Search Results

Search found 28207 results on 1129 pages for 'tfs process template'.

Page 291/1129 | < Previous Page | 287 288 289 290 291 292 293 294 295 296 297 298  | Next Page >

  • clang does not compile but g++ does

    - by user1095108
    Can someone help me with this code: #include <type_traits> #include <vector> struct nonsense { }; template <struct nonsense const* ptr, typename R> typename std::enable_if<!std::is_void<R>::value, int>::type fo(void* const) { return 0; } template <struct nonsense const* ptr, typename R> typename std::enable_if<std::is_void<R>::value, int>::type fo(void* const) { return 1; } typedef int (*func_type)(void*); template <std::size_t O> void run_me() { static struct nonsense data; typedef std::pair<char const* const, func_type> pair_type; std::vector<pair_type> v; v.push_back(pair_type{ "a", fo<&data, int> }); v.push_back(pair_type{ "b", fo<&data, void> }); } int main(int, char*[]) { run_me<2>(); return 0; } clang-3.3 does not compile this code, but g++-4.8.1 does, which of the two compiler is right? Is something wrong with the code, as I suspect? The error reads: a.cpp:32:15: error: no matching constructor for initialization of 'pair_type' (aka 'pair<const char *const, func_type>') v.push_back(pair_type{ "a", fo<&data, int> }); ^ ~~~~~~~~~~~~~~~~~~~~~~~ a.cpp:33:15: error: no matching constructor for initialization of 'pair_type' (aka 'pair<const char *const, func_type>') v.push_back(pair_type{ "b", fo<&data, void> }); ^ ~~~~~~~~~~~~~~~~~~~~~~~~

    Read the article

  • compact XSLT code to drop N number of tags if all are null.

    - by infant programmer
    This is my input xml: <root> <node1/> <node2/> <node3/> <node4/> <othertags/> </root> The output must be: <root> <othertags/> </root> if any of the 4 nodes isn't null then none of the tags must be dropped. example: <root> <node1/> <node2/> <node3/> <node4>sample_text</node4> <othertags/> </root> Then the output must be same as input xml. <root> <node1/> <node2/> <node3/> <node4>sample_text</node4> <othertags/> </root> This is the XSL code I have designed :: <xsl:template match="@*|node()"> <xsl:copy> <xsl:apply-templates select="@*|node()"/> </xsl:copy> </xsl:template> <xsl:template match="/root/node1[.='' and ../node2/.='' and ../node3/.='' and ../node4/.=''] |/root/node2[.='' and ../node1/.='' and ../node3/.='' and ../node4/.=''] |/root/node3[.='' and ../node1/.='' and ../node2/.='' and ../node4/.=''] |/root/node4[.='' and ../node1/.='' and ../node2/.='' and ../node3/.='']"/> As you can see the code requires more effort and becomes more bulky as the number of nodes increase. Is there any alternative way to overcome this bottleneck?

    Read the article

  • C++, generic programming and virtual functions. How do I get what I want?

    - by carleeto
    This is what I would like to do using templates: struct op1 { virtual void Method1() = 0; } ... struct opN { virtual void MethodN() = 0; } struct test : op1, op2, op3, op4 { virtual void Method1(){/*do work1*/}; virtual void Method2(){/*do work2*/}; virtual void Method3(){/*do work3*/}; virtual void Method4(){/*do work4*/}; } I would like to have a class that simply derives from a template class that provides these method declarations while at the same time making them virtual. This is what I've managed to come up with: #include <iostream> template< size_t N > struct ops : ops< N - 1 > { protected: virtual void DoStuff(){ std::cout<<N<<std::endl; }; public: template< size_t i > void Method() { if( i < N ) ops<i>::DoStuff(); } //leaving out compile time asserts for brevity } struct test : ops<6> { }; int main( int argc, char ** argv ) { test obj; obj.Method<3>(); //prints 3 return 0; } However, as you've probably guessed, I am unable to override any of the 6 methods I have inherited. I'm obviously missing something here. What is my error? No, this isn't homework. This is curiosity.

    Read the article

  • How do I change or add data to a data repeater and get it to display in ASP.NET

    - by CowKingDeluxe
    Here is my code-behind, this adds the "OakTreeName" to the datarepeater. There's about 200 of them. Dim cmd As New SqlClient.SqlCommand("OakTree_Load", New SqlClient.SqlConnection(ConnStr)) cmd.CommandType = CommandType.StoredProcedure cmd.Connection.Open() Dim datareader As SqlClient.SqlDataReader = cmd.ExecuteReader() OakTree_Thumb_Repeater.DataSource = datareader OakTree_Thumb_Repeater.DataBind() cmd.Connection.Close() Here is essentially what I'd like to do with my markup: <ContentTemplate> <asp:Repeater ID="OakTree_Thumb_Repeater" runat="server"> <ItemTemplate> <asp:ImageButton ImageUrl="<%# Container.DataItem("OakTreeName") %>" AlternateText="" runat="server" /> <!-- Or I'd like to do it this way by adding a custom variable to the data repeater --> <asp:ImageButton ImageUrl="<%# Container.DataItem("OakTreeThumbURL") %>" AlternateText="" runat="server" /> </ItemTemplate> </asp:Repeater> </ContentTemplate> I would like to manipulate the "OakTreeName" variable before it gets placed into the item template. Basically I need to manipulate the "OakTreeName" variable and then input it as the ImageURL for the imagebutton within the item template. How do I do this? Am I approaching this wrong? Is there a way to manipulate the item template from code-behind before it gets displayed for each round of variables in the data repeater?

    Read the article

  • Templates, Function Pointers and C++0x

    - by user328543
    One of my personal experiments to understand some of the C++0x features: I'm trying to pass a function pointer to a template function to execute. Eventually the execution is supposed to happen in a different thread. But with all the different types of functions, I can't get the templates to work. #include `<functional`> int foo(void) {return 2;} class bar { public: int operator() (void) {return 4;}; int something(int a) {return a;}; }; template <class C> int func(C&& c) { //typedef typename std::result_of< C() >::type result_type; typedef typename std::conditional< std::is_pointer< C >::value, std::result_of< C() >::type, std::conditional< std::is_object< C >::value, std::result_of< typename C::operator() >::type, void> >::type result_type; result_type result = c(); return result; } int main(int argc, char* argv[]) { // call with a function pointer func(foo); // call with a member function bar b; func(b); // call with a bind expression func(std::bind(&bar::something, b, 42)); // call with a lambda expression func( [](void)->int {return 12;} ); return 0; } The result_of template alone doesn't seem to be able to find the operator() in class bar and the clunky conditional I created doesn't compile. Any ideas? Will I have additional problems with const functions?

    Read the article

  • NVelocity (or Velocity) as a stand-alone formula evaluator

    - by dana
    I am using NVelocity in my application to generate html emails. My application has an event-driven model, where saving and/or updating of objects causes these emails to be sent out. Each event can trigger zero, one or multiple multiple emails. I want to be able to configure which emails get sent out at run-time without having to modify code. I was thinking I could leverage the NVelocity #if() directive to do this. Here is my idea... Step 1) Prior to email sending, the administrator must configure a formula for NVelocity to evaluate. For example: $User.FirstName == "Jack" Step 2) When an object is saved or created, build an NVelocity template in memory based on the input formula. For example: String formula = GetFormulaFromDB(); // $User.FirstName == "Jack" String templ = "#if( " + formula + ") 1 #else 0 #end"; Step 3) Execute the NVelocity engine in memory against the template. Check the results to see if we have to send the email: String result = VelocityMerge(templ); // utility function if( result.Trim() == "1" ) { SendEmail(); } I know this is not exactly what NVelocity was intended to do, but I think it just might work :) One of the benefits of doing things this way is that the same syntax can be used for the formula as is used inside the template. Does anybody have any words of caution or suggestions? Is there a way to execute the #if() directive without jumping through hoops like I have above? Is there a recommended way to validate the formula syntax ahead of time? Thanks.

    Read the article

  • Should this work?

    - by Noah Roberts
    I am trying to specialize a metafunction upon a type that has a function pointer as one of its parameters. The code compiles just fine but it will simply not match the type. #include <iostream> #include <boost/mpl/bool.hpp> #include <boost/mpl/identity.hpp> template < typename CONT, typename NAME, typename TYPE, TYPE (CONT::*getter)() const, void (CONT::*setter)(TYPE const&) > struct metafield_fun {}; struct test_field {}; struct test { int testing() const { return 5; } void testing(int const&) {} }; template < typename T > struct field_writable : boost::mpl::identity<T> {}; template < typename CONT, typename NAME, typename TYPE, TYPE (CONT::*getter)() const > struct field_writable< metafield_fun<CONT,NAME,TYPE,getter,0> > : boost::mpl::false_ {}; typedef metafield_fun<test, test_field, int, &test::testing, 0> unwritable; int main() { std::cout << typeid(field_writable<unwritable>::type).name() << std::endl; std::cin.get(); } Output is always the type passed in, never bool_.

    Read the article

  • How to write curiously recurring templates with more than 2 layers of inheritance?

    - by Kyle
    All the material I've read on Curiously Recurring Template Pattern seems to one layer of inheritance, ie Base and Derived : Base<Derived>. What if I want to take it one step further? #include <iostream> using std::cout; template<typename LowestDerivedClass> class A { public: LowestDerivedClass& get() { return *static_cast<LowestDerivedClass*>(this); } void print() { cout << "A\n"; } }; template<typename LowestDerivedClass> class B : public A<LowestDerivedClass> { public: void print() { cout << "B\n"; } }; class C : public B<C> { public: void print() { cout << "C\n"; } }; int main() { C c; c.get().print(); // B b; // Intentionally bad syntax, // b.get().print(); // to demonstrate what I'm trying to accomplish return 0; } How can I rewrite this code to compile without errors (and output "C\nB\n")?

    Read the article

  • Wicket: Where to add components? Constructor? Or onBeforeRender?

    - by gmallett
    I'm a Wicket newb. This may just be my ignorance of the Wicket lifecycle so please enlighten me! My understanding is that Wicket WebPage objects are instantiated once and then serialized. This has led to a point of confusion for me, see below. Currently I have a template class which I intend to subclass. I followed the example in the Wicket docs demonstrating how to override the template's behavior in the subclass: protected void onBeforeRender() { add(new Label("title", getTitle())); super.onBeforeRender(); } protected String getTitle() { return "template"; } Subclass: protected String getTitle() { return "Home"; } This works very well. What's not clear to me are the "best practices" for this. It seems like onBeforeRender() is called on every request for the page, no? This seems like there would be substantially more processing done on a page if everything is in onBeforeRender(). I could easily follow the example of the other Wicket examples and add some components in the constructor that I do not want to override, but then I've divided by component logic into two places, something I'm hesitant to do. If I add a component that I intend to be in all subclasses, should I add it to the constructor or onBeforeRender()?

    Read the article

  • Copy object using pointer (templates)

    - by Azodious
    How the push_back of stl::vector is implemented so it can make copy of any datatype .. may be pointer, double pointer and so on ... I'm implementing a template class having a function push_back almost similar to vector. Within this method a copy of argument should be inserted in internal memory allocated memory. but the argument is a pointer. (an object pointer). Can you pls tell how to create copy from pointer. so that if i delete the pointer in caller still the copy exists in my template class? Code base is as follows: template<typename T> class Vector { public: void push_back(const T& val_in) { T* a = *(new T(val_in)); m_pData[SIZE++] = a; } } Caller: Vector<MyClass*> v(3); MyClass* a = new MyClass(); a->a = 0; a->b = .5; v.push_back(a); delete a; Thanks.

    Read the article

  • Find XmlNode where attribute value is contained in string

    - by bflemi3
    I have an xml file... <?xml version="1.0" encoding="UTF-8"?> <items defaultNode="1"> <default contentPlaceholderName="pageContent" template="" genericContentItemName="" /> <item urlSearchPattern="connections-learning" contentPlaceholderName="pageContent" template="Connections Learning Content Page" genericContentItemName="" /> <item urlSearchPattern="online-high-school" contentPlaceholderName="pageContent" template="" genericContentItemName="" /> </items> I am trying to find the first node where the urlSearchPattern attribute is contained in the string urlSearchPattern. Where I'm having trouble is finding the nodes where the attribute is contained in the string value instead of the string value be contained in the attribute. Here's my attempt so far. This will find the firstOrDefault node where the string value is contained in the attribute (I need the opposite)... string urlSearchPattern = Request.QueryString["aspxerrorpath"]; MissingPageSettingsXmlDocument missingPageSettingsXmlDocument = new MissingPageSettingsXmlDocument(); XmlNode missingPageItem = missingPageSettingsXmlDocument.SelectNodes(ITEM_XML_PATH).Cast<XmlNode>().Where(item => item.Attributes["urlSearchPattern"].ToString().ToLower().Contains(urlSearchPattern)).FirstOrDefault();

    Read the article

  • Need help with Django tutorial

    - by Nai
    I'm doing the Django tutorial here: http://docs.djangoproject.com/en/1.2/intro/tutorial03/ My TEMPLATE_DIRS in the settings.py looks like this: TEMPLATE_DIRS = ( "/webapp2/templates/" "/webapp2/templates/polls" # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) My urls.py looks like this: from django.conf.urls.defaults import * from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', (r'^polls/$', 'polls.views.index'), (r'^polls/(?P<poll_id>\d+)/$', 'polls.views.detail'), (r'^polls/(?P<poll_id>\d+)/results/$', 'polls.views.results'), (r'^polls/(?P<poll_id>\d+)/vote/$', 'polls.views.vote'), (r'^admin/', include(admin.site.urls)), ) My views.py looks like this: from django.template import Context, loader from polls.models import Poll from django.http import HttpResponse def index(request): latest_poll_list = Poll.objects.all().order_by('-pub_date')[:5] t = loader.get_template('c:/webapp2/templates/polls/index.html') c = Context({ 'latest_poll_list': latest_poll_list, }) return HttpResponse(t.render(c)) I think I am getting the path of my template wrong because when I simplify the views.py code to something like this, I am able to load the page. from django.http import HttpResponse def index(request): return HttpResponse("Hello, world. You're at the poll index.") My index template file is located at C:/webapp2/templates/polls/index.html. What am I doing wrong?

    Read the article

  • Nested bind expressions

    - by user328543
    This is a followup question to my previous question. #include <functional> int foo(void) {return 2;} class bar { public: int operator() (void) {return 3;}; int something(int a) {return a;}; }; template <class C> auto func(C&& c) -> decltype(c()) { return c(); } template <class C> int doit(C&& c) { return c();} template <class C> void func_wrapper(C&& c) { func( std::bind(doit<C>, std::forward<C>(c)) ); } int main(int argc, char* argv[]) { // call with a function pointer func(foo); func_wrapper(foo); // error // call with a member function bar b; func(b); func_wrapper(b); // call with a bind expression func(std::bind(&bar::something, b, 42)); func_wrapper(std::bind(&bar::something, b, 42)); // error // call with a lambda expression func( [](void)->int {return 42;} ); func_wrapper( [](void)->int {return 42;} ); return 0; } I'm getting a compile errors deep in the C++ headers: functional:1137: error: invalid initialization of reference of type ‘int (&)()’ from expression of type ‘int (*)()’ functional:1137: error: conversion from ‘int’ to non-scalar type ‘std::_Bind(bar, int)’ requested func_wrapper(foo) is supposed to execute func(doit(foo)). In the real code it packages the function for a thread to execute. func would the function executed by the other thread, doit sits in between to check for unhandled exceptions and to clean up. But the additional bind in func_wrapper messes things up...

    Read the article

  • How to implement the "System.out.println(ClassName::MethodName <then my message>)" of Eclipse in Netbeans?

    - by Sen
    I would like to know if there is the same feature as in eclipse to automatically generate and print the System.out.println(ClassName::MethodName <then my message>) functionality (which will print the class name and method name for debugging in the console) in Netbeans also. For example, in Eclipse Editor, Typing syst + Ctrl+ Space will auto generate a System.out.println(ClassName::MethodName ) type output in the console. Is such a method available in Netbeans? As of now, I have only two methods here in Netbeans: sout + Tab (System.out.println()) and soutv + Tab (System.out.println(prints the variable used just above the line)) automatically. Let me rephrase, instead of myMethod1, I want to get the enclosing method name. Eg. : public class X { public void myMethod1(int a) { System.out.println(X::myMethod1()); // This should be produced when I type the Code-Template abbreviation (example: syst) and press tab (or corresponding key). } } public class Y { public void myMethod2(int b) { System.out.println(Y::myMethod2()); // This should be produced when I type the Code-Template abbreviation (example: syst) and press tab (or corresponding key). } } Update: With the following code template: syst = System.out.println("${classVar editable="false" currClassName default="getClass()"}"); I am able to print the classname, but still no clue for the Method name.

    Read the article

  • Custom stream wrappers, what could they be useful for in web applications?

    - by michael
    I suppose the concept is language agnostic, but I don't know what it's called in other languages. In PHP they're Stream Wrappers. In short, a wrapper class that allows manipulation of a streamable resource (resource that can be read to/written to/seek into, such as a file, a db, an url). For example, in a template engine (a view), upon including a template file such as: include "view.wrapper://path/to/my/template/file.phtml"; my custom wrapper, declared elsewhere and associated with "view.wrapper", would first intercepts the file to replace such things as short tags (<?=) with a more verbose counterpart (<?php echo). This allows developers to use short tags in views, even if the server isn't set to allow it. It can also be applied to the preprocessing of views pseudo syntax such as {@myVar} (e.g. replacing it with $this->myVar). This is only one application of custom stream wrappers, but the feature seems powerful enough to make me think that there are others that could make life a lot simpler for developers. What have you built, or thought about building, custom stream wrappers for? where have you seen some interesting implementations? I'm particularly interested in their applications in web development.

    Read the article

  • Storing C++ templated objects as same type

    - by JaredC
    I have a class that is a core component of a performance sensitive code path, so I am trying to optimize it as much as possible. The class used to be: class Widget { Widget(int n) : N(n) {} .... member functions that use the constant value N .... const int N; // just initialized, will never change } The arguments to the constructor are known at compile time, so I have changed this class to a template, so that N can be compiled into the functions: template<int N> class Widget { .... member functions that use N .... } I have another class with a method: Widget & GetWidget(int index); However, after templating Widget, each widget has a different type so I cannot define the function like this anymore. I considered different inheritance options, but I'm not sure that the performance gain from the template would outweigh the cost of inherited function invocations. SO, my question is this: I am pretty sure I want the best of both worlds (compile-time / run-time), and it may not be possible. But, is there a way to gain the performance of knowing N at compile time, but still being able to return Widgets as the same type? Thanks!

    Read the article

  • Problems Expanding an Array in C++

    - by dxq
    I'm writing a simulation for class, and part of it involves the reproduction of organisms. My organisms are kept in an array, and I need to increase the size of the array when they reproduce. Because I have multiple classes for multiple organisms, I used a template: template <class orgType> void expandarray(orgType* oldarray, int& numitems, int reproductioncount) { orgType *newarray = new orgType[numitems+reproductioncount]; for (int i=0; i<numitems; i++) { newarray[i] = oldarray[i]; } numitems += reproductioncount; delete[] oldarray; oldarray = newarray; newarray = NULL; } However, this template seems to be somehow corrupting my data. I can run the program fine without reproduction (commenting out the calls to expandarray), but calling this function causes my program to crash. The program does not crash DURING the expandarray function, but crashes on access violation later on. I've written functions to expand an array hundreds of times, and I have no idea what I screwed up this time. Is there something blatantly wrong in my function? Does it look right to you? EDIT: Thanks for everyone's help. I can't believe I missed something so obvious. In response to using std::vector: we haven't discussed it in class yet, and as silly as it seems, I need to write code using the methods we've been taught.

    Read the article

  • Difference between std::result_of and decltype

    - by Luc Touraille
    I have some trouble understanding the need for std::result_of in C++0x. If I understood correctly, result_of is used to obtain the resulting type of invoking a function object with certain types of parameters. For example: template <typename F, typename Arg> typename std::result_of<F(Arg)> invoke(F f, Arg a) { return f(a); } I don't really see the difference with the following code: template <typename F, typename Arg> auto invoke(F f, Arg a) -> decltype(f(a)) //uses the f parameter { return f(a); } or template <typename F, typename Arg> auto invoke(F f, Arg a) -> decltype(F()(a)); //"constructs" an F { return f(a); } The only problem I can see with these two solutions is that we need to either: have an instance of the functor to use it in the expression passed to decltype. know a defined constructor for the functor. Am I right in thinking that the only difference between decltype and result_of is that the first one needs an expression whereas the second does not?

    Read the article

  • Hiding instantiated templates in shared library created with g++

    - by jchl
    I have a file that contains the following: #include <map> class A {}; void doSomething() { std::map<int, A> m; } When compiled into a shared library with g++, the library contains dynamic symbols for all the methods of std::map<int, A>. Since A is private to this file, there is no possibility that std::map will be instantiated in any other shared library with the same parameters, so I'd like to make the template instantiation hidden (for some of the reasons described in this document). I thought I should be able to do this by adding an explicit instantiation of the template class and marking it as hidden, like so: #include <map> class A {}; template class __attribute__((visibility ("hidden"))) std::map<int, A>; void doSomething() { std::map<int, A> m; } However, this has no effect: the symbols are still all exported. I even tried compiling with -fvisibility=hidden, but this also has no effect on the visibility of the methods of std::map<int, A> (although it does hide doSomething). The document I linked to above describes the use of export maps to restrict visibility, but that seems very tedious. Is there a way to do what I want in g++ (other than using export maps)? If so, what is it? If not, is there a good reason why these symbols must always be exported, or is this just a omission in g++?

    Read the article

  • Is this an error in "More Effective C++" in Item28?

    - by particle128
    I encountered a question when I was reading the item28 in More Effective C++ .In this item, the author shows to us that we can use member template in SmartPtr such that the SmartPtr<Cassette> can be converted to SmartPtr<MusicProduct>. The following code is not the same as in the book,but has the same effect. #include <iostream> class Base{}; class Derived:public Base{}; template<typename T> class smart{ public: smart(T* ptr):ptr(ptr){} template<typename U> operator smart<U>() { return smart<U>(ptr); } ~smart(){delete ptr;} private: T* ptr; }; void test(const smart<Base>& ) {} int main() { smart<Derived> sd(new Derived); test(sd); return 0; } It indeed can be compiled without compilation error. But when I ran the executable file, I got a core dump. I think that's because the member function of the conversion operator makes a temporary smart, which has a pointer to the same ptr in sd (its type is smart<Derived>). So the delete directive operates twice. What's more, after calling test, we can never use sd any more, since ptr in sd has already been delete. Now my questions are : Is my thought right? Or my code is not the same as the original code in the book? If my thought is right, is there any method to do this? Thanks very much for your help.

    Read the article

  • Error in value of default parameter [Bug in Visual C++ 2008?]

    - by HellBoy
    I am facing following issue while trying to use template in my code I have some C++ code which i call from C functions. Problem is I am getting different values in the following code for statement 1 and 2. Type id : unsigned int statement 1 : 4 statement 2 : 1 C++ Code : template <typename T> void func(T* value, unsigned int len = sizeof(T)) { cout << "Type id : " << typeid(T).name() << endl; cout << "statement 1 " << sizeof(T) << endl; cout << "statement 2 " << len << endl; } template <typename T> void func1(T data) { T val = data; func(&val); } C Code : void test(void *ptr, unsigned int len) { switch(len) { case 1: func1(*(static_cast<uint32_t *>(ptr)) break; } } This happens only on windows. On Linux it works fine.

    Read the article

  • Merging Three or More Images -- PHP

    - by bballer13sn
    Before I ask my question, I'd like to thank you all in advance for helping me with this. So here's the question: So, for my website, I've been trying to make it so people's characters (which are currently composed of several pictures that are moved by CSS) are merged into one image as to make my life easier. The chunk of code that currently doesn't work is as follows: $template = $charRow['template']; $gender = $charRow['gender']; $shirt = $charRow['shirt']; $pants = $charRow['pants']; $hat = $charRow['hat']; $templatePic = imagecreatefrompng("Templates/".$template); if (!empty($shirt)) { $shirtPic = imagecreatefrompng($shirt); imagecopy($templatePic,$shirtPic,0,0,0,0,imagesx($templatePic),imagesy($templatePic)); } if (!empty($pants)) { $pantsPic = imagecreatefrompng($pants); imagecopy($templatePic,$pantsPic,0,0,0,0,imagesx($templatePic),imagesy($templatePic)); } if (!empty($hat)) { $hatPic = imagecreatefrompng($hat); imagecopy($templatePic,$hatPic,0,0,0,0,imagesx($templatePic),imagesy($templatePic)); } imagePNG($templatePic, 'Images/'); //Problem line... This is the error PHP is giving me: Warning: imagepng() [function.imagepng]: Unable to open 'Images/' for writing: Is a directory in PathToParentFolderOfFollowingFile/testFile.php on line 139 What exactly does this error mean and how can it be fixed? NOTE: $charRow is not the problem. The query to get that is just not being displayed to all of you.

    Read the article

  • C++0x Smart Pointer Comparisons: Inconsistent, what's the rationale?

    - by GManNickG
    In C++0x (n3126), smart pointers can be compared, both relationally and for equality. However, the way this is done seems inconsistent to me. For example, shared_ptr defines operator< be equivalent to: template <typename T, typename U> bool operator<(const shared_ptr<T>& a, const shared_ptr<T>& b) { return std::less<void*>()(a.get(), b.get()); } Using std::less provides total ordering with respect to pointer values, unlike a vanilla relational pointer comparison, which is unspecified. However, unique_ptr defines the same operator as: template <typename T1, typename D1, typename T2, typename D2> bool operator<(const unique_ptr<T1, D1>& a, const unique_ptr<T2, D2>& b) { return a.get() < b.get(); } It also defined the other relational operators in similar fashion. Why the change in method and "completeness"? That is, why does shared_ptr use std::less while unique_ptr uses the built-in operator<? And why doesn't shared_ptr also provide the other relational operators, like unique_ptr? I can understand the rationale behind either choice: with respect to method: it represents a pointer so just use the built-in pointer operators, versus it needs to be usable within an associative container so provide total ordering (like a vanilla pointer would get with the default std::less predicate template argument) with respect to completeness: it represents a pointer so provide all the same comparisons as a pointer, versus it is a class type and only needs to be less-than comparable to be used in an associative container, so only provide that requirement But I don't see why the choice changes depending on the smart pointer type. What am I missing? Bonus/related: std::shared_ptr seems to have followed from boost::shared_ptr, and the latter omits the other relational operators "by design" (and so std::shared_ptr does too). Why is this?

    Read the article

  • C++ - Conway's Game of Life & Stepping Backwards

    - by Gabe
    I was able to create a version Conway's Game of Life that either stepped forward each click, or just ran forward using a timer. (I'm doing this using Qt.) Now, I need to be able to save all previous game grids, so that I can step backwards by clicking a button. I'm trying to use a stack, and it seems like I'm pushing the old gridcells onto the stack correctly. But when I run it in QT, the grids don't change when I click BACK. I've tried different things for the last three hours, to no avail. Any ideas? gridwindow.cpp - My problem should be in here somewhere. Probably the handleBack() func. #include <iostream> #include "gridwindow.h" using namespace std; // Constructor for window. It constructs the three portions of the GUI and lays them out vertically. GridWindow::GridWindow(QWidget *parent,int rows,int cols) : QWidget(parent) { QHBoxLayout *header = setupHeader(); // Setup the title at the top. QGridLayout *grid = setupGrid(rows,cols); // Setup the grid of colored cells in the middle. QHBoxLayout *buttonRow = setupButtonRow(); // Setup the row of buttons across the bottom. QVBoxLayout *layout = new QVBoxLayout(); // Puts everything together. layout->addLayout(header); layout->addLayout(grid); layout->addLayout(buttonRow); setLayout(layout); } // Destructor. GridWindow::~GridWindow() { delete title; } // Builds header section of the GUI. QHBoxLayout* GridWindow::setupHeader() { QHBoxLayout *header = new QHBoxLayout(); // Creates horizontal box. header->setAlignment(Qt::AlignHCenter); this->title = new QLabel("CONWAY'S GAME OF LIFE",this); // Creates big, bold, centered label (title): "Conway's Game of Life." this->title->setAlignment(Qt::AlignHCenter); this->title->setFont(QFont("Arial", 32, QFont::Bold)); header->addWidget(this->title); // Adds widget to layout. return header; // Returns header to grid window. } // Builds the grid of cells. This method populates the grid's 2D array of GridCells with MxN cells. QGridLayout* GridWindow::setupGrid(int rows,int cols) { isRunning = false; QGridLayout *grid = new QGridLayout(); // Creates grid layout. grid->setHorizontalSpacing(0); // No empty spaces. Cells should be contiguous. grid->setVerticalSpacing(0); grid->setSpacing(0); grid->setAlignment(Qt::AlignHCenter); for(int i=0; i < rows; i++) //Each row is a vector of grid cells. { std::vector<GridCell*> row; // Creates new vector for current row. cells.push_back(row); for(int j=0; j < cols; j++) { GridCell *cell = new GridCell(); // Creates and adds new cell to row. cells.at(i).push_back(cell); grid->addWidget(cell,i,j); // Adds to cell to grid layout. Column expands vertically. grid->setColumnStretch(j,1); } grid->setRowStretch(i,1); // Sets row expansion horizontally. } return grid; // Returns grid. } // Builds footer section of the GUI. QHBoxLayout* GridWindow::setupButtonRow() { QHBoxLayout *buttonRow = new QHBoxLayout(); // Creates horizontal box for buttons. buttonRow->setAlignment(Qt::AlignHCenter); // Clear Button - Clears cell; sets them all to DEAD/white. QPushButton *clearButton = new QPushButton("CLEAR"); clearButton->setFixedSize(100,25); connect(clearButton, SIGNAL(clicked()), this, SLOT(handlePause())); // Pauses timer before clearing. connect(clearButton, SIGNAL(clicked()), this, SLOT(handleClear())); // Connects to clear function to make all cells DEAD/white. buttonRow->addWidget(clearButton); // Forward Button - Steps one step forward. QPushButton *forwardButton = new QPushButton("FORWARD"); forwardButton->setFixedSize(100,25); connect(forwardButton, SIGNAL(clicked()), this, SLOT(handleForward())); // Signals to handleForward function.. buttonRow->addWidget(forwardButton); // Back Button - Steps one step backward. QPushButton *backButton = new QPushButton("BACK"); backButton->setFixedSize(100,25); connect(backButton, SIGNAL(clicked()), this, SLOT(handleBack())); // Signals to handleBack funciton. buttonRow->addWidget(backButton); // Start Button - Starts game when user clicks. Or, resumes game after being paused. QPushButton *startButton = new QPushButton("START/RESUME"); startButton->setFixedSize(100,25); connect(startButton, SIGNAL(clicked()), this, SLOT(handlePause())); // Deletes current timer if there is one. Then restarts everything. connect(startButton, SIGNAL(clicked()), this, SLOT(handleStart())); // Signals to handleStart function. buttonRow->addWidget(startButton); // Pause Button - Pauses simulation of game. QPushButton *pauseButton = new QPushButton("PAUSE"); pauseButton->setFixedSize(100,25); connect(pauseButton, SIGNAL(clicked()), this, SLOT(handlePause())); // Signals to pause function which pauses timer. buttonRow->addWidget(pauseButton); // Quit Button - Exits program. QPushButton *quitButton = new QPushButton("EXIT"); quitButton->setFixedSize(100,25); connect(quitButton, SIGNAL(clicked()), qApp, SLOT(quit())); // Signals the quit slot which ends the program. buttonRow->addWidget(quitButton); return buttonRow; // Returns bottom of layout. } /* SLOT method for handling clicks on the "clear" button. Receives "clicked" signals on the "Clear" button and sets all cells to DEAD. */ void GridWindow::handleClear() { for(unsigned int row=0; row < cells.size(); row++) // Loops through current rows' cells. { for(unsigned int col=0; col < cells[row].size(); col++) // Loops through the rows'columns' cells. { GridCell *cell = cells[row][col]; // Grab the current cell & set its value to dead. cell->setType(DEAD); } } } /* SLOT method for handling clicks on the "start" button. Receives "clicked" signals on the "start" button and begins game simulation. */ void GridWindow::handleStart() { isRunning = true; // It is running. Sets isRunning to true. this->timer = new QTimer(this); // Creates new timer. connect(this->timer, SIGNAL(timeout()), this, SLOT(timerFired())); // Connect "timerFired" method class to the "timeout" signal fired by the timer. this->timer->start(500); // Timer to fire every 500 milliseconds. } /* SLOT method for handling clicks on the "pause" button. Receives "clicked" signals on the "pause" button and stops the game simulation. */ void GridWindow::handlePause() { if(isRunning) // If it is running... this->timer->stop(); // Stops the timer. isRunning = false; // Set to false. } void GridWindow::handleForward() { if(isRunning); // If it's running, do nothing. else timerFired(); // It not running, step forward one step. } void GridWindow::handleBack() { std::vector<std::vector<GridCell*> > cells2; if(isRunning); // If it's running, do nothing. else if(backStack.empty()) cout << "EMPTYYY" << endl; else { cells2 = backStack.peek(); for (unsigned int f = 0; f < cells.size(); f++) // Loop through cells' rows. { for (unsigned int g = 0; g < cells.at(f).size(); g++) // Loop through cells columns. { cells[f][g]->setType(cells2[f][g]->getType()); // Set cells[f][g]'s type to cells2[f][g]'s type. } } cout << "PRE=POP" << endl; backStack.pop(); cout << "OYYYY" << endl; } } // Accessor method - Gets the 2D vector of grid cells. std::vector<std::vector<GridCell*> >& GridWindow::getCells() { return this->cells; } /* TimerFired function: 1) 2D-Vector cells2 is declared. 2) cells2 is initliazed with loops/push_backs so that all its cells are DEAD. 3) We loop through cells, and count the number of LIVE neighbors next to a given cell. --> Depending on how many cells are living, we choose if the cell should be LIVE or DEAD in the next simulation, according to the rules. -----> We save the cell type in cell2 at the same indice (the same row and column cell in cells2). 4) After check all the cells (and save the next round values in cells 2), we set cells's gridcells equal to cells2 gridcells. --> This causes the cells to be redrawn with cells2 types (white or black). */ void GridWindow::timerFired() { backStack.push(cells); std::vector<std::vector<GridCell*> > cells2; // Holds new values for 2D vector. These are the next simulation round of cell types. for(unsigned int i = 0; i < cells.size(); i++) // Loop through the rows of cells2. (Same size as cells' rows.) { vector<GridCell*> row; // Creates Gridcell* vector to push_back into cells2. cells2.push_back(row); // Pushes back row vectors into cells2. for(unsigned int j = 0; j < cells[i].size(); j++) // Loop through the columns (the cells in each row). { GridCell *cell = new GridCell(); // Creates new GridCell. cell->setType(DEAD); // Sets cell type to DEAD/white. cells2.at(i).push_back(cell); // Pushes back the DEAD cell into cells2. } // This makes a gridwindow the same size as cells with all DEAD cells. } for (unsigned int m = 0; m < cells.size(); m++) // Loop through cells' rows. { for (unsigned int n = 0; n < cells.at(m).size(); n++) // Loop through cells' columns. { unsigned int neighbors = 0; // Counter for number of LIVE neighbors for a given cell. // We know check all different variations of cells[i][j] to count the number of living neighbors for each cell. // We check m > 0 and/or n > 0 to make sure we don't access negative indexes (ex: cells[-1][0].) // We check m < size to make sure we don't try to access rows out of the vector (ex: row 5, if only 4 rows). // We check n < row size to make sure we don't access column item out of the vector (ex: 10th item in a column of only 9 items). // If we find that the Type = 1 (it is LIVE), then we add 1 to the neighbor. // Else - we add nothing to the neighbor counter. // Neighbor is the number of LIVE cells next to the current cell. if(m > 0 && n > 0) { if (cells[m-1][n-1]->getType() == 1) neighbors += 1; } if(m > 0) { if (cells[m-1][n]->getType() == 1) neighbors += 1; if(n < (cells.at(m).size() - 1)) { if (cells[m-1][n+1]->getType() == 1) neighbors += 1; } } if(n > 0) { if (cells[m][n-1]->getType() == 1) neighbors += 1; if(m < (cells.size() - 1)) { if (cells[m+1][n-1]->getType() == 1) neighbors += 1; } } if(n < (cells.at(m).size() - 1)) { if (cells[m][n+1]->getType() == 1) neighbors += 1; } if(m < (cells.size() - 1)) { if (cells[m+1][n]->getType() == 1) neighbors += 1; } if(m < (cells.size() - 1) && n < (cells.at(m).size() - 1)) { if (cells[m+1][n+1]->getType() == 1) neighbors += 1; } // Done checking number of neighbors for cells[m][n] // Now we change cells2 if it should switch in the next simulation step. // cells2 holds the values of what cells should be on the next iteration of the game. // We can't change cells right now, or it would through off our other cell values. // Apply game rules to cells: Create new, updated grid with the roundtwo vector. // Note - LIVE is 1; DEAD is 0. if (cells[m][n]->getType() == 1 && neighbors < 2) // If cell is LIVE and has less than 2 LIVE neighbors -> Set to DEAD. cells2[m][n]->setType(DEAD); else if (cells[m][n]->getType() == 1 && neighbors > 3) // If cell is LIVE and has more than 3 LIVE neighbors -> Set to DEAD. cells2[m][n]->setType(DEAD); else if (cells[m][n]->getType() == 1 && (neighbors == 2 || neighbors == 3)) // If cell is LIVE and has 2 or 3 LIVE neighbors -> Set to LIVE. cells2[m][n]->setType(LIVE); else if (cells[m][n]->getType() == 0 && neighbors == 3) // If cell is DEAD and has 3 LIVE neighbors -> Set to LIVE. cells2[m][n]->setType(LIVE); } } // Now we've gone through all of cells, and saved the new values in cells2. // Now we loop through cells and set all the cells' types to those of cells2. for (unsigned int f = 0; f < cells.size(); f++) // Loop through cells' rows. { for (unsigned int g = 0; g < cells.at(f).size(); g++) // Loop through cells columns. { cells[f][g]->setType(cells2[f][g]->getType()); // Set cells[f][g]'s type to cells2[f][g]'s type. } } } stack.h - Here's my stack. #ifndef STACK_H_ #define STACK_H_ #include <iostream> #include "node.h" template <typename T> class Stack { private: Node<T>* top; int listSize; public: Stack(); int size() const; bool empty() const; void push(const T& value); void pop(); T& peek() const; }; template <typename T> Stack<T>::Stack() : top(NULL) { listSize = 0; } template <typename T> int Stack<T>::size() const { return listSize; } template <typename T> bool Stack<T>::empty() const { if(listSize == 0) return true; else return false; } template <typename T> void Stack<T>::push(const T& value) { Node<T>* newOne = new Node<T>(value); newOne->next = top; top = newOne; listSize++; } template <typename T> void Stack<T>::pop() { Node<T>* oldT = top; top = top->next; delete oldT; listSize--; } template <typename T> T& Stack<T>::peek() const { return top->data; // Returns data in top item. } #endif gridcell.cpp - Gridcell implementation #include <iostream> #include "gridcell.h" using namespace std; // Constructor: Creates a grid cell. GridCell::GridCell(QWidget *parent) : QFrame(parent) { this->type = DEAD; // Default: Cell is DEAD (white). setFrameStyle(QFrame::Box); // Set the frame style. This is what gives each box its black border. this->button = new QPushButton(this); //Creates button that fills entirety of each grid cell. this->button->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); // Expands button to fill space. this->button->setMinimumSize(19,19); //width,height // Min height and width of button. QHBoxLayout *layout = new QHBoxLayout(); //Creates a simple layout to hold our button and add the button to it. layout->addWidget(this->button); setLayout(layout); layout->setStretchFactor(this->button,1); // Lets the buttons expand all the way to the edges of the current frame with no space leftover layout->setContentsMargins(0,0,0,0); layout->setSpacing(0); connect(this->button,SIGNAL(clicked()),this,SLOT(handleClick())); // Connects clicked signal with handleClick slot. redrawCell(); // Calls function to redraw (set new type for) the cell. } // Basic destructor. GridCell::~GridCell() { delete this->button; } // Accessor for the cell type. CellType GridCell::getType() const { return(this->type); } // Mutator for the cell type. Also has the side effect of causing the cell to be redrawn on the GUI. void GridCell::setType(CellType type) { this->type = type; redrawCell(); // Sets type and redraws cell. } // Handler slot for button clicks. This method is called whenever the user clicks on this cell in the grid. void GridCell::handleClick() { // When clicked on... if(this->type == DEAD) // If type is DEAD (white), change to LIVE (black). type = LIVE; else type = DEAD; // If type is LIVE (black), change to DEAD (white). setType(type); // Sets new type (color). setType Calls redrawCell() to recolor. } // Method to check cell type and return the color of that type. Qt::GlobalColor GridCell::getColorForCellType() { switch(this->type) { default: case DEAD: return Qt::white; case LIVE: return Qt::black; } } // Helper method. Forces current cell to be redrawn on the GUI. Called whenever the setType method is invoked. void GridCell::redrawCell() { Qt::GlobalColor gc = getColorForCellType(); //Find out what color this cell should be. this->button->setPalette(QPalette(gc,gc)); //Force the button in the cell to be the proper color. this->button->setAutoFillBackground(true); this->button->setFlat(true); //Force QT to NOT draw the borders on the button } Thanks a lot. Let me know if you need anything else.

    Read the article

  • Visual Studio 2010 and .NET 4 Released

    - by ScottGu
    The final release of Visual Studio 2010 and .NET 4 is now available. Download and Install Today MSDN subscribers, as well as WebsiteSpark/BizSpark/DreamSpark members, can now download the final releases of Visual Studio 2010 and TFS 2010 through the MSDN subscribers download center.  If you are not an MSDN Subscriber, you can download free 90-day trial editions of Visual Studio 2010.  Or you can can download the free Visual Studio express editions of Visual Web Developer 2010, Visual Basic 2010, Visual C# 2010 and Visual C++.  These express editions are available completely for free (and never time out).  If you are looking for an easy way to setup a new machine for web-development you can automate installing ASP.NET 4, ASP.NET MVC 2, IIS, SQL Server Express and Visual Web Developer 2010 Express really quickly with the Microsoft Web Platform Installer (just click the install button on the page). What is new with VS 2010 and .NET 4 Today’s release is a big one – and brings with it a ton of new feature and capabilities. One of the things we tried hard to focus on with this release was to invest heavily in making existing applications, projects and developer experiences better.  What this means is that you don’t need to read 1000+ page books or spend time learning major new concepts in order to take advantage of the release.  There are literally thousands of improvements (both big and small) that make you more productive and successful without having to learn big new concepts in order to start using them.  Below is just a small sampling of some of the improvements with this release: Visual Studio 2010 IDE  Visual Studio 2010 now supports multiple-monitors (enabling much better use of screen real-estate).  It has new code Intellisense support that makes it easier to find and use classes and methods. It has improved code navigation support for searching code-bases and seeing how code is called and used.  It has new code visualization support that allows you to see the relationships across projects and classes within projects, as well as to automatically generate sequence diagrams to chart execution flow.  The editor now supports HTML and JavaScript snippet support as well as improved JavaScript intellisense. The VS 2010 Debugger and Profiling support is now much, much richer and enables new features like Intellitrace (aka Historical Debugging), debugging of Crash/Dump files, and better parallel debugging.  VS 2010’s multi-targeting support is now much richer, and enables you to use VS 2010 to target .NET 2, .NET 3, .NET 3.5 and .NET 4 applications.  And the infamous Add Reference dialog now loads much faster. TFS 2010 is now easy to setup (you can now install the server in under 10 minutes) and enables great source-control, bug/work-item tracking, and continuous integration support.  Testing (both automated and manual) is now much, much richer.  And VS 2010 Premium and Ultimate provide much richer architecture and design tooling support. VB and C# Language Features VB and C# in VS 2010 both contain a bunch of new features and capabilities.  VB adds new support for automatic properties, collection initializers, and implicit line continuation support among many other features.  C# adds support for optional parameters and named arguments, a new dynamic keyword, co-variance and contra-variance, and among many other features. ASP.NET 4 and ASP.NET MVC 2 With ASP.NET 4, Web Forms controls now render clean, semantically correct, and CSS friendly HTML markup. Built-in URL routing functionality allows you to expose clean, search engine friendly, URLs and increase the traffic to your Website.  ViewState within applications can now be more easily controlled and made smaller.  ASP.NET Dynamic Data support has been expanded.  More controls, including rich charting and data controls, are now built-into ASP.NET 4 and enable you to build applications even faster.  New starter project templates now make it easier to get going with new projects.  SEO enhancements make it easier to drive traffic to your public facing sites.  And web.config files are now clean and simple. ASP.NET MVC 2 is now built-into VS 2010 and ASP.NET 4, and provides a great way to build web sites and applications using a model-view-controller based pattern. ASP.NET MVC 2 adds features to easily enable client and server validation logic, provides new strongly-typed HTML and UI-scaffolding helper methods.  It also enables more modular/reusable applications.  The new <%: %> syntax in ASP.NET makes it easier to HTML encode output.  Visual Studio 2010 also now includes better tooling support for unit testing and TDD.  In particular, “Consume first intellisense” and “generate from usage" support within VS 2010 make it easier to write your unit tests first, and then drive your implementation from them. Deploying ASP.NET applications gets a lot easier with this release. You can now publish your Websites and applications to a staging or production server from within Visual Studio itself. Visual Studio 2010 makes it easy to transfer all your files, code, configuration, database schema and data in one complete package. VS 2010 also makes it easy to manage separate web.config configuration files settings depending upon whether you are in debug, release, staging or production modes. WPF 4 and Silverlight 4 WPF 4 includes a ton of new improvements and capabilities including more built-in controls, richer graphics features (cached composition, pixel shader 3 support, layoutrounding, and animation easing functions), a much improved text stack (with crisper text rendering, custom dictionary support, and selection and caret brush options).  WPF 4 also includes a bunch of support to enable you to take advantage of new Windows 7 features – including multi-touch and Windows 7 shell integration. Silverlight 4 will launch this week as well.  You can watch my Silverlight 4 launch keynote streamed live Tuesday (April 13th) at 8am Pacific Time.  Silverlight 4 includes a ton of new capabilities – including a bunch for making it possible to build great business applications and out of the browser applications.  I’ll be doing a separate blog post later this week (once it is live on the web) that talks more about its capabilities. Visual Studio 2010 now includes great tooling support for both WPF and Silverlight.  The new VS 2010 WPF and Silverlight designer makes it much easier to build client applications as well as build great line of business solutions, as well as integrate and bind with data.  Tooling support for Silverlight 4 with the final release of Visual Studio 2010 will be available when Silverlight 4 releases to the web this week. SharePoint and Azure Visual Studio 2010 now includes built-in support for building SharePoint applications.  You can now create, edit, build, and debug SharePoint applications directly within Visual Studio 2010.  You can also now use SharePoint with TFS 2010. Support for creating Azure-hosted applications is also now included with VS 2010 – allowing you to build ASP.NET and WCF based applications and host them within the cloud. Data Access Data access has a lot of improvements coming to it with .NET 4.  Entity Framework 4 includes a ton of new features and capabilities – including support for model first and POCO development, default support for lazy loading, built-in support for pluralization/singularization of table/property names within the VS 2010 designer, full support for all the LINQ operators, the ability to optionally expose foreign keys on model objects (useful for some stateless web scenarios), disconnected API support to better handle N-Tier and stateless web scenarios, and T4 template customization support within VS 2010 to allow you to customize and automate how code is generated for you by the data designer.  In addition to improvements with the Entity Framework, LINQ to SQL with .NET 4 also includes a bunch of nice improvements.  WCF and Workflow WCF includes a bunch of great new capabilities – including better REST, activation and configuration support.  WCF Data Services (formerly known as Astoria) and WCF RIA Services also now enable you to easily expose and work with data from remote clients. Windows Workflow is now much faster, includes flowchart services, and now makes it easier to make custom services than before.  More details can be found here. CLR and Core .NET Library Improvements .NET 4 includes the new CLR 4 engine – which includes a lot of nice performance and feature improvements.  CLR 4 engine now runs side-by-side in-process with older versions of the CLR – allowing you to use two different versions of .NET within the same process.  It also includes improved COM interop support.  The .NET 4 base class libraries (BCL) include a bunch of nice additions and refinements.  In particular, the .NET 4 BCL now includes new parallel programming support that makes it much easier to build applications that take advantage of multiple CPUs and cores on a computer.  This work dove-tails nicely with the new VS 2010 parallel debugger (making it much easier to debug parallel applications), as well as the new F# functional language support now included in the VS 2010 IDE.  .NET 4 also now also has the Dynamic Language Runtime (DLR) library built-in – which makes it easier to use dynamic language functionality with .NET.  MEF – a really cool library that enables rich extensibility – is also now built-into .NET 4 and included as part of the base class libraries.  .NET 4 Client Profile The download size of the .NET 4 redist is now much smaller than it was before (the x86 full .NET 4 package is about 36MB).  We also now have a .NET 4 Client Profile package which is a pure sub-set of the full .NET that can be used to streamline client application installs. C++ VS 2010 includes a bunch of great improvements for C++ development.  This includes better C++ Intellisense support, MSBuild support for projects, improved parallel debugging and profiler support, MFC improvements, and a number of language features and compiler optimizations. My VS 2010 and .NET 4 Blog Series I’ve been cranking away on a blog series the last few months that highlights many of the new VS 2010 and .NET 4 improvements.  The good news is that I have about 20 in-depth posts already written.  The bad news (for me) is that I have about 200 more to go until I’m done!  I’m going to try and keep adding a few more each week over the next few months to discuss the new improvements and how best to take advantage of them. Below is a list of the already written ones that you can check out today: Clean Web.Config Files Starter Project Templates Multi-targeting Multiple Monitor Support New Code Focused Web Profile Option HTML / ASP.NET / JavaScript Code Snippets Auto-Start ASP.NET Applications URL Routing with ASP.NET 4 Web Forms Searching and Navigating Code in VS 2010 VS 2010 Code Intellisense Improvements WPF 4 Add Reference Dialog Improvements SEO Improvements with ASP.NET 4 Output Cache Extensibility with ASP.NET 4 Built-in Charting Controls for ASP.NET and Windows Forms Cleaner HTML Markup with ASP.NET 4 - Client IDs Optional Parameters and Named Arguments in C# 4 - and a cool scenarios with ASP.NET MVC 2 Automatic Properties, Collection Initializers and Implicit Line Continuation Support with VB 2010 New <%: %> Syntax for HTML Encoding Output using ASP.NET 4 JavaScript Intellisense Improvements with VS 2010 Stay tuned to my blog as I post more.  Also check out this page which links to a bunch of great articles and videos done by others. VS 2010 Installation Notes If you have installed a previous version of VS 2010 on your machine (either the beta or the RC) you must first uninstall it before installing the final VS 2010 release.  I also recommend uninstalling .NET 4 betas (including both the client and full .NET 4 installs) as well as the other installs that come with VS 2010 (e.g. ASP.NET MVC 2 preview builds, etc).  The uninstalls of the betas/RCs will clean up all the old state on your machine – after which you can install the final VS 2010 version and should have everything just work (this is what I’ve done on all of my machines and I haven’t had any problems). The VS 2010 and .NET 4 installs add a bunch of new managed assemblies to your machine.  Some of these will be “NGEN’d” to native code during the actual install process (making them run fast).  To avoid adding too much time to VS setup, though, we don’t NGEN all assemblies immediately – and instead will NGEN the rest in the background when your machine is idle.  Until it finishes NGENing the assemblies they will be JIT’d to native code the first time they are used in a process – which for large assemblies can sometimes cause a slight performance hit. If you run into this you can manually force all assemblies to be NGEN’d to native code immediately (and not just wait till the machine is idle) by launching the Visual Studio command line prompt from the Windows Start Menu (Microsoft Visual Studio 2010->Visual Studio Tools->Visual Studio Command Prompt).  Within the command prompt type “Ngen executequeueditems” – this will cause everything to be NGEN’d immediately. How to Buy Visual Studio 2010 You can can download and use the free Visual Studio express editions of Visual Web Developer 2010, Visual Basic 2010, Visual C# 2010 and Visual C++.  These express editions are available completely for free (and never time out). You can buy a new copy of VS 2010 Professional that includes a 1 year subscription to MSDN Essentials for $799.  MSDN Essentials includes a developer license of Windows 7 Ultimate, Windows Server 2008 R2 Enterprise, SQL Server 2008 DataCenter R2, and 20 hours of Azure hosting time.  Subscribers also have access to MSDN’s Online Concierge, and Priority Support in MSDN Forums. Upgrade prices from previous releases of Visual Studio are also available.  Existing Visual Studio 2005/2008 Standard customers can upgrade to Visual Studio 2010 Professional for a special $299 retail price until October.  You can take advantage of this VS Standard->Professional upgrade promotion here. Web developers who build applications for others, and who are either independent developers or who work for companies with less than 10 employees, can also optionally take advantage of the Microsoft WebSiteSpark program.  This program gives you three copies of Visual Studio 2010 Professional, 1 copy of Expression Studio, and 4 CPU licenses of both Windows 2008 R2 Web Server and SQL 2008 Web Edition that you can use to both develop and deploy applications with at no cost for 3 years.  At the end of the 3 years there is no obligation to buy anything.  You can sign-up for WebSiteSpark today in under 5 minutes – and immediately have access to the products to download. Summary Today’s release is a big one – and has a bunch of improvements for pretty much every developer.  Thank you everyone who provided feedback, suggestions and reported bugs throughout the development process – we couldn’t have delivered it without you.  Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

< Previous Page | 287 288 289 290 291 292 293 294 295 296 297 298  | Next Page >