Search Results

Search found 12082 results on 484 pages for 'game footage'.

Page 284/484 | < Previous Page | 280 281 282 283 284 285 286 287 288 289 290 291  | Next Page >

  • why is glVertexAttribDivisor crashing?

    - by 2am
    I am trying to render some trees with instancing. This is rather weird, but before sleeping yesterday night, I checked the code, and it was in a running state, when I got up this morning, it is crashing when I am calling glVertexAttribDivisor I haven't changed any code since yesterday. Here is how I am sending data to GPU for instancing. glGenBuffers(1, &iVBO); glBindBuffer(GL_ARRAY_BUFFER, iVBO); glBufferData(GL_ARRAY_BUFFER, (ml_instance->i_positions.size()*sizeof(glm::vec4)) , NULL, GL_STATIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, (ml_instance->i_positions.size()*sizeof(glm::vec4)), &ml_instance->i_positions[0]); And then in vertex specification-- glBindBuffer(GL_ARRAY_BUFFER, iVBO); glVertexAttribPointer(i_positions, 4, GL_FLOAT, GL_FALSE, 0, 0); glEnableVertexAttribArray(i_positions); glVertexAttribDivisor(i_positions,1); // **THIS IS WHERE THE PROGRAM CRASHES** glDrawElementsInstanced(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0,TREES_INSTANCE_COUNT); I have checked ml_instance->i_positions, it has all the data that needs to render. I have checked the value of i_positions in vertex shader, it is the same as whatever I have defined there. I am little out of ideas here, everything looks pretty much fine. What am I missing?

    Read the article

  • Complete Guide/Tutorials on LWJGL?

    - by user43353
    Dont get me wrong, I finished these tutorials on http://lwjgl.org/wiki/index.php?title=Main_Page. I finished The Basics section, OpenGL 3.2 and newer section, and I looked at the Example Code section. They were great tutorials, and I have looked at the external tutorials as well. I don't know where to go from here, and OpenGL is not my strong point. Some one suggested Learning Modern 3D Graphics Programming, and I didnt learn much. I looked at the port to LWJGL, but the book was on C and I couldn't really understand what the OpenGL meant. I am trying to learn 2D gaming, not 3D. Maybe later. Is there any tutorials that aren't C/C++ heavy and teach you 2D OpenGL?

    Read the article

  • How do I render only part of a texture to a point sprite in OpenGL ES for Android?

    - by nbolton
    Using the libgdx framework, I've figured out how to render a texture to a point sprite. The problem is, it renders the entire texture to the point sprite, where I only want a small part of it (since it's an isometric tile image). Here's a snippet from some demo code I wrote... create() { renderer = new ImmediateModeRenderer(); tiles = Gdx.graphics.newTexture( Gdx.files.internal("data/tiles2.png"), TextureFilter.MipMap, TextureFilter.Linear, TextureWrap.ClampToEdge, TextureWrap.ClampToEdge); Gdx.gl.glClearColor(0.6f, 0.7f, 0.9f, 1); Gdx.gl.glEnable(GL10.GL_TEXTURE_2D); Gdx.gl.glEnable(GL11.GL_POINT_SPRITE_OES); Gdx.gl11.glTexEnvi( GL11.GL_POINT_SPRITE_OES, GL11.GL_COORD_REPLACE_OES, GL11.GL_TRUE); Gdx.gl10.glPointSize(s); tiles.bind(); } render() { Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); renderer.begin(GL10.GL_POINTS); // render 3 point sprites at various 3d points renderer.vertex(-.1f, 0, -.1f); renderer.vertex(0, 0, 0); renderer.vertex(.1f, 0, .1f); // ... more vertices here if needed (one for each sprite) ... renderer.end(); }

    Read the article

  • Changing Ogre3D terrain lighting in real time

    - by lezebulon
    I'm looking at the Ogre 3D library and I'm browsing through some examples / tutorials. My question is about terrain. There are a few examples showing how great the terrain system is, but I think that the global illumination and shadows of the terrain have to be pre-computed, which kinda makes it impossible to integrate this with a day / night cycle. Is there a way to change the terrain light sources in real time? If so it is possible to do it and keep a decent FPS?

    Read the article

  • libgdx actors and instant actions

    - by vaati
    I'm having trouble with actors and actions. I have a list of actors, they all have either no action, or 1 sequence action This sequence action has either : a couple of actions (some are instant, some have duration 0) a couple of actions followed by a parallel action. My problem is the following: some of the instant actions are used to set the position and the alpha of the actor. So when one of the action is "move to x,y and set alpha to 0" the actor is visible for one frame at position 0,0 , move instantly to x,y for the next frame, and then disappears. Though this behaviours is to be expected, I want to avoid it. How can I achieve that? I tried to intercept the actions before I put actors in the stage but I need the stage width/height for some actions. So something like : Action actionSequence = actor.getActions().get(0); Array<Action> actions = ((SequenceAction) actionSequence).getActions(); for(Action act : actions){ if(act.act(0)) System.out.println("action " + act.toString() + " successfully run"); else System.out.println("action " + act.toString() + " wasn't instant"); } won't work. It gets even more complicated when an actor can also have a repeat action in stead of the sequence action (because you have to only run the actions that have duration 0 once without repeat, and then start the repeat). Any help is appreciated.

    Read the article

  • What calls trigger a new batch?

    - by sebf
    I am finding my project is starting to show performance degradation and I need to optimize it. The answer to my previous question and this presentation from NVidia have helped greatly in understanding the performance characteristics of code using the GPU but there are a couple of things that aren't clear that I need to know to optimize my drawing. Specifically, what calls make the distinction between batches. I know that any state changes cause a new batch, so that includes: Render State Changes Buffer Changes Shader Changes Render Target Changes Correct? What else counts as a 'state change'? Does each Draw**Primitive() call constitute a new batch? Even if I were to issue the same call twice, with no state changes, or call it once on on part of the buffer, then again on another? If I were to update a buffer, but not change the bindings, would that be a new batch? That presentation and a DX9 page suggest using all of the texture slots available, which I take to mean loading multiple objects in 'parallel' by mapping their buffers/shaders/textures to slots 1-16. But I am not sure how this works - surely to do this you would need to change the buffer binding and that would count as a state change? (or is it a case of you do but it saves 16 calls so its OK?)

    Read the article

  • How can I determine if a cube is adjacent to another cube, and optimize its buffers if so?

    - by Christian Frantz
    I'm trying to optimize the rendering of a collection of cubes, (based on an answer I was given to another question I asked). I understand the logic behind occlusion culling, but I'm having trouble with the code. When I create a cube, I want to determine if that cube is touching another existing cube, and if so I don't want to generate the redundant data in my vertex or index buffers. I'm planning on making a method that I call from my cube constructor so that everytime I create a cube, these checks are made, and neither occluded face is ever drawn. How would I go about this?

    Read the article

  • Correct use of VAO's in OpenGL ES2 for iOS?

    - by sak
    I'm migrating to OpenGL ES2 for one of my iOS projects, and I'm having trouble to get any geometry to render successfully. Here's where I'm setting up the VAO rendering: void bindVAO(int vertexCount, struct Vertex* vertexData, GLushort* indexData, GLuint* vaoId, GLuint* indexId){ //generate the VAO & bind glGenVertexArraysOES(1, vaoId); glBindVertexArrayOES(*vaoId); GLuint positionBufferId; //generate the VBO & bind glGenBuffers(1, &positionBufferId); glBindBuffer(GL_ARRAY_BUFFER, positionBufferId); //populate the buffer data glBufferData(GL_ARRAY_BUFFER, vertexCount, vertexData, GL_STATIC_DRAW); //size of verte position GLsizei posTypeSize = sizeof(kPositionVertexType); glVertexAttribPointer(kVertexPositionAttributeLocation, kVertexSize, kPositionVertexTypeEnum, GL_FALSE, sizeof(struct Vertex), (void*)offsetof(struct Vertex, position)); glEnableVertexAttribArray(kVertexPositionAttributeLocation); //create & bind index information glGenBuffers(1, indexId); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *indexId); glBufferData(GL_ELEMENT_ARRAY_BUFFER, vertexCount, indexData, GL_STATIC_DRAW); //restore default state glBindVertexArrayOES(0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); } And here's the rendering step: //bind the frame buffer for drawing glBindFramebuffer(GL_FRAMEBUFFER, outputFrameBuffer); glClear(GL_COLOR_BUFFER_BIT); //use the shader program glUseProgram(program); glClearColor(0.4, 0.5, 0.6, 0.5); float aspect = fabsf(320.0 / 480.0); GLKMatrix4 projectionMatrix = GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65.0f), aspect, 0.1f, 100.0f); GLKMatrix4 modelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, -1.0f); GLKMatrix4 mvpMatrix = GLKMatrix4Multiply(projectionMatrix, modelViewMatrix); //glUniformMatrix4fv(projectionMatrixUniformLocation, 1, GL_FALSE, projectionMatrix.m); glUniformMatrix4fv(modelViewMatrixUniformLocation, 1, GL_FALSE, mvpMatrix.m); glBindVertexArrayOES(vaoId); glDrawElements(GL_TRIANGLE_FAN, kVertexCount, GL_FLOAT, &indexId); //bind the color buffer glBindRenderbuffer(GL_RENDERBUFFER, colorRenderBuffer); [context presentRenderbuffer:GL_RENDERBUFFER]; The screen is rendering the color passed to glClearColor correctly, but not the shape passed into bindVAO. Is my VAO being built correctly? Thanks!

    Read the article

  • How to follow object on CatmullRomSplines at constant speed (e.g. train and train carriage)?

    - by Simon
    I have a CatmullRomSpline, and using the very good example at https://github.com/libgdx/libgdx/wiki/Path-interface-%26-Splines I have my object moving at an even pace over the spline. Using a simple train and carriage example, I now want to have the carriage follow the train at the same speed as the train (not jolting along as it does with my code below). This leads into my main questions: How can I make the carriage have the same constant speed as the train and make it non jerky (it has something to do with the derivative I think, I don't understand how that part works)? Why do I need to divide by the line length to convert to metres per second, and is that correct? It wasn't done in the linked examples? I have used the example I linked to above, and modified for my specific example: private void process(CatmullRomSpline catmullRomSpline) { // Render path with precision of 1000 points renderPath(catmullRomSpline, 1000); float length = catmullRomSpline.approxLength(catmullRomSpline.spanCount * 1000); // Render the "train" Vector2 trainDerivative = new Vector2(); Vector2 trainLocation = new Vector2(); catmullRomSpline.derivativeAt(trainDerivative, current); // For some reason need to divide by length to convert from pixel speed to metres per second but I do not // really understand why I need it, it wasn't done in the examples??????? current += (Gdx.graphics.getDeltaTime() * speed / length) / trainDerivative.len(); catmullRomSpline.valueAt(trainLocation, current); renderCircleAtLocation(trainLocation); if (current >= 1) { current -= 1; } // Render the "carriage" Vector2 carriageLocation = new Vector2(); float carriagePercentageCovered = (((current * length) - 1f) / length); // I would like it to follow at 1 metre behind carriagePercentageCovered = Math.max(carriagePercentageCovered, 0); catmullRomSpline.valueAt(carriageLocation, carriagePercentageCovered); renderCircleAtLocation(carriageLocation); } private void renderPath(CatmullRomSpline catmullRomSpline, int k) { // catMulPoints would normally be cached when initialising, but for sake of example... Vector2[] catMulPoints = new Vector2[k]; for (int i = 0; i < k; ++i) { catMulPoints[i] = new Vector2(); catmullRomSpline.valueAt(catMulPoints[i], ((float) i) / ((float) k - 1)); } SHAPE_RENDERER.begin(ShapeRenderer.ShapeType.Line); SHAPE_RENDERER.setColor(Color.NAVY); for (int i = 0; i < k - 1; ++i) { SHAPE_RENDERER.line((Vector2) catMulPoints[i], (Vector2) catMulPoints[i + 1]); } SHAPE_RENDERER.end(); } private void renderCircleAtLocation(Vector2 location) { SHAPE_RENDERER.begin(ShapeRenderer.ShapeType.Filled); SHAPE_RENDERER.setColor(Color.YELLOW); SHAPE_RENDERER.circle(location.x, location.y, .5f); SHAPE_RENDERER.end(); } To create a decent sized CatmullRomSpline for testing this out: Vector2[] controlPoints = makeControlPointsArray(); CatmullRomSpline myCatmull = new CatmullRomSpline(controlPoints, false); .... private Vector2[] makeControlPointsArray() { Vector2[] pointsArray = new Vector2[78]; pointsArray[0] = new Vector2(1.681817f, 10.379999f); pointsArray[1] = new Vector2(2.045455f, 10.379999f); pointsArray[2] = new Vector2(2.663636f, 10.479999f); pointsArray[3] = new Vector2(3.027272f, 10.700000f); pointsArray[4] = new Vector2(3.663636f, 10.939999f); pointsArray[5] = new Vector2(4.245455f, 10.899999f); pointsArray[6] = new Vector2(4.736363f, 10.720000f); pointsArray[7] = new Vector2(4.754545f, 10.339999f); pointsArray[8] = new Vector2(4.518181f, 9.860000f); pointsArray[9] = new Vector2(3.790908f, 9.340000f); pointsArray[10] = new Vector2(3.172727f, 8.739999f); pointsArray[11] = new Vector2(3.300000f, 8.340000f); pointsArray[12] = new Vector2(3.700000f, 8.159999f); pointsArray[13] = new Vector2(4.227272f, 8.520000f); pointsArray[14] = new Vector2(4.681818f, 8.819999f); pointsArray[15] = new Vector2(5.081817f, 9.200000f); pointsArray[16] = new Vector2(5.463636f, 9.460000f); pointsArray[17] = new Vector2(5.972727f, 9.300000f); pointsArray[18] = new Vector2(6.063636f, 8.780000f); pointsArray[19] = new Vector2(6.027272f, 8.259999f); pointsArray[20] = new Vector2(5.700000f, 7.739999f); pointsArray[21] = new Vector2(5.300000f, 7.440000f); pointsArray[22] = new Vector2(4.645454f, 7.179999f); pointsArray[23] = new Vector2(4.136363f, 6.940000f); pointsArray[24] = new Vector2(3.427272f, 6.720000f); pointsArray[25] = new Vector2(2.572727f, 6.559999f); pointsArray[26] = new Vector2(1.900000f, 7.100000f); pointsArray[27] = new Vector2(2.336362f, 7.440000f); pointsArray[28] = new Vector2(2.590908f, 7.940000f); pointsArray[29] = new Vector2(2.318181f, 8.500000f); pointsArray[30] = new Vector2(1.663636f, 8.599999f); pointsArray[31] = new Vector2(1.209090f, 8.299999f); pointsArray[32] = new Vector2(1.118181f, 7.700000f); pointsArray[33] = new Vector2(1.045455f, 6.880000f); pointsArray[34] = new Vector2(1.154545f, 6.100000f); pointsArray[35] = new Vector2(1.281817f, 5.580000f); pointsArray[36] = new Vector2(1.700000f, 5.320000f); pointsArray[37] = new Vector2(2.190908f, 5.199999f); pointsArray[38] = new Vector2(2.900000f, 5.100000f); pointsArray[39] = new Vector2(3.700000f, 5.100000f); pointsArray[40] = new Vector2(4.372727f, 5.220000f); pointsArray[41] = new Vector2(4.827272f, 5.220000f); pointsArray[42] = new Vector2(5.463636f, 5.160000f); pointsArray[43] = new Vector2(5.554545f, 4.700000f); pointsArray[44] = new Vector2(5.245453f, 4.340000f); pointsArray[45] = new Vector2(4.445455f, 4.280000f); pointsArray[46] = new Vector2(3.609091f, 4.260000f); pointsArray[47] = new Vector2(2.718181f, 4.160000f); pointsArray[48] = new Vector2(1.990908f, 4.140000f); pointsArray[49] = new Vector2(1.427272f, 3.980000f); pointsArray[50] = new Vector2(1.609090f, 3.580000f); pointsArray[51] = new Vector2(2.136363f, 3.440000f); pointsArray[52] = new Vector2(3.227272f, 3.280000f); pointsArray[53] = new Vector2(3.972727f, 3.340000f); pointsArray[54] = new Vector2(5.027272f, 3.360000f); pointsArray[55] = new Vector2(5.718181f, 3.460000f); pointsArray[56] = new Vector2(6.100000f, 4.240000f); pointsArray[57] = new Vector2(6.209091f, 4.500000f); pointsArray[58] = new Vector2(6.118181f, 5.320000f); pointsArray[59] = new Vector2(5.772727f, 5.920000f); pointsArray[60] = new Vector2(4.881817f, 6.140000f); pointsArray[61] = new Vector2(5.318181f, 6.580000f); pointsArray[62] = new Vector2(6.263636f, 7.020000f); pointsArray[63] = new Vector2(6.645453f, 7.420000f); pointsArray[64] = new Vector2(6.681817f, 8.179999f); pointsArray[65] = new Vector2(6.627272f, 9.080000f); pointsArray[66] = new Vector2(6.572727f, 9.699999f); pointsArray[67] = new Vector2(6.263636f, 10.820000f); pointsArray[68] = new Vector2(5.754546f, 11.479999f); pointsArray[69] = new Vector2(4.536363f, 11.599998f); pointsArray[70] = new Vector2(3.572727f, 11.700000f); pointsArray[71] = new Vector2(2.809090f, 11.660000f); pointsArray[72] = new Vector2(1.445455f, 11.559999f); pointsArray[73] = new Vector2(0.936363f, 11.280000f); pointsArray[74] = new Vector2(0.754545f, 10.879999f); pointsArray[75] = new Vector2(0.700000f, 9.939999f); pointsArray[76] = new Vector2(0.918181f, 9.620000f); pointsArray[77] = new Vector2(1.463636f, 9.600000f); return pointsArray; } Disclaimer: My math is very rusty, so please explain in lay mans terms....

    Read the article

  • Efficiently representing a dynamic transform hierarchy

    - by Mattia
    I'm looking for a way to represent a dynamic transform hierarchy (i.e. one where nodes can be inserted and removed arbitrarily) that's a bit more efficient than using a standard tree of pointers . I saw the answers to this question ( Efficient structure for representing a transform hierarchy. ), but as far as I can determine the tree-as-array approach only works for static hierarchies or dynamic ones where nodes have a fixed number of children (both deal-breakers for me). I'm probably wrong about that but could anyone point out how? If I'm not wrong are there other alternatives that work for dynamic hierarchies?

    Read the article

  • Using Appendbuffers in unity for terrain generation

    - by Wardy
    Like many others I figured I would try and make the most of the monster processing power of the GPU but I'm having trouble getting the basics in place. CPU code: using UnityEngine; using System.Collections; public class Test : MonoBehaviour { public ComputeShader Generator; public MeshTopology Topology; void OnEnable() { var computedMeshPoints = ComputeMesh(); CreateMeshFrom(computedMeshPoints); } private Vector3[] ComputeMesh() { var size = (32*32) * 4; // 4 points added for each x,z pos var buffer = new ComputeBuffer(size, 12, ComputeBufferType.Append); Generator.SetBuffer(0, "vertexBuffer", buffer); Generator.Dispatch(0, 1, 1, 1); var results = new Vector3[size]; buffer.GetData(results); buffer.Dispose(); return results; } private void CreateMeshFrom(Vector3[] generatedPoints) { var filter = GetComponent<MeshFilter>(); var renderer = GetComponent<MeshRenderer>(); if (generatedPoints.Length > 0) { var mesh = new Mesh { vertices = generatedPoints }; var colors = new Color[generatedPoints.Length]; var indices = new int[generatedPoints.Length]; //TODO: build this different based on topology of the mesh being generated for (int i = 0; i < indices.Length; i++) { indices[i] = i; colors[i] = Color.blue; } mesh.SetIndices(indices, Topology, 0); mesh.colors = colors; mesh.RecalculateNormals(); mesh.Optimize(); mesh.RecalculateBounds(); filter.sharedMesh = mesh; } else { filter.sharedMesh = null; } } } GPU code: #pragma kernel Generate AppendStructuredBuffer<float3> vertexBuffer : register(u0); void genVertsAt(uint2 xzPos) { //TODO: put some height generation code here. // could even run marching cubes / dual contouring code. float3 corner1 = float3( xzPos[0], 0, xzPos[1] ); float3 corner2 = float3( xzPos[0] + 1, 0, xzPos[1] ); float3 corner3 = float3( xzPos[0], 0, xzPos[1] + 1); float3 corner4 = float3( xzPos[0] + 1, 0, xzPos[1] + 1 ); vertexBuffer.Append(corner1); vertexBuffer.Append(corner2); vertexBuffer.Append(corner3); vertexBuffer.Append(corner4); } [numthreads(32, 1, 32)] void Generate (uint3 threadId : SV_GroupThreadID, uint3 groupId : SV_GroupID) { uint2 currentXZ = unint2( groupId.x * 32 + threadId.x, groupId.z * 32 + threadId.z); genVertsAt(currentXZ); } Can anyone explain why when I call "buffer.GetData(results);" on the CPU after the compute dispatch call my buffer is full of Vector3(0,0,0), I'm not expecting any y values yet but I would expect a bunch of thread indexes in the x,z values for the Vector3 array. I'm not getting any errors in any of this code which suggests it's correct syntax-wise but maybe the issue is a logical bug. Also: Yes, I know I'm generating 4,000 Vector3's and then basically round tripping them. However, the purpose of this code is purely to learn how round tripping works between CPU and GPU in Unity.

    Read the article

  • How do GameEngines stop Pixel Seams appearing in adjacent mesh boundaries due to FP imprecision?

    - by ufomorace
    Graphics cards are mathematically imprecise. So when some meshes are joined by their borders, the graphics card often makes mistakes and decides that some pixels at the seam represent neither object, and unwanted pixels appear. It's a natural behaviour on all graphics cards. How are such worries avoided in Pro Games? Batching? Shaders? Different tangent vectors? Merging? Overlaping seams? Dark backgrounds? Extra vertices at borders? Z precision? Camera distance tweaks? Screencap of a fix that ended up not working:

    Read the article

  • Inverse projection: question about w coordinate

    - by fayeWilly
    I have to perform in shader an inverse projection from a u/v of a render target. What I do is: Get NDC as 2*(u,v,depth) - 1 Then world space as tmp = (P*V)^-1 * (NDC,1.0); world space = tmp/tmp.w; This apparently works, but I am confused about the w division there. Why this work? Shouldn't be a multiplication by a w somewhere (as in the "forward" pipeline there is the perpsective division?) Thank you, Faye

    Read the article

  • How to implement an intelligent enemy in a shoot-em-up?

    - by bummzack
    Imagine a very simple shoot-em-up, something we all know: You're the player (green). Your movement is restricted to the X axis. Our enemy (or enemies) is at the top of the screen, his movement is also restricted to the X axis. The player fires bullets (yellow) at the enemy. I'd like to implement an A.I. for the enemy that should be really good at avoiding the players bullets. My first idea was to divide the screen into discrete sections and assign weights to them: There are two weights: The "bullet-weight" (grey) is the danger imposed by a bullet. The closer the bullet is to the enemy, the higher the "bullet-weight" (0..1, where 1 is highest danger). Lanes without a bullet have a weight of 0. The second weight is the "distance-weight" (lime-green). For every lane I add 0.2 movement cost (this value is kinda arbitrary now and could be tweaked). Then I simply add the weights (white) and go to the lane with the lowest weight (red). But this approach has an obvious flaw, because it can easily miss local minima as the optimal place to go would be simply between two incoming bullets (as denoted with the white arrow). So here's what I'm looking for: Should find a way through bullet-storm, even when there's no place that doesn't impose a threat of a bullet. Enemy can reliably dodge bullets by picking an optimal (or almost optimal) solution. Algorithm should be able to factor in bullet movement speed (as they might move with different velocities). Ways to tweak the algorithm so that different levels of difficulty can be applied (dumb to super-intelligent enemies). Algorithm should allow different goals, as the enemy doesn't only want to evade bullets, he should also be able to shoot the player. That means that positions where the enemy can fire at the player should be preferred when dodging bullets. So how would you tackle this? Contrary to other games of this genre, I'd like to have only a few, but very "skilled" enemies instead of masses of dumb enemies.

    Read the article

  • XNA clip plane effect makes models black

    - by user1990950
    When using this effect file: float4x4 World; float4x4 View; float4x4 Projection; float4 ClipPlane0; void vs(inout float4 position : POSITION0, out float4 clipDistances : TEXCOORD0) { clipDistances.x = dot(position, ClipPlane0); clipDistances.y = 0; clipDistances.z = 0; clipDistances.w = 0; position = mul(mul(mul(position, World), View), Projection); } float4 ps(float4 clipDistances : TEXCOORD0) : COLOR0 { clip(clipDistances); return float4(0, 0, 0, 0); } technique { pass { VertexShader = compile vs_2_0 vs(); PixelShader = compile ps_2_0 ps(); } } all models using this are rendered black. Is it possible to render them correctly?

    Read the article

  • How to get warnings when compiling fx files

    - by jdv-Jan de Vaan
    When I compile DirectX shaders (.fx files), I dont see any compiler warnings unless there was an error in the effect. This happens both when using the offline FXC compiler, as well as calling SlimDx's CompileEffect (which is what we normally do). I could force warnings as errors (/WX), but if you enable that, you get an error that compilation failed, without the warning that caused the problem. So how can I output warnings for shaders that compile properly?

    Read the article

  • Consistency of DirectX models

    - by marc wellman
    Is there a way to check the consistency of a DirectX model (.x) ? Whilst compiling .x files with XNA GameStudio 3.1 compilation is aborted with the following error message: Error 2 Could not read the X file. The file is corrupt or invalid. Error code: D3DXFERR_PARSEERROR. C:\WFP\Browser\Content\m.x KiviBrowser Some models compile correctly without any error/warning and some abort as described. The files of each model have several thousand lines. I am creating the files in Googles SketchUp 8 where they all look fine and don't show any sign of corruption. Suppose I have such a model my XNA compiler won't compile because their is an inconsistency somewhere in the file - how could I identify this in order to correct it ?

    Read the article

  • Annoying flickering of vertices and edges (possible z-fighting)

    - by Belgin
    I'm trying to make a software z-buffer implementation, however, after I generate the z-buffer and proceed with the vertex culling, I get pretty severe discrepancies between the vertex depth and the depth of the buffer at their projected coordinates on the screen (i.e. zbuffer[v.xp][v.yp] != v.z, where xp and yp are the projected x and y coordinates of the vertex v), sometimes by a small fraction of a unit and sometimes by 2 or 3 units. Here's what I think is happening: Each triangle's data structure holds the plane's (that is defined by the triangle) coefficients (a, b, c, d) computed from its three vertices from their normal: void computeNormal(Vertex *v1, Vertex *v2, Vertex *v3, double *a, double *b, double *c) { double a1 = v1 -> x - v2 -> x; double a2 = v1 -> y - v2 -> y; double a3 = v1 -> z - v2 -> z; double b1 = v3 -> x - v2 -> x; double b2 = v3 -> y - v2 -> y; double b3 = v3 -> z - v2 -> z; *a = a2*b3 - a3*b2; *b = -(a1*b3 - a3*b1); *c = a1*b2 - a2*b1; } void computePlane(Poly *p) { double x = p -> verts[0] -> x; double y = p -> verts[0] -> y; double z = p -> verts[0] -> z; computeNormal(p -> verts[0], p -> verts[1], p -> verts[2], &p -> a, &p -> b, &p -> c); p -> d = p -> a * x + p -> b * y + p -> c * z; } The z-buffer just holds the smallest depth at the respective xy coordinate by somewhat casting rays to the polygon (I haven't quite got interpolation right yet so I'm using this slower method until I do) and determining the z coordinate from the reversed perspective projection formulas (which I got from here: double z = -(b*Ez*y + a*Ez*x - d*Ez)/(b*y + a*x + c*Ez - b*Ey - a*Ex); Where x and y are the pixel's coordinates on the screen; a, b, c, and d are the planes coefficients; Ex, Ey, and Ez are the eye's (camera's) coordinates. This last formula does not accurately give the exact vertices' z coordinate at their projected x and y coordinates on the screen, probably because of some floating point inaccuracy (i.e. I've seen it return something like 3.001 when the vertex's z-coordinate was actually 2.998). Here is the portion of code that hides the vertices that shouldn't be visible: for(i = 0; i < shape.nverts; ++i) { double dist = shape.verts[i].z; if(z_buffer[shape.verts[i].yp][shape.verts[i].xp].z < dist) shape.verts[i].visible = 0; else shape.verts[i].visible = 1; } How do I solve this issue? EDIT I've implemented the near and far planes of the frustum, with 24 bit accuracy, and now I have some questions: Is this what I have to do this in order to resolve the flickering? When I compare the z value of the vertex with the z value in the buffer, do I have to convert the z value of the vertex to z' using the formula, or do I convert the value in the buffer back to the original z, and how do I do that? What are some decent values for near and far? Thanks in advance.

    Read the article

  • List of Open Source Java Games for Android

    - by BluFire
    I'm wondering if there are any more opensource games than the ones that you can plainly see when you search a list of open source games for android on google. Such as, is there a good website that has compiled open source games? I don't want an answer of "go google it" or "en.wikipedia.org/wiki/List_of_open_source_Android_applications" it gets really annoying on posts when people just give lazy answers.

    Read the article

  • The practical cost of swapping effects

    - by sebf
    Hello, I use XNA for my projects and on those forums I sometimes see references to the fact that swapping an effect for a mesh has a relatively high cost, which surprises me as I thought to swap an effect was simply a case of copying the replacement shader program to the GPU along with appropriate parameters. I wondered if someone could explain exactly what is costly about this process? And put, if possible, 'relatively' into context? For example say I wanted to use a short shader to help with picking, I would: Change the effect on every object, calculting a unique color to identify it and providing it to the shader. Draw all the objects to a render target in memory. Get the color from the target and use it to look up the selected object. What portion of the total time taken to complete that process would be spent swapping the shaders? My instincts would say that rendering the scene again, no matter how simple the shader, would be an order of magnitude slower than any other part of the process so why all the concern over effects?

    Read the article

  • Collision within a poly

    - by G1i1ch
    For an html5 engine I'm making, for speed I'm using a path poly. I'm having trouble trying to find ways to get collision with the walls of the poly. To make it simple I just have a vector for the object and an array of vectors for the poly. I'm using Cartesian vectors and they're 2d. Say poly = [[550,0],[169,523],[-444,323],[-444,-323],[169,-523]], it's just a pentagon I generated. The object that will collide is object, object.pos is it's position and object.vel is it's velocity. They're both 2d vectors too. I've had some success to get it to find a collision, but it's just black box code I ripped from a c++ example. It's very obscure inside and all it does though is return true/false and doesn't return what vertices are collided or collision point, I'd really like to be able to understand this and make my own so I can have more meaningful collision. I'll tackle that later though. Again the question is just how does one find a collision to walls of a poly given you know the poly vertices and the object's position + velocity? If more info is needed please let me know. And if all anyone can do is point me to the right direction that's great.

    Read the article

  • 3D zooming technique to maintain the relative position of an object on screen

    - by stark
    Is it possible to zoom to a certain point on screen by modifying the field of view and rotating the view of the camera as to keep that point/object in the same place on screen while zooming ? Changing the camera position is not allowed. I projected the 3D pos of the object on screen and remembered it. Then on each frame I calculate the direction to it in camera space and then I construct a rotation matrix to align this direction to Z axis (in cam space). After this, I calculate the direction from the camera to the object in world space and transform this vector with the matrix I obtained earlier and then use this final vector as the camera's new direction. And it's actually "kinda working", the problem is that it is more/less off than the camera's rotation before starting to zoom depending on the area you are trying to zoom in (larger error on edges/corners). It looks acceptable, but I'm not settling for only this. Any suggestions/resources for doing this technique perfectly? If some of you want to explain the math in detail, be my guest, I can understand these things well.

    Read the article

  • Precision loss when transforming from cartesian to isometric

    - by Justin Skiles
    My goal is to display a tile map in isometric projection. This tile map has 25 tiles across and 25 tiles down. Each tile is 32x32. See below for how I'm accomplishing this. World Space World Space to Screen Space Rotation (45 degrees) Using a 2D rotation matrix, I use the following: double rotation = Math.PI / 4; double rotatedX = ((tileWorldX * Math.Cos(rotation)) - ((tileWorldY * Math.Sin(rotation))); double rotatedY = ((tileWorldX * Math.Sin(rotation)) + (tileWorldY * Math.Cos(rotation))); World Space to Screen Space Scale (Y-axis reduced by 50%) Here I simply scale down the Y value by a factor of 0.5. Problem And it works, kind of. There are some tiny 1px-2px gaps between some of the tiles when rendering. I think there's some precision loss somewhere, or I'm not understanding how to get these tiles to fit together perfectly. I'm not truncating or converting my values to non-decimal types until I absolutely have to (when I pass to the render method, which only takes integers). I'm not sure how to guarantee pixel perfect rendering precision when I'm rotating and scaling on a level of higher precision. Any advice? Do I need to supply for information?

    Read the article

  • Is it ok to initialize an RB_ConstraintActor in PostBeginPlay?

    - by Almo
    I have a KActorSpawnable subclass that acts weird. In PostBeginPlay, I initialize an RB_ConstraintActor; the default is not to allow rotation. If I create one in the editor, it's fine, and won't rotate. If I spawn one, it rotates. Here's the class: class QuadForceKActor extends KActorSpawnable placeable; var(Behavior) bool bConstrainRotation; var(Behavior) bool bConstrainX; var(Behavior) bool bConstrainY; var(Behavior) bool bConstrainZ; var RB_ConstraintActor PhysicsConstraintActor; simulated event PostBeginPlay() { Super.PostBeginPlay(); PhysicsConstraintActor = Spawn(class'RB_ConstraintActorSpawnable', self, '', Location, rot(0, 0, 0)); if(bConstrainRotation) { PhysicsConstraintActor.ConstraintSetup.bSwingLimited = true; PhysicsConstraintActor.ConstraintSetup.bTwistLimited = true; } SetLinearConstraints(bConstrainX, bConstrainY, bConstrainZ); PhysicsConstraintActor.InitConstraint(self, None); } function SetLinearConstraints(bool InConstrainX, bool InConstrainY, bool InConstrainZ) { if(InConstrainX) { PhysicsConstraintActor.ConstraintSetup.LinearXSetup.bLimited = 1; } else { PhysicsConstraintActor.ConstraintSetup.LinearXSetup.bLimited = 0; } if(InConstrainY) { PhysicsConstraintActor.ConstraintSetup.LinearYSetup.bLimited = 1; } else { PhysicsConstraintActor.ConstraintSetup.LinearYSetup.bLimited = 0; } if(InConstrainZ) { PhysicsConstraintActor.ConstraintSetup.LinearZSetup.bLimited = 1; } else { PhysicsConstraintActor.ConstraintSetup.LinearZSetup.bLimited = 0; } } DefaultProperties { bConstrainRotation=true bConstrainX=false bConstrainY=false bConstrainZ=false bSafeBaseIfAsleep=false bNoEncroachCheck=false } Here's the code I use to spawn one. It's a subclass of the one above, but it doesn't reference the constraint at all. local QuadForceKCreateBlock BlockActor; BlockActor = spawn(class'QuadForceKCreateBlock', none, 'PowerCreate_Block', BlockLocation(), m_PreparedRotation, , false); BlockActor.SetDuration(m_BlockDuration); BlockActor.StaticMeshComponent.SetNotifyRigidBodyCollision(true); BlockActor.StaticMeshComponent.ScriptRigidBodyCollisionThreshold = 0.001; BlockActor.StaticMeshComponent.SetStaticMesh(m_ValidCreationBlock.StaticMesh); BlockActor.StaticMeshComponent.AddImpulse(m_InitialVelocity); I used to initialize an RB_ConstraintActor where I spawned it from the outside. This worked, which is why I'm pretty sure it has nothing to do with the other code in QuadForceKCreateBlock. I then added the internal constraint in QuadForceKActor for other purposes. When I realized I had two constraints on the CreateBlock doing the same thing, I removed the constraint code from the place where I spawn it. Then it started rotating. Is there a reason I should not be initializing an RB_ConstraintActor in PostBeginPlay? I feel like there's some basic thing about how the engine works that I'm missing.

    Read the article

  • What would be a good filter to create 'magnetic deformers' from a depth map?

    - by sebf
    In my project, I am creating a system for deforming a highly detailed mesh (clothing) so that it 'fits' a convex mesh. To do this I use depth maps of the item and the 'hull' to determine at what point in world space the deviation occurs and the extent. Simply transforming all occluded vertices to the depths as defined by the 'hull' is fairly effective, and has good performance, but it suffers the problem of not preserving the features of the mesh and requires extensive culling to avoid false-positives. I would like instead to generate from the depth deviation map a set of simple 'deformers' which will 'push'* all vertices of the deformed mesh outwards (in world space). This way, all features of the mesh are preserved and there is no need to have complex heuristics to cull inappropriate vertices. I am not sure how to go about generating this deformer set however. I am imagining something like an algorithm that attempts to match a spherical surface to each patch of contiguous deviations within a certain range, but do not know where to start doing this. Can anyone suggest a suitable filter or algorithm for generating deformers? Or to put it another way 'compressing' a depth map? (*Push because its fitting to a convex 'bulgy' humanoid so transforms are likely to be 'spherical' from the POV of the surface.)

    Read the article

< Previous Page | 280 281 282 283 284 285 286 287 288 289 290 291  | Next Page >