As I said in my MIX10 talk, the MVVM police will not take your family away if you use code behind (this quote was actually suggested to me by Glenn Block); the code behind is there for a reason. In our case, invoking a command in the ViewModel requires the following code: In MainPage.xaml: <shell:ApplicationBarMenuItem Text="My Menu 1" Click="ApplicationBarMenuItemClick"/> In MainPage.xaml.cs private void ApplicationBarMenuItemClick( object sender, System.EventArgs e) { var vm = DataContext as MainViewModel; if (vm != null) { vm.MyCommand.Execute(null); } } Conclusion Resorting to code behind to bridge the gap between the View and the ViewModel is less elegant than using attached behaviors, either through an attached property or through a Blend behavior. It does, however, work fine. I don’t have any information if future changes in the Windows Phone 7 Application Bar API will make this easier. In the mean time, I would recommend using code behind instead.   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

< Previous Page | 266 267 268 269 270 271 272 273 274 275 276 277  | Next Page >