Search Results

Search found 19055 results on 763 pages for 'high performance'.

Page 304/763 | < Previous Page | 300 301 302 303 304 305 306 307 308 309 310 311  | Next Page >

  • A System Monitoring Tool Primer

    <b>CertCities:</b> "Linux comes with a number of utilities that can be used to monitor one or more of these performance parameters. The following sections introduce a few of these utilities and show how to understand the information presented by them"

    Read the article

  • External File Upload Optimizations for Windows Azure

    - by rgillen
    [Cross posted from here: http://rob.gillenfamily.net/post/External-File-Upload-Optimizations-for-Windows-Azure.aspx] I’m wrapping up a bit of the work we’ve been doing on data movement optimizations for cloud computing and the latest set of data yielded some interesting points I thought I’d share. The work done here is not really rocket science but may, in some ways, be slightly counter-intuitive and therefore seemed worthy of posting. Summary: for those who don’t like to read detailed posts or don’t have time, the synopsis is that if you are uploading data to Azure, block your data (even down to 1MB) and upload in parallel. Set your block size based on your source file size, but if you must choose a fixed value, use 1MB. Following the above will result in significant performance gains… upwards of 10x-24x and a reduction in overall file transfer time of upwards of 90% (eg, uploading a 1GB file averaged 46.37 minutes prior to optimizations and averaged 1.86 minutes afterwards). Detail: For those of you who want more detail, or think that the claims at the end of the preceding paragraph are over-reaching, what follows is information and code supporting these claims. As the title would indicate, these tests were run from our research facility pointing to the Azure cloud (specifically US North Central as it is physically closest to us) and do not represent intra-cloud results… we have performed intra-cloud tests and the overall results are similar in notion but the data rates are significantly different as well as the tipping points for the various block sizes… this will be detailed separately). We started by building a very simple console application that would loop through a directory and upload each file to Azure storage. This application used the shipping storage client library from the 1.1 version of the azure tools. The only real variation from the client library is that we added code to collect and record the duration (in ms) and size (in bytes) for each file transferred. The code is available here. We then created a directory that had a collection of files for the following sizes: 2KB, 32KB, 64KB, 128KB, 512KB, 1MB, 5MB, 10MB, 25MB, 50MB, 100MB, 250MB, 500MB, 750MB, and 1GB (50 files for each size listed). These files contained randomly-generated binary data and do not benefit from compression (a separate discussion topic). Our file generation tool is available here. The baseline was established by running the application described above against the directory containing all of the data files. This application uploads the files in a random order so as to avoid transferring all of the files of a given size sequentially and thereby spreading the affects of periodic Internet delays across the collection of results.  We then ran some scripts to split the resulting data and generate some reports. The raw data collected for our non-optimized tests is available via the links in the Related Resources section at the bottom of this post. For each file size, we calculated the average upload time (and standard deviation) and the average transfer rate (and standard deviation). As you likely are aware, transferring data across the Internet is susceptible to many transient delays which can cause anomalies in the resulting data. It is for this reason that we randomized the order of source file processing as well as executed the tests 50x for each file size. We expect that these steps will yield a sufficiently balanced set of results. Once the baseline was collected and analyzed, we updated the test harness application with some methods to split the source file into user-defined block sizes and then to upload those blocks in parallel (using the PutBlock() method of Azure storage). The parallelization was handled by simply relying on the Parallel Extensions to .NET to provide a Parallel.For loop (see linked source for specific implementation details in Program.cs, line 173 and following… less than 100 lines total). Once all of the blocks were uploaded, we called PutBlockList() to assemble/commit the file in Azure storage. For each block transferred, the MD5 was calculated and sent ensuring that the bits that arrived matched was was intended. The timer for the blocked/parallelized transfer method wraps the entire process (source file splitting, block transfer, MD5 validation, file committal). A diagram of the process is as follows: We then tested the affects of blocking & parallelizing the transfers by running the updated application against the same source set and did a parameter sweep on the block size including 256KB, 512KB, 1MB, 2MB, and 4MB (our assumption was that anything lower than 256KB wasn’t worth the trouble and 4MB is the maximum size of a block supported by Azure). The raw data for the parallel tests is available via the links in the Related Resources section at the bottom of this post. This data was processed and then compared against the single-threaded / non-optimized transfer numbers and the results were encouraging. The Excel version of the results is available here. Two semi-obvious points need to be made prior to reviewing the data. The first is that if the block size is larger than the source file size you will end up with a “negative optimization” due to the overhead of attempting to block and parallelize. The second is that as the files get smaller, the clock-time cost of blocking and parallelizing (overhead) is more apparent and can tend towards negative optimizations. For this reason (and is supported in the raw data provided in the linked worksheet) the charts and dialog below ignore source file sizes less than 1MB. (click chart for full size image) The chart above illustrates some interesting points about the results: When the block size is smaller than the source file, performance increases but as the block size approaches and then passes the source file size, you see decreasing benefit to the point of negative gains (see the values for the 1MB file size) For some of the moderately-sized source files, small blocks (256KB) are best As the size of the source file gets larger (see values for 50MB and up), the smallest block size is not the most efficient (presumably due, at least in part, to the increased number of blocks, increased number of individual transfer requests, and reassembly/committal costs). Once you pass the 250MB source file size, the difference in rate for 1MB to 4MB blocks is more-or-less constant The 1MB block size gives the best average improvement (~16x) but the optimal approach would be to vary the block size based on the size of the source file.    (click chart for full size image) The above is another view of the same data as the prior chart just with the axis changed (x-axis represents file size and plotted data shows improvement by block size). It again highlights the fact that the 1MB block size is probably the best overall size but highlights the benefits of some of the other block sizes at different source file sizes. This last chart shows the change in total duration of the file uploads based on different block sizes for the source file sizes. Nothing really new here other than this view of the data highlights the negative affects of poorly choosing a block size for smaller files.   Summary What we have found so far is that blocking your file uploads and uploading them in parallel results in significant performance improvements. Further, utilizing extension methods and the Task Parallel Library (.NET 4.0) make short work of altering the shipping client library to provide this functionality while minimizing the amount of change to existing applications that might be using the client library for other interactions.   Related Resources Source code for upload test application Source code for random file generator ODatas feed of raw data from non-optimized transfer tests Experiment Metadata Experiment Datasets 2KB Uploads 32KB Uploads 64KB Uploads 128KB Uploads 256KB Uploads 512KB Uploads 1MB Uploads 5MB Uploads 10MB Uploads 25MB Uploads 50MB Uploads 100MB Uploads 250MB Uploads 500MB Uploads 750MB Uploads 1GB Uploads Raw Data OData feeds of raw data from blocked/parallelized transfer tests Experiment Metadata Experiment Datasets Raw Data 256KB Blocks 512KB Blocks 1MB Blocks 2MB Blocks 4MB Blocks Excel worksheet showing summarizations and comparisons

    Read the article

  • Search Engine Placement Optimization and Link Popularity

    The increased visibility of your website due to high link popularity and search engine placement optimization can mean so much, especially if you are promoting a product or service through your website. If you are new to the business of link building, you might be wondering how to get started with it and how search engine placement optimization can help you. Knowledge of link popularity basics is essential even if you are planning on hiring someone to do link building tasks for you.

    Read the article

  • Business Strategy - Google Case Study

    Business strategy defined by SMBTN.com is a term used in business planning that implies a careful selection and application of resources to obtain a competitive advantage in anticipation of future events or trends. In more general terms business strategy is positioning a company so that it has the greatest competitive advantage over others in the markets and industries that they participate in. This process involves making corporate decisions regarding which markets to provide goods and services, pricing, acceptable quality levels, and how to interact with others in the marketplace. The primary objective of business strategy is to create and increase value for all of its shareholders and stakeholders through the creation of customer value. According to InformationWeek.com, Google has a distinctive technology advantage over its competitors like Microsoft, eBay, Amazon, Yahoo. Google utilizes custom high-performance systems which are cost efficient because they can scale to extreme workloads. This hardware allows for a huge cost advantage over its competitors. In addition, InformationWeek.com interviewed Stephen Arnold who stated that Google’s programmers are 50%-100% more productive compared to programmers working for their competitors.  He based this theory on Google’s competitors having to spend up to four times as much just to keep up. In addition to Google’s technological advantage, they also have developed a decentralized management schema where employees report directly to multiple managers and team project leaders. This allows for the responsibility of the technology department to be shared amongst multiple senior level engineers and removes the need for a singular department head to oversee the activities of the department.  This is a unique approach from the standard management style. Typically a department head like a CIO or CTO would oversee the department’s global initiatives and business functionality.  This would then be passed down and administered through middle management and implemented by programmers, business analyst, network administrators and Database administrators. It goes without saying that an IT professional’s responsibilities would be directed by Google’s technological advantage and management strategy.  Simply because they work within the department, and would have to design, develop, and support the high-performance systems and would have to report multiple managers and project leaders on a regular basis. Since Google was established and driven by new and immerging technology, all other departments would be directly impacted by the technology department.  In fact, they would have to cater to the technology department since it is a huge driving for in the success of Google. Reference: http://www.smbtn.com/smallbusinessdictionary/#b http://www.informationweek.com/news/software/linux/showArticle.jhtml?articleID=192300292&pgno=1&queryText=&isPrev=

    Read the article

  • Heating Up the Search Results With Local SEO

    With the help of an SEO agencies and local SEO, local businesses are dominating the first page of search results. There are millions of websites in existence today and With so much competition, website owners must have high rankings with the search engines in order to succeed online.

    Read the article

  • What is new in Oracle SOA Suite 11g R1 PS6? by Shanny Anoep

    - by JuergenKress
    Oracle has released a new version 11.1.1.7.0 for their Oracle Fusion Middleware product line. This version includes Patch Set #6 (PS6) for Oracle SOA Suite 11g R1, with a big list of improvements and fixes for each component in that suite. In this post we will highlight some of the interesting updates with regards to troubleshooting, performance, reliability and scalability. Infrastructure/Purging scripts Database growth is a common problem for large-scale Oracle SOA Suite deployments. Oracle already provides multiple purging strategies for the SOA Suite runtime database. This patch set includes two new scripts for purging most of the runtime data: Table Recreation Script (TRS): This script can be used to reclaim as much database space as possible, while still retaining the open instances. It can be used as a corrective action for databases that grew excessively, for example when purging was not performed at all. This should be used as a single corrective action only; the script does not replace the normal purging scripts. Truncate script: Remove all records from the SOA Suite runtime tables without dropping the tables. This script can be used for cloning SOA Suite environments without copying the instance data, or for recreating test scenarios by cleaning all the runtime data. The Oracle SOA Suite Administrator's guide contains a table with the available purging strategies. Diagnostic dumps Using WLST you could already dump diagnostic information about various components of the SOA Suite. This version adds support to retrieve more information on BPEL and Adapters from the command-line. Diagnostic dumps for BPEL New diagnostic dumps are available for BPEL to get information on thread pools, average processing time for BPEL components, and average waiting times for asynchronous instances. This information can be very useful for performance analysis or troubleshooting. With WLST this information can be retrieved from the command-line and included for monitoring or reporting. Read the full article here. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Mix Forum Technorati Tags: SOA Suite PS6,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • PASS Data Architecture VC presents Neil Hambly on Improve Data Quality & Integrity using Constraints

    On Tuesday June 19th 12PM noon Central, Neil Hambly will discuss "Leveraging the power of constraints to improve both data quality and performance of your databases." What are your servers really trying to tell you? Find out with new SQL Monitor 3.0, an easy-to-use tool built for no-nonsense database professionals.For effortless insights into SQL Server, download a free trial today.

    Read the article

  • How to create a virtual network with Azure Connect

    - by Herve Roggero
    If you are trying to establish a virtual network between machines located in disparate networks, you can either use VPN, Virtual Network or Azure Connect. If you want to establish a connection between machines located in Windows Azure, you should consider using the Virtual Network service. If you want to establish a connection between local machines and Virtual Machines in Windows Azure, you may be able to use your existing VPN device (assuming you have one), as long as the device is supported by Microsoft. If the VPN device you are using isn’t supported, or if you are trying to create a virtual network between machines from disparate networks (such as machines located in another cloud provider), you can use Azure Connect. This blog post explains how Azure Connect can help you create virtual networks between multiple servers in the cloud, various servers in different cloud environments, and on-premise. Note: Azure Connect is currently in Technical Preview. About Azure Connect Let’s do a quick review of Azure Connect. This technology implements an IPSec tunnel from machines to to a relay service located in the Microsoft cloud (Azure). So in essence, Azure Connect doesn’t provide a point-to-point connection between machines; the network communication is tunneled through the relay service. The relay service in turn offers a mechanism to enforce basic communication rules that you define through Groups. We will review this later. You could network two or more VMs in the Azure cloud (although you should consider using a Virtual Network if you go this route), or servers in the Azure cloud and other machines in the Amazon cloud for example, or even two or more on-premise servers located in different locations for which a direct network connection is not an option. You can place any number of machines in your topology. Azure Connect gives you great flexibility on how you want to build your virtual network across various environments. So Azure Connect makes sense when you want to: Connect machines located in different cloud providers Connect on-premise machines running in different locations Connect Azure VMs with on-premise (if you do not have a VPN device, or if your device is not supported) Connect Azure Roles (Worker Roles, Web Roles) with on-premise servers or in other cloud providers The diagram below shows you a high level network topology that involves machines in the Windows Azure cloud, other cloud providers and on-premise. You should note that the only required component in this diagram is the Relay itself. The other machines are optional (although your network is useful only if you have two or more machines involved). Relay agents are currently available in three geographic areas: US, Europe and Asia. You can change which region you want to use in the Windows Azure management portal. High Level Network Topology With Azure Connect Azure Connect Agent Azure Connect establishes a virtual network and creates virtual adapters on your machines; these virtual adapters communicate through the Relay using IPSec. This is achieved by installing an agent (the Azure Connect Agent) on all the machines you want in your network topology. However, you do not need to install the agent on Worker Roles and Web Roles; that’s because the agent is already installed for you. Any other machine, including Virtual Machines in Windows Azure, needs the agent installed.  To install the agent, simply go to your Windows Azure portal (http://windows.azure.com) and click on Networks on the bottom left panel. You will see a list of subscriptions under Connect. If you select a subscription, you will be able to click on the Install Local Endpoint icon on top. Clicking on this icon will begin the download and installation process for the agent. Activating Roles for Azure Connect As previously mentioned, you do not need to install the Azure Connect Agent on Worker Roles and Web Roles because it is already loaded. However, you do need to activate them if you want the roles to participate in your network topology. To do this, you will need to click on the Get Activation Token icon. The activation token must then be copied and placed in the configuration file of your roles. For more information on how to perform this step, visit MSDN at http://msdn.microsoft.com/en-us/library/windowsazure/gg432964.aspx. Firewall Rules Note that specific firewall rules must exist to allow the agent to communicate through the Relay. You will need to allow TCP 443 and ICMPv6. For additional information, please visit MSDN at http://msdn.microsoft.com/en-us/library/windowsazure/gg433061.aspx. CA Certificates You can optionally require agents to sign their activation request with the Relay using a trusted certificate issued by a Certificate Authority (CA). Click on Activation Options to learn more. Groups To create your network topology you must first create a group. A group represents a logical container of endpoints (or machines) that can communicate through the Relay. You can create multiple groups allowing you to manage network communication differently. For example you could create a DEVELOPMENT group and a PRODUCTION group. To add an endpoint you must first install an agent that will create a virtual adapter on the machine on which it is installed (as discussed in the previous section). Once you have created a group and installed the agents, the machines will appear in the Windows Azure management portal and you can start assigning machines to groups. The next figure shows you that I created a group called LocalGroup and assigned two machines (both on-premise) to that group. Groups and Computers in Azure Connect As I mentioned previously you can allow these machines to establish a network connection. To do this, you must enable the Interconnected option in the group. The following diagram shows you the definition of the group. In this topology I chose to include local machines only, but I could also add worker roles and web roles in the Azure Roles section (you must first activate your roles, as discussed previously). You could also add other Groups, allowing you to manage inter-group communication. Defining a Group in Azure Connect Testing the Connection Now that my agents have been installed on my two machines, the group defined and the Interconnected option checked, I can test the connection between my machines. The next screenshot shows you that I sent a PING request to DEVLAP02 from DEVDSK02. The PING request was successful. Note however that the time is in the hundreds of milliseconds on average. That is to be expected because the machines are connecting through the Relay located in the cloud. Going through the Relay introduces an extra hop in the communication chain, so if your systems rely on high performance, you may want to conduct some basic performance tests. Sending a PING Request Through The Relay Conclusion As you can see, creating a network topology between machines using the Azure Connect service is simple. It took me less than five minutes to create the above configuration, including the time it took to install the Azure Connect agents on the two machines. The flexibility of Azure Connect allows you to create a virtual network between disparate environments, as long as your operating systems are supported by the agent. For more information on Azure Connect, visit the MSDN website at http://msdn.microsoft.com/en-us/library/windowsazure/gg432997.aspx. About Herve Roggero Herve Roggero, Windows Azure MVP, is the founder of Blue Syntax Consulting, a company specialized in cloud computing products and services. Herve's experience includes software development, architecture, database administration and senior management with both global corporations and startup companies. Herve holds multiple certifications, including an MCDBA, MCSE, MCSD. He also holds a Master's degree in Business Administration from Indiana University. Herve is the co-author of "PRO SQL Azure" from Apress and runs the Azure Florida Association (on LinkedIn: http://www.linkedin.com/groups?gid=4177626). For more information on Blue Syntax Consulting, visit www.bluesyntax.net. Special Thanks I would like thank those that helped me figure out how Azure Connect works: Marcel Meijer - http://blogs.msmvps.com/marcelmeijer/ Michael Wood - Http://www.mvwood.com Glenn Block - http://www.codebetter.com/glennblock Yves Goeleven - http://cloudshaper.wordpress.com/ Sandrino Di Mattia - http://fabriccontroller.net/ Mike Martin - http://techmike2kx.wordpress.com

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • T-SQL User-Defined Functions: the good, the bad, and the ugly (part 4)

    - by Hugo Kornelis
    Scalar user-defined functions are bad for performance. I already showed that for T-SQL scalar user-defined functions without and with data access, and for most CLR scalar user-defined functions without data access , and in this blog post I will show that CLR scalar user-defined functions with data access fit into that picture. First attempt Sticking to my simplistic example of finding the triple of an integer value by reading it from a pre-populated lookup table and following the standard recommendations...(read more)

    Read the article

  • what's included in a typical computer architecture class? [closed]

    - by sq1020
    Does this description fit what's usually included in a computer architecture class? Computer Organization and Assembly Language An introduction to the hardware organization and assembly language of the Intel processor. Topics include memory hierarchy and design- CPU design- pipelining- addressing modes- subroutine linkage- polled input/output- interrupts- high level language interfacing and macros.

    Read the article

  • Google I/O 2010 - Google Analytics APIs: End to end

    Google I/O 2010 - Google Analytics APIs: End to end Google I/O 2010 - Google Analytics APIs: End to end Google APIs 201 Nick Mihailovski Google Analytics measures performance of your website. Learn advanced techniques on how to use our tracking, processing and data export APIs as we walk you through an example of creating a most visited pages web element for your website. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 6 0 ratings Time: 55:42 More in Science & Technology

    Read the article

  • Operations Manager SQL monitoring issue?

    - by merrillaldrich
    We're in the early stages of implementing System Center Operations Manager 2007 R2, and from what I've see so far it looks really good. I am still interested to see the depth of performance counter information that it'll collect and store, but haven't been able to really dig into that just yet. There is one issue I am seeing and I don't know if others have come across this (could not find much online about it either): computing a database file free space alert rule is a little complicated, and it...(read more)

    Read the article

  • Not attending the LUGM mini-meetup - 05. Oct 2013

    Not attending a meeting of the LUGM can be fun, too. It's getting a bit of a habit that Ish is organising small gatherings, aka mini-meetups, of the Linux User Group Mauritius/Meta (LUGM) almost every Saturday. There they mainly discuss and talk about various elements of using Linux as ones main operating systems and the possibilities you are going to have. On top of course, some tips & tricks about mastering the command line and initial steps in scripting or even writing HTML. In general, sounds like a good portion of fun and great spirit of community. Unfortunately, I'm usually quite busy with private and family matters during the weekend and so I already signalised that I wouldn't be around. Well, at least not physically... But this Saturday a couple of things worked out faster than expected and so I was hanging out on my machine. I made virtual contact with one of Pawan's messages over on Facebook... And somehow that kicked off some kind of an online game fun on basic configuration of Apache HTTPd 2.2.x, PHP 5.x and how to improve the overall performance of a newly installed blog based on WordPress. Default configuration files Nitin's website finally came alive and despite the dark theme and the hidden Apple 'fanboy' advertisement I was more interested in the technical situation. As with any new installation there is usually quite some adjustment to be done. And Nitin's page was no exception. Unfortunately, out of the box installations of Apache httpd and PHP are too verbose and expose too much information under the hood. You might think that this isn't really a problem at all, well, think about it again after completely reading this article. First, I checked the HTTP response headers - using either Chrome Developer Tools or Firefox Web Developer extension - of Nitin's page and based on that I advised him to lower the noise levels a little bit. It's not really necessary that detailed information about web server software and scripting language has to be published in every response made. Quite a number of script kiddies and exploits actually check for version specifics prior to an attack. So, removing at least version details hardens the system a little bit. In particular, I'm talking about these response values: Server X-Powered-By How to achieve that? By tweaking the configuration files... Namely, we are going to look into the following ones: apache2.conf httpd.conf .htaccess php.ini The above list contains some additional files, I'm talking about in the next paragraphs. Anyway, those are the ones involved. Tweaking Apache Open your favourite text editor and start to modify the apache2.conf. Eventually, you might like to have a quick peak at the file to see whether it is necessary to adjust it or not. Following is a handy combination of commands to get an overview of your active directives: # sudo grep -v '#' /etc/apache2/apache2.conf | grep -v '^$' | less There you keep an eye on those two Apache directives: ServerSignature Off ServerTokens Prod If that's not the case, change them as highlighted above. In order to activate your modifications you have to restart Apache httpd server. On Debian and Ubuntu you might use apache2ctl for that, on other distributions you might have to use service or run the init-scripts again: # sudo apache2ctl configtestSyntax OK# sudo apache2ctl restart Refresh your website and check the HTTP response header. Tweaking PHP5 (a little bit) Next, check your php.ini file with the following statement: # sudo grep -v ';' /etc/php5/apache2/php.ini | grep -v '^$' | less And check the value of expose_php = Off Again, if it's not as highlighted, change it... Some more Apache love Okay, back to Apache it might also be interesting to improve the situation about browser caching and removing more obsolete information. When you run your website against the usual performance checks like Google Page Speed and Yahoo YSlow you might see those check points with bad grades on a standard, default configuration. Well, this can be done easily. Configure entity tags (ETags) ETags are only interesting when you run your websites on a farm of multiple web servers. Removing this data for your static resources is very simple in Apache. As we are going to deal with the HTTP response header information you have to ensure that Apache is capable to manipulate them. First, check your enabled modules: # sudo ls -al /etc/apache2/mods-enabled/ | grep headers And in case that the 'headers' module is not listed, you have to enable it from the available ones: # sudo a2enmod headers Second, check your httpd.conf file (in case it exists): # sudo grep -v '#' /etc/apache2/httpd.conf | grep -v '^$' | less In newer (better said fresh) installations you might have to create a new configuration file below your conf.d folder with your favourite text editor like so: # sudo nano /etc/apache2/conf.d/headers.conf Then, in order to tweak your HTTP responses either check for those lines or add them: Header unset ETagFileETag None In case that your file doesn't exist or those lines are missing, feel free to create/add them. Afterwards, check your Apache configuration syntax and restart your running instances as already shown above: # sudo apache2ctl configtestSyntax OK# sudo apache2ctl restart Add Expires headers To improve the loading performance of your website, you should take some care into the proper configuration of how to leverage the browser's ability to cache certain resources and files. This is done by adding an Expires: value to the HTTP response header. Generally speaking it is advised that you specify a near-future, read: 1 week or a little bit more, for your static content like JavaScript files or Cascading Style Sheets. One solution to adjust this is to put some instructions into the .htaccess file in the root folder of your web site. Of course, this could also be placed into a more generic location of your Apache installation but honestly, I'd like to keep this at the web site level. Following some adjustments I'm currently using on this blog site: # Turn on Expires and set default to 0ExpiresActive OnExpiresDefault A0 # Set up caching on media files for 1 year (forever?)<FilesMatch "\.(flv|ico|pdf|avi|mov|ppt|doc|mp3|wmv|wav)$">ExpiresDefault A29030400Header append Cache-Control "public"</FilesMatch> # Set up caching on media files for 1 week<FilesMatch "\.(js|css)$">ExpiresDefault A604800Header append Cache-Control "public"</FilesMatch> # Set up caching on media files for 31 days<FilesMatch "\.(gif|jpg|jpeg|png|swf)$">ExpiresDefault A2678400Header append Cache-Control "public"</FilesMatch> As we are editing the .htaccess files, it is not necessary to restart Apache. In case that your web site doesn't load anymore or you're experiencing an error while trying to restart your httpd, check that the 'expires' module is actually an enabled module: # ls -al /etc/apache2/mods-enabled/ | grep expires# sudo a2enmod expires Of course, the instructions above a re not feature complete but I hope that they might provide a better default configuration for your LAMP stack. Resume of the day Within a couple of hours, and while being occupied with an eLearning course on SQL Server 2012, I had some good fun in helping and assisting other LUGM members while they were some kilometers away at Bagatelle. According to other blog articles it seems that Nitin had quite some moments of desperation. Just for the records: At no time it was my intention to either kick his butt or pull a leg on him. Simply, providing some input based on the lessons I've learned over the last couple of years configuring Apache HTTPd and PHP. Check out the other blogs, too: LUGM mini-meetup... Epic! Superb Saturday Linux Meetup And last but not least, the man himself: The end of a new beginning Cheers, and happy community'ing! Updates Due to our weekly Code & Coffee sessions in the MSCC community, I had a chance to talk to Nitin directly and he showed me the problems directly on his machine. This led to update this article hence the paragraphs on enabling the modules 'headers' and 'expires'.

    Read the article

  • Working with Legacy code #3 : Build a safety net.

    - by andrewstopford
    The first port of call in changing legacy code is a safety net, without one your fingers will get burnt. Make your safety net a high level functional test over the major areas of the application. Automate the test, plug it into your CI builds and run it every night. The test should act as a final fail safe as you work.

    Read the article

  • Exadata ROI cases

    - by Javier Puerta
    The following cases illustrate the type of ROI benefits that customers can obtain from their investment in Exadata infrastructure. Australian Finance Group will achieve a 42% ROI by and break even in three years by consolidating Oracle E-Business Suite and Siebel applications on Oracle Exadata.  Read the ROI case at: http://www.oracle.com/us/corporate/customers/afg-1-exadata-cs-1354807.pdf In addition to this study, there are Oracle Exadata Mainstay ROI Case Studies for the following: Merck -Pharma, Oracle Exadata Achieves Fivefold Performance Increase for Critical Product Research Platform Turkcell Accelerates Reporting Tenfold, Saves on Storage and Energy Costs with Consolidated Oracle Exadata Platform

    Read the article

  • Webcast: John Fowler Reveals The Next Step In Data Center Consolidation – June 27 At 10 AM PT

    - by Roxana Babiciu
    Completely integrated solutions are just better. But don't take our word for it - encourage your customers and prospects to join this live webcast featuring Oracle EVP John Fowler to find out why. Participants will learn how consolidating their existing data center to this new generation of solutions will simplify architectures, jump start application deployment and improve system performance - with easy self-service and private cloud capabilities.

    Read the article

  • Keyword Research Tool - Best to Generate Traffic

    Search engines are considered to be the most powerful web traffic tool in the internet because it is where you can find highly targeted traffic. Today, it is harder to optimize the site because of high competition for the best keywords and optimization is becoming more and more difficult since different search engines change their criteria on a regular basis.

    Read the article

  • Why IBM DB2 DBAs Love Load Testing

    A load test gives the database administrator quite a lot of valuable information and may make the difference between poor and acceptable application performance. Here are some proactive tips to make your IBM DB2 production implementation a success.

    Read the article

  • Kicking off the ODI12c Blog Series

    - by Madhu Nair
    Normal 0 false false false EN-US ZH-TW X-NONE MicrosoftInternetExplorer4 It is always exciting to talk about a new release, especially one as significant as the newly released Oracle Data Integrator 12c (ODI12c). Why? Because it is packed with features that addresses many requirements for the user community. If you missed sneak previews at this year's Oracle Open World sessions, do not despair. Because over the coming weeks the ODI12c team of developers and consultants will be sharing their perspective on key features, experiences and best practices for ODI12c right here through a series of blogs. Before diving into feature details in subsequent blogs it helps to understand the overall themes that went into developing ODI12c. Let the Productivity Flow: Let us face it. Designing for developer user experience is always top of mind to any enterprise software. ODI12c addresses this through the introduction of declarative flow based mappings (the topic of our next ODI blog by the way!!). Reusability has been addressed though the introduction of reusable mappings cutting down development times for repeated logics. An enhanced debugger makes life easy for complex granular debugging scenarios. Unique repository IDs now allow you to manage multiple repositories. Performance is Paramount: Another major area of focus for ODI12c is performance. Increased parallelism (like the multiple target table load feature), reduced session overheads and ability to customize loads plans through physical views all empower the user to tune run times for extreme performances. mapping showing multiple target load physical representation allowing users to choose execution options Integrating it all: This release is not just about ODI12c as a standalone product. Closer integration with Oracle GoldenGate now brings Change Data Capture (CDC) capabilities into ODI12c. Oracle Warehouse Builder (OWB) jobs can now be executed and monitored from within ODI12c. And ODI12c is fast becoming the de facto standard for Oracle Applications that need data integration in their solutions. The best example being the latest release of the Oracle BI Applications technology. Even as we bring you in-depth write-ups about the features there are some great previews and resources that are already out there. Like this super entry by beta partner Rittman Mead Consulting and this ODI12c Key Features White Paper. You can download ODI12c here (this post helps). The best though is the upcoming Executive Webcast featuring customers and executives who have seen and conceived the product. Don’t miss it!

    Read the article

  • StreamInsight is in all editions (except express)

    - by simonsabin
    Contrary to many posts and even press releases from Microsoft StreamInsight is not just for Data Center edition. It is available in all paid for editions. If you read the license terms http://go.microsoft.com/fwlink/?LinkID=186261&clcid=0x409 you will see you get StreamInsight in all paid editions. Whats confusing is the performance/limitations in each edition. The only reference I could find of these limitations is here http://blogs.msdn.com/b/streaminsight/archive/2010/02/10/streaminsight-versions...(read more)

    Read the article

  • Friday Fun: Fort Blaster – Ahoy There

    - by Asian Angel
    In this week’s game you and your pirate crew luck out and find a series of forts full of treasure waiting for you to claim in a campaign of high seas terror. So hoist the colors, grab your favorite cannon, and get ready to blast your way to fame and fortune! How to Banish Duplicate Photos with VisiPic How to Make Your Laptop Choose a Wired Connection Instead of Wireless HTG Explains: What Is Two-Factor Authentication and Should I Be Using It?

    Read the article

< Previous Page | 300 301 302 303 304 305 306 307 308 309 310 311  | Next Page >