Search Results

Search found 50247 results on 2010 pages for 'base class'.

Page 296/2010 | < Previous Page | 292 293 294 295 296 297 298 299 300 301 302 303  | Next Page >

  • C#: Specify that a function arg must inhert from one class, and implement an interface?

    - by Rosarch
    I'm making a game where each Actor is represented by a GameObjectController. Game Objects that can partake in combat implement ICombatant. How can I specify that arguments to a combat function must inherit from GameObjectController and implement ICombatant? Or does this indicate that my code is structured poorly? public void ComputeAttackUpdate(ICombatant attacker, AttackType attackType, ICombatant victim) In the above code, I want attacker and victim to inherit from GameObjectController and implement ICombatant. Is this syntactically possible?

    Read the article

  • How can I get class, property, and method data from files without executing their code, similar to R

    - by Chris
    I have a bunch of PHP files with classes, in them (although I can't be 100% sure that they won't have code outside of classes in them too), and I need to parse these files to get information about the classes, such as the names of the classes, the methods, the properties, whether they are private/public/static, etc. I looked at PHP's reflection classes and this is very close to what I want but the reflection doesn't seem to use external files and it appears to need to define the classes first. I need to make sure that none of the code is executed and I will be editing the files so I can't guarantee that they will even be error-free. Any suggestions? Thanks.

    Read the article

  • How to add links that select the preferred language (CodeIgniter's Language Class)?

    - by janoChen
    I just finished this tutorial: http://codeigniter.com/wiki/Internationalization_and_the_Template_Parser_Class/ but now I want some links to change english to spanish I know how to change it by modifying the controller example.php: # Load language $this->lang->load('example', 'english'); But I can't figure out how to do that in the view file example.php What's the simplest and best way of doing this?

    Read the article

  • C++ template + typedef

    - by MMS
    What is wrong in the following code: Point2D.h template <class T> class Point2D { private: T x; T y; ... }; PointsList.h template <class T> class Point2D; template <class T> struct TPointsList { typedef std::vector <Point2D <T> > Type; }; template <class T> class PointsList { private: TPointsList <T>::Type points; //Compiler error ... }; I would like to create new user type TPointsList without direct type specification...

    Read the article

  • Java / MySQL - How to access connection from another class?

    - by Alex
    I'm just getting my head around java (and OOP for that matter), the only thing I am familiar with is MySQL. I need to keep the DB connection open throughout the duration of the application, as well as a server socket. I'm not even sure if they both need separate classes, but here's what I have so far: http://pastebin.com/qzMFFTrY (it wouldn't all go in a code tag) The variable I need is con for line 86.

    Read the article

  • Hover multiple elements affecting only 1 item

    - by lilsizzo
    hi guys i was wondering if there is a way to hover a few elements with the same class name which is placed side by side and actions would be trigger upon leaving the area of the elements. For example : <div class="hoverme"></div> <div class="hoverme"></div> <div class="hoverme"></div> <div class="hoverme"></div> <div class="hoverme"></div> the javascript of "unhover" below should only be called when they leave the whole area of "hoverme" class. $('.hoverme').live('mouseover mouseout', function(event) { if (event.type == 'mouseover') { if(!$("#stage1 td").hasClass("hover")) { $("#stage1 td").addClass("hover",200) } } else { //$("#stage1 td").removeClass("hover",200) } }); Is there a way for this action??

    Read the article

  • Regroup element with jquery

    - by kennygunie
    Hi, I have a number of messages on my page like this: <div class="messages">A</div> <div class="messages">B</div> <div class="messages">A</div> <div class="messages">C</div> is there any way with jQuery (no PHP) to count and regroup 2 div A like this: <div class="messages">A</div><span>2</span> <div class="messages">B</div> <div class="messages">C</div> Thank you.

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Creating a multi-column rollover image gallery with HTML 5

    - by nikolaosk
    I know it has been a while since I blogged about HTML 5. I have two posts in this blog about HTML 5. You can find them here and here.I am creating a small content website (only text,images and a contact form) for a friend of mine.He wanted to create a rollover gallery.The whole concept is that we have some small thumbnails on a page, the user hovers over them and they appear enlarged on a designated container/placeholder on a page. I am trying not to use Javascript scripts when I am using effects on a web page and this is what I will be doing in this post.  Well some people will say that HTML 5 is not supported in all browsers. That is true but most of the modern browsers support most of its recommendations. For people who still use IE6 some hacks must be devised.Well to be totally honest I cannot understand why anyone at this day and time is using IE 6.0.That really is beyond me.Well, the point of having a web browser is to be able to ENJOY the great experience that the WE? offers today.  Two very nice sites that show you what features and specifications are implemented by various browsers and their versions are http://caniuse.com/ and http://html5test.com/. At this times Chrome seems to support most of HTML 5 specifications.Another excellent way to find out if the browser supports HTML 5 and CSS 3 features is to use the Javascript lightweight library Modernizr.In this hands-on example I will be using Expression Web 4.0.This application is not a free application. You can use any HTML editor you like.You can use Visual Studio 2012 Express edition. You can download it here. In order to be absolutely clear this is not (and could not be ) a detailed tutorial on HTML 5. There are other great resources for that.Navigate to the excellent interactive tutorials of W3School.Another excellent resource is HTML 5 Doctor.For the people who are not convinced yet that they should invest time and resources on becoming experts on HTML 5 I should point out that HTML 5 websites will be ranked higher than others. Search engines will be able to locate better the content of our site and its relevance/importance since it is using semantic tags. Let's move now to the actual hands-on example. In this case (since I am mad Liverpool supporter) I will create a rollover image gallery of Liverpool F.C legends. I create a folder in my desktop. I name it Liverpool Gallery.Then I create two subfolders in it, large-images (I place the large images in there) and thumbs (I place the small images in there).Then I create an empty .html file called LiverpoolLegends.html and an empty .css file called style.css.Please have a look at the HTML Markup that I typed in my fancy editor package below<!doctype html><html lang="en"><head><title>Liverpool Legends Gallery</title><meta charset="utf-8"><link rel="stylesheet" type="text/css" href="style.css"></head><body><header><h1>A page dedicated to Liverpool Legends</h1><h2>Do hover over the images with the mouse to see the full picture</h2></header><ul id="column1"><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/john-barnes.jpg" alt=""><img class="large" src="large-images/john-barnes-large.jpg" alt=""></a></li><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/ian-rush.jpg" alt=""><img class="large" src="large-images/ian-rush-large.jpg" alt=""></a></li><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/graeme-souness.jpg" alt=""><img class="large" src="large-images/graeme-souness-large.jpg" alt=""></a></li></ul><ul id="column2"><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/steven-gerrard.jpg" alt=""><img class="large" src="large-images/steven-gerrard-large.jpg" alt=""></a></li><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/kenny-dalglish.jpg" alt=""><img class="large" src="large-images/kenny-dalglish-large.jpg" alt=""></a></li><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/robbie-fowler.jpg" alt=""><img class="large" src="large-images/robbie-fowler-large.jpg" alt=""></a></li></ul><ul id="column3"><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/alan-hansen.jpg" alt=""><img class="large" src="large-images/alan-hansen-large.jpg" alt=""></a></li><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/michael-owen.jpg" alt=""><img class="large" src="large-images/michael-owen-large.jpg" alt=""></a></li></ul></body></html> It is very easy to follow the markup. Please have a look at the new doctype and the new semantic tag <header>. I have 3 columns and I place my images in there.There is a class called "large".I will use this class in my CSS code to hide the large image when the mouse is not on (hover) an image Make sure you validate your HTML 5 page in the validator found hereHave a look at the CSS code below that makes it all happen.img { border:none;}#column1 { position: absolute; top: 30; left: 100; }li { margin: 15px; list-style-type:none;}#column1 a img.large {  position: absolute; top: 0; left:700px; visibility: hidden;}#column1 a:hover { background: white;}#column1 a:hover img.large { visibility:visible;}#column2 { position: absolute; top: 30; left: 195px; }li { margin: 5px; list-style-type:none;}#column2 a img.large { position: absolute; top: 0; left:510px; margin-left:0; visibility: hidden;}#column2 a:hover { background: white;}#column2 a:hover img.large { visibility:visible;}#column3 { position: absolute; top: 30; left: 400px; width:108px;}li { margin: 5px; list-style-type:none;}#column3 a img.large { width: 260px; height:260px; position: absolute; top: 0; left:315px; margin-left:0; visibility: hidden;}#column3 a:hover { background: white;}#column3 a:hover img.large { visibility:visible;}?n the first line of the CSS code I set the images to have no border.Then I place the first column in the page and then remove the bullets from the list elements.Then I use the large CSS class to create a position for the large image and hide it.Finally when the hover event takes place I make the image visible.I repeat the process for the next two columns. I have tested the page with IE 10 and the latest versions of Opera,Chrome and Firefox.Feel free to style your HTML 5 gallery any way you want through the magic of CSS.I did not bother adding background colors and borders because that was beyond the scope of this post. Hope it helps!!!!

    Read the article

  • Using JDialog with Tabbed Pane to draw different pictures [migrated]

    - by Bryam Ulloa
    I am using NetBeans, and I have a class that extends to JDialog, inside that Dialog box I have created a Tabbed Pane. The Tabbed Pane contains 6 different tabs, with 6 different panels of course. What I want to do is when I click on the different tabs, a diagram is supposed to be drawn with the paint method. My question is how can I draw on the different panels with just one paint method in another class being called from the Dialog class? Here is my code for the Dialog class: package GUI; public class NewJDialog extends javax.swing.JDialog{ /** * Creates new form NewJDialog */ public NewJDialog(java.awt.Frame parent, boolean modal) { super(parent, modal); initComponents(); } /** * This method is called from within the constructor to initialize the form. * WARNING: Do NOT modify this code. The content of this method is always * regenerated by the Form Editor. */ @SuppressWarnings("unchecked") // <editor-fold defaultstate="collapsed" desc="Generated Code"> private void initComponents() { jTabbedPane1 = new javax.swing.JTabbedPane(); jPanel1 = new javax.swing.JPanel(); jPanel2 = new javax.swing.JPanel(); jPanel3 = new javax.swing.JPanel(); jPanel4 = new javax.swing.JPanel(); jPanel5 = new javax.swing.JPanel(); jPanel6 = new javax.swing.JPanel(); jPanel7 = new javax.swing.JPanel(); jLabel1 = new javax.swing.JLabel(); jLabel2 = new javax.swing.JLabel(); setDefaultCloseOperation(javax.swing.WindowConstants.DISPOSE_ON_CLOSE); javax.swing.GroupLayout jPanel1Layout = new javax.swing.GroupLayout(jPanel1); jPanel1.setLayout(jPanel1Layout); jPanel1Layout.setHorizontalGroup( jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 466, Short.MAX_VALUE) ); jPanel1Layout.setVerticalGroup( jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 242, Short.MAX_VALUE) ); jTabbedPane1.addTab("FCFS", jPanel1); javax.swing.GroupLayout jPanel2Layout = new javax.swing.GroupLayout(jPanel2); jPanel2.setLayout(jPanel2Layout); jPanel2Layout.setHorizontalGroup( jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 466, Short.MAX_VALUE) ); jPanel2Layout.setVerticalGroup( jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 242, Short.MAX_VALUE) ); jTabbedPane1.addTab("SSTF", jPanel2); javax.swing.GroupLayout jPanel3Layout = new javax.swing.GroupLayout(jPanel3); jPanel3.setLayout(jPanel3Layout); jPanel3Layout.setHorizontalGroup( jPanel3Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 466, Short.MAX_VALUE) ); jPanel3Layout.setVerticalGroup( jPanel3Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 242, Short.MAX_VALUE) ); jTabbedPane1.addTab("LOOK", jPanel3); javax.swing.GroupLayout jPanel4Layout = new javax.swing.GroupLayout(jPanel4); jPanel4.setLayout(jPanel4Layout); jPanel4Layout.setHorizontalGroup( jPanel4Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 466, Short.MAX_VALUE) ); jPanel4Layout.setVerticalGroup( jPanel4Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 242, Short.MAX_VALUE) ); jTabbedPane1.addTab("LOOK C", jPanel4); javax.swing.GroupLayout jPanel5Layout = new javax.swing.GroupLayout(jPanel5); jPanel5.setLayout(jPanel5Layout); jPanel5Layout.setHorizontalGroup( jPanel5Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 466, Short.MAX_VALUE) ); jPanel5Layout.setVerticalGroup( jPanel5Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 242, Short.MAX_VALUE) ); jTabbedPane1.addTab("SCAN", jPanel5); javax.swing.GroupLayout jPanel6Layout = new javax.swing.GroupLayout(jPanel6); jPanel6.setLayout(jPanel6Layout); jPanel6Layout.setHorizontalGroup( jPanel6Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 466, Short.MAX_VALUE) ); jPanel6Layout.setVerticalGroup( jPanel6Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGap(0, 242, Short.MAX_VALUE) ); jTabbedPane1.addTab("SCAN C", jPanel6); getContentPane().add(jTabbedPane1, java.awt.BorderLayout.CENTER); jLabel1.setText("Distancia:"); jLabel2.setText("___________"); javax.swing.GroupLayout jPanel7Layout = new javax.swing.GroupLayout(jPanel7); jPanel7.setLayout(jPanel7Layout); jPanel7Layout.setHorizontalGroup( jPanel7Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGroup(jPanel7Layout.createSequentialGroup() .addGap(21, 21, 21) .addComponent(jLabel1) .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) .addComponent(jLabel2) .addContainerGap(331, Short.MAX_VALUE)) ); jPanel7Layout.setVerticalGroup( jPanel7Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) .addGroup(jPanel7Layout.createSequentialGroup() .addContainerGap() .addGroup(jPanel7Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE) .addComponent(jLabel1) .addComponent(jLabel2)) .addContainerGap(15, Short.MAX_VALUE)) ); getContentPane().add(jPanel7, java.awt.BorderLayout.PAGE_START); pack(); }// </editor-fold> /** * @param args the command line arguments */ public static void main(String args[]) { /* Set the Nimbus look and feel */ //<editor-fold defaultstate="collapsed" desc=" Look and feel setting code (optional) "> /* If Nimbus (introduced in Java SE 6) is not available, stay with the default look and feel. * For details see http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html */ try { for (javax.swing.UIManager.LookAndFeelInfo info : javax.swing.UIManager.getInstalledLookAndFeels()) { if ("Nimbus".equals(info.getName())) { javax.swing.UIManager.setLookAndFeel(info.getClassName()); break; } } } catch (ClassNotFoundException ex) { java.util.logging.Logger.getLogger(NewJDialog.class.getName()).log(java.util.logging.Level.SEVERE, null, ex); } catch (InstantiationException ex) { java.util.logging.Logger.getLogger(NewJDialog.class.getName()).log(java.util.logging.Level.SEVERE, null, ex); } catch (IllegalAccessException ex) { java.util.logging.Logger.getLogger(NewJDialog.class.getName()).log(java.util.logging.Level.SEVERE, null, ex); } catch (javax.swing.UnsupportedLookAndFeelException ex) { java.util.logging.Logger.getLogger(NewJDialog.class.getName()).log(java.util.logging.Level.SEVERE, null, ex); } //</editor-fold> /* Create and display the dialog */ java.awt.EventQueue.invokeLater(new Runnable() { public void run() { NewJDialog dialog = new NewJDialog(new javax.swing.JFrame(), true); dialog.addWindowListener(new java.awt.event.WindowAdapter() { @Override public void windowClosing(java.awt.event.WindowEvent e) { System.exit(0); } }); dialog.setVisible(true); } }); } // Variables declaration - do not modify private javax.swing.JLabel jLabel1; private javax.swing.JLabel jLabel2; private javax.swing.JPanel jPanel1; private javax.swing.JPanel jPanel2; private javax.swing.JPanel jPanel3; private javax.swing.JPanel jPanel4; private javax.swing.JPanel jPanel5; private javax.swing.JPanel jPanel6; private javax.swing.JPanel jPanel7; private javax.swing.JTabbedPane jTabbedPane1; // End of variables declaration } This is another class that I have created for the paint method: package GUI; import java.awt.Graphics; import javax.swing.JPanel; /** * * @author TOSHIBA */ public class Lienzo { private int width = 5; private int height = 5; private int y = 5; private int x = 0; private int x1 = 0; public Graphics Draw(Graphics g, int[] pistas) { //Im not sure if this is the correct way to do it //The diagram gets drawn according to values from an array //The array is not always the same thats why I used the different Panels for (int i = 0; i < pistas.length; i++) { x = pistas[i]; x1 = pistas[i + 1]; g.drawOval(x, y, width, height); g.drawString(Integer.toString(x), x, y); g.drawLine(x, y, x1, y); } return g; } } I hope you guys understand what I am trying to do with my program.

    Read the article

  • Silverlight IConvertible TypeConverter

    - by codingbloke
    I recently answered the following question on stackoverflow:  Silverlight 3 custom control: only ‘int’ as numeric type for a property? [e.g. long or int64 seems to break] I quickly knocked up the class ConvertibleTypeConverter<T> that I posted in the question (listed later here as well). Afterward I fully expected to find that of the usual clever “bods who blog” to have covered this probably with a better solution than I.  So far though I’ve not found one so I thought I’d blog it myself. The Problem Here is a classic gotcha I’ve seen asked more than once on stackoverflow :- public class MyClass {     public float SomeValue { get; set; } } <local:MyClass SomeValue="45.15" /> This fails with the error  “Failed to create a 'System.Single' from the text '45.15'”  and results in much premature hair loss.  Fortunately this is SL4, in SL3 the error message is almost meaningless.  So what gives, how can it be that this fails when we can see other very similar values parsing happily all over the place? It comes down the fact that the Xaml parser only handles a few of the primitive data types namely: bool, int, string and double.  Since the parser has no idea how to convert a string to a float we get the above error. The Solution The sensible solution is “use double not float” but lets not dwell on that, there has to be occasions where such an answer isn’t acceptable. In order to achieve parsing of other types we need an implementation of TypeConverter for the type of the property and then we need to use the TypeConverterAttribute to decorate the property .  As an example the Silverlight SDK provides one for DateTime the DateTimeTypeConverter (yes I know DateTime isn’t really a primitive). The following class will parse in Xaml:- public class MyClass {     [TypeConverter(typeof(DateTimeTypeConverter))]     public DateTime SomeValue {get; set; } } So far though we would need to create a TypeConverter for each primitive type we are using, what if I had the following mad class to support in Xaml:- public class StrangePrimitives {     public Boolean BooleanProp { get; set; }     public Byte ByteProp { get; set; }     public Char CharProp { get; set; }     public DateTime DateTimeProp { get; set; }     public Decimal DecimalProp { get; set; }     public Double DoubleProp { get; set; }     public Int16 Int16Prop { get; set; }     public Int32 Int32Prop { get; set; }     public Int64 Int64Prop { get; set; }     public SByte SByteProp { get; set; }     public Single SingleProp { get; set; }     public String StringProp { get; set; }     public UInt16 UInt16Prop { get; set; }     public UInt32 UInt32Prop { get; set; }     public UInt64 UInt64Prop { get; set; } } Then I want to fill an instance of StrangePrimitives with the following Xaml which of course fails. <local:StrangePrimitives x:Key="MyStrangePrimitives"                          BooleanProp="True"                          ByteProp="156"                          CharProp="A"                          DateTimeProp="06 Jun 2010"                          DecimalProp="123.56"                          DoubleProp="8372.937803"                          Int16Prop="16532"                          Int32Prop="73738248"                          Int64Prop="12345678909298"                          SByteProp="-123"                          SingleProp="39.0"                          StringProp="Hello, World!"                          UInt16Prop="40000"                          UInt32Prop="4294967295"                          UInt64Prop="18446744073709551615"      /> I got to thinking, though, one thing all these primitive types have in common is that they all implement IConvertible so it should be possible to write just one converter to handle them all.  Here it is:- The ConvertibleTypeConverter public class ConvertibleTypeConverter<T> : TypeConverter where T : IConvertible {     public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType)     {         return sourceType.GetInterface("IConvertible", false) != null;     }     public override bool CanConvertTo(ITypeDescriptorContext context, Type destinationType)     {         return destinationType.GetInterface("IConvertible", false) != null;     }     public override object ConvertFrom(ITypeDescriptorContext context, System.Globalization.CultureInfo culture, object value)     {         return ((IConvertible)value).ToType(typeof(T), culture);     }     public override object ConvertTo(ITypeDescriptorContext context, System.Globalization.CultureInfo culture, object value, Type destinationType)     {         return ((IConvertible)value).ToType(destinationType, culture);     } } I won’t bore you with an explanation of how it works, it simply adapts one existing interface (the IConvertible) and exposes it as another (the TypeConverter).   With that in place the previous strange primitives class can be modified as:- public class StrangePrimitives {     public Boolean BooleanProp { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<Byte>))]     public Byte ByteProp { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<Char>))]     public Char CharProp { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<DateTime>))]     public DateTime DateTimeProp { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<Decimal>))]     public Decimal DecimalProp { get; set; }     public Double DoubleProp {get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<Int16>))]     public Int16 Int16Prop { get; set; }     public Int32 Int32Prop { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<Int64>))]     public Int64 Int64Prop { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<SByte>))]     public SByte SByteProp { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<Single>))]     public Single SingleProp { get; set; }     public String StringProp { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<UInt16>))]     public UInt16 UInt16Prop { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<UInt32>))]     public UInt32 UInt32Prop { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<UInt64>))]     public UInt64 UInt64Prop { get; set; } } This results in the previous Xaml parsing happily.  Now it seems such an obvious thing to do that one may wonder why such a class doesn’t already existing in Silverlight or at least in the SDK.   I would not be surprised if there were some very good reasons hence use the ConvertibleTypeConverter with caution.  It does seem to me to be a useful little class to have lying around in the toolbox for the odd occasion where it may be needed.

    Read the article

  • Computer Networks UNISA - Chap 10 &ndash; In Depth TCP/IP Networking

    - by MarkPearl
    After reading this section you should be able to Understand methods of network design unique to TCP/IP networks, including subnetting, CIDR, and address translation Explain the differences between public and private TCP/IP networks Describe protocols used between mail clients and mail servers, including SMTP, POP3, and IMAP4 Employ multiple TCP/IP utilities for network discovery and troubleshooting Designing TCP/IP-Based Networks The following sections explain how network and host information in an IPv4 address can be manipulated to subdivide networks into smaller segments. Subnetting Subnetting separates a network into multiple logically defined segments, or subnets. Networks are commonly subnetted according to geographic locations, departmental boundaries, or technology types. A network administrator might separate traffic to accomplish the following… Enhance security Improve performance Simplify troubleshooting The challenges of Classful Addressing in IPv4 (No subnetting) The simplest type of IPv4 is known as classful addressing (which was the Class A, Class B & Class C network addresses). Classful addressing has the following limitations. Restriction in the number of usable IPv4 addresses (class C would be limited to 254 addresses) Difficult to separate traffic from various parts of a network Because of the above reasons, subnetting was introduced. IPv4 Subnet Masks Subnetting depends on the use of subnet masks to identify how a network is subdivided. A subnet mask indicates where network information is located in an IPv4 address. The 1 in a subnet mask indicates that corresponding bits in the IPv4 address contain network information (likewise 0 indicates the opposite) Each network class is associated with a default subnet mask… Class A = 255.0.0.0 Class B = 255.255.0.0 Class C = 255.255.255.0 An example of calculating  the network ID for a particular device with a subnet mask is shown below.. IP Address = 199.34.89.127 Subnet Mask = 255.255.255.0 Resultant Network ID = 199.34.89.0 IPv4 Subnetting Techniques Subnetting breaks the rules of classful IPv4 addressing. Read page 490 for a detailed explanation Calculating IPv4 Subnets Read page 491 – 494 for an explanation Important… Subnetting only applies to the devices internal to your network. Everything external looks at the class of the IP address instead of the subnet network ID. This way, traffic directed to your network externally still knows where to go, and once it has entered your internal network it can then be prioritized and segmented. CIDR (classless Interdomain Routing) CIDR is also known as classless routing or supernetting. In CIDR conventional network class distinctions do not exist, a subnet boundary can move to the left, therefore generating more usable IP addresses on your network. A subnet created by moving the subnet boundary to the left is known as a supernet. With CIDR also came new shorthand for denoting the position of subnet boundaries known as CIDR notation or slash notation. CIDR notation takes the form of the network ID followed by a forward slash (/) followed by the number of bits that are used for the extended network prefix. To take advantage of classless routing, your networks routers must be able to interpret IP addresses that don;t adhere to conventional network class parameters. Routers that rely on older routing protocols (i.e. RIP) are not capable of interpreting classless IP addresses. Internet Gateways Gateways are a combination of software and hardware that enable two different network segments to exchange data. A gateway facilitates communication between different networks or subnets. Because on device cannot send data directly to a device on another subnet, a gateway must intercede and hand off the information. Every device on a TCP/IP based network has a default gateway (a gateway that first interprets its outbound requests to other subnets, and then interprets its inbound requests from other subnets). The internet contains a vast number of routers and gateways. If each gateway had to track addressing information for every other gateway on the Internet, it would be overtaxed. Instead, each handles only a relatively small amount of addressing information, which it uses to forward data to another gateway that knows more about the data’s destination. The gateways that make up the internet backbone are called core gateways. Address Translation An organizations default gateway can also be used to “hide” the organizations internal IP addresses and keep them from being recognized on a public network. A public network is one that any user may access with little or no restrictions. On private networks, hiding IP addresses allows network managers more flexibility in assigning addresses. Clients behind a gateway may use any IP addressing scheme, regardless of whether it is recognized as legitimate by the Internet authorities but as soon as those devices need to go on the internet, they must have legitimate IP addresses to exchange data. When a clients transmission reaches the default gateway, the gateway opens the IP datagram and replaces the client’s private IP address with an Internet recognized IP address. This process is known as NAT (Network Address Translation). TCP/IP Mail Services All Internet mail services rely on the same principles of mail delivery, storage, and pickup, though they may use different types of software to accomplish these functions. Email servers and clients communicate through special TCP/IP application layer protocols. These protocols, all of which operate on a variety of operating systems are discussed below… SMTP (Simple Mail transfer Protocol) The protocol responsible for moving messages from one mail server to another over TCP/IP based networks. SMTP belongs to the application layer of the ODI model and relies on TCP as its transport protocol. Operates from port 25 on the SMTP server Simple sub-protocol, incapable of doing anything more than transporting mail or holding it in a queue MIME (Multipurpose Internet Mail Extensions) The standard message format specified by SMTP allows for lines that contain no more than 1000 ascii characters meaning if you relied solely on SMTP you would have very short messages and nothing like pictures included in an email. MIME us a standard for encoding and interpreting binary files, images, video, and non-ascii character sets within an email message. MIME identifies each element of a mail message according to content type. MIME does not replace SMTP but works in conjunction with it. Most modern email clients and servers support MIME POP (Post Office Protocol) POP is an application layer protocol used to retrieve messages from a mail server POP3 relies on TCP and operates over port 110 With POP3 mail is delivered and stored on a mail server until it is downloaded by a user Disadvantage of POP3 is that it typically does not allow users to save their messages on the server because of this IMAP is sometimes used IMAP (Internet Message Access Protocol) IMAP is a retrieval protocol that was developed as a more sophisticated alternative to POP3 The single biggest advantage IMAP4 has over POP3 is that users can store messages on the mail server, rather than having to continually download them Users can retrieve all or only a portion of any mail message Users can review their messages and delete them while the messages remain on the server Users can create sophisticated methods of organizing messages on the server Users can share a mailbox in a central location Disadvantages of IMAP are typically related to the fact that it requires more storage space on the server. Additional TCP/IP Utilities Nearly all TCP/IP utilities can be accessed from the command prompt on any type of server or client running TCP/IP. The syntaxt may differ depending on the OS of the client. Below is a list of additional TCP/IP utilities – research their use on your own! Ipconfig (Windows) & Ifconfig (Linux) Netstat Nbtstat Hostname, Host & Nslookup Dig (Linux) Whois (Linux) Traceroute (Tracert) Mtr (my traceroute) Route

    Read the article

  • Using IIS Logs for Performance Testing with Visual Studio

    - by Tarun Arora
    In this blog post I’ll show you how you can play back the IIS Logs in Visual Studio to automatically generate the web performance tests. You can also download the sample solution I am demo-ing in the blog post. Introduction Performance testing is as important for new websites as it is for evolving websites. If you already have your website running in production you could mine the information available in IIS logs to analyse the dense zones (most used pages) and performance test those pages rather than wasting time testing & tuning the least used pages in your application. What are IIS Logs To help with server use and analysis, IIS is integrated with several types of log files. These log file formats provide information on a range of websites and specific statistics, including Internet Protocol (IP) addresses, user information and site visits as well as dates, times and queries. If you are using IIS 7 and above you will find the log files in the following directory C:\Interpub\Logs\ Walkthrough 1. Download and Install Log Parser from the Microsoft download Centre. You should see the LogParser.dll in the install folder, the default install location is C:\Program Files (x86)\Log Parser 2.2. LogParser.dll gives us a library to query the iis log files programmatically. By the way if you haven’t used Log Parser in the past, it is a is a powerful, versatile tool that provides universal query access to text-based data such as log files, XML files and CSV files, as well as key data sources on the Windows operating system such as the Event Log, the Registry, the file system, and Active Directory. More details… 2. Create a new test project in Visual Studio. Let’s call it IISLogsToWebPerfTestDemo.   3.  Delete the UnitTest1.cs class that gets created by default. Right click the solution and add a project of type class library, name it, IISLogsToWebPerfTestEngine. Delete the default class Program.cs that gets created with the project. 4. Under the IISLogsToWebPerfTestEngine project add a reference to Microsoft.VisualStudio.QualityTools.WebTestFramework – c:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\PublicAssemblies\Microsoft.VisualStudio.QualityTools.WebTestFramework.dll LogParser also called MSUtil - c:\users\tarora\documents\visual studio 2010\Projects\IisLogsToWebPerfTest\IisLogsToWebPerfTestEngine\obj\Debug\Interop.MSUtil.dll 5. Right click IISLogsToWebPerfTestEngine project and add a new classes – IISLogReader.cs The IISLogReader class queries the iis logs using the log parser. using System; using System.Collections.Generic; using System.Text; using MSUtil; using LogQuery = MSUtil.LogQueryClassClass; using IISLogInputFormat = MSUtil.COMIISW3CInputContextClassClass; using LogRecordSet = MSUtil.ILogRecordset; using Microsoft.VisualStudio.TestTools.WebTesting; using System.Diagnostics; namespace IisLogsToWebPerfTestEngine { // By making use of log parser it is possible to query the iis log using select queries public class IISLogReader { private string _iisLogPath; public IISLogReader(string iisLogPath) { _iisLogPath = iisLogPath; } public IEnumerable<WebTestRequest> GetRequests() { LogQuery logQuery = new LogQuery(); IISLogInputFormat iisInputFormat = new IISLogInputFormat(); // currently these columns give us suffient information to construct the web test requests string query = @"SELECT s-ip, s-port, cs-method, cs-uri-stem, cs-uri-query FROM " + _iisLogPath; LogRecordSet recordSet = logQuery.Execute(query, iisInputFormat); // Apply a bit of transformation while (!recordSet.atEnd()) { ILogRecord record = recordSet.getRecord(); if (record.getValueEx("cs-method").ToString() == "GET") { string server = record.getValueEx("s-ip").ToString(); string path = record.getValueEx("cs-uri-stem").ToString(); string querystring = record.getValueEx("cs-uri-query").ToString(); StringBuilder urlBuilder = new StringBuilder(); urlBuilder.Append("http://"); urlBuilder.Append(server); urlBuilder.Append(path); if (!String.IsNullOrEmpty(querystring)) { urlBuilder.Append("?"); urlBuilder.Append(querystring); } // You could make substitutions by introducing parameterized web tests. WebTestRequest request = new WebTestRequest(urlBuilder.ToString()); Debug.WriteLine(request.UrlWithQueryString); yield return request; } recordSet.moveNext(); } Console.WriteLine(" That's it! Closing the reader"); recordSet.close(); } } }   6. Connect the dots by adding the project reference ‘IisLogsToWebPerfTestEngine’ to ‘IisLogsToWebPerfTest’. Right click the ‘IisLogsToWebPerfTest’ project and add a new class ‘WebTest1Coded.cs’ The WebTest1Coded.cs inherits from the WebTest class. By overriding the GetRequestMethod we can inject the log files to the IISLogReader class which uses Log parser to query the log file and extract the web requests to generate the web test request which is yielded back for play back when the test is run. namespace IisLogsToWebPerfTest { using System; using System.Collections.Generic; using System.Text; using Microsoft.VisualStudio.TestTools.WebTesting; using Microsoft.VisualStudio.TestTools.WebTesting.Rules; using IisLogsToWebPerfTestEngine; // This class is a coded web performance test implementation, that simply passes // the path of the iis logs to the IisLogReader class which does the heavy // lifting of reading the contents of the log file and converting them to tests. // You could have multiple such classes that inherit from WebTest and implement // GetRequestEnumerator Method and pass differnt log files for different tests. public class WebTest1Coded : WebTest { public WebTest1Coded() { this.PreAuthenticate = true; } public override IEnumerator<WebTestRequest> GetRequestEnumerator() { // substitute the highlighted path with the path of the iis log file IISLogReader reader = new IISLogReader(@"C:\Demo\iisLog1.log"); foreach (WebTestRequest request in reader.GetRequests()) { yield return request; } } } }   7. Its time to fire the test off and see the iis log playback as a web performance test. From the Test menu choose Test View Window you should be able to see the WebTest1Coded test show up. Highlight the test and press Run selection (you can also debug the test in case you face any failures during test execution). 8. Optionally you can create a Load Test by keeping ‘WebTest1Coded’ as the base test. Conclusion You have just helped your testing team, you now have become the coolest developer in your organization! Jokes apart, log parser and web performance test together allow you to save a lot of time by not having to worry about what to test or even worrying about how to record the test. If you haven’t already, download the solution from here. You can take this to the next level by using LogParser to extract the log files as part of an end of day batch to a database. See the usage trends by user this solution over a longer term and have your tests consume the web requests now stored in the database to generate the web performance tests. If you like the post, don’t forget to share … Keep RocKiNg!

    Read the article

  • ie7 innerhtml strange display problem

    - by thoraniann
    Hello, I am having a strange problem with ie7 (ie8 in compatibility mode). I have div containers where I am updating values using javascript innhtml to update the values. This works fine in Firefox and ie8. In ie7 the values do not update but if a click on the values and highlight them then they update, also if a change the height of the browser then on the next update the values get updated correctly. I have figured out that if I change the position property of the outer div container from relative to static then the updates work correctly. The page can be viewed here http://islendingasogur.net/test/webmap_html_test.html In internet explorer 8 with compatibility turned on you can see that the timestamp in the gray box only gets updated one time, after that you see no changes. The timestamp in the lower right corner gets updated every 10 seconds. But if you highlight the text in the gray box then the updated timestamp values appears! Here is the page: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /> <meta http-equiv="cache-control" content="no-cache"/> <meta http-equiv="pragma" content="no-cache"/> <meta http-equiv="expires" content="Mon, 22 Jul 2002 11:12:01 GMT"/> <title>innerhtml problem</title> <script type="text/javascript"> <!-- var alarm_off_color = '#00ff00'; var alarm_low_color = '#ffff00'; var alarm_lowlow_color = '#ff0000'; var group_id_array = new Array(); var var_alarm_array = new Array(); var timestamp_color = '#F3F3F3'; var timestamp_alarm_color = '#ff00ff'; group_id_array[257] = 0; function updateParent(var_array, group_array) { //Update last update time var time_str = "Last Reload Time: "; var currentTime = new Date(); var hours = currentTime.getHours(); var minutes = currentTime.getMinutes(); var seconds = currentTime.getSeconds(); if(minutes < 10) {minutes = "0" + minutes;} if(seconds < 10) {seconds = "0" + seconds;} time_str += hours + ":" + minutes + ":" + seconds; document.getElementById('div_last_update_time').innerHTML = time_str; //alert(time_str); alarm_var = 0; //update group values for(i1 = 0; i1 < var_array.length; ++i1) { if(document.getElementById(var_array[i1][0])) { document.getElementById(var_array[i1][0]).innerHTML = unescape(var_array[i1][1]); if(var_array[i1][2]==0) {document.getElementById(var_array[i1][0]).style.backgroundColor=alarm_off_color} else if(var_array[i1][2]==1) {document.getElementById(var_array[i1][0]).style.backgroundColor=alarm_low_color} else if(var_array[i1][2]==2) {document.getElementById(var_array[i1][0]).style.backgroundColor=alarm_lowlow_color} //check if alarm is new var_id = var_array[i1][3]; if(var_array[i1][2]==1 && var_array[i1][4]==0) { alarm_var = 1; } else if(var_array[i1][2]==2 && var_array[i1][4]==0) { alarm_var = 1; } } } //Update group timestamp and box alarm color for(i1 = 0; i1 < group_array.length; ++i1) { if(document.getElementById(group_array[i1][0])) { //set timestamp for group document.getElementById(group_array[i1][0]).innerHTML = group_array[i1][1]; if(group_array[i1][4] != -1) { //set data update error status current_timestamp_color = timestamp_color; if(group_array[i1][4] == 1) {current_timestamp_color = timestamp_alarm_color;} document.getElementById(group_array[i1][0]).style.backgroundColor = current_timestamp_color; } } } } function update_map(map_id) { document.getElementById('webmap_update').src = 'webmap_html_test_sub.html?first_time=1&map_id='+map_id; } --> </script> <style type="text/css"> body { margin:0; border:0; padding:0px;background:#eaeaea;font-family:verdana, arial, sans-serif; text-align: center; } A:active { color: #000000;} A:link { color: #000000;} A:visited { color: #000000;} A:hover { color: #000000;} #div_header { /*position: absolute;*/ background: #ffffff; width: 884px; height: 60px; display: block; float: left; font-size: 14px; text-align: left; /*overflow: visible;*/ } #div_container{ background: #ffffff;border-left:1px solid #000000; border-right:1px solid #000000; border-bottom:1px solid #000000; float: left; width: 884px;} #div_image_container{ position: relative; width: 884px; height: 549px; background: #ffffff; font-family:arial, verdana, arial, sans-serif; /*display: block;*/ float:none!important; float/**/:left; border:1px solid #00ff00; padding: 0px; } .div_group_box{ position: absolute; width: -2px; height: -2px; background: #FFFFFF; opacity: 1; filter: alpha(opacity=100); border:1px solid #000000; font-size: 2px; z-index: 0; padding: 0px; } .div_group_container{ position: absolute; opacity: 1; filter: alpha(opacity=100); z-index: 5; /*display: block;*/ /*border:1px solid #000000;*/ } .div_group_container A:active {text-decoration: none; display: block;} .div_group_container A:link { color: #000000;text-decoration: none; display: block;} .div_group_container A:visited { color: #000000;text-decoration: none; display: block;} .div_group_container A:hover { color: #000000;text-decoration: none; display: block;} .div_group_header{ background: #17B400; border:1px solid #000000;font-size: 12px; color: #FFFFFF; padding-top: 1px; padding-bottom: 1px; padding-left: 2px; padding-right: 2px; text-align: center; } .div_var_name_container{ color: #000000;background: #FFFFFF; border-left:1px solid #000000; border-top:0px solid #000000; border-bottom:0px solid #000000;font-size: 12px; float: left; display: block; text-align: left; } .div_var_name{ padding-top: 1px; padding-bottom: 1px; padding-left: 2px; padding-right: 2px; display: block; } .div_var_value_container{ color: #000000;background: #FFFFFF; border-left:1px solid #000000; border-right:1px solid #000000; border-top:0px solid #000000; border-bottom:0px solid #000000;font-size: 12px; float: left; text-align: center; } .div_var_value{ padding-top: 1px; padding-bottom: 1px; padding-left: 2px; padding-right: 2px; } .div_var_unit_container{ color: #000000;background: #FFFFFF; border-right:1px solid #000000; border-top:0px solid #000000; border-bottom:0px solid #000000;font-size: 12px; float: left; text-align: left; } .div_var_unit{ padding-top: 1px; padding-bottom: 1px; padding-left: 2px; padding-right: 2px; } .div_timestamp{ float: none; color: #000000;background: #F3F3F3; border:1px solid #000000;font-size: 12px; padding-top: 1px; padding-bottom: 1px; padding-left: 2px; padding-right: 2px; text-align: center; clear: left; z-index: 100; position: relative; } #div_last_update_time{ height: 14px; width: 210px; text-align: right; padding: 1px; font-size: 10px; float: right; } .copyright{ height: 14px; width: 240px; text-align: left; color: #777; padding: 1px; font-size: 10px; float: left; } a img { border: 1px solid #000000; } .clearer { clear: both; display: block; height: 1px; margin-bottom: -1px; font-size: 1px; line-height: 1px; } </style> </head> <body onload="update_map(1)"> <div id="div_container"><div id="div_header"></div><div class="clearer"></div><div id="div_image_container"><img id="map" src="Images/maps/0054_gardabaer.jpg" title="My map" alt="" align="left" border="0" usemap ="#_area_links" style="padding: 0px; margin: 0px;" /> <div id="group_container_257" class="div_group_container" style="visibility:visible; top:10px; left:260px; cursor: pointer;"> <div class="div_group_header" style="clear:right">Site</div> <div class="div_var_name_container"> <div id="group_name_257_var_8" class="div_var_name" >variable 1</div> <div id="group_name_257_var_7" class="div_var_name" style="border-top:1px solid #000000;">variable 2</div> <div id="group_name_257_var_9" class="div_var_name" style="border-top:1px solid #000000;">variable 3</div> </div> <div class="div_var_value_container"> <div id="group_value_257_var_8" class="div_var_value" >0</div> <div id="group_value_257_var_7" class="div_var_value" style="border-top:1px solid #000000;">0</div> <div id="group_value_257_var_9" class="div_var_value" style="border-top:1px solid #000000;">0</div> </div> <div class="div_var_unit_container"> <div id="group_unit_257_var_8" class="div_var_unit" >N/A</div> <div id="group_unit_257_var_7" class="div_var_unit" style="border-top:1px solid #000000;">N/A</div> <div id="group_unit_257_var_9" class="div_var_unit" style="border-top:1px solid #000000;">N/A</div> </div> <div id="group_257_timestamp" class="div_timestamp" style="">-</div> </div> </div><div class="clearer"></div><div class="copyright">© Copyright</div><div id="div_last_update_time">-</div> </div> <iframe id="webmap_update" style="display:none;" width="0" height="0"></iframe></body> </html> The divs with class div_var_value, div_timestamp & div_last_update_time all get updated by the javascript function. The div "div_image_container" is the one that is causing this it seems, atleast if I change the position property for it from relative to static the values get updated correctly This is the page that updates the values: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Loader</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <script type="text/javascript"> <!-- window.onload = doLoad; function refresh() { //window.location.reload( false ); var _random_num = Math.floor(Math.random()*1100); window.location.search="?map_id=54&first_time=0&t="+_random_num; } var var_array = new Array(); var timestamp_array = new Array(); var_array[0] = Array('group_value_257_var_9','41.73',-1, 9, 0); var_array[1] = Array('group_value_257_var_7','62.48',-1, 7, 0); var_array[2] = Array('group_value_257_var_8','4.24',-1, 8, 0); var current_time = new Date(); var current_time_str = current_time.getHours(); current_time_str += ':'+current_time.getMinutes(); current_time_str += ':'+current_time.getSeconds(); timestamp_array[0] = Array('group_257_timestamp',current_time_str,'box_group_container_206',-1, -1); //timestamp_array[0] = Array('group_257_timestamp','11:33:16 23.Nov','box_group_container_257',-1, -1); window.parent.updateParent(var_array, timestamp_array); function doLoad() { setTimeout( "refresh()", 10*1000 ); } //--> </script> </head> <body> </body> </html> I edited the post and added a link to the webpage in question, I have also tested the webpage in internet explorer 7 and this error does not appear there. I have only seen this error in ie8 with compatibility turned on. If anybody has seen this before and has a fix, I would be very grateful. Thanks.

    Read the article

< Previous Page | 292 293 294 295 296 297 298 299 300 301 302 303  | Next Page >