Search Results

Search found 57327 results on 2294 pages for 'nested set'.

Page 275/2294 | < Previous Page | 271 272 273 274 275 276 277 278 279 280 281 282  | Next Page >

  • C# 4: The Curious ConcurrentDictionary

    - by James Michael Hare
    In my previous post (here) I did a comparison of the new ConcurrentQueue versus the old standard of a System.Collections.Generic Queue with simple locking.  The results were exactly what I would have hoped, that the ConcurrentQueue was faster with multi-threading for most all situations.  In addition, concurrent collections have the added benefit that you can enumerate them even if they're being modified. So I set out to see what the improvements would be for the ConcurrentDictionary, would it have the same performance benefits as the ConcurrentQueue did?  Well, after running some tests and multiple tweaks and tunes, I have good and bad news. But first, let's look at the tests.  Obviously there's many things we can do with a dictionary.  One of the most notable uses, of course, in a multi-threaded environment is for a small, local in-memory cache.  So I set about to do a very simple simulation of a cache where I would create a test class that I'll just call an Accessor.  This accessor will attempt to look up a key in the dictionary, and if the key exists, it stops (i.e. a cache "hit").  However, if the lookup fails, it will then try to add the key and value to the dictionary (i.e. a cache "miss").  So here's the Accessor that will run the tests: 1: internal class Accessor 2: { 3: public int Hits { get; set; } 4: public int Misses { get; set; } 5: public Func<int, string> GetDelegate { get; set; } 6: public Action<int, string> AddDelegate { get; set; } 7: public int Iterations { get; set; } 8: public int MaxRange { get; set; } 9: public int Seed { get; set; } 10:  11: public void Access() 12: { 13: var randomGenerator = new Random(Seed); 14:  15: for (int i=0; i<Iterations; i++) 16: { 17: // give a wide spread so will have some duplicates and some unique 18: var target = randomGenerator.Next(1, MaxRange); 19:  20: // attempt to grab the item from the cache 21: var result = GetDelegate(target); 22:  23: // if the item doesn't exist, add it 24: if(result == null) 25: { 26: AddDelegate(target, target.ToString()); 27: Misses++; 28: } 29: else 30: { 31: Hits++; 32: } 33: } 34: } 35: } Note that so I could test different implementations, I defined a GetDelegate and AddDelegate that will call the appropriate dictionary methods to add or retrieve items in the cache using various techniques. So let's examine the three techniques I decided to test: Dictionary with mutex - Just your standard generic Dictionary with a simple lock construct on an internal object. Dictionary with ReaderWriterLockSlim - Same Dictionary, but now using a lock designed to let multiple readers access simultaneously and then locked when a writer needs access. ConcurrentDictionary - The new ConcurrentDictionary from System.Collections.Concurrent that is supposed to be optimized to allow multiple threads to access safely. So the approach to each of these is also fairly straight-forward.  Let's look at the GetDelegate and AddDelegate implementations for the Dictionary with mutex lock: 1: var addDelegate = (key,val) => 2: { 3: lock (_mutex) 4: { 5: _dictionary[key] = val; 6: } 7: }; 8: var getDelegate = (key) => 9: { 10: lock (_mutex) 11: { 12: string val; 13: return _dictionary.TryGetValue(key, out val) ? val : null; 14: } 15: }; Nothing new or fancy here, just your basic lock on a private object and then query/insert into the Dictionary. Now, for the Dictionary with ReadWriteLockSlim it's a little more complex: 1: var addDelegate = (key,val) => 2: { 3: _readerWriterLock.EnterWriteLock(); 4: _dictionary[key] = val; 5: _readerWriterLock.ExitWriteLock(); 6: }; 7: var getDelegate = (key) => 8: { 9: string val; 10: _readerWriterLock.EnterReadLock(); 11: if(!_dictionary.TryGetValue(key, out val)) 12: { 13: val = null; 14: } 15: _readerWriterLock.ExitReadLock(); 16: return val; 17: }; And finally, the ConcurrentDictionary, which since it does all it's own concurrency control, is remarkably elegant and simple: 1: var addDelegate = (key,val) => 2: { 3: _concurrentDictionary[key] = val; 4: }; 5: var getDelegate = (key) => 6: { 7: string s; 8: return _concurrentDictionary.TryGetValue(key, out s) ? s : null; 9: };                    Then, I set up a test harness that would simply ask the user for the number of concurrent Accessors to attempt to Access the cache (as specified in Accessor.Access() above) and then let them fly and see how long it took them all to complete.  Each of these tests was run with 10,000,000 cache accesses divided among the available Accessor instances.  All times are in milliseconds. 1: Dictionary with Mutex Locking 2: --------------------------------------------------- 3: Accessors Mostly Misses Mostly Hits 4: 1 7916 3285 5: 10 8293 3481 6: 100 8799 3532 7: 1000 8815 3584 8:  9:  10: Dictionary with ReaderWriterLockSlim Locking 11: --------------------------------------------------- 12: Accessors Mostly Misses Mostly Hits 13: 1 8445 3624 14: 10 11002 4119 15: 100 11076 3992 16: 1000 14794 4861 17:  18:  19: Concurrent Dictionary 20: --------------------------------------------------- 21: Accessors Mostly Misses Mostly Hits 22: 1 17443 3726 23: 10 14181 1897 24: 100 15141 1994 25: 1000 17209 2128 The first test I did across the board is the Mostly Misses category.  The mostly misses (more adds because data requested was not in the dictionary) shows an interesting trend.  In both cases the Dictionary with the simple mutex lock is much faster, and the ConcurrentDictionary is the slowest solution.  But this got me thinking, and a little research seemed to confirm it, maybe the ConcurrentDictionary is more optimized to concurrent "gets" than "adds".  So since the ratio of misses to hits were 2 to 1, I decided to reverse that and see the results. So I tweaked the data so that the number of keys were much smaller than the number of iterations to give me about a 2 to 1 ration of hits to misses (twice as likely to already find the item in the cache than to need to add it).  And yes, indeed here we see that the ConcurrentDictionary is indeed faster than the standard Dictionary here.  I have a strong feeling that as the ration of hits-to-misses gets higher and higher these number gets even better as well.  This makes sense since the ConcurrentDictionary is read-optimized. Also note that I tried the tests with capacity and concurrency hints on the ConcurrentDictionary but saw very little improvement, I think this is largely because on the 10,000,000 hit test it quickly ramped up to the correct capacity and concurrency and thus the impact was limited to the first few milliseconds of the run. So what does this tell us?  Well, as in all things, ConcurrentDictionary is not a panacea.  It won't solve all your woes and it shouldn't be the only Dictionary you ever use.  So when should we use each? Use System.Collections.Generic.Dictionary when: You need a single-threaded Dictionary (no locking needed). You need a multi-threaded Dictionary that is loaded only once at creation and never modified (no locking needed). You need a multi-threaded Dictionary to store items where writes are far more prevalent than reads (locking needed). And use System.Collections.Concurrent.ConcurrentDictionary when: You need a multi-threaded Dictionary where the writes are far more prevalent than reads. You need to be able to iterate over the collection without locking it even if its being modified. Both Dictionaries have their strong suits, I have a feeling this is just one where you need to know from design what you hope to use it for and make your decision based on that criteria.

    Read the article

  • Oracle Solaris Cluster 4.2 Event and its SNMP Interface

    - by user12609115
    Background The cluster event SNMP interface was first introduced in Oracle Solaris Cluster 3.2 release. The details of the SNMP interface are described in the Oracle Solaris Cluster System Administration Guide and the Cluster 3.2 SNMP blog. Prior to the Oracle Solaris Cluster 4.2 release, when the event SNMP interface was enabled, it would take effect on WARNING or higher severity events. The events with WARNING or higher severity are usually for the status change of a cluster component from ONLINE to OFFLINE. The interface worked like an alert/alarm interface when some components in the cluster were out of service (changed to OFFLINE). The consumers of this interface could not get notification for all status changes and configuration changes in the cluster. Cluster Event and its SNMP Interface in Oracle Solaris Cluster 4.2 The user model of the cluster event SNMP interface is the same as what was provided in the previous releases. The cluster event SNMP interface is not enabled by default on a freshly installed cluster; you can enable it by using the cluster event SNMP administration commands on any cluster nodes. Usually, you only need to enable it on one of the cluster nodes or a subset of the cluster nodes because all cluster nodes get the same cluster events. When it is enabled, it is responsible for two basic tasks. • Logs up to 100 most recent NOTICE or higher severity events to the MIB. • Sends SNMP traps to the hosts that are configured to receive the above events. The changes in the Oracle Solaris Cluster 4.2 release are1) Introduction of the NOTICE severity for the cluster configuration and status change events.The NOTICE severity is introduced for the cluster event in the 4.2 release. It is the severity between the INFO and WARNING severity. Now all severities for the cluster events are (from low to high) • INFO (not exposed to the SNMP interface) • NOTICE (newly introduced in the 4.2 release) • WARNING • ERROR • CRITICAL • FATAL In the 4.2 release, the cluster event system is enhanced to make sure at least one event with the NOTICE or a higher severity will be generated when there is a configuration or status change from a cluster component instance. In other words, the cluster events from a cluster with the NOTICE or higher severities will cover all status and configuration changes in the cluster (include all component instances). The cluster component instance here refers to an instance of the following cluster componentsnode, quorum, resource group, resource, network interface, device group, disk, zone cluster and geo cluster heartbeat. For example, pnode1 is an instance of the cluster node component, and oracleRG is an instance of the cluster resource group. With the introduction of the NOTICE severity event, when the cluster event SNMP interface is enabled, the consumers of the SNMP interface will get notification for all status and configuration changes in the cluster. A thrid-party system management platform with the cluster SNMP interface integration can generate alarms and clear alarms programmatically, because it can get notifications for the status change from ONLINE to OFFLINE and also from OFFLINE to ONLINE. 2) Customization for the cluster event SNMP interface • The number of events logged to the MIB is 100. When the number of events stored in the MIB reaches 100 and a new qualified event arrives, the oldest event will be removed before storing the new event to the MIB (FIFO, first in, first out). The 100 is the default and minimum value for the number of events stored in the MIB. It can be changed by setting the log_number property value using the clsnmpmib command. The maximum number that can be set for the property is 500. • The cluster event SNMP interface takes effect on the NOTICE or high severity events. The NOTICE severity is also the default and lowest event severity for the SNMP interface. The SNMP interface can be configured to take effect on other higher severity events, such as WARNING or higher severity events by setting the min_severity property to the WARNING. When the min_severity property is set to the WARNING, the cluster event SNMP interface would behave the same as the previous releases (prior to the 4.2 release). Examples, • Set the number of events stored in the MIB to 200 # clsnmpmib set -p log_number=200 event • Set the interface to take effect on WARNING or higher severity events. # clsnmpmib set -p min_severity=WARNING event Administering the Cluster Event SNMP Interface Oracle Solaris Cluster provides the following three commands to administer the SNMP interface. • clsnmpmib: administer the SNMP interface, and the MIB configuration. • clsnmphost: administer hosts for the SNMP traps • clsnmpuser: administer SNMP users (specific for SNMP v3 protocol) Only clsnmpmib is changed in the 4.2 release to support the aforementioned customization of the SNMP interface. Here are some simple examples using the commands. Examples: 1. Enable the cluster event SNMP interface on the local node # clsnmpmib enable event 2. Display the status of the cluster event SNMP interface on the local node # clsnmpmib show -v 3. Configure my_host to receive the cluster event SNMP traps. # clsnmphost add my_host Cluster Event SNMP Interface uses the common agent container SNMP adaptor, which is based on the JDMK SNMP implementation as its SNMP agent infrastructure. By default, the port number for the SNMP MIB is 11161, and the port number for the SNMP traps is 11162. The port numbers can be changed by using the cacaoadm. For example, # cacaoadm list-params Print all changeable parameters. The output includes the snmp-adaptor-port and snmp-adaptor-trap-port properties. # cacaoadm set-param snmp-adaptor-port=1161 Set the SNMP MIB port number to 1161. # cacaoadm set-param snmp-adaptor-trap-port=1162 Set the SNMP trap port number to 1162. The cluster event SNMP MIB is defined in sun-cluster-event-mib.mib, which is located in the /usr/cluster/lib/mibdirectory. Its OID is 1.3.6.1.4.1.42.2.80, that can be used to walk through the MIB data. Again, for more detail information about the cluster event SNMP interface, please see the Oracle Solaris Cluster 4.2 System Administration Guide. - Leland Chen 

    Read the article

  • Integrating Flickr with ASP.Net application

    - by sreejukg
    Flickr is the popular photo management and sharing application offered by yahoo. The services from flicker allow you to store and share photos and videos online. Flicker offers strong API support for almost all services they provide. Using this API, developers can integrate photos to their public website. Since 2005, developers have collaborated on top of Flickr's APIs to build fun, creative, and gorgeous experiences around photos that extend beyond Flickr. In this article I am going to demonstrate how easily you can bring the photos stored on flicker to your website. Let me explain the scenario this article is trying to address. I have a flicker account where I upload photos and share in many ways offered by Flickr. Now I have a public website, instead of re-upload the photos again to public website, I want to show this from Flickr. Also I need complete control over what photo to display. So I went and referred the Flickr documentation and there is API support ready to address my scenario (and more… ). FlickerAPI for ASP.Net To Integrate Flicker with ASP.Net applications, there is a library available in CodePlex. You can find it here http://flickrnet.codeplex.com/ Visit the URL and download the latest version. The download includes a Zip file, when you unzip you will get a number of dlls. Since I am going to use ASP.Net application, I need FlickrNet.dll. See the screenshot of all the dlls, and there is a help file available in the download (.chm) for your reference. Once you have the dll, you need to use Flickr API from your website. I assume you have a flicker account and you are familiar with Flicker services. Arrange your photos using Sets in Flickr In flicker, you can define sets and add your uploaded photos to sets. You can compare set to photo album. A set is a logical collection of photos, which is an excellent option for you to categorize your photos. Typically you will have a number of sets each set having few photos. You can write application that brings photos from sets to your website. For the purpose of this article I already created a set Flickr and added some photos to it. Once you logged in to Flickr, you can see the Sets under the Menu. In the Sets page, you will see all the sets you have created. As you notice, you can see certain sample images I have uploaded just to test the functionality. Though I wish I couldn’t create good photos so please bear with me. I have created 2 photo sets named Blue Album and Red Album. Click on the image for the set, will take you to the corresponding set page. In the set “Red Album” there are 4 photos and the set has a unique ID (highlighted in the URL). You can simply retrieve the photos with the set id from your application. In this article I am going to retrieve the images from Red album in my ASP.Net page. For that First I need to setup FlickrAPI for my usage. Configure Flickr API Key As I mentioned, we are going to use Flickr API to retrieve the photos stored in Flickr. In order to get access to Flickr API, you need an API key. To create an API key, navigate to the URL http://www.flickr.com/services/apps/create/ Click on Request an API key link, now you need to tell Flickr whether your application in commercial or non-commercial. I have selected a non-commercial key. Now you need to enter certain information about your application. Once you enter the details, Click on the submit button. Now Flickr will create the API key for your application. Generating non-commercial API key is very easy, in couple of steps the key will be generated and you can use the key in your application immediately. ASP.Net application for retrieving photos Now we need write an ASP.Net application that display pictures from Flickr. Create an empty web application (I named this as FlickerIntegration) and add a reference to FlickerNet.dll. Add a web form page to the application where you will retrieve and display photos(I have named this as Gallery.aspx). After doing all these, the solution explorer will look similar to following. I have used the below code in the Gallery.aspx page. The output for the above code is as follows. I am going to explain the code line by line here. First it is adding a reference to the FlickrNet namespace. using FlickrNet; Then create a Flickr object by using your API key. Flickr f = new Flickr("<yourAPIKey>"); Now when you retrieve photos, you can decide what all fields you need to retrieve from Flickr. Every photo in Flickr contains lots of information. Retrieving all will affect the performance. For the demonstration purpose, I have retrieved all the available fields as follows. PhotoSearchExtras.All But if you want to specify the fields you can use logical OR operator(|). For e.g. the following statement will retrieve owner name and date taken. PhotoSearchExtras extraInfo = PhotoSearchExtras.OwnerName | PhotoSearchExtras.DateTaken; Then retrieve all the photos from a photo set using PhotoSetsGetPhotos method. I have passed the PhotoSearchExtras object created earlier. PhotosetPhotoCollection photos = f.PhotosetsGetPhotos("72157629872940852", extraInfo); The PhotoSetsGetPhotos method will return a collection of Photo objects. You can just navigate through the collection using a foreach statement. foreach (Photo p in photos) {     //access each photo properties } Photo class have lot of properties that map with the properties from Flickr. The chm documentation comes along with the CodePlex download is a great asset for you to understand the fields. In the above code I just used the following p.LargeUrl – retrieves the large image url for the photo. p.ThumbnailUrl – retrieves the thumbnail url for the photo p.Title – retrieves the Title of the photo p.DateUploaded – retrieves the date of upload Visual Studio intellisense will give you all properties, so it is easy, you can just try with Visual Studio intellisense to find the right properties you are looking for. Most of hem are self-explanatory. So you can try retrieving the required properties. In the above code, I just pushed the photos to the page. In real time you can use the retrieved photos along with JQuery libraries to create animated photo galleries, slideshows etc. Configuration and Troubleshooting If you get access denied error while executing the code, you need to disable the caching in Flickr API. FlickrNet cache the photos to your local disk when retrieved. You can specify a cache folder where the application need write permission. You can specify the Cache folder in the code as follows. Flickr.CacheLocation = Server.MapPath("./FlickerCache/"); If the application doesn’t have have write permission to the cache folder, the application will throw access denied error. If you cannot give write permission to the cache folder, then you must disable the caching. You can do this from code as follows. Flickr.CacheDisabled = true; Disabling cache will have an impact on the performance. Take care! Also you can define the Flickr settings in web.config file.You can find the documentation here. http://flickrnet.codeplex.com/wikipage?title=ExampleConfigFile&ProjectName=flickrnet Flickr is a great place for storing and sharing photos. The API access allows developers to do seamless integration with the photos uploaded on Flickr.

    Read the article

  • Controlar Autentificaci&oacute;n Crystal Reports

    - by Jason Ulloa
    Para todos los que hemos trabajamos con Crystal Reports, no es un secreto que cuando tratamos de conectar nuestro reporte directamente a la base de datos, se nos viene encima el problema de autenticación. Es decir nuestro reporte al momento de iniciar la carga nos solicita autentificarnos en el servidor y sino lo hacemos, simplemente no veremos el reporte. Esto, además de ser tedioso para los usuarios se convierte en un problema de seguridad bastante grande, de ahí que en la mayoría de los casos se recomienda utilizar dataset. Sin embargo, para todos los que aún sabiendo esto no desean utilizar datasets, sino que, quieren conectar su crystal directamente veremos como implementar una pequeña clase que nos ayudará con esa tarea. Generalmente, cuando trabajamos con una aplicación web, nuestra cadena de conexión esta incluida en el web.config y también en muchas ocasiones contiene los datos como el usuario y password para acceder a la base de datos.  De esta cadena de conexión y estos datos es de los que nos ayudaremos para implementar la autentificación en el reporte. Generalmente, la cadena de conexión se vería así <connectionStrings> <remove name="LocalSqlServer"/> <add name="xxx" connectionString="Data Source=.\SqlExpress;Integrated Security=False;Initial Catalog=xxx;user id=myuser;password=mypass" providerName="System.Data.SqlClient"/> </connectionStrings>   Para nuestro ejemplo, nombraremos a nuestra clase CrystalRules (es solo algo que pensé de momento) 1. Primer Paso Creamos una variable de tipo SqlConnectionStringBuilder, a la cual le asignaremos la cadena de conexión que definimos en el web.config, y que luego utilizaremos para obtener los datos del usuario y el password para el crystal report. SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder(ConfigurationManager.ConnectionStrings["xxx"].ConnectionString); 2. Implementación de propiedad Para ser más ordenados crearemos varias propiedad de tipo Privado, que se encargarán de recibir los datos de:   La Base de datos, el password, el usuario y el servidor private string _dbName; private string _serverName; private string _userID; private string _passWord;   private string dataBase { get { return _dbName; } set { _dbName = value; } }   private string serverName { get { return _serverName; } set { _serverName = value; } }   private string userName { get { return _userID; } set { _userID = value; } }   private string dataBasePassword { get { return _passWord; } set { _passWord = value; } } 3. Creación del Método para aplicar los datos de conexión Una vez que ya tenemos las propiedades, asignaremos a las variables los valores que se han recogido en el SqlConnectionStringBuilder. Y crearemos una variable de tipo ConnectionInfo para aplicar los datos de conexión. internal void ApplyInfo(ReportDocument _oRpt) { dataBase = builder.InitialCatalog; serverName = builder.DataSource; userName = builder.UserID; dataBasePassword = builder.Password;   Database oCRDb = _oRpt.Database; Tables oCRTables = oCRDb.Tables; //Table oCRTable = default(Table); TableLogOnInfo oCRTableLogonInfo = default(TableLogOnInfo); ConnectionInfo oCRConnectionInfo = new ConnectionInfo();   oCRConnectionInfo.DatabaseName = _dbName; oCRConnectionInfo.ServerName = _serverName; oCRConnectionInfo.UserID = _userID; oCRConnectionInfo.Password = _passWord;   foreach (Table oCRTable in oCRTables) { oCRTableLogonInfo = oCRTable.LogOnInfo; oCRTableLogonInfo.ConnectionInfo = oCRConnectionInfo; oCRTable.ApplyLogOnInfo(oCRTableLogonInfo);     }   }   4. Creación del report document y aplicación de la seguridad Una vez recogidos los datos y asignados, crearemos un elemento report document al cual le asignaremos el CrystalReportViewer y le aplicaremos los datos de acceso que obtuvimos anteriormente public void loadReport(string repName, CrystalReportViewer viewer) {   // attached our report to viewer and set database login. ReportDocument report = new ReportDocument(); report.Load(HttpContext.Current.Server.MapPath("~/Reports/" + repName)); ApplyInfo(report); viewer.ReportSource = report; } Al final, nuestra clase completa ser vería así public class CrystalRules { SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder(ConfigurationManager.ConnectionStrings["Fatchoy.Data.Properties.Settings.FatchoyConnectionString"].ConnectionString);   private string _dbName; private string _serverName; private string _userID; private string _passWord;   private string dataBase { get { return _dbName; } set { _dbName = value; } }   private string serverName { get { return _serverName; } set { _serverName = value; } }   private string userName { get { return _userID; } set { _userID = value; } }   private string dataBasePassword { get { return _passWord; } set { _passWord = value; } }   internal void ApplyInfo(ReportDocument _oRpt) { dataBase = builder.InitialCatalog; serverName = builder.DataSource; userName = builder.UserID; dataBasePassword = builder.Password;   Database oCRDb = _oRpt.Database; Tables oCRTables = oCRDb.Tables; //Table oCRTable = default(Table); TableLogOnInfo oCRTableLogonInfo = default(TableLogOnInfo); ConnectionInfo oCRConnectionInfo = new ConnectionInfo();   oCRConnectionInfo.DatabaseName = _dbName; oCRConnectionInfo.ServerName = _serverName; oCRConnectionInfo.UserID = _userID; oCRConnectionInfo.Password = _passWord;   foreach (Table oCRTable in oCRTables) { oCRTableLogonInfo = oCRTable.LogOnInfo; oCRTableLogonInfo.ConnectionInfo = oCRConnectionInfo; oCRTable.ApplyLogOnInfo(oCRTableLogonInfo);     }   }   public void loadReport(string repName, CrystalReportViewer viewer) {   // attached our report to viewer and set database login. ReportDocument report = new ReportDocument(); report.Load(HttpContext.Current.Server.MapPath("~/Reports/" + repName)); ApplyInfo(report); viewer.ReportSource = report; }       #region instance   private static CrystalRules m_instance;   // Properties public static CrystalRules Instance { get { if (m_instance == null) { m_instance = new CrystalRules(); } return m_instance; } }   public DataDataContext m_DataContext { get { return DataDataContext.Instance; } }     #endregion instance   }   Si bien, la solución no es robusta y no es la mas segura. En casos de uso como una intranet y cuando estamos contra tiempo, podría ser de gran ayuda.

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service

    - by Elton Stoneman
    We're in the process of delivering an enabling project to expose on-premise WCF services securely to Internet consumers. The Azure Service Bus Relay is doing the clever stuff, we register our on-premise service with Azure, consumers call into our .servicebus.windows.net namespace, and their requests are relayed and serviced on-premise. In theory it's all wonderfully simple; by using the relay we get lots of protocol options, free HTTPS and load balancing, and by integrating to ACS we get plenty of security options. Part of our delivery is a suite of sample consumers for the service - .NET, jQuery, PHP - and this set of posts will cover setting up the service and the consumers. Part 1: Exposing the on-premise service In theory, this is ultra-straightforward. In practice, and on a dev laptop it is - but in a corporate network with firewalls and proxies, it isn't, so we'll walkthrough some of the pitfalls. Note that I'm using the "old" Azure portal which will soon be out of date, but the new shiny portal should have the same steps available and be easier to use. We start with a simple WCF service which takes a string as input, reverses the string and returns it. The Part 1 version of the code is on GitHub here: on GitHub here: IPASBR Part 1. Configuring Azure Service Bus Start by logging into the Azure portal and registering a Service Bus namespace which will be our endpoint in the cloud. Give it a globally unique name, set it up somewhere near you (if you’re in Europe, remember Europe (North) is Ireland, and Europe (West) is the Netherlands), and  enable ACS integration by ticking "Access Control" as a service: Authenticating and authorizing to ACS When we try to register our on-premise service as a listener for the Service Bus endpoint, we need to supply credentials, which means only trusted service providers can act as listeners. We can use the default "owner" credentials, but that has admin permissions so a dedicated service account is better (Neil Mackenzie has a good post On Not Using owner with the Azure AppFabric Service Bus with lots of permission details). Click on "Access Control Service" for the namespace, navigate to Service Identities and add a new one. Give the new account a sensible name and description: Let ACS generate a symmetric key for you (this will be the shared secret we use in the on-premise service to authenticate as a listener), but be sure to set the expiration date to something usable. The portal defaults to expiring new identities after 1 year - but when your year is up *your identity will expire without warning* and everything will stop working. In production, you'll need governance to manage identity expiration and a process to make sure you renew identities and roll new keys regularly. The new service identity needs to be authorized to listen on the service bus endpoint. This is done through claim mapping in ACS - we'll set up a rule that says if the nameidentifier in the input claims has the value serviceProvider, in the output we'll have an action claim with the value Listen. In the ACS portal you'll see that there is already a Relying Party Application set up for ServiceBus, which has a Default rule group. Edit the rule group and click Add to add this new rule: The values to use are: Issuer: Access Control Service Input claim type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier Input claim value: serviceProvider Output claim type: net.windows.servicebus.action Output claim value: Listen When your service namespace and identity are set up, open the Part 1 solution and put your own namespace, service identity name and secret key into the file AzureConnectionDetails.xml in Solution Items, e.g: <azure namespace="sixeyed-ipasbr">    <!-- ACS credentials for the listening service (Part1):-->   <service identityName="serviceProvider"            symmetricKey="nuR2tHhlrTCqf4YwjT2RA2BZ/+xa23euaRJNLh1a/V4="/>  </azure> Build the solution, and the T4 template will generate the Web.config for the service project with your Azure details in the transportClientEndpointBehavior:           <behavior name="SharedSecret">             <transportClientEndpointBehavior credentialType="SharedSecret">               <clientCredentials>                 <sharedSecret issuerName="serviceProvider"                               issuerSecret="nuR2tHhlrTCqf4YwjT2RA2BZ/+xa23euaRJNLh1a/V4="/>               </clientCredentials>             </transportClientEndpointBehavior>           </behavior> , and your service namespace in the Azure endpoint:         <!-- Azure Service Bus endpoints -->          <endpoint address="sb://sixeyed-ipasbr.servicebus.windows.net/net"                   binding="netTcpRelayBinding"                   contract="Sixeyed.Ipasbr.Services.IFormatService"                   behaviorConfiguration="SharedSecret">         </endpoint> The sample project is hosted in IIS, but it won't register with Azure until the service is activated. Typically you'd install AppFabric 1.1 for Widnows Server and set the service to auto-start in IIS, but for dev just navigate to the local REST URL, which will activate the service and register it with Azure. Testing the service locally As well as an Azure endpoint, the service has a WebHttpBinding for local REST access:         <!-- local REST endpoint for internal use -->         <endpoint address="rest"                   binding="webHttpBinding"                   behaviorConfiguration="RESTBehavior"                   contract="Sixeyed.Ipasbr.Services.IFormatService" /> Build the service, then navigate to: http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc/rest/reverse?string=abc123 - and you should see the reversed string response: If your network allows it, you'll get the expected response as before, but in the background your service will also be listening in the cloud. Good stuff! Who needs network security? Onto the next post for consuming the service with the netTcpRelayBinding.  Setting up network access to Azure But, if you get an error, it's because your network is secured and it's doing something to stop the relay working. The Service Bus relay bindings try to use direct TCP connections to Azure, so if ports 9350-9354 are available *outbound*, then the relay will run through them. If not, the binding steps down to standard HTTP, and issues a CONNECT across port 443 or 80 to set up a tunnel for the relay. If your network security guys are doing their job, the first option will be blocked by the firewall, and the second option will be blocked by the proxy, so you'll get this error: System.ServiceModel.CommunicationException: Unable to reach sixeyed-ipasbr.servicebus.windows.net via TCP (9351, 9352) or HTTP (80, 443) - and that will probably be the start of lots of discussions. Network guys don't really like giving servers special permissions for the web proxy, and they really don't like opening ports, so they'll need to be convinced about this. The resolution in our case was to put up a dedicated box in a DMZ, tinker with the firewall and the proxy until we got a relay connection working, then run some traffic which the the network guys monitored to do a security assessment afterwards. Along the way we hit a few more issues, diagnosed mainly with Fiddler and Wireshark: System.Net.ProtocolViolationException: Chunked encoding upload is not supported on the HTTP/1.0 protocol - this means the TCP ports are not available, so Azure tries to relay messaging traffic across HTTP. The service can access the endpoint, but the proxy is downgrading traffic to HTTP 1.0, which does not support tunneling, so Azure can’t make its connection. We were using the Squid proxy, version 2.6. The Squid project is incrementally adding HTTP 1.1 support, but there's no definitive list of what's supported in what version (here are some hints). System.ServiceModel.Security.SecurityNegotiationException: The X.509 certificate CN=servicebus.windows.net chain building failed. The certificate that was used has a trust chain that cannot be verified. Replace the certificate or change the certificateValidationMode. The evocation function was unable to check revocation because the revocation server was offline. - by this point we'd given up on the HTTP proxy and opened the TCP ports. We got this error when the relay binding does it's authentication hop to ACS. The messaging traffic is TCP, but the control traffic still goes over HTTP, and as part of the ACS authentication the process checks with a revocation server to see if Microsoft’s ACS cert is still valid, so the proxy still needs some clearance. The service account (the IIS app pool identity) needs access to: www.public-trust.com mscrl.microsoft.com We still got this error periodically with different accounts running the app pool. We fixed that by ensuring the machine-wide proxy settings are set up, so every account uses the correct proxy: netsh winhttp set proxy proxy-server="http://proxy.x.y.z" - and you might need to run this to clear out your credential cache: certutil -urlcache * delete If your network guys end up grudgingly opening ports, they can restrict connections to the IP address range for your chosen Azure datacentre, which might make them happier - see Windows Azure Datacenter IP Ranges. After all that you've hopefully got an on-premise service listening in the cloud, which you can consume from pretty much any technology.

    Read the article

  • LINQ – SequenceEqual() method

    - by nmarun
    I have been looking at LINQ extension methods and have blogged about what I learned from them in my blog space. Next in line is the SequenceEqual() method. Here’s the description about this method: “Determines whether two sequences are equal by comparing the elements by using the default equality comparer for their type.” Let’s play with some code: 1: int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; 2: // int[] numbersCopy = numbers; 3: int[] numbersCopy = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; 4:  5: Console.WriteLine(numbers.SequenceEqual(numbersCopy)); This gives an output of ‘True’ – basically compares each of the elements in the two arrays and returns true in this case. The result is same even if you uncomment line 2 and comment line 3 (I didn’t need to say that now did I?). So then what happens for custom types? For this, I created a Product class with the following definition: 1: class Product 2: { 3: public int ProductId { get; set; } 4: public string Name { get; set; } 5: public string Category { get; set; } 6: public DateTime MfgDate { get; set; } 7: public Status Status { get; set; } 8: } 9:  10: public enum Status 11: { 12: Active = 1, 13: InActive = 2, 14: OffShelf = 3, 15: } In my calling code, I’m just adding a few product items: 1: private static List<Product> GetProducts() 2: { 3: return new List<Product> 4: { 5: new Product 6: { 7: ProductId = 1, 8: Name = "Laptop", 9: Category = "Computer", 10: MfgDate = new DateTime(2003, 4, 3), 11: Status = Status.Active, 12: }, 13: new Product 14: { 15: ProductId = 2, 16: Name = "Compact Disc", 17: Category = "Water Sport", 18: MfgDate = new DateTime(2009, 12, 3), 19: Status = Status.InActive, 20: }, 21: new Product 22: { 23: ProductId = 3, 24: Name = "Floppy", 25: Category = "Computer", 26: MfgDate = new DateTime(1993, 3, 7), 27: Status = Status.OffShelf, 28: }, 29: }; 30: } Now for the actual check: 1: List<Product> products1 = GetProducts(); 2: List<Product> products2 = GetProducts(); 3:  4: Console.WriteLine(products1.SequenceEqual(products2)); This one returns ‘False’ and the reason is simple – this one checks for reference equality and the products in the both the lists get different ‘memory addresses’ (sounds like I’m talking in ‘C’). In order to modify this behavior and return a ‘True’ result, we need to modify the Product class as follows: 1: class Product : IEquatable<Product> 2: { 3: public int ProductId { get; set; } 4: public string Name { get; set; } 5: public string Category { get; set; } 6: public DateTime MfgDate { get; set; } 7: public Status Status { get; set; } 8:  9: public override bool Equals(object obj) 10: { 11: return Equals(obj as Product); 12: } 13:  14: public bool Equals(Product other) 15: { 16: //Check whether the compared object is null. 17: if (ReferenceEquals(other, null)) return false; 18:  19: //Check whether the compared object references the same data. 20: if (ReferenceEquals(this, other)) return true; 21:  22: //Check whether the products' properties are equal. 23: return ProductId.Equals(other.ProductId) 24: && Name.Equals(other.Name) 25: && Category.Equals(other.Category) 26: && MfgDate.Equals(other.MfgDate) 27: && Status.Equals(other.Status); 28: } 29:  30: // If Equals() returns true for a pair of objects 31: // then GetHashCode() must return the same value for these objects. 32: // read why in the following articles: 33: // http://geekswithblogs.net/akraus1/archive/2010/02/28/138234.aspx 34: // http://stackoverflow.com/questions/371328/why-is-it-important-to-override-gethashcode-when-equals-method-is-overriden-in-c 35: public override int GetHashCode() 36: { 37: //Get hash code for the ProductId field. 38: int hashProductId = ProductId.GetHashCode(); 39:  40: //Get hash code for the Name field if it is not null. 41: int hashName = Name == null ? 0 : Name.GetHashCode(); 42:  43: //Get hash code for the ProductId field. 44: int hashCategory = Category.GetHashCode(); 45:  46: //Get hash code for the ProductId field. 47: int hashMfgDate = MfgDate.GetHashCode(); 48:  49: //Get hash code for the ProductId field. 50: int hashStatus = Status.GetHashCode(); 51: //Calculate the hash code for the product. 52: return hashProductId ^ hashName ^ hashCategory & hashMfgDate & hashStatus; 53: } 54:  55: public static bool operator ==(Product a, Product b) 56: { 57: // Enable a == b for null references to return the right value 58: if (ReferenceEquals(a, b)) 59: { 60: return true; 61: } 62: // If one is null and the other not. Remember a==null will lead to Stackoverflow! 63: if (ReferenceEquals(a, null)) 64: { 65: return false; 66: } 67: return a.Equals((object)b); 68: } 69:  70: public static bool operator !=(Product a, Product b) 71: { 72: return !(a == b); 73: } 74: } Now THAT kinda looks overwhelming. But lets take one simple step at a time. Ok first thing you’ve noticed is that the class implements IEquatable<Product> interface – the key step towards achieving our goal. This interface provides us with an ‘Equals’ method to perform the test for equality with another Product object, in this case. This method is called in the following situations: when you do a ProductInstance.Equals(AnotherProductInstance) and when you perform actions like Contains<T>, IndexOf() or Remove() on your collection Coming to the Equals method defined line 14 onwards. The two ‘if’ blocks check for null and referential equality using the ReferenceEquals() method defined in the Object class. Line 23 is where I’m doing the actual check on the properties of the Product instances. This is what returns the ‘True’ for us when we run the application. I have also overridden the Object.Equals() method which calls the Equals() method of the interface. One thing to remember is that anytime you override the Equals() method, its’ a good practice to override the GetHashCode() method and overload the ‘==’ and the ‘!=’ operators. For detailed information on this, please read this and this. Since we’ve overloaded the operators as well, we get ‘True’ when we do actions like: 1: Console.WriteLine(products1.Contains(products2[0])); 2: Console.WriteLine(products1[0] == products2[0]); This completes the full circle on the SequenceEqual() method. See the code used in the article here.

    Read the article

  • ldirectord ipvsadm not show reals ip and not work wtih pacemaker and corosync

    - by miguer27
    first thanks for your time. I'm having a problem with ldirectord that I can not solve, I comment my situation: I have two nodes with pace maker and corosync and configure somes resources: root@ldap1:/home/mamartin# crm status Last updated: Tue Jun 3 12:58:30 2014 Last change: Tue Jun 3 12:23:47 2014 via cibadmin on ldap1 Stack: openais Current DC: ldap2 - partition with quorum Version: 1.1.7-ee0730e13d124c3d58f00016c3376a1de5323cff 2 Nodes configured, 2 expected votes 7 Resources configured. Online: [ ldap1 ldap2 ] Resource Group: IPV_LVS IPV_4 (ocf::heartbeat:IPaddr2): Started ldap1 IPV_6 (ocf::heartbeat:IPv6addr): Started ldap1 lvs (ocf::heartbeat:ldirectord): Started ldap1 Clone Set: clon_IPV_lo [IPV_lo] Started: [ ldap2 ] Stopped: [ IPV_lo:1 ] root@ldap1:/home/mamartin# crm configure show node ldap2 \ attributes standby="off" node ldap1 \ attributes standby="off" primitive IPV-lo_4 ocf:heartbeat:IPaddr \ params ip="192.168.1.10" cidr_netmask="32" nic="lo" \ op monitor interval="5s" primitive IPV-lo_6 ocf:heartbeat:IPv6addrLO \ params ipv6addr="[fc00:1::3]" cidr_netmask="64" \ op monitor interval="5s" primitive IPV_4 ocf:heartbeat:IPaddr2 \ params ip="192.168.1.10" nic="eth0" cidr_netmask="25" lvs_support="true" \ op monitor interval="5s" primitive IPV_6 ocf:heartbeat:IPv6addr \ params ipv6addr="[fc00:1::3]" nic="eth0" cidr_netmask="64" \ op monitor interval="5s" primitive lvs ocf:heartbeat:ldirectord \ params configfile="/etc/ldirectord.cf" \ op monitor interval="20" timeout="10" \ meta target-role="Started" group IPV_LVS IPV_4 IPV_6 lvs group IPV_lo IPV-lo_6 IPV-lo_4 clone clon_IPV_lo IPV_lo \ meta interleave="true" target-role="Started" location cli-prefer-IPV_LVS IPV_LVS \ rule $id="cli-prefer-rule-IPV_LVS" inf: #uname eq ldap1 colocation LVS_no_IPV_lo -inf: clon_IPV_lo IPV_LVS property $id="cib-bootstrap-options" \ dc-version="1.1.7-ee0730e13d124c3d58f00016c3376a1de5323cff" \ cluster-infrastructure="openais" \ expected-quorum-votes="2" \ no-quorum-policy="ignore" \ stonith-enabled="false" \ last-lrm-refresh="1401264327" rsc_defaults $id="rsc-options" \ resource-stickiness="1000" The problem is in the ipvsadm only show a one real IP, when i configured two now, show the ldirector.cf: root@ldap1:/home/mamartin# ipvsadm IP Virtual Server version 1.2.1 (size=4096) Prot LocalAddress:Port Scheduler Flags - RemoteAddress:Port Forward Weight ActiveConn InActConn TCP ldap-maqueta.cica.es:ldap wrr - ldap2.cica.es:ldap Route 4 0 0 TCP [[fc00:1::3]]:ldap wrr - [[fc00:1::2]]:ldap Route 4 0 0 root@ldap1:/home/mamartin# cat /etc/ldirectord.cf checktimeout=10 checkinterval=2 autoreload=yes logfile="/var/log/ldirectord.log" quiescent=yes #ipv4 virtual=192.168.1.10:389 real=192.168.1.11:389 gate 4 real=192.168.1.12:389 gate 4 scheduler=wrr protocol=tcp checktype=on #ipv6 virtual6=[[fc00:1::3]]:389 real6=[[fc00:1::1]]:389 gate 4 real6=[[fc00:1::2]]:389 gate 4 scheduler=wrr protocol=tcp checkport=389 checktype=on and in the logs I see nothing clear: root@ldap1:/home/mamartin# ldirectord -d /etc/ldirectord.cf start DEBUG2: Running system(/sbin/ipvsadm -a -t 192.168.1.10:389 -r 192.168.1.11:389 -g -w 0) Running system(/sbin/ipvsadm -a -t 192.168.1.10:389 -r 192.168.1.11:389 -g -w 0) DEBUG2: Quiescent real server: 192.168.1.11:389 (192.168.1.10:389) (Weight set to 0) Quiescent real server: 192.168.1.11:389 (192.168.1.10:389) (Weight set to 0) DEBUG2: Disabled real server=on:tcp:192.168.1.11:389:::4:gate:\/: (virtual=tcp:192.168.1.10:389) DEBUG2: Running system(/sbin/ipvsadm -a -t 192.168.1.10:389 -r 192.168.1.12:389 -g -w 0) Running system(/sbin/ipvsadm -a -t 192.168.1.10:389 -r 192.168.1.12:389 -g -w 0) DEBUG2: Quiescent real server: 192.168.1.12:389 (192.168.1.10:389) (Weight set to 0) Quiescent real server: 192.168.1.12:389 (192.168.1.10:389) (Weight set to 0) DEBUG2: Disabled real server=on:tcp:192.168.1.12:389:::4:gate:\/: (virtual=tcp:192.168.1.10:389) DEBUG2: Checking on: Real servers are added without any checks DEBUG2: Resetting soft failure count: 192.168.1.12:389 (tcp:192.168.1.10:389) Resetting soft failure count: 192.168.1.12:389 (tcp:192.168.1.10:389) DEBUG2: Running system(/sbin/ipvsadm -a -t 192.168.1.10:389 -r 192.168.1.12:389 -g -w 4) Running system(/sbin/ipvsadm -a -t 192.168.1.10:389 -r 192.168.1.12:389 -g -w 4) Destination already exists root@ldap1:/home/mamartin# cat /var/log/ldirectord.log [Tue Jun 3 09:39:29 2014|ldirectord.cf|19266] Quiescent real server: 192.168.1.11:389 (192.168.1.10:389) (Weight set to 0) [Tue Jun 3 09:39:29 2014|ldirectord.cf|19266] Quiescent real server: 192.168.1.12:389 (192.168.1.10:389) (Weight set to 0) [Tue Jun 3 09:39:29 2014|ldirectord.cf|19266] Resetting soft failure count: 192.168.1.12:389 (tcp:192.168.1.10:389) [Tue Jun 3 09:39:29 2014|ldirectord.cf|19266] system(/sbin/ipvsadm -a -t 192.168.1.10:389 -r 192.168.1.12:389 -g -w 4) failed: [Tue Jun 3 09:39:29 2014|ldirectord.cf|19266] Added real server: 192.168.1.12:389 (192.168.1.10:389) (Weight set to 4) [Tue Jun 3 09:39:29 2014|ldirectord.cf|19266] Resetting soft failure count: 192.168.1.11:389 (tcp:192.168.1.10:389) [Tue Jun 3 09:39:29 2014|ldirectord.cf|19266] Restored real server: 192.168.1.11:389 (192.168.1.10:389) (Weight set to 4) [Tue Jun 3 09:39:29 2014|ldirectord.cf|19266] Resetting soft failure count: [[fc00:1::2]]:389 (tcp:[[fc00:1::3]]:389) [Tue Jun 3 09:39:29 2014|ldirectord.cf|19266] system(/sbin/ipvsadm -a -t [[fc00:1::3]]:389 -r [[fc00:1::2]]:389 -g -w 4) failed: [Tue Jun 3 09:39:29 2014|ldirectord.cf|19266] Added real server: [[fc00:1::2]]:389 ([[fc00:1::3]]:389) (Weight set to 4) [Tue Jun 3 09:39:29 2014|ldirectord.cf|19266] Resetting soft failure count: [[fc00:1::1]]:389 (tcp:[[fc00:1::3]]:389) [Tue Jun 3 09:39:29 2014|ldirectord.cf|19266] Restored real server: [[fc00:1::1]]:389 ([[fc00:1::3]]:389) (Weight set to 4) do not know if this is a bug or a configuration error, can anyone help? Regards.

    Read the article

  • How do you mock ViewModel Commands using moq?

    - by devnet247
    Hi I might be approaching this all wrong.But please help me to understand. I really want to TDD building wpf application using Moq. I would like to mock the viewmodel. Application Show a list of contacts and when you double click on a contact it shows the contact. Test Moq GetContactsCommand.Test it has been called. Test that you get a list of contacts. Not sure how to mock the viewModel and it's commands can you correct me? So I have started to do the following [Test] public void Should_be_able_to_mock_getContactsCommand_and_get_a_list_of_contacts() { //Arrange var expectedContacts = new ObservableCollection<ContactViewModel> { new ContactViewModel(new ContactModel { FirstName = "Jo", LastName = "Bloggs", Email = "[email protected]" }), new ContactViewModel(new ContactModel { FirstName = "Mary", LastName = "Bloggs", Email = "[email protected]" }) }; var mock = new Mock<IContactListViewModel>(); mock.SetupGet(x => x.GetContactsCommand).Verifiable(); mock.SetupGet(x => x.Contacts).Returns(expectedContacts); //Act //? //assert mock.VerifySet(x => x.Contacts, Times.AtLeastOnce()); mock.Object.Contacts.Count.ShouldEqual(expectedContacts.Count); } public interface IContactListViewModel { ObservableCollection<ContactViewModel> Contacts { get; set; } ICommand GetContactsCommand{ get; } } public interface IContactModel { string FirstName { get; set; } string LastName { get; set; } string Email { get; set; } } public class ContactModel : IContactModel { public string FirstName { get; set; } public string LastName { get; set; } public string Email { get; set; } } public class ContactViewModel : ViewModelBase { private readonly ContactModel _contactModel; public ContactViewModel(ContactModel contactModel) { _contactModel = contactModel; } public string FirstName { get { return _contactModel.FirstName; } set { _contactModel.FirstName = value; OnPropertyChanged("FirstName"); } } public string LastName { get { return _contactModel.LastName; } set { _contactModel.LastName = value; OnPropertyChanged("LastName"); } } public string Email { get { return _contactModel.Emai; } set { _contactModel.Email = value; OnPropertyChanged("Email"); } } } public class ContactListViewModel : ViewModelBase, IContactListViewModel { private ObservableCollection<ContactViewModel> _contacts; public ObservableCollection<ContactViewModel> Contacts { get { return _contacts; } set { _contacts = value; OnPropertyChanged("Contacts"); } } private RelayCommand _getContactsCommand; public ICommand GetContactsCommand { get { return _getContactsCommand ?? (_getContactsCommand = new RelayCommand(x => GetContacts(), x => CanGetContacts)); } } private static bool CanGetContacts { get { return true; } } private void GetContacts() { //pretend we are going to the service or db whatever Contacts = new ObservableCollection<ContactViewModel> { new ContactViewModel(new ContactModel { FirstName = "Jo", LastName = "Bloggs", Email = "[email protected]" }), new ContactViewModel(new ContactModel { FirstName = "Mary", LastName = "Bloggs", Email = "[email protected]" }) }; } }

    Read the article

  • How do I use MediaRecorder to record video without causing a segmentation fault?

    - by rabidsnail
    I'm trying to use android.media.MediaRecorder to record video, and no matter what I do the android runtime segmentation faults when I call prepare(). Here's an example: public void onCreate(Bundle savedInstanceState) { Log.i("video test", "making recorder"); MediaRecorder recorder = new MediaRecorder(); contentResolver = getContentResolver(); try { super.onCreate(savedInstanceState); Log.i("video test", "--------------START----------------"); SurfaceView target_view = new SurfaceView(this); Log.i("video test", "making surface"); Surface target = target_view.getHolder().getSurface(); Log.i("video test", target.toString()); Log.i("video test", "new recorder"); recorder = new MediaRecorder(); Log.i("video test", "set display"); recorder.setPreviewDisplay(target); Log.i("video test", "pushing surface"); setContentView(target_view); Log.i("video test", "set audio source"); recorder.setAudioSource(MediaRecorder.AudioSource.MIC); Log.i("video test", "set video source"); recorder.setVideoSource(MediaRecorder.VideoSource.DEFAULT); Log.i("video test", "set output format"); recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP); Log.i("video test", "set audio encoder"); recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB); Log.i("video test", "set video encoder"); recorder.setVideoEncoder(MediaRecorder.VideoEncoder.MPEG_4_SP); Log.i("video test", "set max duration"); recorder.setMaxDuration(3600); Log.i("video test", "set on info listener"); recorder.setOnInfoListener(new listener()); Log.i("video test", "set video size"); recorder.setVideoSize(320, 240); Log.i("video test", "set video frame rate"); recorder.setVideoFrameRate(15); Log.i("video test", "set output file"); recorder.setOutputFile(get_path(this, "foo.3gp")); Log.i("video test", "prepare"); recorder.prepare(); Log.i("video test", "start"); recorder.start(); Log.i("video test", "sleep"); Thread.sleep(3600); Log.i("video test", "stop"); recorder.stop(); Log.i("video test", "release"); recorder.release(); Log.i("video test", "-----------------SUCCESS------------------"); finish(); } catch (Exception e) { Log.i("video test", e.toString()); recorder.reset(); recorder.release(); Log.i("video tets", "-------------------FAIL-------------------"); finish(); } } public static String get_path (Context context, String fname) { String path = context.getFileStreamPath("foo").getParentFile().getAbsolutePath(); String res = path+"/"+fname; Log.i("video test", "path: "+res); return res; } class listener implements MediaRecorder.OnInfoListener { public void onInfo(MediaRecorder recorder, int what, int extra) { Log.i("video test", "Video Info: "+what+", "+extra); } }

    Read the article

  • Can I constrain a template parameter class to implement the interfaces that are supported by other?

    - by K. Georgiev
    The name is a little blurry, so here's the situation: I'm writing code to use some 'trajectories'. The trajectories are an abstract thing, so I describe them with different interfaces. So I have a code as this: namespace Trajectories { public interface IInitial < Atom > { Atom Initial { get; set; } } public interface ICurrent < Atom > { Atom Current { get; set; } } public interface IPrevious < Atom > { Atom Previous { get; set; } } public interface ICount < Atom > { int Count { get; } } public interface IManualCount < Atom > : ICount < Atom > { int Count { get; set; } } ... } Every concrete implementation of a trajectory will implement some of the above interfaces. Here's a concrete implementation of a trajectory: public class SimpleTrajectory < Atom > : IInitial < Atom >, ICurrent < Atom >, ICount < Atom > { // ICount public int Count { get; private set; } // IInitial private Atom initial; public Atom Initial { get { return initial; } set { initial = current = value; Count = 1; } } // ICurrent private Atom current; public Atom Current { get { return current; } set { current = value; Count++; } } } Now, I want to be able to deduce things about the trajectories, so, for example I want to support predicates about different properties of some trajectory: namespace Conditions { public interface ICondition &lt Atom, Trajectory &gt { bool Test(ref Trajectory t); } public class CountLessThan &lt Atom, Trajectory &gt : ICondition &lt Atom, Trajectory &gt where Trajectory : Trajectories.ICount &lt Atom &gt { public int Value { get; set; } public CountLessThan() { } public bool Test(ref Trajectory t) { return t.Count &lt Value; } } public class CurrentNormLessThan &lt Trajectory &gt : ICondition &lt Complex, Trajectory &gt where Trajectory : Trajectories.ICurrent &lt Complex &gt { public double Value { get; set; } public CurrentNormLessThan() { } public bool Test(ref Trajectory t) { return t.Current.Norm() &lt Value; } } } Now, here's the question: What if I wanted to implement AND predicate? It would be something like this: public class And &lt Atom, CondA, TrajectoryA, CondB, TrajectoryB, Trajectory &gt : ICondition &lt Atom, Trajectory &gt where CondA : ICondition &lt Atom, TrajectoryA &gt where TrajectoryA : // Some interfaces where CondB : ICondition &lt Atom, TrajectoryB &gt where TrajectoryB : // Some interfaces where Trajectory : // MUST IMPLEMENT THE INTERFACES FOR TrajectoryA AND THE INTERFACES FOR TrajectoryB { public CondA A { get; set; } public CondB B { get; set; } public bool Test(ref Trajectory t){ return A.Test(t) && B.Test(t); } } How can I say: support only these trajectories, for which the arguments of AND are ok? So I can be able to write: var vand = new CountLessThan(32) & new CurrentNormLessThan(4.0); I think if I create an orevall interface for every subset of interfaces, I could be able to do it, but it will become quite ugly.

    Read the article

  • Saving child collections with NHibernate

    - by Ben
    Hi, I am in the process or learning NHibernate so bare with me. I have an Order class and a Transaction class. Order has a one to many association with transaction. The transaction table in my database has a not null constraint on the OrderId foreign key. Order class: public class Order { public virtual Guid Id { get; set; } public virtual DateTime CreatedOn { get; set; } public virtual decimal Total { get; set; } public virtual ICollection<Transaction> Transactions { get; set; } public Order() { Transactions = new HashSet<Transaction>(); } } Order Mapping: <class name="Order" table="Orders"> <cache usage="read-write"/> <id name="Id"> <generator class="guid"/> </id> <property name="CreatedOn" type="datetime"/> <property name="Total" type="decimal"/> <set name="Transactions" table="Transactions" lazy="false" inverse="true"> <key column="OrderId"/> <one-to-many class="Transaction"/> </set> Transaction Class: public class Transaction { public virtual Guid Id { get; set; } public virtual DateTime ExecutedOn { get; set; } public virtual bool Success { get; set; } public virtual Order Order { get; set; } } Transaction Mapping: <class name="Transaction" table="Transactions"> <cache usage="read-write"/> <id name="Id" column="Id" type="Guid"> <generator class="guid"/> </id> <property name="ExecutedOn" type="datetime"/> <property name="Success" type="bool"/> <many-to-one name="Order" class="Order" column="OrderId" not-null="true"/> Really I don't want a bidirectional association. There is no need for my transaction objects to reference their order object directly (I just need to access the transactions of an order). However, I had to add this so that Order.Transactions is persisted to the database: Repository: public void Update(Order entity) { using (ISession session = NHibernateHelper.OpenSession()) { using (ITransaction transaction = session.BeginTransaction()) { session.Update(entity); foreach (var tx in entity.Transactions) { tx.Order = entity; session.SaveOrUpdate(tx); } transaction.Commit(); } } } My problem is that this will then issue an update for every transaction on the order collection (regardless of whether it has changed or not). What I was trying to get around was having to explicitly save the transaction before saving the order and instead just add the transactions to the order and then save the order: public void Can_add_transaction_to_existing_order() { var orderRepo = new OrderRepository(); var order = orderRepo.GetById(new Guid("aa3b5d04-c5c8-4ad9-9b3e-9ce73e488a9f")); Transaction tx = new Transaction(); tx.ExecutedOn = DateTime.Now; tx.Success = true; order.Transactions.Add(tx); orderRepo.Update(order); } Although I have found quite a few articles covering the set up of a one-to-many association, most of these discuss retrieving of data and not persisting back. Many thanks, Ben

    Read the article

  • Dispatcher Timer Problem

    - by will
    I am trying to make a game in silverlight that also has widgets in it. To do this I am using a dispatcher timer running a game loop that updates graphics etc. In this I have a variable that has to be accessed by both by the constantly running game loop and UI event code. At first look it seemed that the gameloop had its own local copy of currentUnit (the variable), despite the variable being declared globally. I am trying to update currentUnit with an event by the widget part of the app, but the timer's version of the variable is not being updated. What can I do get the currentUnit in the gameloop loop to be updated whenever I update currentUnit via a click event? Here is the code for setting currentUnit as part of a click event DataContractJsonSerializer serializer = new DataContractJsonSerializer(typeof(Unit)); currentUnit = serializer.ReadObject(e.Result) as Unit; txtName.Text = currentUnit.name; Canvas.SetLeft(txtName, 100 - (int)Math.Ceiling(txtName.ActualWidth) / 2); txtX.Text = "" + currentUnit.x; txtY.Text = "" + currentUnit.y; txtX.Text = "" + currentUnit.owner; txtY.Text = "" + currentUnit.moved; txtName.Text = "" + currentUnit.GetHashCode(); And here is a snippet from the gameLoop loop //deal with phase changes and showing stuff if (txtPhase.Text == "Move" && movementPanel.Visibility == Visibility.Collapsed) { if (currentUnit != null) { if (currentUnit.owner) { if (currentUnit.moved) { txtMoved.Text = "This Unit has Already Moved!"; movementPanel.Visibility = Visibility.Collapsed; } else { txtMoved.Text = "" + currentUnit.GetHashCode(); movementPanel.Visibility = Visibility.Visible; } } else { txtMoved.Text = "bam"; movementPanel.Visibility = Visibility.Collapsed; } } else { txtMoved.Text = "slam"; movementPanel.Visibility = Visibility.Collapsed; } //loadUnitList(); } Here is the code for my unit class. using System; public class Unit { public int id { get; set; } public string name { get; set; } public string image { get; set; } public int x { get; set; } public int y { get; set; } public bool owner { get; set; } public int rotation { get; set; } public double movement { get; set; } public string type { get; set; } public bool moved { get; set; } public bool fired { get; set; } } Overall, any simple types, like a double is being 'updated' correctly, yet a complex of my own type (Unit) seems to be holding a local copy. Please help, I've asked other places and no one has had an answer for me!

    Read the article

  • The type '' was not mapped

    - by Mike
    I've been trying to fix this error for awhile now. I get this error any time my application tries to create an instance of my data context. Below is the code: using System; using System.Collections.Generic; using System.Linq; using System.Web; using RandomRentals.Models; using System.Data.Entity; namespace RandomRentals.Models { public class RentalContext : DbContext { public DbSet<Rental> Rentals { get; set; } public DbSet<Category> Categories { get; set; } public DbSet<Item> Items { get; set; } public DbSet<Billing> Billings { get; set; } public DbSet<User> Users { get; set; } public DbSet<Video> Videos { get; set; } public DbSet<Picture> Pictures { get; set; } public DbSet<ServiceType> ServiceTypes { get; set; } public DbSet<Rating> Ratings { get; set; } public DbSet<Business> Businesses { get; set; } public DbSet<BusinessHour> BusinessHours { get; set; } } } Here is the stack Trace: [InvalidOperationException: The type 'RandomRentals.Rental' was not mapped. Check that the type has not been explicitly excluded by using the Ignore method or NotMappedAttribute data annotation. Verify that the type was defined as a class, is not primitive, nested or generic, and does not inherit from EntityObject.] System.Data.Entity.Internal.DbSetDiscoveryService.GetSets() +706 System.Data.Entity.Internal.DbSetDiscoveryService.InitializeSets() +31 System.Data.Entity.DbContext.DiscoverAndInitializeSets() +56 System.Data.Entity.DbContext.InitializeLazyInternalContext(IInternalConnection internalConnection, DbCompiledModel model) +79 System.Data.Entity.DbContext..ctor() +99 RandomRentals.Models.RentalContext..ctor() +44 RandomRentals.Models.UserModel..ctor() in C:\Users\nikka\Desktop\RandomRentals\RandomRentals\Models\UserModel.cs:11 [TargetInvocationException: Exception has been thrown by the target of an invocation.] System.RuntimeTypeHandle.CreateInstance(RuntimeType type, Boolean publicOnly, Boolean noCheck, Boolean& canBeCached, RuntimeMethodHandleInternal& ctor, Boolean& bNeedSecurityCheck) +0 System.RuntimeType.CreateInstanceSlow(Boolean publicOnly, Boolean skipCheckThis, Boolean fillCache) +98 System.RuntimeType.CreateInstanceDefaultCtor(Boolean publicOnly, Boolean skipVisibilityChecks, Boolean skipCheckThis, Boolean fillCache) +241 System.Activator.CreateInstance(Type type, Boolean nonPublic) +69 System.Web.Mvc.DefaultModelBinder.CreateModel(ControllerContext controllerContext, ModelBindingContext bindingContext, Type modelType) +199 System.Web.Mvc.DefaultModelBinder.BindComplexModel(ControllerContext controllerContext, ModelBindingContext bindingContext) +572 System.Web.Mvc.DefaultModelBinder.BindModel(ControllerContext controllerContext, ModelBindingContext bindingContext) +449 System.Web.Mvc.ControllerActionInvoker.GetParameterValue(ControllerContext controllerContext, ParameterDescriptor parameterDescriptor) +317 System.Web.Mvc.ControllerActionInvoker.GetParameterValues(ControllerContext controllerContext, ActionDescriptor actionDescriptor) +117 System.Web.Mvc.ControllerActionInvoker.InvokeAction(ControllerContext controllerContext, String actionName) +343 System.Web.Mvc.Controller.ExecuteCore() +116 System.Web.Mvc.ControllerBase.Execute(RequestContext requestContext) +97 System.Web.Mvc.ControllerBase.System.Web.Mvc.IController.Execute(RequestContext requestContext) +10 System.Web.Mvc.<>c__DisplayClassb.<BeginProcessRequest>b__5() +37 System.Web.Mvc.Async.<>c__DisplayClass1.<MakeVoidDelegate>b__0() +21 System.Web.Mvc.Async.<>c__DisplayClass8`1.<BeginSynchronous>b__7(IAsyncResult _) +12 System.Web.Mvc.Async.WrappedAsyncResult`1.End() +62 System.Web.Mvc.<>c__DisplayClasse.<EndProcessRequest>b__d() +50 System.Web.Mvc.SecurityUtil.<GetCallInAppTrustThunk>b__0(Action f) +7 System.Web.Mvc.SecurityUtil.ProcessInApplicationTrust(Action action) +22 System.Web.Mvc.MvcHandler.EndProcessRequest(IAsyncResult asyncResult) +60 System.Web.Mvc.MvcHandler.System.Web.IHttpAsyncHandler.EndProcessRequest(IAsyncResult result) +9 System.Web.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +8970061 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +184 Here is the full error text: The type 'RandomRentals.Rental' was not mapped. Check that the type has not been explicitly excluded by using the Ignore method or NotMappedAttribute data annotation. Verify that the type was defined as a class, is not primitive, nested or generic, and does not inherit from EntityObject. Any help would be greatly appreciated

    Read the article

  • Cannot update any cells in datagrid in vb6

    - by Hybrid SyntaX
    Hello I'm trying to update a row in datagrid but the problem is that i can't even change its cell values I had set my datagrid AllowUpdate property to true , but i can't still change any cell values Option Explicit Dim conn As New ADODB.Connection Dim cmd As New ADODB.Command Dim recordset As New ADODB.recordset Public Action As String Public Person_Id As Integer Public Selected_Person_Id As Integer Public Phone_Type As String Public Sub InitializeConnection() Dim str As String str = _ "Provider=Microsoft.Jet.OLEDB.4.0;" & _ "Data Source=" + App.Path + "\phonebook.mdb;" & _ "Persist Security Info=False" conn.CursorLocation = adUseClient If conn.state = 0 Then conn.ConnectionString = str conn.Open (conn.ConnectionString) End If End Sub Public Sub AbandonConnection() If conn.state <> 0 Then conn.Close End If End Sub Public Sub Persons_Read() Dim qry_all As String ' qry_all = "select * from person,web,phone Where web.personid = person.id And phone.personid = person.id" qry_all = "SELECT * FROM person order by id" Call InitializeConnection cmd.CommandText = qry_all cmd.CommandType = adCmdText Set cmd.ActiveConnection = conn If conn.state = 1 Then Set recordset = cmd.Execute() End If BindDatagrid End Sub Private Function Person_Delete(id As Integer) Dim qry_all As String qry_all = "Delete * from person where person.id= " & id & " " Call InitializeConnection cmd.CommandText = qry_all cmd.CommandType = adCmdText Set cmd.ActiveConnection = conn If conn.state = 1 Then Set recordset = cmd.Execute() End If dg_Persons.Refresh End Function Private Function Person_Update() End Function Public Sub BindDatagrid() Set Me.dg_Persons.DataSource = recordset Me.dg_Persons.Refresh dg_Persons.Columns(0).Visible = False dg_Persons.Columns(4).Visible = False dg_Persons.Columns(1).Caption = "Name" dg_Persons.Columns(2).Caption = "Family" dg_Persons.Columns(3).Caption = "Nickname" dg_Persons.Columns(5).Caption = "Title" dg_Persons.Columns(6).Caption = "Job" End Sub Public Function DatagridReferesh() Call Me.Persons_Read End Function Private Sub cmd_Add_Click() frm_Person_Add.Caption = "Add a new person" frm_Person_Add.Show End Sub Private Sub cmd_Business_Click() ' frm_Phone.Caption = "Business Phones" frm_Phone.Phone_Type = "Business" frm_Phone.Person_Id = Selected_Person_Id frm_Phone.Tag = Selected_Person_Id frm_Phone.Show End Sub Private Sub cmd_Delete_Click() Dim msg_input As Integer msg_input = MsgBox("Are you sure you want to delete this person ?", vbYesNo) If msg_input = vbYes Then Person_Delete Selected_Person_Id MsgBox ("The person is deleted") frm_Phone.DatagridReferesh End If End Sub Private Sub cmd_Home_Click() 'frm_Phone.Caption = "Home Phones" frm_Phone.Phone_Type = "Home" frm_Phone.Person_Id = Selected_Person_Id frm_Phone.Tag = Selected_Person_Id frm_Phone.Show End Sub Private Sub cmd_Update_Click() If Not Selected_Person_Id = 0 Then frm_Person_Edit.Person_Id = Selected_Person_Id frm_Person_Edit.Show Else MsgBox "No person is selected" End If End Sub Public Function AddParam(name As String, param As Variant, paramType As DataTypeEnum) As ADODB.Parameter If param = "" Or param = Null Then param = " " End If Dim objParam As New ADODB.Parameter Set objParam = cmd.CreateParameter(name, paramType, adParamInput, Len(param), param) objParam.Value = Trim(param) Set AddParam = objParam End Function Private Sub Command1_Click() DatagridReferesh End Sub Private Sub Command2_Click() frm_Internet.Person_Id = Selected_Person_Id frm_Internet.Show End Sub Private Sub dg_Persons_BeforeColEdit(ByVal ColIndex As Integer, ByVal KeyAscii As Integer, Cancel As Integer) ' MsgBox ColIndex ' dg_Persons.Columns(ColIndex).Text = "S" ' dg_Persons.Columns(ColIndex).Locked = False ' dg_Persons.Columns(ColIndex).Text = "" 'dg_Persons.Columns(ColIndex).Value = "" 'Person_Edit dg_Persons.Columns(0).Value, dg_Persons.Columns(1).Value, dg_Persons.Columns(2).Value,dg_Persons.Columns(3).Value,dg_Persons.Columns(4).Value, dg_Persons.Columns(5).Value End Sub Private Sub dg_Persons_BeforeColUpdate(ByVal ColIndex As Integer, OldValue As Variant, Cancel As Integer) MsgBox ColIndex End Sub Private Sub dg_Persons_Click() If dg_Persons.Row <> -1 Then dg_Persons.SelBookmarks.Add Me.dg_Persons.RowBookmark(dg_Persons.Row) Selected_Person_Id = Val(dg_Persons.Columns(0).Value) End If End Sub Private Sub Form_Load() ' dg_Persons.AllowUpdate = True ' dg_Persons.EditActive = True Call Persons_Read dg_Persons.AllowAddNew = True dg_Persons.Columns(2).Locked = False End Sub Private Function Person_Edit(id As Integer, name As String, family As String, nickname As String, title As String, job As String) InitializeConnection cmd.CommandText = "Update person set name=@name , family=@family , nickname=@nickname , title =@title , job=@job where id= " & id & "" cmd.Parameters.Append AddParam("name", name, adVarChar) cmd.Parameters.Append AddParam("family", family, adVarChar) cmd.Parameters.Append AddParam("nickname", nickname, adVarChar) cmd.Parameters.Append AddParam("title", title, adVarChar) cmd.Parameters.Append AddParam("job", job, adVarChar) cmd.ActiveConnection = conn cmd.CommandType = adCmdText cmd.Execute End Function Private Function Person_Search(q As String) Dim qry_all As String qry_all = "SELECT * FROM person where person.name like '%" & q & "%' or person.family like '%" & q & "%' or person.nickname like '%" & q & "%'" Call InitializeConnection cmd.CommandText = qry_all cmd.CommandType = adCmdText Set cmd.ActiveConnection = conn If conn.state = 1 Then Set recordset = cmd.Execute() End If BindDatagrid End Function Private Sub mnu_About_Click() frm_About.Show End Sub Private Sub submnu_exit_Click() End End Sub Private Sub txt_Search_Change() Person_Search txt_Search.Text End Sub Thanks in advance

    Read the article

  • How to get Media Picker Field via proxy record of many-to-many in orchard

    - by Sergey Schipanov
    I need to access mediapickerfield in Widget view. This field is relative to 'ActionPart'. I have a problem, when I create many-to-many relationships to display my 'ActionPart' in the widget. When I mapped many-to-many I take an 'ActionPart' and but cannot access the mediapickerfield. Records classes public class ActionPartRecord : ContentPartRecord { public virtual string Text { get; set; } public virtual double Price { get; set; } public virtual int TextPosX { get; set; } public virtual int TextPosY { get; set; } public virtual String TextSale { get; set; } public virtual int Color { get; set; } } public class ActionListRecord { public virtual int Id { get; set; } public virtual ActionPartRecord ActionPartRecord { get; set; } public virtual ActionWidgetPartRecord ActionWidgetPartRecord { get; set; } } public class ActionWidgetPartRecord : ContentPartRecord { public ActionWidgetPartRecord() { ActionList = new List<ActionListRecord>(); } public virtual IList<ActionListRecord> ActionList { get; set; } } public class ActionWidgetPart : ContentPart<ActionWidgetPartRecord> { public IEnumerable<ActionPartRecord> ActionList { get { return Record.ActionList.Select(x => x.ActionPartRecord); } } } ActionPart class public class ActionPart : ContentPart<ActionPartRecord> { public String Text { get { return Record.Text; } set { Record.Text = value; } } /*other field*/ } Migrations public int Create() { SchemaBuilder.CreateTable("ActionPartRecord", table => table .ContentPartRecord() .Column<string>("Text") .Column<double>("Price") .Column<int>("TextPosX") .Column<int>("TextPosY") .Column<string>("TextSale") .Column<int>("Color") ); ContentDefinitionManager.AlterPartDefinition("ActionPart", builder => builder .WithField("BaseImage", fieldBuilder => fieldBuilder.OfType("MediaPickerField").WithDisplayName("Action Image")) .WithField("PatternImage", fieldBuilder => fieldBuilder.OfType("MediaPickerField").WithDisplayName("Pattern Image")) .WithField("TimeExp", fieldBuilder => fieldBuilder.OfType("DateTimeField").WithDisplayName("Expecting date")) .Attachable()); ContentDefinitionManager.AlterTypeDefinition("Action", cfg => cfg .WithPart("CommonPart") .WithPart("TitlePart") .WithPart("RoutePart") .WithPart("BodyPart") .WithPart("ActionPart") .Creatable() .Indexed()); SchemaBuilder.CreateTable("ActionListRecord", table => table .Column<int>("Id", column => column.PrimaryKey().Identity()) .Column<int>("ActionPartRecord_Id") .Column<int>("ActionWidgetPartRecord_Id") ); SchemaBuilder.CreateTable("ActionWidgetPartRecord", table => table .ContentPartRecord() ); ContentDefinitionManager.AlterPartDefinition( "ActionWidgetPart", builder => builder.Attachable()); ContentDefinitionManager.AlterTypeDefinition("ActionWidget", cfg => cfg .WithPart("ActionWidgetPart") .WithPart("WidgetPart") .WithPart("CommonPart") .WithSetting("Stereotype", "Widget")); return 1; } Driver Display method protected override DriverResult Display( ActionWidgetPart part, string displayType, dynamic shapeHelper) { return ContentShape("Parts_ActionWidget", () => shapeHelper.Parts_ActionWidget( ContentPart: part, ActionList: part.ActionList)); } Widget View @foreach (var action in Model.ActionList) { <div class="item"> *How to access BaseImage Field in this row* <div class="sale-pattern"></div> <div class="container"> <div class="carousel-caption"> <h1>@action.Text</h1> <h1 class="price">@action.Price</h1> </div> </div> </div> }

    Read the article

  • Java calendar day_of_week not working

    - by Raptrex
    I have a for loop starting at startTime going up to endTime and I would like it to print out the date if it is either a monday, tuesday, wednesday, thursday, or friday. Currently, it is only printing out the endTime date. The other stuff splits the string, which you can ignore. Since 5/16/2010 is a sunday, it should print out 17,18,19,20,21, 24 and 25. However it only prints 25 import java.util.*; public class test { public static void main(String[] args) { String startTime = "5/16/2010 11:44 AM"; String endTime = "5/25/2010 12:00 PM"; GregorianCalendar startCal = new GregorianCalendar(); startCal.setLenient(true); String[] start = splitString(startTime); //this sets year, month day startCal.set(Integer.parseInt(start[2]),Integer.parseInt(start[0])-1,Integer.parseInt(start[1])); startCal.set(GregorianCalendar.HOUR, Integer.parseInt(start[3])); startCal.set(GregorianCalendar.MINUTE, Integer.parseInt(start[4])); if (start[5].equalsIgnoreCase("AM")) { startCal.set(GregorianCalendar.AM_PM, 0); } else { startCal.set(GregorianCalendar.AM_PM, 1); } GregorianCalendar endCal = new GregorianCalendar(); endCal.setLenient(true); String[] end = splitString(endTime); endCal.set(Integer.parseInt(end[2]),Integer.parseInt(end[0])-1,Integer.parseInt(end[1])); endCal.set(GregorianCalendar.HOUR, Integer.parseInt(end[3])); endCal.set(GregorianCalendar.MINUTE, Integer.parseInt(end[4])); if (end[5].equalsIgnoreCase("AM")) { endCal.set(GregorianCalendar.AM_PM, 0); } else { endCal.set(GregorianCalendar.AM_PM, 1); } for (int i = startCal.get(Calendar.DATE); i < endCal.get(Calendar.DATE); i++) { if (startCal.get(Calendar.DAY_OF_WEEK) == Calendar.MONDAY || startCal.get(Calendar.DAY_OF_WEEK) == Calendar.TUESDAY || startCal.get(Calendar.DAY_OF_WEEK) == Calendar.WEDNESDAY || startCal.get(Calendar.DAY_OF_WEEK) == Calendar.THURSDAY || startCal.get(Calendar.DAY_OF_WEEK) == Calendar.FRIDAY) { startCal.set(Calendar.DATE, i); System.out.println(startCal.get(Calendar.DATE)); } } } private static String[] splitDate(String date) { String[] temp1 = date.split(" "); // split by space String[] temp2 = temp1[0].split("/"); // split by / //5/21/2010 10:00 AM return temp2; // return 5 21 2010 in one array } private static String[] splitTime(String date) { String[] temp1 = date.split(" "); // split by space String[] temp2 = temp1[1].split(":"); // split by : //5/21/2010 10:00 AM String[] temp3 = {temp2[0], temp2[1], temp1[2]}; return temp3; // return 10 00 AM in one array } private static String[] splitString(String date) { String[] temp1 = splitDate(date); String[] temp2 = splitTime(date); String[] temp3 = new String[6]; return dateFill(temp3, temp2[0], temp2[1], temp2[2], temp1[0], temp1[1], temp1[2]); } private static String[] dateFill(String[] date, String hours, String minutes, String ampm, String month, String day, String year) { date[0] = month; date[1] = day; date[2] = year; date[3] = hours; date[4] = minutes; date[5] = ampm; return date; } private String dateString(String[] date) { //return month+" "+day+", "+year+" "+hours+":"+minutes+" "+ampm //5/21/2010 10:00 AM return date[3]+"/"+date[4]+"/ "+date[5]+" "+date[0]+":"+date[1]+" "+date[2]; } }

    Read the article

  • SqlDataAdapter Update is not working in C# wih Sql Server

    - by Ahmed
    I am trying to save data from C# form to Sql server Northwind Orders database, I am only using CustomerID, OrderDate and ShippedDate for data entry. Following is the code to Form load and save button: private void Form1_Load(object sender, EventArgs e) { SetComb(); connectionString = ConfigurationManager.AppSettings["connectionString"]; sqlConnection = new SqlConnection(connectionString); String sqlSelect = "Select OrderID, CustomerID, OrderDate, ShippedDate from Orders"; sqlDataMaster = new SqlDataAdapter(sqlSelect, sqlConnection); sqlConnection.Open(); //=============================================================================== //--- Set up the INSERT Command //=============================================================================== sInsProcName = "prInsert_Order"; insertcommand = new SqlCommand(sInsProcName, sqlConnection); insertcommand.CommandType = CommandType.StoredProcedure; insertcommand.Parameters.Add(new SqlParameter("@nNewID", SqlDbType.Int, 0, ParameterDirection.Output, false, 0, 0, "OrderID", DataRowVersion.Default, null)); insertcommand.UpdatedRowSource = UpdateRowSource.OutputParameters; insertcommand.Parameters.Add(new SqlParameter("@sCustomerID", SqlDbType.NChar, 5,"CustomerID")); insertcommand.Parameters["@sCustomerID"].Value = cmbCust.SelectedValue; insertcommand.Parameters.Add(new SqlParameter("@dtOrderDate", SqlDbType.DateTime, 8,"OrderDate")); insertcommand.Parameters["@dtOrderDate"].Value = dtOrdDt.Text; insertcommand.Parameters.Add(new SqlParameter("@dtShipDate", SqlDbType.DateTime, 8,"ShippedDate")); insertcommand.Parameters["@dtShipDate"].Value = dtShipDt.Text; sqlDataMaster.InsertCommand = insertcommand; //=============================================================================== //--- Set up the UPDATE Command //=============================================================================== sUpdProcName = "prUpdate_Order"; updatecommand = new SqlCommand(sUpdProcName, sqlConnection); updatecommand.CommandType = CommandType.StoredProcedure; updatecommand.Parameters.Add(new SqlParameter("@nOrderID", SqlDbType.Int, 4, "OrderID")); updatecommand.Parameters.Add(new SqlParameter("@dtOrderDate", SqlDbType.DateTime, 8, "OrderDate")); updatecommand.Parameters.Add(new SqlParameter("@dtShipDate", SqlDbType.DateTime, 8, "ShippedDate")); sqlDataMaster.UpdateCommand = updatecommand; //=============================================================================== //--- Set up the DELETE Command //=============================================================================== sDelProcName = "prDelete_Order"; deletecommand = new SqlCommand(sDelProcName, sqlConnection); deletecommand.CommandType = CommandType.StoredProcedure; deletecommand.Parameters.Add(new SqlParameter("@nOrderID", SqlDbType.Int, 4, "OrderID")); sqlDataMaster.DeleteCommand = deletecommand; dt = new DataTable(); sqlDataMaster.FillSchema(dt, SchemaType.Source); ds = new DataSet(); ds.Tables.Add(dt); bs = new BindingSource(); bs.DataSource = ds.Tables[0]; } public void SetComb() { cmbCust.DataSource = dm.GetData("Select * from Customers order by CompanyName"); cmbCust.DisplayMember = "CompanyName"; cmbCust.ValueMember = "CustomerId"; cmbCust.Text = ""; } private void btnSave_Click(object sender, EventArgs e) { sqlDataMaster.Update((DataTable) bs.DataSource); } and Stored Procedures for Insert/Update/Delete set ANSI_NULLS ON set QUOTED_IDENTIFIER ON GO ALTER PROCEDURE [dbo].[prInsert_Order] -- ALTER PROCEDURE prInsert_Order @sCustomerID CHAR(5), @dtOrderDate DATETIME, @dtShipDate DATETIME, @nNewID INT OUTPUT AS SET NOCOUNT ON INSERT INTO Orders (CustomerID, OrderDate, ShippedDate) VALUES (@sCustomerID, @dtOrderDate, @dtShipDate) SELECT @nNewID = SCOPE_IDENTITY() set ANSI_NULLS ON set QUOTED_IDENTIFIER ON GO ALTER PROCEDURE [dbo].[prUpdate_Order] -- ALTER PROCEDURE prUpdate_Order @nOrderID INT, @dtOrderDate DATETIME, @dtShipDate DATETIME AS UPDATE Orders SET OrderDate = @dtOrderDate, ShippedDate = @dtShipDate WHERE OrderID = @nOrderID set ANSI_NULLS ON set QUOTED_IDENTIFIER ON GO ALTER PROCEDURE [dbo].[prDelete_Order] -- ALTER PROCEDURE prDelete_Order @nOrderID INT AS DELETE Orders WHERE OrderID = @nOrderID In the form CustomerID is selected via combobox which has Display property of CustomerName and Value property of CustomerID. But when clicking save button it shows no error, but it also don't save anything in Orders Table of Northwind....dm.GetData is the method of my Data Access Layer class to just get the info and populate CustomerID combobox. Any help with the code is highly appreciated... Thanks Ahmed

    Read the article

  • Why can't I sort this container?

    - by Knowing me knowing you
    Please don't mind that there is no insert fnc and that data are hardcoded. The main purpouse of it is to correctly implement iterator for this container. //file Set.h #pragma once template<class T> class Set { template<class T> friend ostream& operator<<(ostream& out, const Set<T>& obj); private: T** myData_; std::size_t mySize_; std::size_t myIndex_; public: Set(); class iterator : public std::iterator<std::random_access_iterator_tag, T*> { private: T** itData_; public: iterator(T** obj) { itData_ = obj; } T operator*() const { return **itData_; } /*Comparing values of two iterators*/ bool operator<(const iterator& obj) { return **itData_ < **obj.itData_; } /*Substracting two iterators*/ difference_type operator-(const iterator& obj) { return itData_ - obj.itData_; } /*Moving iterator backward for value*/ iterator operator-(const int value) { return itData_ - value; } /*Adding two iterators*/ difference_type operator+(const iterator& obj) { return itData_ + obj.itData_; } /*Moving iterator forward for value*/ iterator operator+(const int value) { return itData_ + value; } bool operator!=(const iterator& obj) { return (itData_ != obj.itData_); } bool operator==(const iterator& obj) { return (itData_ == obj.itData_); } T** operator++() { return ++itData_; } T** operator--() { return --itData_; } }; iterator begin() const { return myData_; } iterator end() const { return myData_ + myIndex_; } }; template<class T> ostream& operator<<(ostream& out, const Set<T>& obj) { for (int i = 0;i < 3; ++i) { out << *obj.myData_[i] << "\n"; } return out; } //file Set_impl.h #pragma once #include "stdafx.h" #include "Set.h" template<class T> Set<T>::Set() { mySize_ = 3; myIndex_ = 3; myData_ = new T*[mySize_]; myData_[0] = new T(3); myData_[1] = new T(1); myData_[2] = new T(2); } //main include "stdafx.h" #include "Set_impl.h" int _tmain(int argc, _TCHAR* argv[]) { Set<int> a; Set<int>::iterator beg_ = a.begin(); Set<int>::iterator end_ = a.end(); std::sort(beg_,end_);//WONT SORT THIS RANGE cin.get(); return 0; } Why sort can't accept this iterators even though I've provided all operators needed for sort to work? I think the best way to check what's going on is to paste this code and run it first. Thanks

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 3 – Table per Concrete Type (TPC) and Choosing Strategy Guidelines

    - by mortezam
    This is the third (and last) post in a series that explains different approaches to map an inheritance hierarchy with EF Code First. I've described these strategies in previous posts: Part 1 – Table per Hierarchy (TPH) Part 2 – Table per Type (TPT)In today’s blog post I am going to discuss Table per Concrete Type (TPC) which completes the inheritance mapping strategies supported by EF Code First. At the end of this post I will provide some guidelines to choose an inheritance strategy mainly based on what we've learned in this series. TPC and Entity Framework in the Past Table per Concrete type is somehow the simplest approach suggested, yet using TPC with EF is one of those concepts that has not been covered very well so far and I've seen in some resources that it was even discouraged. The reason for that is just because Entity Data Model Designer in VS2010 doesn't support TPC (even though the EF runtime does). That basically means if you are following EF's Database-First or Model-First approaches then configuring TPC requires manually writing XML in the EDMX file which is not considered to be a fun practice. Well, no more. You'll see that with Code First, creating TPC is perfectly possible with fluent API just like other strategies and you don't need to avoid TPC due to the lack of designer support as you would probably do in other EF approaches. Table per Concrete Type (TPC)In Table per Concrete type (aka Table per Concrete class) we use exactly one table for each (nonabstract) class. All properties of a class, including inherited properties, can be mapped to columns of this table, as shown in the following figure: As you can see, the SQL schema is not aware of the inheritance; effectively, we’ve mapped two unrelated tables to a more expressive class structure. If the base class was concrete, then an additional table would be needed to hold instances of that class. I have to emphasize that there is no relationship between the database tables, except for the fact that they share some similar columns. TPC Implementation in Code First Just like the TPT implementation, we need to specify a separate table for each of the subclasses. We also need to tell Code First that we want all of the inherited properties to be mapped as part of this table. In CTP5, there is a new helper method on EntityMappingConfiguration class called MapInheritedProperties that exactly does this for us. Here is the complete object model as well as the fluent API to create a TPC mapping: public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } }          public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } }          public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } }      public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; }              protected override void OnModelCreating(ModelBuilder modelBuilder)     {         modelBuilder.Entity<BankAccount>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("BankAccounts");         });         modelBuilder.Entity<CreditCard>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("CreditCards");         });                 } } The Importance of EntityMappingConfiguration ClassAs a side note, it worth mentioning that EntityMappingConfiguration class turns out to be a key type for inheritance mapping in Code First. Here is an snapshot of this class: namespace System.Data.Entity.ModelConfiguration.Configuration.Mapping {     public class EntityMappingConfiguration<TEntityType> where TEntityType : class     {         public ValueConditionConfiguration Requires(string discriminator);         public void ToTable(string tableName);         public void MapInheritedProperties();     } } As you have seen so far, we used its Requires method to customize TPH. We also used its ToTable method to create a TPT and now we are using its MapInheritedProperties along with ToTable method to create our TPC mapping. TPC Configuration is Not Done Yet!We are not quite done with our TPC configuration and there is more into this story even though the fluent API we saw perfectly created a TPC mapping for us in the database. To see why, let's start working with our object model. For example, the following code creates two new objects of BankAccount and CreditCard types and tries to add them to the database: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount();     CreditCard creditCard = new CreditCard() { CardType = 1 };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Running this code throws an InvalidOperationException with this message: The changes to the database were committed successfully, but an error occurred while updating the object context. The ObjectContext might be in an inconsistent state. Inner exception message: AcceptChanges cannot continue because the object's key values conflict with another object in the ObjectStateManager. Make sure that the key values are unique before calling AcceptChanges. The reason we got this exception is because DbContext.SaveChanges() internally invokes SaveChanges method of its internal ObjectContext. ObjectContext's SaveChanges method on its turn by default calls AcceptAllChanges after it has performed the database modifications. AcceptAllChanges method merely iterates over all entries in ObjectStateManager and invokes AcceptChanges on each of them. Since the entities are in Added state, AcceptChanges method replaces their temporary EntityKey with a regular EntityKey based on the primary key values (i.e. BillingDetailId) that come back from the database and that's where the problem occurs since both the entities have been assigned the same value for their primary key by the database (i.e. on both BillingDetailId = 1) and the problem is that ObjectStateManager cannot track objects of the same type (i.e. BillingDetail) with the same EntityKey value hence it throws. If you take a closer look at the TPC's SQL schema above, you'll see why the database generated the same values for the primary keys: the BillingDetailId column in both BankAccounts and CreditCards table has been marked as identity. How to Solve The Identity Problem in TPC As you saw, using SQL Server’s int identity columns doesn't work very well together with TPC since there will be duplicate entity keys when inserting in subclasses tables with all having the same identity seed. Therefore, to solve this, either a spread seed (where each table has its own initial seed value) will be needed, or a mechanism other than SQL Server’s int identity should be used. Some other RDBMSes have other mechanisms allowing a sequence (identity) to be shared by multiple tables, and something similar can be achieved with GUID keys in SQL Server. While using GUID keys, or int identity keys with different starting seeds will solve the problem but yet another solution would be to completely switch off identity on the primary key property. As a result, we need to take the responsibility of providing unique keys when inserting records to the database. We will go with this solution since it works regardless of which database engine is used. Switching Off Identity in Code First We can switch off identity simply by placing DatabaseGenerated attribute on the primary key property and pass DatabaseGenerationOption.None to its constructor. DatabaseGenerated attribute is a new data annotation which has been added to System.ComponentModel.DataAnnotations namespace in CTP5: public abstract class BillingDetail {     [DatabaseGenerated(DatabaseGenerationOption.None)]     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } As always, we can achieve the same result by using fluent API, if you prefer that: modelBuilder.Entity<BillingDetail>()             .Property(p => p.BillingDetailId)             .HasDatabaseGenerationOption(DatabaseGenerationOption.None); Working With The Object Model Our TPC mapping is ready and we can try adding new records to the database. But, like I said, now we need to take care of providing unique keys when creating new objects: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount()      {          BillingDetailId = 1                          };     CreditCard creditCard = new CreditCard()      {          BillingDetailId = 2,         CardType = 1     };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Polymorphic Associations with TPC is Problematic The main problem with this approach is that it doesn’t support Polymorphic Associations very well. After all, in the database, associations are represented as foreign key relationships and in TPC, the subclasses are all mapped to different tables so a polymorphic association to their base class (abstract BillingDetail in our example) cannot be represented as a simple foreign key relationship. For example, consider the the domain model we introduced here where User has a polymorphic association with BillingDetail. This would be problematic in our TPC Schema, because if User has a many-to-one relationship with BillingDetail, the Users table would need a single foreign key column, which would have to refer both concrete subclass tables. This isn’t possible with regular foreign key constraints. Schema Evolution with TPC is Complex A further conceptual problem with this mapping strategy is that several different columns, of different tables, share exactly the same semantics. This makes schema evolution more complex. For example, a change to a base class property results in changes to multiple columns. It also makes it much more difficult to implement database integrity constraints that apply to all subclasses. Generated SQLLet's examine SQL output for polymorphic queries in TPC mapping. For example, consider this polymorphic query for all BillingDetails and the resulting SQL statements that being executed in the database: var query = from b in context.BillingDetails select b; Just like the SQL query generated by TPT mapping, the CASE statements that you see in the beginning of the query is merely to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type). TPC's SQL Queries are Union Based As you can see in the above screenshot, the first SELECT uses a FROM-clause subquery (which is selected with a red rectangle) to retrieve all instances of BillingDetails from all concrete class tables. The tables are combined with a UNION operator, and a literal (in this case, 0 and 1) is inserted into the intermediate result; (look at the lines highlighted in yellow.) EF reads this to instantiate the correct class given the data from a particular row. A union requires that the queries that are combined, project over the same columns; hence, EF has to pad and fill up nonexistent columns with NULL. This query will really perform well since here we can let the database optimizer find the best execution plan to combine rows from several tables. There is also no Joins involved so it has a better performance than the SQL queries generated by TPT where a Join is required between the base and subclasses tables. Choosing Strategy GuidelinesBefore we get into this discussion, I want to emphasize that there is no one single "best strategy fits all scenarios" exists. As you saw, each of the approaches have their own advantages and drawbacks. Here are some rules of thumb to identify the best strategy in a particular scenario: If you don’t require polymorphic associations or queries, lean toward TPC—in other words, if you never or rarely query for BillingDetails and you have no class that has an association to BillingDetail base class. I recommend TPC (only) for the top level of your class hierarchy, where polymorphism isn’t usually required, and when modification of the base class in the future is unlikely. If you do require polymorphic associations or queries, and subclasses declare relatively few properties (particularly if the main difference between subclasses is in their behavior), lean toward TPH. Your goal is to minimize the number of nullable columns and to convince yourself (and your DBA) that a denormalized schema won’t create problems in the long run. If you do require polymorphic associations or queries, and subclasses declare many properties (subclasses differ mainly by the data they hold), lean toward TPT. Or, depending on the width and depth of your inheritance hierarchy and the possible cost of joins versus unions, use TPC. By default, choose TPH only for simple problems. For more complex cases (or when you’re overruled by a data modeler insisting on the importance of nullability constraints and normalization), you should consider the TPT strategy. But at that point, ask yourself whether it may not be better to remodel inheritance as delegation in the object model (delegation is a way of making composition as powerful for reuse as inheritance). Complex inheritance is often best avoided for all sorts of reasons unrelated to persistence or ORM. EF acts as a buffer between the domain and relational models, but that doesn’t mean you can ignore persistence concerns when designing your classes. SummaryIn this series, we focused on one of the main structural aspect of the object/relational paradigm mismatch which is inheritance and discussed how EF solve this problem as an ORM solution. We learned about the three well-known inheritance mapping strategies and their implementations in EF Code First. Hopefully it gives you a better insight about the mapping of inheritance hierarchies as well as choosing the best strategy for your particular scenario. Happy New Year and Happy Code-Firsting! References ADO.NET team blog Java Persistence with Hibernate book a { color: #5A99FF; } a:visited { color: #5A99FF; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } .exception { background-color: #f0f0f0; font-style: italic; padding-bottom: 5px; padding-left: 5px; padding-top: 5px; padding-right: 5px; }

    Read the article

  • Using an alternate search platform in Commerce Server 2009

    - by Lewis Benge
    Although Microsoft Commerce Server 2009's architecture is built upon Microsoft SQL Server, and has the full power of the SQL Full Text Indexing Search Platform, there are time however when you may require a richer or alternate search platform. One of these scenarios if when you want to implement a faceted (refinement) search into your site, which provides dynamic refinements based on the search results dataset. Faceted search is becoming popular in most online retail environments as a way of providing an enhanced user experience when browsing a larger catalogue. This is powerful for two reasons, firstly with a traditional search it is down to a user to think of a search term suitable for the product they are trying to find. This typically will not return similar products or help in any way to refine a larger dataset. Faceted searches on the other hand provide a comprehensive list of product properties, grouped together by similarity to help the user narrow down the results returned, as the user progressively restricts the search criteria by selecting additional criteria to search again, these facets needs to continually refresh. The whole experience allows users to explore alternate brands, price-ranges, or find products they hadn't initially thought of or where looking for in a bid to enhance cross sell in the retail environment. The second advantage of this type of search from a business perspective is also to harvest the search result to start to profile your user. Even though anonymous users may routinely visit your site, and will not necessarily register or complete a transaction to build up marketing data- profiling, you can still achieve the same result by recording search facets used within the search sequence. Below is a faceted search scenario generated from eBay using the search term "server". By creating a search profile of clicking through Computer & Networking -> Servers -> Dell - > New and recording this information against my user profile you can start to predict with a lot more certainty what types of products I am interested in. This will allow you to apply shopping-cart analysis against your search data and provide great cross-sale or advertising opportunity, or personalise the user experience based on your prediction of what the user may be interested in. This type of search is extremely beneficial in e-Commerce environments but achieving it out of the box with Commerce Server and SQL Full Text indexing can be challenging. In many deployments it is often easier to use an alternate search platform such as Microsoft's FAST, Apache SOLR, or Endecca, however you still want these products to integrate natively into Commerce Server to ensure that up-to-date inventory information is presented, profile information is generated, and you provide a consistant API. To do so we make the most of the Commerce Server extensibilty points called operation sequence components. In this example I will be talking about Apache Solr hosted on Apache Tomcat, in this specific example I have used the SolrNet C# library to interface to the Java platform. Also I am not going to talk about Solr configuration of indexing – but in a production envionrment this would typically happen by using Powershell to call the Commerce Server management webservice to export your catalog as XML, apply an XSLT transform to the file to make it conform to SOLR and use a simple HTTP Post to send it to the search enginge for indexing. Essentially a sequance component is a step in a serial workflow used to call a data repository (which in most cases is usually the Commerce Server pipelines or databases) and map to and from a Commerce Entity object whilst enforcing any business rules. So the first step in the process is to add a new class library to your existing Commerce Server site. You will need to use a new library as Sequence Components will need to be strongly named to be deployed. Once you are inside of your new project, add a new class file and add a reference to the Microsoft.Commerce.Providers, Microsoft.Commerce.Contracts and the Microsoft.Commerce.Broker assemblies. Now make your new class derive from the base object Microsoft.Commerce.Providers.Components.OperationSequanceComponent and overide the ExecuteQueryMethod. Your screen will then look something similar ot this: As all we are doing on this component is conducting a search we are only interested in the ExecuteQuery method. This method accepts three arguments, queryOperation, operationCache, and response. The queryOperation will be the object in which we receive our search parameters, the cache allows access to the Commerce Server cache allowing us to store regulary accessed information, and the response object is the object which we will return the result of our search upon. Inside this method is simply where we are going to inject our logic for our third party search platform. As I am not going to explain the inner-workings of actually making a SOLR call, I'll simply provide the sample code here. I would highly recommend however looking at the SolrNet wiki as they have some great explinations of how the API works. What you will find however is that there are some further extensions required when attempting to integrate a custom search provider. Firstly you out of the box the CommerceQueryOperation you will receive into the method when conducting a search against a catalog is specifically geared towards a SQL Full Text Search with properties such as a Where clause. To make the operation you receive more relevant you will need to create another class, this time derived from Microsoft.Commerce.Contract.Messages.CommerceSearchCriteria and within this you need to detail the properties you will require to allow you to submit as parameters to the SOLR search API. My exmaple looks like this: [DataContract(Namespace = "http://schemas.microsoft.com/microsoft-multi-channel-commerce-foundation/types/2008/03")] public class CommerceCatalogSolrSearch : CommerceSearchCriteria { private Dictionary<string, string> _facetQueries;   public CommerceCatalogSolrSearch() { _facetQueries = new Dictionary<String, String>();   }     public Dictionary<String, String> FacetQueries { get { return _facetQueries; } set { _facetQueries = value; } }   public String SearchPhrase{ get; set; } public int PageIndex { get; set; } public int PageSize { get; set; } public IEnumerable<String> Facets { get; set; }   public string Sort { get; set; }   public new int FirstItemIndex { get { return (PageIndex-1)*PageSize; } }   public int LastItemIndex { get { return FirstItemIndex + PageSize; } } }  To allow you to construct a CommerceQueryOperation call within the API you will also need to construct another class to derived from Microsoft.Commerce.Common.MessageBuilders.CommerceSearchCriteriaBuilder and is simply used to construct an instance of the CommerceQueryOperation you have just created and expose the properties you want set. My Message builder looks like this: public class CommerceCatalogSolrSearchBuilder : CommerceSearchCriteriaBuilder { private CommerceCatalogSolrSearch _solrSearch;   public CommerceCatalogSolrSearchBuilder() { _solrSearch = new CommerceCatalogSolrSearch(); }   public String SearchPhrase { get { return _solrSearch.SearchPhrase; } set { _solrSearch.SearchPhrase = value; } }   public int PageIndex { get { return _solrSearch.PageIndex; } set { _solrSearch.PageIndex = value; } }   public int PageSize { get { return _solrSearch.PageSize; } set { _solrSearch.PageSize = value; } }   public Dictionary<String,String> FacetQueries { get { return _solrSearch.FacetQueries; } set { _solrSearch.FacetQueries = value; } }   public String[] Facets { get { return _solrSearch.Facets.ToArray(); } set { _solrSearch.Facets = value; } } public override CommerceSearchCriteria ToSearchCriteria() { return _solrSearch; } }  Once you have these two classes in place you can now safely cast the CommerceOperation you receive as an argument of the overidden ExecuteQuery method in the SequenceComponent to the CommerceCatalogSolrSearch operation you have just created, e.g. public CommerceCatalogSolrSearch TryGetSearchCriteria(CommerceOperation operation) { var searchCriteria = operation as CommerceQueryOperation; if (searchCriteria == null) throw new Exception("No search criteria present");   var local = (CommerceCatalogSolrSearch) searchCriteria.SearchCriteria; if (local == null) throw new Exception("Unexpected Search Criteria in Operation");   return local; }  Now you have all of your search parameters present, you can go off an call the external search platform API. You will of-course get proprietry objects returned, so the next step in the process is to convert the results being returned back into CommerceEntities. You do this via another extensibility point within the Commerce Server API called translatators. Translators are another separate class, this time derived inheriting the interface Microsoft.Commerce.Providers.Translators.IToCommerceEntityTranslator . As you can imaginge this interface is specific for the conversion of the object TO a CommerceEntity, you will need to implement a separate interface if you also need to go in the opposite direction. If you implement the required method for the interace you will get a single translate method which has a source onkect, destination CommerceEntity, and a collection of properties as arguments. For simplicity sake in this example I have hard-coded the mappings, however best practice would dictate you map the objects using your metadatadefintions.xml file . Once complete your translator would look something like the following: public class SolrEntityTranslator : IToCommerceEntityTranslator { #region IToCommerceEntityTranslator Members   public void Translate(object source, CommerceEntity destinationCommerceEntity, CommercePropertyCollection propertiesToReturn) { if (source.GetType().Equals(typeof (SearchProduct))) { var searchResult = (SearchProduct) source;   destinationCommerceEntity.Id = searchResult.ProductId; destinationCommerceEntity.SetPropertyValue("DisplayName", searchResult.Title); destinationCommerceEntity.ModelName = "Product";   } }  Once you have a translator in place you can then safely map the results of your search platform into Commerce Entities and attach them on to the CommerceResponse object in a fashion similar to this: foreach (SearchProduct result in matchingProducts) { var destinationEntity = new CommerceEntity(_returnModelName);   Translator.ToCommerceEntity(result, destinationEntity, _queryOperation.Model.Properties); response.CommerceEntities.Add(destinationEntity); }  In SOLR I actually have two objects being returned – a product, and a collection of facets so I have an additional translator for facet (which maps to a custom facet CommerceEntity) and my facet response from SOLR is passed into the Translator helper class seperatley. When all of this is pieced together you have sucessfully completed the extensiblity point coding. You would have created a new OperationSequanceComponent, a custom SearchCritiera object and message builder class, and translators to convert the objects into Commerce Entities. Now you simply need to configure them, and can start calling them in your code. Make sure you sign you assembly, compile it and identiy its signature. Next you need to put this a reference of your new assembly into the Channel.Config configuration file replacing that of the existing SQL Full Text component: You will also need to add your translators to the Translators node of your Channel.Config too: Lastly add any custom CommerceEntities you have developed to your MetaDataDefintions.xml file. Your configuration is now complete, and you should now be able to happily make a call to the Commerce Foundation API, which will act as a proxy to your third party search platform and return back CommerceEntities of your search results. If you require data to be enriched, or logged, or any other logic applied then simply add further sequence components into the OperationSequence (obviously keeping the search response first) to the node of your Channel.Config file. Now to call your code you simply request it as per any other CommerceQuery operation, but taking into account you may be receiving multiple types of CommerceEntity returned: public KeyValuePair<FacetCollection ,List<Product>> DoFacetedProductQuerySearch(string searchPhrase, string orderKey, string sortOrder, int recordIndex, int recordsPerPage, Dictionary<string, string> facetQueries, out int totalItemCount) { var products = new List<Product>(); var query = new CommerceQuery<CatalogEntity, CommerceCatalogSolrSearchBuilder>();   query.SearchCriteria.PageIndex = recordIndex; query.SearchCriteria.PageSize = recordsPerPage; query.SearchCriteria.SearchPhrase = searchPhrase; query.SearchCriteria.FacetQueries = facetQueries;     totalItemCount = 0; CommerceResponse response = SiteContext.ProcessRequest(query.ToRequest()); var queryResponse = response.OperationResponses[0] as CommerceQueryOperationResponse;   // No results. Return the empty list if (queryResponse != null && queryResponse.CommerceEntities.Count == 0) return new KeyValuePair<FacetCollection, List<Product>>();   totalItemCount = (int)queryResponse.TotalItemCount;   // Prepare a multi-operation to retrieve the product variants var multiOperation = new CommerceMultiOperation();     //Add products to results foreach (Product product in queryResponse.CommerceEntities.Where(x => x.ModelName == "Product")) { var productQuery = new CommerceQuery<Product>(Product.ModelNameDefinition); productQuery.SearchCriteria.Model.Id = product.Id; productQuery.SearchCriteria.Model.CatalogId = product.CatalogId;   var variantQuery = new CommerceQueryRelatedItem<Variant>(Product.RelationshipName.Variants);   productQuery.RelatedOperations.Add(variantQuery);   multiOperation.Add(productQuery); }   CommerceResponse variantsResponse = SiteContext.ProcessRequest(multiOperation.ToRequest()); foreach (CommerceQueryOperationResponse queryOpResponse in variantsResponse.OperationResponses) { if (queryOpResponse.CommerceEntities.Count() > 0) products.Add(queryOpResponse.CommerceEntities[0]); }   //Get facet collection FacetCollection facetCollection = queryResponse.CommerceEntities.Where(x => x.ModelName == "FacetCollection").FirstOrDefault();     return new KeyValuePair<FacetCollection, List<Product>>(facetCollection, products); }    ..And that is it – simply a few classes and some configuration will allow you to extend the Commerce Server query operations to call a third party search platform, whilst still maintaing a unifed API in the remainder of your code. This logic stands for any extensibility within CommerceServer, which requires excution in a serial fashioon such as call to LOB systems or web service to validate or enrich data. Feel free to use this example on other applications, and if you have any questions please feel free to e-mail and I'll help out where I can!

    Read the article

  • Silverlight Tree View with Multiple Levels

    - by psheriff
    There are many examples of the Silverlight Tree View that you will find on the web, however, most of them only show you how to go to two levels. What if you have more than two levels? This is where understanding exactly how the Hierarchical Data Templates works is vital. In this blog post, I am going to break down how these templates work so you can really understand what is going on underneath the hood. To start, let’s look at the typical two-level Silverlight Tree View that has been hard coded with the values shown below: <sdk:TreeView>  <sdk:TreeViewItem Header="Managers">    <TextBlock Text="Michael" />    <TextBlock Text="Paul" />  </sdk:TreeViewItem>  <sdk:TreeViewItem Header="Supervisors">    <TextBlock Text="John" />    <TextBlock Text="Tim" />    <TextBlock Text="David" />  </sdk:TreeViewItem></sdk:TreeView> Figure 1 shows you how this tree view looks when you run the Silverlight application. Figure 1: A hard-coded, two level Tree View. Next, let’s create three classes to mimic the hard-coded Tree View shown above. First, you need an Employee class and an EmployeeType class. The Employee class simply has one property called Name. The constructor is created to accept a “name” argument that you can use to set the Name property when you create an Employee object. public class Employee{  public Employee(string name)  {    Name = name;  }   public string Name { get; set; }} Finally you create an EmployeeType class. This class has one property called EmpType and contains a generic List<> collection of Employee objects. The property that holds the collection is called Employees. public class EmployeeType{  public EmployeeType(string empType)  {    EmpType = empType;    Employees = new List<Employee>();  }   public string EmpType { get; set; }  public List<Employee> Employees { get; set; }} Finally we have a collection class called EmployeeTypes created using the generic List<> class. It is in the constructor for this class where you will build the collection of EmployeeTypes and fill it with Employee objects: public class EmployeeTypes : List<EmployeeType>{  public EmployeeTypes()  {    EmployeeType type;            type = new EmployeeType("Manager");    type.Employees.Add(new Employee("Michael"));    type.Employees.Add(new Employee("Paul"));    this.Add(type);     type = new EmployeeType("Project Managers");    type.Employees.Add(new Employee("Tim"));    type.Employees.Add(new Employee("John"));    type.Employees.Add(new Employee("David"));    this.Add(type);  }} You now have a data hierarchy in memory (Figure 2) which is what the Tree View control expects to receive as its data source. Figure 2: A hierachial data structure of Employee Types containing a collection of Employee objects. To connect up this hierarchy of data to your Tree View you create an instance of the EmployeeTypes class in XAML as shown in line 13 of Figure 3. The key assigned to this object is “empTypes”. This key is used as the source of data to the entire Tree View by setting the ItemsSource property as shown in Figure 3, Callout #1. Figure 3: You need to start from the bottom up when laying out your templates for a Tree View. The ItemsSource property of the Tree View control is used as the data source in the Hierarchical Data Template with the key of employeeTypeTemplate. In this case there is only one Hierarchical Data Template, so any data you wish to display within that template comes from the collection of Employee Types. The TextBlock control in line 20 uses the EmpType property of the EmployeeType class. You specify the name of the Hierarchical Data Template to use in the ItemTemplate property of the Tree View (Callout #2). For the second (and last) level of the Tree View control you use a normal <DataTemplate> with the name of employeeTemplate (line 14). The Hierarchical Data Template in lines 17-21 sets its ItemTemplate property to the key name of employeeTemplate (Line 19 connects to Line 14). The source of the data for the <DataTemplate> needs to be a property of the EmployeeTypes collection used in the Hierarchical Data Template. In this case that is the Employees property. In the Employees property there is a “Name” property of the Employee class that is used to display the employee name in the second level of the Tree View (Line 15). What is important here is that your lowest level in your Tree View is expressed in a <DataTemplate> and should be listed first in your Resources section. The next level up in your Tree View should be a <HierarchicalDataTemplate> which has its ItemTemplate property set to the key name of the <DataTemplate> and the ItemsSource property set to the data you wish to display in the <DataTemplate>. The Tree View control should have its ItemsSource property set to the data you wish to display in the <HierarchicalDataTemplate> and its ItemTemplate property set to the key name of the <HierarchicalDataTemplate> object. It is in this way that you get the Tree View to display all levels of your hierarchical data structure. Three Levels in a Tree View Now let’s expand upon this concept and use three levels in our Tree View (Figure 4). This Tree View shows that you now have EmployeeTypes at the top of the tree, followed by a small set of employees that themselves manage employees. This means that the EmployeeType class has a collection of Employee objects. Each Employee class has a collection of Employee objects as well. Figure 4: When using 3 levels in your TreeView you will have 2 Hierarchical Data Templates and 1 Data Template. The EmployeeType class has not changed at all from our previous example. However, the Employee class now has one additional property as shown below: public class Employee{  public Employee(string name)  {    Name = name;    ManagedEmployees = new List<Employee>();  }   public string Name { get; set; }  public List<Employee> ManagedEmployees { get; set; }} The next thing that changes in our code is the EmployeeTypes class. The constructor now needs additional code to create a list of managed employees. Below is the new code. public class EmployeeTypes : List<EmployeeType>{  public EmployeeTypes()  {    EmployeeType type;    Employee emp;    Employee managed;     type = new EmployeeType("Manager");    emp = new Employee("Michael");    managed = new Employee("John");    emp.ManagedEmployees.Add(managed);    managed = new Employee("Tim");    emp.ManagedEmployees.Add(managed);    type.Employees.Add(emp);     emp = new Employee("Paul");    managed = new Employee("Michael");    emp.ManagedEmployees.Add(managed);    managed = new Employee("Sara");    emp.ManagedEmployees.Add(managed);    type.Employees.Add(emp);    this.Add(type);     type = new EmployeeType("Project Managers");    type.Employees.Add(new Employee("Tim"));    type.Employees.Add(new Employee("John"));    type.Employees.Add(new Employee("David"));    this.Add(type);  }} Now that you have all of the data built in your classes, you are now ready to hook up this three-level structure to your Tree View. Figure 5 shows the complete XAML needed to hook up your three-level Tree View. You can see in the XAML that there are now two Hierarchical Data Templates and one Data Template. Again you list the Data Template first since that is the lowest level in your Tree View. The next Hierarchical Data Template listed is the next level up from the lowest level, and finally you have a Hierarchical Data Template for the first level in your tree. You need to work your way from the bottom up when creating your Tree View hierarchy. XAML is processed from the top down, so if you attempt to reference a XAML key name that is below where you are referencing it from, you will get a runtime error. Figure 5: For three levels in a Tree View you will need two Hierarchical Data Templates and one Data Template. Each Hierarchical Data Template uses the previous template as its ItemTemplate. The ItemsSource of each Hierarchical Data Template is used to feed the data to the previous template. This is probably the most confusing part about working with the Tree View control. You are expecting the content of the current Hierarchical Data Template to use the properties set in the ItemsSource property of that template. But you need to look to the template lower down in the XAML to see the source of the data as shown in Figure 6. Figure 6: The properties you use within the Content of a template come from the ItemsSource of the next template in the resources section. Summary Understanding how to put together your hierarchy in a Tree View is simple once you understand that you need to work from the bottom up. Start with the bottom node in your Tree View and determine what that will look like and where the data will come from. You then build the next Hierarchical Data Template to feed the data to the previous template you created. You keep doing this for each level in your Tree View until you get to the last level. The data for that last Hierarchical Data Template comes from the ItemsSource in the Tree View itself. NOTE: You can download the sample code for this article by visiting my website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then select “Silverlight TreeView with Multiple Levels” from the drop down list.

    Read the article

  • Continuous Integration for SQL Server Part II – Integration Testing

    - by Ben Rees
    My previous post, on setting up Continuous Integration for SQL Server databases using GitHub, Bamboo and Red Gate’s tools, covered the first two parts of a simple Database Continuous Delivery process: Putting your database in to a source control system, and, Running a continuous integration process, each time changes are checked in. However there is, of course, a lot more to to Continuous Delivery than that. Specifically, in addition to the above: Putting some actual integration tests in to the CI process (otherwise, they don’t really do much, do they!?), Deploying the database changes with a managed, automated approach, Monitoring what you’ve just put live, to make sure you haven’t broken anything. This post will detail how to set up a very simple pipeline for implementing the first of these (continuous integration testing). NB: A lot of the setup in this post is built on top of the configuration from before, so it might be difficult to implement this post without running through part I first. There’ll then be a third post on automated database deployment followed by a final post dealing with the last item – monitoring changes on the live system. In the previous post, I used a mixture of Red Gate products and other 3rd party software – GitHub and Atlassian Bamboo specifically. This was partly because I believe most people work in an heterogeneous environment, using software from different vendors to suit their purposes and I wanted to show how this could work for this process. For example, you could easily substitute Atlassian’s BitBucket or Stash for GitHub, depending on your needs, or use an alternative CI server such as TeamCity, TFS or Jenkins. However, in this, post, I’ll be mostly using Red Gate products only (other than tSQLt). I would do this, firstly because I work for Red Gate. However, I also think that in the area of Database Delivery processes, nobody else has the offerings to implement this process fully – so I didn’t have any choice!   Background on Continuous Delivery For me, a great source of information on what makes a proper Continuous Delivery process is the Jez Humble and David Farley classic: Continuous Delivery – Reliable Software Releases through Build, Test, and Deployment Automation This book is not of course, primarily about databases, and the process I outline here and in the previous article is a gross simplification of what Jez and David describe (not least because it’s that much harder for databases!). However, a lot of the principles that they describe can be equally applied to database development and, I would argue, should be. As I say however, what I describe here is a very simple version of what would be required for a full production process. A couple of useful resources on handling some of these complexities can be found in the following two references: Refactoring Databases – Evolutionary Database Design, by Scott J Ambler and Pramod J. Sadalage Versioning Databases – Branching and Merging, by Scott Allen In particular, I don’t deal at all with the issues of multiple branches and merging of those branches, an issue made particularly acute by the use of GitHub. The other point worth making is that, in the words of Martin Fowler: Continuous Delivery is about keeping your application in a state where it is always able to deploy into production.   I.e. we are not talking about continuously delivery updates to the production database every time someone checks in an amendment to a stored procedure. That is possible (and what Martin calls Continuous Deployment). However, again, that’s more than I describe in this article. And I doubt I need to remind DBAs or Developers to Proceed with Caution!   Integration Testing Back to something practical. The next stage, building on our set up from the previous article, is to add in some integration tests to the process. As I say, the CI process, though interesting, isn’t enormously useful without some sort of test process running. For this we’ll use the tSQLt framework, an open source framework designed specifically for running SQL Server tests. tSQLt is part of Red Gate’s SQL Test found on http://www.red-gate.com/products/sql-development/sql-test/ or can be downloaded separately from www.tsqlt.org - though I’ll provide a step-by-step guide below for setting this up. Getting tSQLt set up via SQL Test Click on the link http://www.red-gate.com/products/sql-development/sql-test/ and click on the blue Download button to download the Red Gate SQL Test product, if not already installed. Follow the install process for SQL Test to install the SQL Server Management Studio (SSMS) plugin on to your machine, if not already installed. Open SSMS. You should now see SQL Test under the Tools menu:   Clicking this link will give you the basic SQL Test dialogue: As yet, though we’ve installed the SQL Test product we haven’t yet installed the tSQLt test framework on to any particular database. To do this, we need to add our RedGateApp database using this dialogue, by clicking on the + Add Database to SQL Test… link, selecting the RedGateApp database and clicking the Add Database link:   In the next screen, SQL Test describes what will be installed on the database for the tSQLt framework. Also in this dialogue, uncheck the “Add SQL Cop tests” option (shown below). SQL Cop is a great set of pre-defined tests that work within the tSQLt framework to check the general health of your SQL Server database. However, we won’t be using them in this particular simple example: Once you’ve clicked on the OK button, the changes described in the dialogue will be made to your database. Some of these are shown in the left-hand-side below: We’ve now installed the framework. However, we haven’t actually created any tests, so this will be the next step. But, before we proceed, we’ve made an update to our database so should, again check this in to source control, adding comments as required:   Also worth a quick check that your build still runs with the new additions!: (And a quick check of the RedGateAppCI database shows that the changes have been made).   Creating and Testing a Unit Test There are, of course, a lot of very interesting unit tests that you could and should set up for a database. The great thing about the tSQLt framework is that you can write these in SQL. The example I’m going to use here is pretty Mickey Mouse – our database table is going to include some email addresses as reference data and I want to check whether these are all in a correct email format. Nothing clever but it illustrates the process and hopefully shows the method by which more interesting tests could be set up. Adding Reference Data to our Database To start, I want to add some reference data to my database, and have this source controlled (as well as the schema). First of all I need to add some data in to my solitary table – this can be done a number of ways, but I’ll do this in SSMS for simplicity: I then add some reference data to my table: Currently this reference data just exists in the database. For proper integration testing, this needs to form part of the source-controlled version of the database – and so needs to be added to the Git repository. This can be done via SQL Source Control, though first a Primary Key needs to be added to the table. Right click the table, select Design, then right-click on the first “id” row. Then click on “Set Primary Key”: NB: once this change is made, click Save to save the change to the table. Then, to source control this reference data, right click on the table (dbo.Email) and selecting the following option:   In the next screen, link the data in the Email table, by selecting it from the list and clicking “save and close”: We should at this point re-commit the changes (both the addition of the Primary Key, and the data) to the Git repo. NB: From here on, I won’t show screenshots for the GitHub side of things – it’s the same each time: whenever a change is made in SQL Source Control and committed to your local folder, you then need to sync this in the GitHub Windows client (as this is where the build server, Bamboo is taking it from). An interesting point to note here, when these changes are committed in SQL Source Control (right-click database and select “Commit Changes to Source Control..”): The display gives a warning about possibly needing a migration script for the “Add Primary Key” step of the changes. This isn’t actually necessary in this case, but this mechanism would allow you to create override scripts to replace the default change scripts created by the SQL Compare engine (which runs underneath SQL Source Control). Ignoring this message (!), we add a comment and commit the changes to Git. I then sync these, run a build (or the build gets run automatically), and check that the data is being deployed over to the target RedGateAppCI database:   Creating and Running the Test As I mention, the test I’m going to use here is a very simple one - are the email addresses in my reference table valid? This isn’t of course, a full test of email validation (I expect the email addresses I’ve chosen here aren’t really the those of the Fab Four) – but just a very basic check of format used. I’ve taken the relevant SQL from this Stack Overflow article. In SSMS select “SQL Test” from the Tools menu, then click on + New Test: In the next screen, give your new test a name, and also enter a name in the Test Class box (test classes are schemas that help you keep things organised). Also check that the database in which the test is going to be created is correct – RedGateApp in this example: Click “Create Test”. After closing a couple of subsequent dialogues, you’ll see a dummy script for the test, that needs filling in:   We now need to define the SQL for our test. As mentioned before, tSQLt allows you to write your unit tests in T-SQL, and the code I’m going to use here is as below. This needs to be copied and pasted in to the query window, to replace the default given by tSQLt: –  Basic email check test ALTER PROCEDURE [MyChecks].[test Check Email Addresses] AS BEGIN SET NOCOUNT ON         Declare @Output VarChar(max)     Set @Output = ”       SELECT  @Output = @Output + Email +Char(13) + Char(10) FROM dbo.Email WHERE email NOT LIKE ‘%_@__%.__%’       If @Output > ”         Begin             Set @Output = Char(13) + Char(10)                           + @Output             EXEC tSQLt.Fail@Output         End   END;   Once this script is entered, hit execute to add the Stored Procedure to the database. Before committing the test to source control,  it’s worth just checking that it works! For a positive test, click on “SQL Test” from the Tools menu, then click Run Tests. You should see output like the following: - a green tick to indicate success! But of course, what we also need to do is test that this is actually doing something by showing a failed test. Edit one of the email addresses in your table to an incorrect format: Now, re-run the same SQL Test as before and you’ll see the following: Great – we now know that our test is really doing something! You’ll also see a useful error message at the bottom of SSMS: (leave the email address as invalid for now, for the next steps). The next stage is to check this new test in to source control again, by right-clicking on the database and checking in the changes with a commit message (and not forgetting to sync in the GitHub client):   Checking that the Tests are Running as Integration Tests After the changes above are made, and after a build has run on Bamboo (manual or automatic), looking at the Stored Procedures for the RedGateAppCI, the SPROC for the new test has been moved over to the database. However this is not exactly what we were after. We didn’t want to just copy objects from one database to another, but actually run the tests as part of the build/integration test process. I.e. we’re continuously checking any changes we make (in this case, to the reference data emails), to ensure we’re not breaking a test that we’ve set up. The behaviour we want to see is that, if we check in static data that is incorrect (as we did in step 9 above) and we have the tSQLt test set up, then our build in Bamboo should fail. However, re-running the build shows the following: - sadly, a successful build! To make sure the tSQLt tests are run as part of the integration test, we need to amend a switch in the Red Gate CI config file. First, navigate to file sqlCI.targets in your working folder: Edit this document, make the following change, save the document, then commit and sync this change in the GitHub client: <!-- tSQLt tests --> <!-- Optional --> <!-- To run tSQLt tests in source control for the database, enter true. --> <enableTsqlt>true</enableTsqlt> Now, if we re-run the build in Bamboo (NB: I’ve moved to a new server here, hence different address and build number): - superb, a broken build!! The error message isn’t great here, so to get more detailed info, click on the full build log link on this page (below the fold). The interesting part of the log shown is towards the bottom. Pulling out this part:   21-Jun-2013 11:35:19 Build FAILED. 21-Jun-2013 11:35:19 21-Jun-2013 11:35:19 "C:\Users\Administrator\bamboo-home\xml-data\build-dir\RGA-RGP-JOB1\sqlCI.proj" (default target) (1) -> 21-Jun-2013 11:35:19 (sqlCI target) -> 21-Jun-2013 11:35:19 EXEC : sqlCI error occurred: RedGate.Deploy.SqlServerDbPackage.Shared.Exceptions.InvalidSqlException: Test Case Summary: 1 test case(s) executed, 0 succeeded, 1 failed, 0 errored. [C:\Users\Administrator\bamboo-home\xml-data\build-dir\RGA-RGP-JOB1\sqlCI.proj] 21-Jun-2013 11:35:19 EXEC : sqlCI error occurred: [MyChecks].[test Check Email Addresses] failed: [C:\Users\Administrator\bamboo-home\xml-data\build-dir\RGA-RGP-JOB1\sqlCI.proj] 21-Jun-2013 11:35:19 EXEC : sqlCI error occurred: ringo.starr@beatles [C:\Users\Administrator\bamboo-home\xml-data\build-dir\RGA-RGP-JOB1\sqlCI.proj] 21-Jun-2013 11:35:19 EXEC : sqlCI error occurred: [C:\Users\Administrator\bamboo-home\xml-data\build-dir\RGA-RGP-JOB1\sqlCI.proj] 21-Jun-2013 11:35:19 EXEC : sqlCI error occurred: +----------------------+ [C:\Users\Administrator\bamboo-home\xml-data\build-dir\RGA-RGP-JOB1\sqlCI.proj] 21-Jun-2013 11:35:19 EXEC : sqlCI error occurred: |Test Execution Summary| [C:\Users\Administrator\bamboo-home\xml-data\build-dir\RGA-RGP-JOB1\sqlCI.proj]   As a final check, we should make sure that, if we now fix this error, the build succeeds. So in SSMS, I’m going to correct the invalid email address, then check this change in to SQL Source Control (with a comment), commit to GitHub, and re-run the build:   This should have fixed the build: It worked! Summary This has been a very quick run through the implementation of CI for databases, including tSQLt tests to test whether your database updates are working. The next post in this series will focus on automated deployment – we’ve tested our database changes, how can we now deploy these to target sites?  

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Automatic Standby Recreation for Data Guard

    - by pablo.boixeda(at)oracle.com
    Hi,Unfortunately sometimes a Standby Instance needs to be recreated. This can happen for many reasons such as lost archive logs, standby data files, failover, among others.This is why we wanted to have one script to recreate standby instances in an easy way.This script recreates the standby considering some prereqs:-Database Version should be at least 11gR1-Dummy instance started on the standby node (Seeking to improve this so it won't be needed)-Broker configuration hasn't been removed-In our case we have two TNSNAMES files, one for the Standby creation (using SID) and the other one for production using service names (including broker service name)-Some environment variables set up by the environment db script (like ORACLE_HOME, PATH...)-The directory tree should not have been modified in the stanby hostWe are currently using it on our 11gR2 Data Guard tests.Any improvements will be welcome! Normal 0 21 false false false ES X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} #!/bin/ksh ###    NOMBRE / VERSION ###       recrea_dg.sh   v.1.00 ### ###    DESCRIPCION ###       reacreacion de la Standby ### ###    DEVUELVE ###       0 Creacion de STANDBY correcta ###       1 Fallo ### ###    NOTAS ###       Este shell script NO DEBE MODIFICARSE. ###       Todas las variables y constantes necesarias se toman del entorno. ### ###    MODIFICADO POR:    FECHA:        COMENTARIOS: ###    ---------------    ----------    ------------------------------------- ###      Oracle           15/02/2011    Creacion. ### ### ### Cargar entorno ### V_ADMIN_DIR=`dirname $0` . ${V_ADMIN_DIR}/entorno_bd.sh 1>>/dev/null if [ $? -ne 0 ] then   echo "Error Loading the environment."   exit 1 fi V_RET=0 V_DATE=`/bin/date` V_DATE_F=`/bin/date +%Y%m%d_%H%M%S` V_LOGFILE=${V_TRAZAS}/recrea_dg_${V_DATE_F}.log exec 4>&1 tee ${V_FICH_LOG} >&4 |& exec 1>&p 2>&1 ### ### Variables para Recrear el Data Guard ### V_DB_BR=`echo ${V_DB_NAME}|tr '[:lower:]' '[:upper:]'` if [ "${ORACLE_SID}" = "${V_DB_NAME}01" ] then         V_LOCAL_BR=${V_DB_BR}'01'         V_REMOTE_BR=${V_DB_BR}'02' else         V_LOCAL_BR=${V_DB_BR}'02'         V_REMOTE_BR=${V_DB_BR}'01' fi echo " Getting local instance ROLE ${ORACLE_SID} ..." sqlplus -s /nolog 1>>/dev/null 2>&1 <<-! whenever sqlerror exit 1 connect / as sysdba variable salida number declare   v_database_role v\$database.database_role%type; begin   select database_role into v_database_role from v\$database;   :salida := case v_database_role        when 'PRIMARY' then 2        when 'PHYSICAL STANDBY' then 3        else 4      end; end; / exit :salida ! case $? in 1) echo " ERROR: Cannot get instance ROLE ." | tee -a ${V_LOGFILE}   2>&1    V_RET=1 ;; 2) echo " Local Instance with PRIMARY role." | tee -a ${V_LOGFILE}   2>&1    V_DB_ROLE_LCL=PRIMARY ;; 3) echo " Local Instance with PHYSICAL STANDBY role." | tee -a ${V_LOGFILE}   2>&1    V_DB_ROLE_LCL=STANDBY ;; *) echo " ERROR: UNKNOWN ROLE." | tee -a ${V_LOGFILE}   2>&1    V_RET=1 ;; esac if [ "${V_DB_ROLE_LCL}" = "PRIMARY" ] then         echo "####################################################################" | tee -a ${V_LOGFILE}   2>&1         echo "${V_DATE} - Reacreating  STANDBY Instance." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "DATAFILES, CONTROL FILES, REDO LOGS and ARCHIVE LOGS in standby instance ${V_REMOTE_BR} will be removed" | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         V_PRIMARY=${V_LOCAL_BR}         V_STANDBY=${V_REMOTE_BR} fi if [ "${V_DB_ROLE_LCL}" = "STANDBY" ] then         echo "####################################################################" | tee -a ${V_LOGFILE}   2>&1         echo "${V_DATE} - Reacreating  STANDBY Instance." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "DATAFILES, CONTROL FILES, REDO LOGS and ARCHIVE LOGS in standby instance ${V_LOCAL_BR} will be removed" | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         V_PRIMARY=${V_REMOTE_BR}         V_STANDBY=${V_LOCAL_BR} fi # Cargamos las variables de los hosts # Cargamos las variables de los hosts PRY_HOST=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_PRIMARY} as sysdba select 'KEEP',host_name from v\\$instance; EOF` SBY_HOST=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba select 'KEEP',host_name from v\\$instance; EOF` echo "el HOST primary es: ${PRY_HOST}" | tee -a ${V_LOGFILE}   2>&1 echo "el HOST standby es: ${SBY_HOST}" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 ## ## Paramos la instancia STANDBY ## V_DATE=`/bin/date` echo "${V_DATE} - Shutting down Standby instance" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ## ## Paramos la instancia STANDBY ## SBY_STATUS=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba select 'KEEP',status from v\\$instance; EOF` if [ ${SBY_STATUS} = 'STARTED' ] || [ ${SBY_STATUS} = 'MOUNTED' ] || [ ${SBY_STATUS} = 'OPEN' ] then         echo "${V_DATE} - Standby instance shutdown in progress..." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1         sqlplus -s /nolog 1>>/dev/null 2>&1 <<-!         whenever sqlerror exit 1         connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba         shutdown abort         ! fi V_DATE=`/bin/date` echo "" echo "${V_DATE} - Standby instance stopped" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ## ## Eliminamos los ficheros de la base de datos ## V_SBY_SID=`echo ${V_STANDBY}|tr '[:upper:]' '[:lower:]'` V_PRY_SID=`echo ${V_PRIMARY}|tr '[:upper:]' '[:lower:]'` ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/data/*.dbf ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/arch/*.arc ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/ctl/*.ctl ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/*.ctl ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/*.rdo ## ## Startup nomount stby instance ## V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Starting  DUMMY Standby Instance " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ssh ${SBY_HOST} touch /home/oracle/init_dg.ora ssh ${SBY_HOST} 'echo "DB_NAME='${V_DB_NAME}'">>/home/oracle/init_dg.ora' ssh ${SBY_HOST} touch /home/oracle/start_dummy.sh ssh ${SBY_HOST} 'echo "ORACLE_HOME=/opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2 ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export ORACLE_HOME">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "PATH=\$ORACLE_HOME/bin:\$PATH">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export PATH">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "ORACLE_SID='${V_SBY_SID}'">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export ORACLE_SID">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "sqlplus -s /nolog <<-!" >>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      whenever sqlerror exit 1 ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      connect / as sysdba ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      startup nomount pfile='\''/home/oracle/init_dg.ora'\''">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "! ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'chmod 744 /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'sh /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'rm /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'rm /home/oracle/init_dg.ora' ## ## TNSNAMES change, specific for RMAN duplicate ## V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Setting up TNSNAMES in PRIMARY host " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ssh ${PRY_HOST} 'cp /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora.inst  /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora' V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Starting STANDBY creation with RMAN.. " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 rman<<-! >>${V_LOGFILE} connect target sys/${V_DB_PWD}@${V_PRIMARY} connect auxiliary sys/${V_DB_PWD}@${V_STANDBY} run { allocate channel prmy1 type disk; allocate channel prmy2 type disk; allocate channel prmy3 type disk; allocate channel prmy4 type disk; allocate auxiliary channel stby type disk; duplicate target database for standby from active database dorecover spfile parameter_value_convert '${V_PRY_SID}','${V_SBY_SID}' set control_files='/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/ctl/control01.ctl','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/control02.ctl' set db_file_name_convert='/opt/oracle/db/db${V_DB_NAME}/${V_PRY_SID}/','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/' set log_file_name_convert='/opt/oracle/db/db${V_DB_NAME}/${V_PRY_SID}/','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/' set 'db_unique_name'='${V_SBY_SID}' set log_archive_config='DG_CONFIG=(${V_PRIMARY},${V_STANDBY})' set fal_client='${V_STANDBY}' set fal_server='${V_PRIMARY}' set log_archive_dest_1='LOCATION=/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/arch DB_UNIQUE_NAME=${V_SBY_SID} MANDATORY VALID_FOR=(ALL_LOGFILES,ALL_ROLES)' set log_archive_dest_2='SERVICE="${V_PRIMARY}"','SYNC AFFIRM DB_UNIQUE_NAME=${V_PRY_SID} DELAY=0 MAX_FAILURE=0 REOPEN=300 REGISTER VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)' nofilenamecheck ; } ! V_DATE=`/bin/date` if [ $? -ne 0 ] then         echo ""         echo "${V_DATE} - Error creating STANDBY instance"         echo ""         echo "********************************************************************************" else         echo ""         echo "${V_DATE} - STANDBY instance created SUCCESSFULLY "         echo ""         echo "********************************************************************************" fi sqlplus -s /nolog 1>>/dev/null 2>&1 <<-!         whenever sqlerror exit 1         connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba         alter system set local_listener='(ADDRESS=(PROTOCOL=TCP)(HOST=${SBY_HOST})(PORT=1544))' scope=both;         alter system set service_names='${V_DB_NAME}.eu.roca.net,${V_SBY_SID}.eu.roca.net,${V_SBY_SID}_DGMGRL.eu.roca.net' scope=both;         alter database recover managed standby database using current logfile disconnect from session;         alter system set dg_broker_start=true scope=both; ! ## ## TNSNAMES change, back to Production Mode ## V_DATE=`/bin/date` echo " " | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Restoring TNSNAMES in PRIMARY "  | tee -a ${V_LOGFILE}   2>&1 echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************"  | tee -a ${V_LOGFILE}   2>&1 ssh ${PRY_HOST} 'cp /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora.prod  /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora' echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} -  Waiting for media recovery before check the DATA GUARD Broker"  | tee -a ${V_LOGFILE}   2>&1 echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************"  | tee -a ${V_LOGFILE}   2>&1 sleep 200 dgmgrl <<-! | grep SUCCESS 1>/dev/null 2>&1     connect ${V_DB_USR}/${V_DB_PWD}@${V_STANDBY}     show configuration verbose; ! if [ $? -ne 0 ] ; then         echo "       ERROR: El status del Broker no es SUCCESS" | tee -a ${V_LOGFILE}   2>&1 ;         V_RET=1 else          echo "      DATA GUARD OK " | tee -a ${V_LOGFILE}   2>&1 ; Normal 0 21 false false false ES X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}         V_RET=0 fi Hope it helps.

    Read the article

  • iPhone SDK vs. Windows Phone 7 Series SDK Challenge, Part 2: MoveMe

    In this series, I will be taking sample applications from the iPhone SDK and implementing them on Windows Phone 7 Series.  My goal is to do as much of an apples-to-apples comparison as I can.  This series will be written to not only compare and contrast how easy or difficult it is to complete tasks on either platform, how many lines of code, etc., but Id also like it to be a way for iPhone developers to either get started on Windows Phone 7 Series development, or for developers in general to learn the platform. Heres my methodology: Run the iPhone SDK app in the iPhone Simulator to get a feel for what it does and how it works, without looking at the implementation Implement the equivalent functionality on Windows Phone 7 Series using Silverlight. Compare the two implementations based on complexity, functionality, lines of code, number of files, etc. Add some functionality to the Windows Phone 7 Series app that shows off a way to make the scenario more interesting or leverages an aspect of the platform, or uses a better design pattern to implement the functionality. You can download Microsoft Visual Studio 2010 Express for Windows Phone CTP here, and the Expression Blend 4 Beta here. If youre seeing this series for the first time, check out Part 1: Hello World. A note on methodologyin the prior post there was some feedback about lines of code not being a very good metric for this exercise.  I dont really disagree, theres a lot more to this than lines of code but I believe that is a relevant metric, even if its not the ultimate one.  And theres no perfect answer here.  So I am going to continue to report the number of lines of code that I, as a developer would need to write in these apps as a data point, and Ill leave it up to the reader to determine how that fits in with overall complexity, etc.  The first example was so basic that I think it was difficult to talk about in real terms.  I think that as these apps get more complex, the subjective differences in concept count and will be more important.  MoveMe The MoveMe app is the main end-to-end app writing example in the iPhone SDK, called Creating an iPhone Application.  This application demonstrates a few concepts, including handling touch input, how to do animations, and how to do some basic transforms. The behavior of the application is pretty simple.  User touches the button: The button does a throb type animation where it scales up and then back down briefly. User drags the button: After a touch begins, moving the touch point will drag the button around with the touch. User lets go of the button: The button animates back to its original position, but does a few small bounces as it reaches its original point, which makes the app fun and gives it an extra bit of interactivity. Now, how would I write an app that meets this spec for Windows Phone 7 Series, and how hard would it be?  Lets find out!     Implementing the UI Okay, lets build the UI for this application.  In the HelloWorld example, we did all the UI design in Visual Studio and/or by hand in XAML.  In this example, were going to use the Expression Blend 4 Beta. You might be wondering when to use Visual Studio, when to use Blend, and when to do XAML by hand.  Different people will have different takes on this, but heres mine: XAML by hand simple UI that doesnt contain animations, gradients, etc., and or UI that I want to really optimize and craft when I know exactly what I want to do. Visual Studio Basic UI layout, property setting, data binding, etc. Blend Any serious design work needs to be done in Blend, including animations, handling states and transitions, styling and templating, editing resources. As in Part 1, go ahead and fire up Visual Studio 2010 Express for Windows Phone (yes, soon it will take longer to say the name of our products than to start them up!), and create a new Windows Phone Application.  As in Part 1, clear out the XAML from the designer.  An easy way to do this is to just: Click on the design surface Hit Control+A Hit Delete Theres a little bit left over (the Grid.RowDefinitions element), just go ahead and delete that element so were starting with a clean state of only one outer Grid element. To use Blend, we need to save this project.  See, when you create a project with Visual Studio Express, it doesnt commit it to the disk (well, in a place where you can find it, at least) until you actually save the project.  This is handy if youre doing some fooling around, because it doesnt clutter your disk with WindowsPhoneApplication23-like directories.  But its also kind of dangerous, since when you close VS, if you dont save the projectits all gone.  Yes, this has bitten me since I was saving files and didnt remember that, so be careful to save the project/solution via Save All, at least once. So, save and note the location on disk.  Start Expression Blend 4 Beta, and chose File > Open Project/Solution, and load your project.  You should see just about the same thing you saw over in VS: a blank, black designer surface. Now, thinking about this application, we dont really need a button, even though it looks like one.  We never click it.  So were just going to create a visual and use that.  This is also true in the iPhone example above, where the visual is actually not a button either but a jpg image with a nice gradient and round edges.  Well do something simple here that looks pretty good. In Blend, look in the tool pane on the left for the icon that looks like the below (the highlighted one on the left), and hold it down to get the popout menu, and choose Border:    Okay, now draw out a box in the middle of the design surface of about 300x100.  The Properties Pane to the left should show the properties for this item. First, lets make it more visible by giving it a border brush.  Set the BorderBrush to white by clicking BorderBrush and dragging the color selector all the way to the upper right in the palette.  Then, down a bit farther, make the BorderThickness 4 all the way around, and the CornerRadius set to 6. In the Layout section, do the following to Width, Height, Horizontal and Vertical Alignment, and Margin (all 4 margin values): Youll see the outline now is in the middle of the design surface.  Now lets give it a background color.  Above BorderBrush select Background, and click the third tab over: Gradient Brush.  Youll see a gradient slider at the bottom, and if you click the markers, you can edit the gradient stops individually (or add more).  In this case, you can select something you like, but wheres what I chose: Left stop: #BFACCFE2 (I just picked a spot on the palette and set opacity to 75%, no magic here, feel free to fiddle these or just enter these numbers into the hex area and be done with it) Right stop: #FF3E738F Okay, looks pretty good.  Finally set the name of the element in the Name field at the top of the Properties pane to welcome. Now lets add some text.  Just hit T and itll select the TextBlock tool automatically: Now draw out some are inside our welcome visual and type Welcome!, then click on the design surface (to exit text entry mode) and hit V to go back into selection mode (or the top item in the tool pane that looks like a mouse pointer).  Click on the text again to select it in the tool pane.  Just like the border, we want to center this.  So set HorizontalAlignment and VerticalAlignment to Center, and clear the Margins: Thats it for the UI.  Heres how it looks, on the design surface: Not bad!  Okay, now the fun part Adding Animations Using Blend to build animations is a lot of fun, and its easy.  In XAML, I can not only declare elements and visuals, but also I can declare animations that will affect those visuals.  These are called Storyboards. To recap, well be doing two animations: The throb animation when the element is touched The center animation when the element is released after being dragged. The throb animation is just a scale transform, so well do that first.  In the Objects and Timeline Pane (left side, bottom half), click the little + icon to add a new Storyboard called touchStoryboard: The timeline view will appear.  In there, click a bit to the right of 0 to create a keyframe at .2 seconds: Now, click on our welcome element (the Border, not the TextBlock in it), and scroll to the bottom of the Properties Pane.  Open up Transform, click the third tab ("Scale), and set X and Y to 1.2: This all of this says that, at .2 seconds, I want the X and Y size of this element to scale to 1.2. In fact you can see this happen.  Push the Play arrow in the timeline view, and youll see the animation run! Lets make two tweaks.  First, we want the animation to automatically reverse so it scales up then back down nicely. Click in the dropdown that says touchStoryboard in Objects and Timeline, then in the Properties pane check Auto Reverse: Now run it again, and youll see it go both ways. Lets even make it nicer by adding an easing function. First, click on the Render Transform item in the Objects tree, then, in the Property Pane, youll see a bunch of easing functions to choose from.  Feel free to play with this, then seeing how each runs.  I chose Circle In, but some other ones are fun.  Try them out!  Elastic In is kind of fun, but well stick with Circle In.  Thats it for that animation. Now, we also want an animation to move the Border back to its original position when the user ends the touch gesture.  This is exactly the same process as above, but just targeting a different transform property. Create a new animation called releaseStoryboard Select a timeline point at 1.2 seconds. Click on the welcome Border element again Scroll to the Transforms panel at the bottom of the Properties Pane Choose the first tab (Translate), which may already be selected Set both X and Y values to 0.0 (we do this just to make the values stick, because the value is already 0 and we need Blend to know we want to save that value) Click on RenderTransform in the Objects tree In the properties pane, choose Bounce Out Set Bounces to 6, and Bounciness to 4 (feel free to play with these as well) Okay, were done. Note, if you want to test this Storyboard, you have to do something a little tricky because the final value is the same as the initial value, so playing it does nothing.  If you want to play with it, do the following: Next to the selection dropdown, hit the little "x (Close Storyboard) Go to the Translate Transform value for welcome Set X,Y to 50, 200, respectively (or whatever) Select releaseStoryboard again from the dropdown Hit play, see it run Go into the object tree and select RenderTransform to change the easing function. When youre done, hit the Close Storyboard x again and set the values in Transform/Translate back to 0 Wiring Up the Animations Okay, now go back to Visual Studio.  Youll get a prompt due to the modification of MainPage.xaml.  Hit Yes. In the designer, click on the welcome Border element.  In the Property Browser, hit the Events button, then double click each of ManipulationStarted, ManipulationDelta, ManipulationCompleted.  Youll need to flip back to the designer from code, after each double click. Its code time.  Here we go. Here, three event handlers have been created for us: welcome_ManipulationStarted: This will execute when a manipulation begins.  Think of it as MouseDown. welcome_ManipulationDelta: This executes each time a manipulation changes.  Think MouseMove. welcome_ManipulationCompleted: This will  execute when the manipulation ends. Think MouseUp. Now, in ManipuliationStarted, we want to kick off the throb animation that we called touchAnimation.  Thats easy: 1: private void welcome_ManipulationStarted(object sender, ManipulationStartedEventArgs e) 2: { 3: touchStoryboard.Begin(); 4: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Likewise, when the manipulation completes, we want to re-center the welcome visual with our bounce animation: 1: private void welcome_ManipulationCompleted(object sender, ManipulationCompletedEventArgs e) 2: { 3: releaseStoryboard.Begin(); 4: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Note there is actually a way to kick off these animations from Blend directly via something called Triggers, but I think its clearer to show whats going on like this.  A Trigger basically allows you to say When this event fires, trigger this Storyboard, so its the exact same logical process as above, but without the code. But how do we get the object to move?  Well, for that we really dont want an animation because we want it to respond immediately to user input. We do this by directly modifying the transform to match the offset for the manipulation, and then well let the animation bring it back to zero when the manipulation completes.  The manipulation events do a great job of keeping track of all the stuff that you usually had to do yourself when doing drags: where you started from, how far youve moved, etc. So we can easily modify the position as below: 1: private void welcome_ManipulationDelta(object sender, ManipulationDeltaEventArgs e) 2: { 3: CompositeTransform transform = (CompositeTransform)welcome.RenderTransform; 4:   5: transform.TranslateX = e.CumulativeManipulation.Translation.X; 6: transform.TranslateY = e.CumulativeManipulation.Translation.Y; 7: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Thats it! Go ahead and run the app in the emulator.  I suggest running without the debugger, its a little faster (CTRL+F5).  If youve got a machine that supports DirectX 10, youll see nice smooth GPU accelerated graphics, which also what it looks like on the phone, running at about 60 frames per second.  If your machine does not support DX10 (like the laptop Im writing this on!), it wont be quite a smooth so youll have to take my word for it! Comparing Against the iPhone This is an example where the flexibility and power of XAML meets the tooling of Visual Studio and Blend, and the whole experience really shines.  So, for several things that are declarative and 100% toolable with the Windows Phone 7 Series, this example does them with code on the iPhone.  In parens is the lines of code that I count to do these operations. PlacardView.m: 19 total LOC Creating the view that hosts the button-like image and the text Drawing the image that is the background of the button Drawing the Welcome text over the image (I think you could technically do this step and/or the prior one using Interface Builder) MoveMeView.m:  63 total LOC Constructing and running the scale (throb) animation (25) Constructing the path describing the animation back to center plus bounce effect (38) Beyond the code count, yy experience with doing this kind of thing in code is that its VERY time intensive.  When I was a developer back on Windows Forms, doing GDI+ drawing, we did this stuff a lot, and it took forever!  You write some code and even once you get it basically working, you see its not quite right, you go back, tweak the interval, or the math a bit, run it again, etc.  You can take a look at the iPhone code here to judge for yourself.  Scroll down to animatePlacardViewToCenter toward the bottom.  I dont think this code is terribly complicated, but its not what Id call simple and its not at all simple to get right. And then theres a few other lines of code running around for setting up the ViewController and the Views, about 15 lines between MoveMeAppDelegate, PlacardView, and MoveMeView, plus the assorted decls in the h files. Adding those up, I conservatively get something like 100 lines of code (19+63+15+decls) on iPhone that I have to write, by hand, to make this project work. The lines of code that I wrote in the examples above is 5 lines of code on Windows Phone 7 Series. In terms of incremental concept counts beyond the HelloWorld app, heres a shot at that: iPhone: Drawing Images Drawing Text Handling touch events Creating animations Scaling animations Building a path and animating along that Windows Phone 7 Series: Laying out UI in Blend Creating & testing basic animations in Blend Handling touch events Invoking animations from code This was actually the first example I tried converting, even before I did the HelloWorld, and I was pretty surprised.  Some of this is luck that this app happens to match up with the Windows Phone 7 Series platform just perfectly.  In terms of time, I wrote the above application, from scratch, in about 10 minutes.  I dont know how long it would take a very skilled iPhone developer to write MoveMe on that iPhone from scratch, but if I was to write it on Silverlight in the same way (e.g. all via code), I think it would likely take me at least an hour or two to get it all working right, maybe more if I ended up picking the wrong strategy or couldnt get the math right, etc. Making Some Tweaks Silverlight contains a feature called Projections to do a variety of 3D-like effects with a 2D surface. So lets play with that a bit. Go back to Blend and select the welcome Border in the object tree.  In its properties, scroll down to the bottom, open Transform, and see Projection at the bottom.  Set X,Y,Z to 90.  Youll see the element kind of disappear, replaced by a thin blue line. Now Create a new animation called startupStoryboard. Set its key time to .5 seconds in the timeline view Set the projection values above to 0 for X, Y, and Z. Save Go back to Visual Studio, and in the constructor, add the following bold code (lines 7-9 to the constructor: 1: public MainPage() 2: { 3: InitializeComponent(); 4:   5: SupportedOrientations = SupportedPageOrientation.Portrait; 6:   7: this.Loaded += (s, e) => 8: { 9: startupStoryboard.Begin(); 10: }; 11: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If the code above looks funny, its using something called a lambda in C#, which is an inline anonymous method.  Its just a handy shorthand for creating a handler like the manipulation ones above. So with this youll get a nice 3D looking fly in effect when the app starts up.  Here it is, in flight: Pretty cool!Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

< Previous Page | 271 272 273 274 275 276 277 278 279 280 281 282  | Next Page >