Search Results

Search found 10033 results on 402 pages for 'execution speed'.

Page 311/402 | < Previous Page | 307 308 309 310 311 312 313 314 315 316 317 318  | Next Page >

  • Offre d’emploi – Job Offer - Montreal

    - by guybarrette
    I’m currently helping a client plan its management systems re-architecture and they are looking to hire a full time .NET developer.  It’s a small 70 people company located in the Old Montreal, you’ll be the sole dev there and you’ll use the latest technologies in re writing their core systems. Here’s the job offer in French: Concepteur de logiciel et programmeur-analyste .NET chevronné (poste permanent à temps plein) Employeur : Traductions Serge Bélair inc. Ville : Montreal QC TRSB, cabinet de traduction en croissance rapide regroupant à l’interne une des équipes de professionnels les plus compétentes et les plus diversifiées du secteur de la traduction au Canada, désire combler le poste de : Le concepteur de logiciel et programmeur-analyste .Net sera responsable de la conception, du développement complet et de l’implantation d’une solution clés en main personnalisée pour répondre aux besoins de l’entreprise. Il réalisera la conception, la programmation, la documentation, les tests, le dépannage et la maintenance du nouveau système de gestion des opérations de l’entreprise utilisant des bases de données et offrant une grande souplesse pour la production de rapports. S’il est nécessaire de faire appel à des fournisseurs ou à des consultants pour la réalisation du projet, il sera responsable de trouver les ressources requises, devra assurer les communications avec ces ressources et voir à l’exécution du travail. Il sera également appelé à mettre à jour et à maintenir les applications actuellement utilisées dans l’entreprise jusqu’à ce que l’application développée puisse être utilisée. Les principales tâches du concepteur et programmeur-analyste chevronné recherché seront les suivantes : Concevoir et développer un nouveau système de gestion des opérations en fonction des besoins d’exploitation de l’entreprise Trouver les ressources externes et internes requises Assurer les communications et le suivi avec des fournisseurs externes (p. ex., programmeurs, analystes ou architectes) Assumer la responsabilité de la mise en place du nouveau système de gestion des opérations Résoudre les problèmes liés au nouveau système de gestion des opérations Assurer le soutien les soirs de semaine et la fin de semaine (au besoin), principalement avec des outils de travail à distance Maintenir la documentation du système de gestion des opérations à jour Exécuter d’autres tâches connexes Exigences Baccalauréat en informatique ou l’équivalent Au moins 5 années d’expérience pertinente 2 ans et plus d'expérience en programmation C# Excellente connaissance en programmation d’applications Web avec bases de données Excellente connaissance en méthodologie structurée de développement et des techniques de programmation itératives Habiletés à procéder à la récolte d’informations ainsi que la rédaction de documents d’analyse Spécialisations techniques Essentielle - Design et programmation orientée objet avec C#, ASP.NET, .NET Framework 3.5, AJAX Importante - Silverlight 3, WCF, LINQ, SQL Server, Team Foundation Server Atout - Entity Framework, MVC, jQuery, MySQL, QuickBooks, Suite d’outils Telerik Technologies utilisées C# 4.0, Visual Studio 2010, Team Foundation Server 2010, LINQ, ASP.NET, ASP.NET MVC, jQuery, WCF, Silverlight 4, SQL Server 2008, MySQL, QuickBooks, Suite d’outils Telerik Qualités recherchées Bilinguisme oral et écrit Sens élevé des responsabilités Autonomie Sens de l’initiative Volonté de dépassement Leadership et aptitudes à la prise de décisions Motivation élevée Minutie et souci du détail Bon sens de l’organisation Souplesse et bonne capacité d’adaptation au changement Une expérience antérieure du développement de logiciel avec flux de processus et modules de facturation, de l’établissement de ponts entre des bases de données de types différents (Quickbooks et SQL p. ex.) et des outils d’aide à la traduction serait un atout important. Excellentes conditions de travail : salaire et avantages sociaux très concurrentiels, milieu de travail stimulant dans un environnement agréable, dans le Vieux-Montréal. Faire parvenir votre CV et votre lettre de motivation à [email protected] TRSB 276, rue Saint-Jacques, bureau 900 Montréal (Québec) H2Y 1N3 L’usage du générique masculin a pour seul but d’alléger le texte et d’en faciliter la lecture. var addthis_pub="guybarrette";

    Read the article

  • Closer look at the SOA 12c Feature: Oracle Managed File Transfer

    - by Tshepo Madigage-Oracle
    The rapid growth of cloud-based applications in the enterprise, combined with organizations' desire to integrate applications with mobile technologies, is dramatically increasing application integration complexity. To meet this challenge, Oracle introduced Oracle SOA Suite 12c, the latest version of the industry's most complete and unified application integration and SOA solution. With simplified cloud, mobile, on-premises, and Internet of Things (IoT) integration capabilities, all within a single platform, Oracle SOA Suite 12c helps organizations speed time to integration, improve productivity, and lower TCO. To extend its B2B solution capabilities with Oracle SOA Suite 12c, Oracle unveiled Oracle Managed File Transfer, an integrated solution that enables organizations to virtually eliminate file transfer complexities. This allows customers to load data securely into Oracle Cloud applications as well as third-party cloud or partner applications. Oracle Managed File Transfer (Oracle MFT) enables secure file exchange and management with internal departments and external partners. It protects against inadvertent access to unsecured files at every step in the end-to-end transfer of files. It is easy to use especially for non technical staff so you can leverage more resources to manage the transfer of files. The extensive reporting capabilities allow you to get quick status of a file transfer and resubmit it as required. You can protect data in your DMZ by using the SSH/FTP reverse proxy. Oracle Managed File Transfer can help integrate applications by transferring files between them in complex use case patterns. Standalone: Transferring files on its own using embedded FTP and sFTP servers and the file systems to which it has access. SOA Integration: a SOA application can be the source or target of a transfer. A SOA application can also be the common endpoint for the target of one transfer and the source of another. B2B Integration: B2B application can be the source or target of a transfer. A B2B application can also be the common endpoint for the target of one transfer and the source of another. Healthcare Integration:  Healthcare application can be the source or target of a transfer. A Healthcare application can also be the common endpoint for the target of one transfer and the source of another. Oracle Service Bus (OSB) integration: OMT can integrate with Oracle Service Bus web service interfaces. OSB interface can be the source or target of a transfer. An Oracle Service Bus interface can also be the common endpoint for the target of one transfer and the source of another. Hybrid Integration: can be one participant in a web of data transfers that includes multiple application types. Oracle Managed File Transfers has four user roles: file handlers, designers, monitors, and administrators. File Handlers: - Copy files to file transfer staging areas, which are called sources. - Retrieve files from file transfer destinations, which are called targets. Designers: - Create, read, update and delete file transfer sources. - Create, read, update and delete file transfer targets. - Create, read, update and delete transfers, which link sources and targets in complete file delivery flows. - Deploy and test transfers. Monitors: - Use the Dashboard and reports to ensure that transfer instances are successful. - Pause and resume lengthy transfers. - Troubleshoot errors and resubmit transfers. - View artifact deployment details and history. - View artifact dependence relationships. - Enable and disable sources, targets, and transfers. - Undeploy sources, targets, and transfers. - Start and stop embedded FTP and sFTP servers. Administrators: - All file handler tasks - All designer tasks - All monitor tasks - Add other users and determine their roles - Configure user directory permissions - Configure the Oracle Managed File Transfer server - Configure embedded FTP and sFTP servers, including security - Configure B2B and Healthcare domains - Back up and restore the Oracle Managed File Transfer configuration - Purge transferred files and instance data - Archive and restore instance data and payloads - Import and export metadata You will find all the related information about SOA 12.1.3. Oracle Manages File Transfer OMT in the documentation: Using Oracle Manages File Transfer Resources and links: Oracle Unveils Oracle SOA Suite 12c Oracle Managed Files Transfer Oracle Managed Files Transfer SOA 12c White Paper For further enquiries don't hesitate to contact us at [email protected] and join our Partner Webcast on Oracle SOA Suite 12c

    Read the article

  • Enterprise 2.0 - Connecting People, Processes & Content

    - by kellsey.ruppel(at)oracle.com
    With recent technological advances, the Internet is changing. When users head to the web, they are no longer just looking for information from a simple text and picture based website. Users want a more interactive experience - they want to participate, to share their views and get the feedback of others. And this is precisely what Web 2.0 technology addresses. Web 2.0 is about web applications that facilitate interactive information sharing, user-centered design and collaboration on the World Wide Web. Web 2.0 technology is everywhere on the Internet and is radically changing the speed and medium in which we interact and communicate. There are thousands of examples in the consumer world of Web 2.0 applications, technologies and solutions at work. You might be familiar with some of them...blogs, wikis (Wikipedia), Twitter, Facebook, LinkedIn - these are all examples of Web 2.0. And these technologies are transforming our world into a real-time, participation-oriented, user-driven, content-centric world. With all of these Web 2.0 solutions it's about the user, the consumer and all the content they are generating. It's a world full of online communities where people share and participate. We're not talking about disseminating information top-down , nor is it a bottom-up fight. Everyone has an equal opportunity to participate and share. The more you participate, the more you share, the more valued you are in the community. The web is not just a collection of documents online. It is the social web.  For the active users in the community, staying connected becomes critically important so they can participate at anytime and from anywhere. And because feedback and interaction are so critical, time is of the essence. When everyone is providing immediate responses, you feel the urge to do the same. Hence everything needs to be done right now, together...and collaboratively. With all the content being generated online by users, there is complete information overload out there. (That's a good thing for Google). But...it's no longer just about search. Sometimes you want the information to just come to you. Recommendations and discovery engines will deliver you more applicable results than a non-contextual search. How many of you have heard about a news headline on Facebook as part of your feed before you read the paper or see it on TV? This is how the new generation of workers live their daily lives...and as they enter the workforce, these trends and technologies are showing up in the enterprise too. A lot of the Web 2.0 technologies and solutions in the consumer world are geared for just that....consumers. But the core concepts that put them into the Web 2.0 category can be applied to the enterprise as well. And that is what we mean when we talk about Enterprise 2.0. Enterprise 2.0 is the use of Web 2.0 tools and technologies in the workplace.  It provides a modern user experience by connecting the people, content and business processes inside and outside the enterprise. Enterprise 2.0 empowers users to collaborate more effectively, find and share information in the proper content and improves the overall business processes which they participate in. As we head into 2011, is your organization using Enterprise 2.0 capabilities to the fullest? Are you connecting your people, processes and content together to provide a modern user experience?

    Read the article

  • A temporary disagreement

    - by Tony Davis
    Last month, Phil Factor caused a furore amongst some MVPs with an article that attempted to offer simple advice to developers regarding the use of table variables, versus local and global temporary tables, in their code. Phil makes clear that the table variables do come with some fairly major limitations.no distribution statistics, no parallel query plans for queries that modify table variables.but goes on to suggest that for reasonably small-scale strategic uses, and with a bit of due care and testing, table variables are a "good thing". Not everyone shares his opinion; in fact, I imagine he was rather aghast to learn that there were those felt his article was akin to pulling the pin out of a grenade and tossing it into the database; table variables should be avoided in almost all cases, according to their advice, in favour of temp tables. In other words, a fairly major feature of SQL Server should be more-or-less 'off limits' to developers. The problem with temp tables is that, because they are scoped either in the procedure or the connection, it is easy to allow them to hang around for too long, eating up precious memory and bulking up the shared tempdb database. Unless they are explicitly dropped, global temporary tables, and local temporary tables created within a connection rather than within a stored procedure, will persist until the connection is closed or, with connection pooling, until the connection is reused. It's also quite common with ASP.NET applications to have connection leaks, as Bill Vaughn explains in his chapter in the "SQL Server Deep Dives" book, meaning that the web page exits without closing the connection object, maybe due to an error condition. This will then hang around in the heap for what might be hours before picked up by the garbage collector. Table variables are much safer in this regard, since they are batch-scoped and so are cleaned up automatically once the batch is complete, which also means that they are intuitive to use for the developer because they conform to scoping rules that are closer to those in procedural code. On the surface then, an ideal way to deal with issues related to tempdb memory hogging. So why did Phil qualify his recommendation to use Table Variables? This is another of those cases where, like scalar UDFs and table-valued multi-statement UDFs, developers can sometimes get into trouble with a relatively benign-looking feature, due to way it's been implemented in SQL Server. Once again the biggest problem is how they are handled internally, by the SQL Server query optimizer, which can make very poor choices for JOIN orders and so on, in the absence of statistics, especially when joining to tables with highly-skewed data. The resulting execution plans can be horrible, as will be the resulting performance. If the JOIN is to a large table, that will hurt. Ideally, Microsoft would simply fix this issue so that developers can't get burned in this way; they've been around since SQL Server 2000, so Microsoft has had a bit of time to get it right. As I commented in regard to UDFs, when developers discover issues like with such standard features, the database becomes an alien planet to them, where death lurks around each corner, and they continue to avoid these "killer" features years after the problems have been eventually resolved. In the meantime, what is the right approach? Is it to say "hammers can kill, don't ever use hammers", or is it to try to explain, as Phil's article and follow-up blog post have tried to do, what the feature was intended for, why care must be applied in its use, and so enable developers to make properly-informed decisions, without requiring them to delve deep into the inner workings of SQL Server? Cheers, Tony.

    Read the article

  • SQL SERVER – Integrate Your Data with Skyvia – Cloud ETL Solution

    - by Pinal Dave
    In our days data integration often becomes a key aspect of business success. For business analysts it’s very important to get integrated data from various sources, such as relational databases, cloud CRMs, etc. to make correct and successful decisions. There are various data integration solutions on market, and today I will tell about one of them – Skyvia. Skyvia is a cloud data integration service, which allows integrating data in cloud CRMs and different relational databases. It is a completely online solution and does not require anything except for a browser. Skyvia provides powerful etl tools for data import, export, replication, and synchronization for SQL Server and other databases and cloud CRMs. You can use Skyvia data import tools to load data from various sources to SQL Server (and SQL Azure). Skyvia supports such cloud CRMs as Salesforce and Microsoft Dynamics CRM and such databases as MySQL and PostgreSQL. You even can migrate data from SQL Server to SQL Server, or from SQL Server to other databases and cloud CRMs. Additionally Skyvia supports import of CSV files, either uploaded manually or stored on cloud file storage services, such as Dropbox, Box, Google Drive, or FTP servers. When data import is not enough, Skyvia offers bidirectional data synchronization. With this tool, you can synchronize SQL Server data with other databases and cloud CRMs. After performing the first synchronization, Skyvia tracks data changes in the synchronized data storages. In SQL Server databases (and other relational databases) it creates additional tracking tables and triggers. This allows synchronizing only the changed data. Skyvia also maps records by their primary key values to each other, so it does not require different sources to have the same primary key structure. It still can match the corresponding records without having to add any additional columns or changing data structure. The only requirement for synchronization is that primary keys must be autogenerated. With Skyvia it’s not necessary for data to have the same structure in integrated data storages. Skyvia supports powerful mapping mechanisms that allow synchronizing data with completely different structure. It provides support for complex mathematical and string expressions when mapping data, using lookups, etc. You may use data splitting – loading data from a single CSV file or source table to multiple related target tables. Or you may load data from several source CSV files or tables to several related target tables. In each case Skyvia preserves data relations. It builds corresponding relations between the target data automatically. When you often work with cloud CRM data, native CRM data reporting and analysis tools may be not enough for you. And there is a vast set of professional data analysis and reporting tools available for SQL Server. With Skyvia you can quickly copy your cloud CRM data to an SQL Server database and apply corresponding SQL Server tools to the data. In such case you can use Skyvia data replication tools. It allows you to quickly copy cloud CRM data to SQL Server or other databases without customizing any mapping. You need just to specify columns to copy data from. Target database tables will be created automatically. Skyvia offers powerful filtering settings to replicate only the records you need. Skyvia also provides capability to export data from SQL Server (including SQL Azure) and other databases and cloud CRMs to CSV files. These files can be either downloadable manually or loaded to cloud file storages or FTP server. You can use export, for example, to backup SQL Azure data to Dropbox. Any data integration operation can be scheduled for automatic execution. Thus, you can automate your SQL Azure data backup or data synchronization – just configure it once, then schedule it, and benefit from automatic data integration with Skyvia. Currently registration and using Skyvia is completely free, so you can try it yourself and find out whether its data migration and integration tools suits for you. Visit this link to register on Skyvia: https://app.skyvia.com/register Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Cloud Computing

    Read the article

  • BizTalk 2009 - BizTalk Benchmark Wizard: Running a Test

    - by StuartBrierley
    The BizTalk Benchmark Wizard is a ultility that can be used to gain some validation of a BizTalk installation, giving a level of guidance on whether it is performing as might be expected.  It should be used after BizTalk Server has been installed and before any solutions are deployed to the environment.  This will ensure that you are getting consistent and clean results from the BizTalk Benchmark Wizard. The BizTalk Benchmark Wizard applies load to the BizTalk Server environment under a choice of specific scenarios. During these scenarios performance counter information is collected and assessed against statistics that are appropriate to the BizTalk Server environment. For details on installing the Benchmark Wizard see my previous post. The BizTalk Benchmarking Wizard provides two simple test scenarios, one for messaging and one for Orchestrations, which can be used to test your BizTalk implementation. Messaging Loadgen generates a new XML message and sends it over NetTCP A WCF-NetTCP Receive Location receives a the xml document from Loadgen. The PassThruReceive pipeline performs no processing and the message is published by the EPM to the MessageBox. The WCF One-Way Send Port, which is the only subscriber to the message, retrieves the message from the MessageBox The PassThruTransmit pipeline provides no additional processing The message is delivered to the back end WCF service by the WCF NetTCP adapter Orchestrations Loadgen generates a new XML message and sends it over NetTCP A WCF-NetTCP Receive Location receives a the xml document from Loadgen. The XMLReceive pipeline performs no processing and the message is published by the EPM to the MessageBox. The message is delivered to a simple Orchestration which consists of a receive location and a send port The WCF One-Way Send Port, which is the only subscriber to the Orchestration message, retrieves the message from the MessageBox The PassThruTransmit pipeline provides no additional processing The message is delivered to the back end WCF service by the WCF NetTCP adapter Below is a quick outline of how to run the BizTalk Benchmark Wizard on a single server, although it should be noted that this is not ideal as this server is then both generating and processing the load.  In order to separate this load out you should run the "Indigo" service on a seperate server. To start the BizTalk Benchmark Wizard click Start > All Programs > BizTalk Benchmark Wizard > BizTalk Benchmark Wizard. On this screen click next, you will then get the following pop up window. Check the server and database names and check the "check prerequsites" check-box before pressing ok.  The wizard will then check that the appropriate test scenarios are installed. You should then choose the test scenario that wish to run (messaging or orchestration) and the architecture that most closely matches your environment. You will then be asked to confirm the host server for each of the host instances. Next you will be presented with the prepare screen.  You will need to start the indigo service before pressing the Test Indigo Service Button. If you are running the indigo service on a separate server you can enter the server name here.  To start the indigo service click Start > All Programs > BizTalk Benchmark Wizard > Start Indigo Service.   While the test is running you will be presented with two speed dial type displays - one for the received messages per second and one for the processed messages per second. The green dial shows the current rate and the red dial shows the overall average rate.  Optionally you can view the CPU usage of the various servers involved in processing the tests. For my development environment I expected low results and this is what I got.  Although looking at the online high scores table and comparing to the quad core system listed, the results are perhaps not really that bad. At some time I may look at what improvements I can make to this score, but if you are interested in that now take a look at Benchmark your BizTalk Server (Part 3).

    Read the article

  • Part 15: Fail a build based on the exit code of a console application

    In the series the following parts have been published Part 1: Introduction Part 2: Add arguments and variables Part 3: Use more complex arguments Part 4: Create your own activity Part 5: Increase AssemblyVersion Part 6: Use custom type for an argument Part 7: How is the custom assembly found Part 8: Send information to the build log Part 9: Impersonate activities (run under other credentials) Part 10: Include Version Number in the Build Number Part 11: Speed up opening my build process template Part 12: How to debug my custom activities Part 13: Get control over the Build Output Part 14: Execute a PowerShell script Part 15: Fail a build based on the exit code of a console application When you have a Console Application or a batch file that has errors, the exitcode is set to another value then 0. You would expect that the build would see this and report an error. This is not true however. First we setup the scenario. Add a ConsoleApplication project to your solution you are building. In the Main function set the ExitCode to 1     class Program    {        static void Main(string[] args)        {            Console.WriteLine("This is an error in the script.");            Environment.ExitCode = 1;        }    } Checkin the code. You can choose to include this Console Application in the build or you can decide to add the exe to source control Now modify the Build Process Template CustomTemplate.xaml Add an argument ErrornousScript Scroll down beneath the TryCatch activity called “Try Compile, Test, and Associate Changesets and Work Items” Add an Sequence activity to the template In the Sequence, add a ConvertWorkspaceItem and an InvokeProcess activity (see Part 14: Execute a PowerShell script  for more detailed steps) In the FileName property of the InvokeProcess use the ErrornousScript so the ConsoleApplication will be called. Modify the build definition and make sure that the ErrornousScript is executing the exe that is setting the ExitCode to 1. You have now setup a build definition that will execute the errornous Console Application. When you run it, you will see that the build succeeds. This is not what you want! To solve this, you can make use of the Result property on the InvokeProcess activity. So lets change our Build Process Template. Add the new variables (scoped to the sequence where you run the Console Application) called ExitCode (type = Int32) and ErrorMessage Click on the InvokeProcess activity and change the Result property to ExitCode In the Handle Standard Output of the InvokeProcess add a Sequence activity In the Sequence activity, add an Assign primitive. Set the following properties: To = ErrorMessage Value = If(Not String.IsNullOrEmpty(ErrorMessage), Environment.NewLine + ErrorMessage, "") + stdOutput And add the default BuildMessage to the sequence that outputs the stdOutput Add beneath the InvokeProcess activity and If activity with the condition ExitCode <> 0 In the Then section add a Throw activity and set the Exception property to New Exception(ErrorMessage) The complete workflow looks now like When you now check in the Build Process Template and run the build, you get the following result And that is exactly what we want.   You can download the full solution at BuildProcess.zip. It will include the sources of every part and will continue to evolve.

    Read the article

  • concurrency::accelerator_view

    - by Daniel Moth
    Overview We saw previously that accelerator represents a target for our C++ AMP computation or memory allocation and that there is a notion of a default accelerator. We ended that post by introducing how one can obtain accelerator_view objects from an accelerator object through the accelerator class's default_view property and the create_view method. The accelerator_view objects can be thought of as handles to an accelerator. You can also construct an accelerator_view given another accelerator_view (through the copy constructor or the assignment operator overload). Speaking of operator overloading, you can also compare (for equality and inequality) two accelerator_view objects between them to determine if they refer to the same underlying accelerator. We'll see later that when we use concurrency::array objects, the allocation of data takes place on an accelerator at array construction time, so there is a constructor overload that accepts an accelerator_view object. We'll also see later that a new concurrency::parallel_for_each function overload can take an accelerator_view object, so it knows on what target to execute the computation (represented by a lambda that the parallel_for_each also accepts). Beyond normal usage, accelerator_view is a quality of service concept that offers isolation to multiple "consumers" of an accelerator. If in your code you are accessing the accelerator from multiple threads (or, in general, from different parts of your app), then you'll want to create separate accelerator_view objects for each thread. flush, wait, and queuing_mode When you create an accelerator_view via the create_view method of the accelerator, you pass in an option of immediate or deferred, which are the two members of the queuing_mode enum. At any point you can access this value from the queuing_mode property of the accelerator_view. When the queuing_mode value is immediate (which is the default), any commands sent to the device such as kernel invocations and data transfers (e.g. parallel_for_each and copy, as we'll see in future posts), will get submitted as soon as the runtime sees fit (that is the definition of immediate). When the value of queuing_mode is deferred, the commands will be batched up. To send all buffered commands to the device for execution, there is a non-blocking flush method that you can call. If you wish to block until all the commands have been sent, there is a wait method you can call. Deferring is a more advanced scenario aimed at performance gains when you are submitting many device commands and you want to avoid the tiny overhead of flushing/submitting each command separately. Querying information Just like accelerator, accelerator_view exposes the is_debug and version properties. In fact, you can always access the accelerator object from the accelerator property on the accelerator_view class to access the accelerator interface we looked at previously. Interop with D3D (aka DX) In a later post I'll show an example of an app that uses C++ AMP to compute data that is used in pixel shaders. In those scenarios, you can benefit by integrating C++ AMP into your graphics pipeline and one of the building blocks for that is being able to use the same device context from both the compute kernel and the other shaders. You can do that by going from accelerator_view to device context (and vice versa), through part of our interop API in amp.h: *get_device, create_accelerator_view. More on those in a later post. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • How to Set Up Your Enterprise Social Organization

    - by Mike Stiles
    The rush for business organizations to establish, grow, and adopt social was driven out of necessity and inevitability. The result, however, was a sudden, booming social presence creating touch points with customers, partners and influencers, but without any corporate social organization or structure in place to effectively manage it. Even today, many business leaders remain uncertain as to how to corral this social media thing so that it makes sense for their enterprise. Imagine their panic when they hear one of the most beneficial approaches to corporate use of social involves giving up at least some hierarchical control and empowering employees to publicly engage customers. And beyond that, they should also be empowered, regardless of their corporate status, to engage and collaborate internally, spurring “off the grid” innovation. An HBR blog points out that traditionally, enterprise organizations function from the top down, and employees work end-to-end, structured around business processes. But the social enterprise opens up structures that up to now have not exactly been embraced by turf-protecting executives and managers. The blog asks, “What if leaders could create a future where customers, associates and suppliers are no longer seen as objects in the system but as valued sources of innovation, ideas and energy?” What if indeed? The social enterprise activates internal resources without the usual obsession with position. It is the dawn of mass collaboration. That does not, however, mean this mass collaboration has to lead to uncontrolled chaos. In an extended interview with Oracle, Altimeter Group analyst Jeremiah Owyang and Oracle SVP Reggie Bradford paint a complete picture of today’s social enterprise, including internal organizational structures Altimeter Group has seen emerge. One sign of a mature social enterprise is the establishing of a social Center of Excellence (CoE), which serves as a hub for high-level social strategy, training and education, research, measurement and accountability, and vendor selection. This CoE is led by a corporate Social Strategist, most likely from a Marketing or Corporate Communications background. Reporting to them are the Community Managers, the front lines of customer interaction and engagement; business unit liaisons that coordinate the enterprise; and social media campaign/product managers, social analysts, and developers. With content rising as the defining factor for social success, Altimeter also sees a Content Strategist position emerging. Across the enterprise, Altimeter has seen 5 organizational patterns. Watching the video will give you the pros and cons of each. Decentralized - Anyone can do anything at any time on any social channel. Centralized – One central groups controls all social communication for the company. Hub and Spoke – A centralized group, but business units can operate their own social under the hub’s guidance and execution. Most enterprises are using this model. Dandelion – Each business unit develops their own social strategy & staff, has its own ability to deploy, and its own ability to engage under the central policies of the CoE. Honeycomb – Every employee can do social, but as opposed to the decentralized model, it’s coordinated and monitored on one platform. The average enterprise has a whopping 178 social accounts, nearly ¼ of which are usually semi-idle and need to be scrapped. The last thing any C-suite needs is to cope with fragmented technologies, solutions and platforms. It’s neither scalable nor strategic. The prepared, effective social enterprise has a technology partner that can quickly and holistically integrate emerging platforms and technologies, such that whatever internal social command structure you’ve set up can continue efficiently executing strategy without skipping a beat. @mikestiles

    Read the article

  • Oracle at The Forrester Customer Intelligence and Marketing Leadership Forums

    - by Christie Flanagan
    The Forrester Customer Intelligence Forum and the Forrester Marketing Leadership Forums will soon be here.  This year’s events will be co-located on April 18-19 at the J.W. Marriott at the L.A. Live entertainment complex in downtown Los Angeles.  Last year’s Marketing Forum was quite memorable for me.  You see, while Forrester analysts and business marketers were busy mingling over at the Marriott, another marketing powerhouse was taking up residence a few feet away at The Staples Center.  That’s right folks. Lada Gaga was coming to town.  And, as I came to learn, it made perfect sense for Lady Gaga and her legions of fans to be sharing a small patch of downtown L.A. with marketing leaders from all over the world.  After all, whether you like Lady Gaga or not, what pop star in recent memory has done more to build herself into a brand and to create an engaging, social and interactive customer experience for her Little Monsters?  While Lady Gaga won’t be back in town for this year’s Forrester events, there are still plenty of compelling reasons to make the trip out to Los Angeles.   The theme for The Forrester Customer Intelligence and Marketing Leadership Forums this year is “From Cool To Critical: Creating Engagement In The Age Of The Customer” and will tackle the important questions about how marketers can survive and thrive in the age of the empowered customer: •    How can you assess consumer uptake of new innovations?•    How do you build deep customer knowledge to drive competitive advantage?•    How do you drive deep, personalized customer engagement?•    What is more valuable — eyeballs or engagement?•    How do business customers engage in new media types?•    How can you tie social data to corporate data?•    Who should lead the movement to customer obsession?•    How should you shift your planning and measurement approaches to accommodate more data and a higher signal-to-noise ratio?•    What role does technology play in customizing and synchronizing marketing efforts across channels?As a platinum sponsor of the event, there will be a numbers of ways to interact with Oracle while you’re attending the Forums.  Here are some of the highlights:Oracle Speaking SessionThursday, April 19, 9:15am – 9:55amMaximize Customer Engagement and Retention with Integrated Marketing & LoyaltyMelissa Boxer, Vice President, Oracle CRM Marketing & LoyaltyCustomers expect to interact with your company, brand and products in more ways than ever before.   New devices and channels, such as mobile, social and web, are creating radical shifts in the customer buying process and the ways your company can reach and communicate with existing and potential customers. While Marketing's objectives (attract, convert, retain) remain fundamentally the same, your approach and tools must adapt quickly to succeed in this more complex, cross-channel world. Hear how leading brands are using Oracle's integrated marketing and loyalty solutions to maximize customer engagement and retention through better planning, execution, and measurement of synchronized cross-channel marketing initiatives.Solution ShowcaseWednesday, April 1810:20am – 11:50am 12:30pm – 1:30pm2:55pm – 3:40pmThursday, April 199:55am – 10:40am12:00pm – 1:00pmSolution Showcase & Networking ReceptionWednesday, April 185:10pm – 6:20pmBe sure to follow the #webcenter hashtag for updates on these events.  And for a more considered perspective on what Lady Gaga can teach businesses about branding and customer experience, check out Denise Lee Yohn’s post, Lessons from Lady Gaga from the Brand as Business Bites blog.

    Read the article

  • Common business drivers that lead to creating and sustaining a project

    Common business drivers that lead to creating and sustaining a project include and are not limited to: cost reduction, increased return on investment (ROI), reduced time to market, increased speed and efficiency, increased security, and increased interoperability. These drivers primarily focus on streamlining and reducing cost to make a company more profitable with less overhead. According to Answers.com cost reduction is defined as reducing costs to improve profitability, and may be implemented when a company is having financial problems or prevent problems. ROI is defined as the amount of value received relative to the amount of money invested according to PayperclickList.com.  With the ever increasing demands on businesses to compete in today’s market, companies are constantly striving to reduce the time it takes for a concept to become a product and be sold within the global marketplace. In business, some people say time is money, so if a project can reduce the time a business process takes it in fact saves the company which is always good for the bottom line. The Social Security Administration states that data security is the protection of data from accidental or intentional but unauthorized modification, destruction. Interoperability is the capability of a system or subsystem to interact with other systems or subsystems. In my personal opinion, these drivers would not really differ for a profit-based organization, compared to a non-profit organization. Both corporate entities strive to reduce cost, and strive to keep operation budgets low. However, the reasoning behind why they want to achieve this does contrast. Typically profit based organizations strive to increase revenue and market share so that the business can grow. Alternatively, not-for-profit businesses are more interested in increasing their reach within communities whether it is to increase annual donations or invest in the lives of others. Success or failure of a project can be determined by one or more of these drivers based on the scope of a project and the company’s priorities associated with each of the drivers. In addition, if a project attempts to incorporate multiple drivers and is only partially successful, then the project might still be considered to be a success due to how close the project was to meeting each of the priorities. Continuous evaluation of the project could lead to a decision to abort a project, because it is expected to fail before completion. Evaluations should be executed after the completion of every software development process stage. Pfleeger notes that software development process stages include: Requirements Analysis and Definition System Design Program Design Program Implementation Unit Testing Integration Testing System Delivery Maintenance Each evaluation at every state should consider all the business drivers included in the scope of a project for how close they are expected to meet expectations. In addition, minimum requirements of acceptance should also be included with the scope of the project and should be reevaluated as the project progresses to ensure that the project makes good economic sense to continue. If the project falls below these benchmarks then the project should be put on hold until it does make more sense or the project should be aborted because it does not meet the business driver requirements.   References Cost Reduction Program. (n.d.). Dictionary of Accounting Terms. Retrieved July 19, 2009, from Answers.com Web site: http://www.answers.com/topic/cost-reduction-program Government Information Exchange. (n.d.). Government Information Exchange Glossary. Retrieved July 19, 2009, from SSA.gov Web site: http://www.ssa.gov/gix/definitions.html PayPerClickList.com. (n.d.). Glossary Term R - Pay Per Click List. Retrieved July 19, 2009, from PayPerClickList.com Web site: http://www.payperclicklist.com/glossary/termr.html Pfleeger, S & Atlee, J.(2009). Software Engineering: Theory and Practice. Boston:Prentice Hall Veluchamy, Thiyagarajan. (n.d.). Glossary « Thiyagarajan Veluchamy’s Blog. Retrieved July 19, 2009, from Thiyagarajan.WordPress.com Web site: http://thiyagarajan.wordpress.com/glossary/

    Read the article

  • SQL SERVER – ASYNC_IO_COMPLETION – Wait Type – Day 11 of 28

    - by pinaldave
    For any good system three things are vital: CPU, Memory and IO (disk). Among these three, IO is the most crucial factor of SQL Server. Looking at real-world cases, I do not see IT people upgrading CPU and Memory frequently. However, the disk is often upgraded for either improving the space, speed or throughput. Today we will look at another IO-related wait type. From Book On-Line: Occurs when a task is waiting for I/Os to finish. ASYNC_IO_COMPLETION Explanation: Any tasks are waiting for I/O to finish. If by any means your application that’s connected to SQL Server is processing the data very slowly, this type of wait can occur. Several long-running database operations like BACKUP, CREATE DATABASE, ALTER DATABASE or other operations can also create this wait type. Reducing ASYNC_IO_COMPLETION wait: When it is an issue related to IO, one should check for the following things associated to IO subsystem: Look at the programming and see if there is any application code which processes the data slowly (like inefficient loop, etc.). Note that it should be re-written to avoid this  wait type. Proper placing of the files is very important. We should check the file system for proper placement of the files – LDF and MDF on separate drive, TempDB on another separate drive, hot spot tables on separate filegroup (and on separate disk), etc. Check the File Statistics and see if there is a higher IO Read and IO Write Stall SQL SERVER – Get File Statistics Using fn_virtualfilestats. Check event log and error log for any errors or warnings related to IO. If you are using SAN (Storage Area Network), check the throughput of the SAN system as well as configuration of the HBA Queue Depth. In one of my recent projects, the SAN was performing really badly and so the SAN administrator did not accept it. After some investigations, he agreed to change the HBA Queue Depth on the development setup (test environment). As soon as we changed the HBA Queue Depth to quite a higher value, there was a sudden big improvement in the performance. It is very likely to happen that there are no proper indexes on the system and yet there are lots of table scans and heap scans. Creating proper index can reduce the IO bandwidth considerably. If SQL Server can use appropriate cover index instead of clustered index, it can effectively reduce lots of CPU, Memory and IO (considering cover index has lesser columns than cluster table and all other; it depends upon the situation). You can refer to the following two articles I wrote that talk about how to optimize indexes: Create Missing Indexes Drop Unused Indexes Checking Memory Related Perfmon Counters SQLServer: Memory Manager\Memory Grants Pending (Consistent higher value than 0-2) SQLServer: Memory Manager\Memory Grants Outstanding (Consistent higher value, Benchmark) SQLServer: Buffer Manager\Buffer Hit Cache Ratio (Higher is better, greater than 90% for usually smooth running system) SQLServer: Buffer Manager\Page Life Expectancy (Consistent lower value than 300 seconds) Memory: Available Mbytes (Information only) Memory: Page Faults/sec (Benchmark only) Memory: Pages/sec (Benchmark only) Checking Disk Related Perfmon Counters Average Disk sec/Read (Consistent higher value than 4-8 millisecond is not good) Average Disk sec/Write (Consistent higher value than 4-8 millisecond is not good) Average Disk Read/Write Queue Length (Consistent higher value than benchmark is not good) Read all the post in the Wait Types and Queue series. Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussions of Wait Stats in this blog are generic and vary from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Validating Petabytes of Data with Regularity and Thoroughness

    - by rickramsey
    by Brian Zents When former Intel CEO Andy Grove said “only the paranoid survive,” he wasn’t necessarily talking about tape storage administrators, but it’s a lesson they’ve learned well. After all, tape storage is the last line of defense to prevent data loss, so tape administrators are extra cautious in making sure their data is secure. Not surprisingly, we are often asked for ways to validate tape media and the files on them. In the past, an administrator could validate the media, but doing so was often tedious or disruptive or both. The debut of the Data Integrity Validation (DIV) and Library Media Validation (LMV) features in the Oracle T10000C drive helped eliminate many of these pains. Also available with the Oracle T10000D drive, these features use hardware-assisted CRC checks that not only ensure the data is written correctly the first time, but also do so much more efficiently. Traditionally, a CRC check takes at least 25 seconds per 4GB file with a 2:1 compression ratio, but the T10000C/D drives can reduce the check to a maximum of nine seconds because the entire check is contained within the drive. No data needs to be sent to a host application. A time savings of at least 64 percent is extremely beneficial over the course of checking an entire 8.5TB T10000D tape. While the DIV and LMV features are better than anything else out there, what storage administrators really need is a way to check petabytes of data with regularity and thoroughness. With the launch of Oracle StorageTek Tape Analytics (STA) 2.0 in April, there is finally a solution that addresses this longstanding need. STA bundles these features into one interface to automate all media validation activities across all Oracle SL3000 and SL8500 tape libraries in an environment. And best of all, the validation process can be associated with the health checks an administrator would be doing already through STA. In fact, STA validates the media based on any of the following policies: Random Selection – Randomly selects media for validation whenever a validation drive in the standalone library or library complex is available. Media Health = Action – Selects media that have had a specified number of successive exchanges resulting in an Exchange Media Health of “Action.” You can specify from one to five exchanges. Media Health = Evaluate – Selects media that have had a specified number of successive exchanges resulting in an Exchange Media Health of “Evaluate.” You can specify from one to five exchanges. Media Health = Monitor – Selects media that have had a specified number of successive exchanges resulting in an Exchange Media Health of “Monitor.” You can specify from one to five exchanges. Extended Period of Non-Use – Selects media that have not had an exchange for a specified number of days. You can specify from 365 to 1,095 days (one to three years). Newly Entered – Selects media that have recently been entered into the library. Bad MIR Detected – Selects media with an exchange resulting in a “Bad MIR Detected” error. A bad media information record (MIR) indicates degraded high-speed access on the media. To avoid disrupting host operations, an administrator designates certain drives for media validation operations. If a host requests a file from media currently being validated, the host’s request takes priority. To ensure that the administrator really knows it is the media that is bad, as opposed to the drive, STA includes drive calibration and qualification features. In addition, validation requests can be re-prioritized or cancelled as needed. To ensure that a specific tape isn’t validated too often, STA prevents a tape from being validated twice within 24 hours via one of the policies described above. A tape can be validated more often if the administrator manually initiates the validation. When the validations are complete, STA reports the results. STA does not report simply a “good” or “bad” status. It also reports if media is even degraded so the administrator can migrate the data before there is a true failure. From that point, the administrators’ paranoia is relieved, as they have the necessary information to make a sound decision about the health of the tapes in their environment. About the Photograph Photograph taken by Rick Ramsey in Death Valley, California, May 2014 - Brian Follow OTN Garage on: Web | Facebook | Twitter | YouTube

    Read the article

  • career in Mobile sw/Application Development [closed]

    - by pramod
    i m planning to do a course on Wireless & mobile computing.The syllabus are given below.Please check & let me know whether its worth to do.How is the job prospects after that.I m a fresher & from electronic Engg.The modules are- *Wireless and Mobile Computing (WiMC) – Modules* C, C++ Programming and Data Structures 100 Hours C Revision C, C++ programming tools on linux(Vi editor, gdb etc.) OOP concepts Programming constructs Functions Access Specifiers Classes and Objects Overloading Inheritance Polymorphism Templates Data Structures in C++ Arrays, stacks, Queues, Linked Lists( Singly, Doubly, Circular) Trees, Threaded trees, AVL Trees Graphs, Sorting (bubble, Quick, Heap , Merge) System Development Methodology 18 Hours Software life cycle and various life cycle models Project Management Software: A Process Various Phases in s/w Development Risk Analysis and Management Software Quality Assurance Introduction to Coding Standards Software Project Management Testing Strategies and Tactics Project Management and Introduction to Risk Management Java Programming 110 Hours Data Types, Operators and Language Constructs Classes and Objects, Inner Classes and Inheritance Inheritance Interface and Package Exceptions Threads Java.lang Java.util Java.awt Java.io Java.applet Java.swing XML, XSL, DTD Java n/w programming Introduction to servlet Mobile and Wireless Technologies 30 Hours Basics of Wireless Technologies Cellular Communication: Single cell systems, multi-cell systems, frequency reuse, analog cellular systems, digital cellular systems GSM standard: Mobile Station, BTS, BSC, MSC, SMS sever, call processing and protocols CDMA standard: spread spectrum technologies, 2.5G and 3G Systems: HSCSD, GPRS, W-CDMA/UMTS,3GPP and international roaming, Multimedia services CDMA based cellular mobile communication systems Wireless Personal Area Networks: Bluetooth, IEEE 802.11a/b/g standards Mobile Handset Device Interfacing: Data Cables, IrDA, Bluetooth, Touch- Screen Interfacing Wireless Security, Telemetry Java Wireless Programming and Applications Development(J2ME) 100 Hours J2ME Architecture The CLDC and the KVM Tools and Development Process Classification of CLDC Target Devices CLDC Collections API CLDC Streams Model MIDlets MIDlet Lifecycle MIDP Programming MIDP Event Architecture High-Level Event Handling Low-Level Event Handling The CLDC Streams Model The CLDC Networking Package The MIDP Implementation Introduction to WAP, WML Script and XHTML Introduction to Multimedia Messaging Services (MMS) Symbian Programming 60 Hours Symbian OS basics Symbian OS services Symbian OS organization GUI approaches ROM building Debugging Hardware abstraction Base porting Symbian OS reference design porting File systems Overview of Symbian OS Development – DevKits, CustKits and SDKs CodeWarrior Tool Application & UI Development Client Server Framework ECOM STDLIB in Symbian iPhone Programming 80 Hours Introducing iPhone core specifications Understanding iPhone input and output Designing web pages for the iPhone Capturing iPhone events Introducing the webkit CSS transforms transitions and animations Using iUI for web apps Using Canvas for web apps Building web apps with Dashcode Writing Dashcode programs Debugging iPhone web pages SDK programming for web developers An introduction to object-oriented programming Introducing the iPhone OS Using Xcode and Interface builder Programming with the SDK Toolkit OS Concepts & Linux Programming 60 Hours Operating System Concepts What is an OS? Processes Scheduling & Synchronization Memory management Virtual Memory and Paging Linux Architecture Programming in Linux Linux Shell Programming Writing Device Drivers Configuring and Building GNU Cross-tool chain Configuring and Compiling Linux Virtual File System Porting Linux on Target Hardware WinCE.NET and Database Technology 80 Hours Execution Process in .NET Environment Language Interoperability Assemblies Need of C# Operators Namespaces & Assemblies Arrays Preprocessors Delegates and Events Boxing and Unboxing Regular Expression Collections Multithreading Programming Memory Management Exceptions Handling Win Forms Working with database ASP .NET Server Controls and client-side scripts ASP .NET Web Server Controls Validation Controls Principles of database management Need of RDBMS etc Client/Server Computing RDBMS Technologies Codd’s Rules Data Models Normalization Techniques ER Diagrams Data Flow Diagrams Database recovery & backup SQL Android Application 80 Hours Introduction of android Why develop for android Android SDK features Creating android activities Fundamental android UI design Intents, adapters, dialogs Android Technique for saving data Data base in Androids Maps, Geocoding, Location based services Toast, using alarms, Instant messaging Using blue tooth Using Telephony Introducing sensor manager Managing network and wi-fi connection Advanced androids development Linux kernel security Implement AIDL Interface. Project 120 Hours

    Read the article

  • SQL SERVER – IO_COMPLETION – Wait Type – Day 10 of 28

    - by pinaldave
    For any good system three things are vital: CPU, Memory and IO (disk). Among these three, IO is the most crucial factor of SQL Server. Looking at real-world cases, I do not see IT people upgrading CPU and Memory frequently. However, the disk is often upgraded for either improving the space, speed or throughput. Today we will look at an IO-related wait types. From Book On-Line: Occurs while waiting for I/O operations to complete. This wait type generally represents non-data page I/Os. Data page I/O completion waits appear as PAGEIOLATCH_* waits. IO_COMPLETION Explanation: Any tasks are waiting for I/O to finish. This is a good indication that IO needs to be looked over here. Reducing IO_COMPLETION wait: When it is an issue concerning the IO, one should look at the following things related to IO subsystem: Proper placing of the files is very important. We should check the file system for proper placement of files – LDF and MDF on a separate drive, TempDB on another separate drive, hot spot tables on separate filegroup (and on separate disk),etc. Check the File Statistics and see if there is higher IO Read and IO Write Stall SQL SERVER – Get File Statistics Using fn_virtualfilestats. Check event log and error log for any errors or warnings related to IO. If you are using SAN (Storage Area Network), check the throughput of the SAN system as well as the configuration of the HBA Queue Depth. In one of my recent projects, the SAN was performing really badly so the SAN administrator did not accept it. After some investigations, he agreed to change the HBA Queue Depth on development (test environment) set up and as soon as we changed the HBA Queue Depth to quite a higher value, there was a sudden big improvement in the performance. It is very possible that there are no proper indexes in the system and there are lots of table scans and heap scans. Creating proper index can reduce the IO bandwidth considerably. If SQL Server can use appropriate cover index instead of clustered index, it can effectively reduce lots of CPU, Memory and IO (considering cover index has lesser columns than cluster table and all other; it depends upon the situation). You can refer to the two articles that I wrote; they are about how to optimize indexes: Create Missing Indexes Drop Unused Indexes Checking Memory Related Perfmon Counters SQLServer: Memory Manager\Memory Grants Pending (Consistent higher value than 0-2) SQLServer: Memory Manager\Memory Grants Outstanding (Consistent higher value, Benchmark) SQLServer: Buffer Manager\Buffer Hit Cache Ratio (Higher is better, greater than 90% for usually smooth running system) SQLServer: Buffer Manager\Page Life Expectancy (Consistent lower value than 300 seconds) Memory: Available Mbytes (Information only) Memory: Page Faults/sec (Benchmark only) Memory: Pages/sec (Benchmark only) Checking Disk Related Perfmon Counters Average Disk sec/Read (Consistent higher value than 4-8 millisecond is not good) Average Disk sec/Write (Consistent higher value than 4-8 millisecond is not good) Average Disk Read/Write Queue Length (Consistent higher value than benchmark is not good) Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussions of Wait Stats in this blog are generic and vary from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Types, SQL White Papers, T SQL, Technology

    Read the article

  • Oracle Announces Oracle Insurance Policy Administration for Life and Annuity 9.4

    - by helen.pitts(at)oracle.com
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Today's global insurers require the ability to provide higher levels of service and quickly bring to market life insurance and annuity products that not only help them stand out from the competition, but also stay current with local legislation. To succeed, they require agile and flexible core systems that enable them to meet the unique localization requirements of the markets in which they operate, whether in North America, Asia Pacific or the Pan-European Region. The release of Oracle Insurance Policy Administration for Life and Annuity 9.4, announced today, helps insurers meet this need with expanded international market capabilities that enable them to reduce risk and profitably compete wherever their business takes them. It offers expanded multi-language along with unit-linked product and fund processing capabilities that enable regional and global insurers to rapidly configure and deliver localized products – along with providing better service for end users through a single policy admin solution. Key enhancements include: Kanji/Kana language support, pre-defined content, and imperial date processing for the Japanese market New localization flexibility for configuring and managing international mailing addresses along with regional variations for client information Enhanced capability to calculate unit-linked pricing and valuation, in addition to market-based processing and pre-configured unit linked content Expanded role-based security and masking capability to further protect sensitive customer data Enhanced capability to restrict processing specified activities based on time of day and user role, reducing exposure to market timing risks Further capability to eliminate duplicate client records, helping to reduce underwriting risks and enhance servicing through a single view of the client "The ability to leverage a single, rules-driven policy administration system for multiple global operation centers can help insurers realize significant improvements in speed to market, customer service, compliance with regional regulations, and consolidation efforts,” noted Celent's Craig Weber, senior vice president, Insurance. “We believe such initiatives are necessary to help the industry address service and distribution imperatives." Helping our customers meet these mission-critical business imperatives is a key objective for Oracle Insurance. Active, ongoing dialogue with our customers is an important part of the process to help understand how our solutions are and can continue to help them achieve success in the marketplace. I had the opportunity to meet with several of our insurance customers at the Oracle Insurance Policy Administration Client Advisory Board meeting last week in Philadelphia, Penn. (View photos on the Oracle Insurance Facebook page.)   It was a great forum for Oracle Insurance and our clients. Discussion centered on the latest business and IT trends, with opportunities to learn more about the latest release of Oracle Insurance Policy Administration for Life and Annuity and other Oracle Insurance solutions such as data warehousing / business intelligence, while exchanging best practices for product innovation and servicing customers and sales channels. Helen Pitts is senior product marketing manager for Oracle Insurance's life and annuities solutions.

    Read the article

  • SQLAuthority News – Amazon Gift Card Raffle for Beta Tester Feedback for NuoDB

    - by pinaldave
    As regular readers know I’ve been spending some time working with the NuoDB beta software. They contacted me last week and asked if I would give you a chance to try their new web-based console for their scalable, SQL-compliant database. They have just put out their final beta release, Beta 9.  It contains a preview of a new web-based “NuoConsole” that will replace and extend the functionality of their current desktop version.  I haven’t spent any time with the new console yet but a really quick look tells me it should make it easier to do deeper monitoring than the older one. It also looks like they have added query-level reporting through the console. I will try to play with it soon. NuoDB is doing a last, big push to get some more feedback from developers before they release their 1.0 product sometime in the next several weeks. Since the console is new, they are especially interested in some quick feedback on it before general availability. For SQLAuthority readers only, NuoDB will raffle off three $50 Amazon gift cards in exchange for your feedback on the NuoConsole preview. Here’s how to Enter Download NuoDBeta 9 here You must build a domain before you can start the console. Launch the Web Console. Windows Code: start java -jar jarnuodbwebconsole.jar Mac, Linux, Solaris, Unix Code: java -jar jar/nuodbwebconsole.jar Access the Web Console: Code: http://localhost:8080 When you have tried it out, go to a short (8 question) survey to enter the raffle Click here for the survey You must complete the survey before midnight EDT on October 17, 2012. Here’s what else they are saying about this last beta before general availability: Beta 9 now supports the Zend PHP framework so that PHP developers can directly integrate web applications with NuoDB. Multi-threaded HDFS support – NuoDB Storage Managers can now be configured to persist data to the high performance Hadoop distributed file system (HDFS). Beta 9 optimizes for multi-thread I/O streams at maximum performance. This enhancement allows users to make Hadoop their core storage with no extra effort which is a pretty cool idea. Improved Performance –On a single transaction node, Beta 9 offers performance comparable with MySQL and MariaDB. As additional nodes are added, NuoDB performance improves significantly at near linear scale. Query & Explain Plan Logging – Beta 9 introduces SQL explain plans for your queries. Qualify queries with the word “EXPLAIN” and NuoDB will respond with the details of the execution plan allowing performance optimization to SQL. Through the NuoConsole, you can now kill hung or long running queries. Java App Server Support – Beta 9 now supports leading Web JEE app servers including JBoss, Tomcat, and ColdFusion. They’ve also reported: Improved PHP/PDO drivers Support for Drupal Faster Ruby on Rails driver The Hibernate Dialect supports version 4.1 And good news for my readers: numerous SQL enhancements They will share the results of the web console feedback with me.  I’ll let you know how it goes. Also the winner of their last contest was Jaime Martínez Lafargue!  Do leave a comment here once you complete the survey.  Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: SQL Authority Tagged: NuoDB

    Read the article

  • Customize Entity Framework SSDL &amp; SQL Generation

    - by Dane Morgridge
    In almost every talk I have done on Entity Framework I get questions on how to do custom SSDL or SQL when using model first development.  Quite a few of these questions have required custom changes to the SSDL, which of course can be a problem if it is getting auto generated.  Luckily, there is a tool that can help.  In the Visual Studio Gallery on MSDN, there is the Entity Designer Database Generation Power Pack. You have the ability to select different generation strategies and it also allows you to inject custom T4 Templates into the generation workflow so that you can customize the SSDL and SQL generation.  When you select to generate a database from a model the dialog is replaced by one with more options:   You can clone the individual workflow for either the current project or current machine.  The templates are installed at “C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\Extensions\Microsoft\Entity Framework Tools\DBGen” on my local machine and you can make a copy of any template there.  If you clone the strategy and open it up, you will get the following workflow: Each item in the sequence is defining the execution of a T4 template.  The XAML for the workflow is listed below so you can see where the T4 files are defined.  You can simply make a copy of an existing template and make what ever changes you need.   1: <Activity x:Class="GenerateDatabaseScriptWorkflow" ... > 2: <x:Members> 3: <x:Property Name="Csdl" Type="InArgument(sde:EdmItemCollection)" /> 4: <x:Property Name="ExistingSsdl" Type="InArgument(s:String)" /> 5: <x:Property Name="ExistingMsl" Type="InArgument(s:String)" /> 6: <x:Property Name="Ssdl" Type="OutArgument(s:String)" /> 7: <x:Property Name="Msl" Type="OutArgument(s:String)" /> 8: <x:Property Name="Ddl" Type="OutArgument(s:String)" /> 9: <x:Property Name="SmoSsdl" Type="OutArgument(ss:SsdlServer)" /> 10: </x:Members> 11: <Sequence> 12: <dbtk:ProgressBarStartActivity /> 13: <dbtk:CsdlToSsdlTemplateActivity SsdlOutput="[Ssdl]" TemplatePath="$(VSEFTools)\DBGen\CSDLToSSDL_TPT.tt" /> 14: <dbtk:CsdlToMslTemplateActivity MslOutput="[Msl]" TemplatePath="$(VSEFTools)\DBGen\CSDLToMSL_TPT.tt" /> 15: <ded:SsdlToDdlActivity ExistingSsdlInput="[ExistingSsdl]" SsdlInput="[Ssdl]" DdlOutput="[Ddl]" /> 16: <dbtk:GenerateAlterSqlActivity DdlInputOutput="[Ddl]" DeployToScript="True" DeployToDatabase="False" /> 17: <dbtk:ProgressBarEndActivity ClosePopup="true" /> 18: </Sequence> 19: </Activity>   So as you can see, this tool enables you to make some pretty heavy customizations to how the SSDL and SQL get generated.  You can get more info and the tool can be downloaded from: http://visualstudiogallery.msdn.microsoft.com/en-us/df3541c3-d833-4b65-b942-989e7ec74c87.  There is a comments section on the site so make sure you let the team know what you like and what you don’t like.  Enjoy!

    Read the article

  • How to Set Up Your Enterprise Social Organization?

    - by Richard Lefebvre
    By Mike Stiles on Dec 04, 2012 The rush for business organizations to establish, grow, and adopt social was driven out of necessity and inevitability. The result, however, was a sudden, booming social presence creating touch points with customers, partners and influencers, but without any corporate social organization or structure in place to effectively manage it. Even today, many business leaders remain uncertain as to how to corral this social media thing so that it makes sense for their enterprise. Imagine their panic when they hear one of the most beneficial approaches to corporate use of social involves giving up at least some hierarchical control and empowering employees to publicly engage customers. And beyond that, they should also be empowered, regardless of their corporate status, to engage and collaborate internally, spurring “off the grid” innovation. An HBR blog points out that traditionally, enterprise organizations function from the top down, and employees work end-to-end, structured around business processes. But the social enterprise opens up structures that up to now have not exactly been embraced by turf-protecting executives and managers. The blog asks, “What if leaders could create a future where customers, associates and suppliers are no longer seen as objects in the system but as valued sources of innovation, ideas and energy?” What if indeed? The social enterprise activates internal resources without the usual obsession with position. It is the dawn of mass collaboration. That does not, however, mean this mass collaboration has to lead to uncontrolled chaos. In an extended interview with Oracle, Altimeter Group analyst Jeremiah Owyang and Oracle SVP Reggie Bradford paint a complete picture of today’s social enterprise, including internal organizational structures Altimeter Group has seen emerge. One sign of a mature social enterprise is the establishing of a social Center of Excellence (CoE), which serves as a hub for high-level social strategy, training and education, research, measurement and accountability, and vendor selection. This CoE is led by a corporate Social Strategist, most likely from a Marketing or Corporate Communications background. Reporting to them are the Community Managers, the front lines of customer interaction and engagement; business unit liaisons that coordinate the enterprise; and social media campaign/product managers, social analysts, and developers. With content rising as the defining factor for social success, Altimeter also sees a Content Strategist position emerging. Across the enterprise, Altimeter has seen 5 organizational patterns. Watching the video will give you the pros and cons of each. Decentralized - Anyone can do anything at any time on any social channel. Centralized – One central groups controls all social communication for the company. Hub and Spoke – A centralized group, but business units can operate their own social under the hub’s guidance and execution. Most enterprises are using this model. Dandelion – Each business unit develops their own social strategy & staff, has its own ability to deploy, and its own ability to engage under the central policies of the CoE. Honeycomb – Every employee can do social, but as opposed to the decentralized model, it’s coordinated and monitored on one platform. The average enterprise has a whopping 178 social accounts, nearly ¼ of which are usually semi-idle and need to be scrapped. The last thing any C-suite needs is to cope with fragmented technologies, solutions and platforms. It’s neither scalable nor strategic. The prepared, effective social enterprise has a technology partner that can quickly and holistically integrate emerging platforms and technologies, such that whatever internal social command structure you’ve set up can continue efficiently executing strategy without skipping a beat. @mikestiles

    Read the article

  • SQL SERVER – Why Do We Need Data Quality Services – Importance and Significance of Data Quality Services (DQS)

    - by pinaldave
    Databases are awesome.  I’m sure my readers know my opinion about this – I have made SQL Server my life’s work after all!  I love technology and all things computer-related.  Of course, even with my love for technology, I have to admit that it has its limits.  For example, it takes a human brain to notice that data has been input incorrectly.  Computer “brains” might be faster than humans, but human brains are still better at pattern recognition.  For example, a human brain will notice that “300” is a ridiculous age for a human to be, but to a computer it is just a number.  A human will also notice similarities between “P. Dave” and “Pinal Dave,” but this would stump most computers. In a database, these sorts of anomalies are incredibly important.  Databases are often used by multiple people who rely on this data to be true and accurate, so data quality is key.  That is why the improved SQL Server features Master Data Management talks about Data Quality Services.  This service has the ability to recognize and flag anomalies like out of range numbers and similarities between data.  This allows a human brain with its pattern recognition abilities to double-check and ensure that P. Dave is the same as Pinal Dave. A nice feature of Data Quality Services is that once you set the rules for the program to follow, it will not only keep your data organized in the future, but go to the past and “fix up” any data that has already been entered.  It also allows you do combine data from multiple places and it will apply these rules across the board, so that you don’t have any weird issues that crop up when trying to fit a round peg into a square hole. There are two parts of Data Quality Services that help you accomplish all these neat things.  The first part is DQL Server, which you can think of as the hardware component of the system.  It is installed on the side of (it needs to install separately after SQL Server is installed) SQL Server and runs quietly in the background, performing all its cleanup services. DQS Client is the user interface that you can interact with to set the rules and check over your data.  There are three main aspects of Client: knowledge base management, data quality projects and administration.  Knowledge base management is the part of the system that allows you to set the rules, or program the “knowledge base,” so that your database is clean and consistent. Data Quality projects are what run in the background and clean up the data that is already present.  The administration allows you to check out what DQS Client is doing, change rules, and generally oversee the entire process.  The whole process is user-friendly and a pleasure to use.  I highly recommend implementing Data Quality Services in your database. Here are few of my blog posts which are related to Data Quality Services and I encourage you to try this out. SQL SERVER – Installing Data Quality Services (DQS) on SQL Server 2012 SQL SERVER – Step by Step Guide to Beginning Data Quality Services in SQL Server 2012 – Introduction to DQS SQL SERVER – DQS Error – Cannot connect to server – A .NET Framework error occurred during execution of user-defined routine or aggregate “SetDataQualitySessions” – SetDataQualitySessionPhaseTwo SQL SERVER – Configuring Interactive Cleansing Suggestion Min Score for Suggestions in Data Quality Services (DQS) – Sensitivity of Suggestion SQL SERVER – Unable to DELETE Project in Data Quality Projects (DQS) Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Data Quality Services, DQS

    Read the article

  • jtreg update, March 2012

    - by jjg
    There is a new update for jtreg 4.1, b04, available. The primary changes have been to support faster and more reliable test runs, especially for tests in the jdk/ repository. [ For users inside Oracle, there is preliminary direct support for gathering code coverage data using jcov while running tests, and for generating a coverage report when all the tests have been run. ] -- jtreg can be downloaded from the OpenJDK jtreg page: http://openjdk.java.net/jtreg/. Scratch directories On platforms like Windows, if a test leaves a file open when the test is over, that can cause a problem for downstream tests, because the scratch directory cannot be emptied beforehand. This is addressed in agentvm mode by discarding any agents using that scratch directory and starting new agents using a new empty scratch directory. Successive directives use suffices _1, _2, etc. If you see such directories appearing in the work directory, that is an indication that files were left open in the preceding directory in the series. Locking support Some tests use shared system resources such as fixed port numbers. This causes a problem when running tests concurrently. So, you can now mark a directory such that all the tests within all such directories will be run sequentially, even if you use -concurrency:N on the command line to run the rest of the tests in parallel. This is seen as a short term solution: it is recommended that tests not use shared system resources whenever possible. If you are running multiple instances of jtreg on the same machine at the same time, you can use a new option -lock:file to specify a file to be used for file locking; otherwise, the locking will just be within the JVM used to run jtreg. "autovm mode" By default, if no options to the contrary are given on the command line, tests will be run in othervm mode. Now, a test suite can be marked so that the default execution mode is "agentvm" mode. In conjunction with this, you can now mark a directory such that all the tests within that directory will be run in "othervm" mode. Conceptually, this is equivalent to putting /othervm on every appropriate action on every test in that directory and any subdirectories. This is seen as a short term solution: it is recommended tests be adapted to use agentvm mode, or use "@run main/othervm" explicitly. Info in test result files The user name and jtreg version info are now stored in the properties near the beginning of the .jtr file. Build The makefiles used to build and test jtreg have been reorganized and simplified. jtreg is now using JT Harness version 4.4. Other jtreg provides access to GNOME_DESKTOP_SESSION_ID when set. jtreg ensures that shell tests are given an absolute path for the JDK under test. jtreg now honors the "first sentence rule" for the description given by @summary. jtreg saves the default locale before executing a test in samevm or agentvm mode, and restores it afterwards. Bug fixes jtreg tried to execute a test even if the compilation failed in agentvm mode because of a JVM crash. jtreg did not correctly handle the -compilejdk option. Acknowledgements Thanks to Alan, Amy, Andrey, Brad, Christine, Dima, Max, Mike, Sherman, Steve and others for their help, suggestions, bug reports and for testing this latest version.

    Read the article

  • Create Panoramic Photos with Windows Live Photo Gallery

    - by Matthew Guay
    Have you ever wanted to capture the view from a mountain or the full size of a building?  Here’s how you can stitch multiple shots together into the perfect panoramic picture for free with Windows Live Photo Gallery. Getting Started First, make sure you have Windows Live Photo Gallery installed (link below).  Live Photo Gallery is part of the Windows Live Essentials suite, you can select other programs to install along with it if you want. Make sure to uncheck setting your home page to MSN and setting your search provider as Bing if you don’t want them changed.   Now, make sure you have pictures that will work good for a panorama.  These need to be taken from the same spot, and the edges of the pictures need to overlap so the program can find where the pictures connect.  Here we have taken pictures inside a building with a cell phone camera. Make your Panorama Open Live Photo Gallery, and find the pictures you want to use in your panorama.  It will automatically index and display all of the photos in your Pictures folder or Library if you’re using Windows 7. If your pictures are saved elsewhere, add that folder to Photo Gallery.  Click File, Include a folder in the gallery, and select the correct folder at the prompt. Now select all of the pictures that you will use in your panorama.  You can easily do this by clicking the checkbox on each picture that appears when you hover over it.    Once all of the pictures are selected, click Make in the menu bar and select Create panoramic photo… Alternately, right-click on any of the pictures you’ve selected, and click Create panoramic photo… Live Photo Gallery will analyze your photos and compost them together to create a panorama.  The amount of time it takes will vary depending on the number of photos, size of the pictures, and computer speed. When it’s finished making the panorama, you’ll be prompted to enter a file name and save the picture. Your new panorama picture will open as soon as it’s saved.  Depending on your shots, the picture may have quite a bit of black space around the edges where each picture didn’t cover the exact same amount of area. To correct this, click Fix on the menu bar, and then select Crop Photo in the sidebar that opens. Select the center of the picture with the crop tool, and click Apply when you’ve got the selection you want. Live Photo Gallery automatically saves your picture changes, and you can revert back to the original picture if you wish. Now you’ve got a nice panoramic shot, trimmed and ready to print, share, and more. Conclusion Panoramic shots are great ways to capture your whole surroundings, whether it’s a sports stadium, mall, or a scenic mountain view.  They can also be a great way to capture more with low-resolution cameras. Link Download Windows Live Photo Gallery Similar Articles Productive Geek Tips Family Fun: Share Photos with Photo Gallery and Windows Live SpacesLearning Windows 7: Manage Photos with Live Photo GalleryEasily Re-Size Photos in Windows Vista or XPInstall Windows Live Essentials In Windows 7Convert Photos to Flash for Your Website TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 2010 World Cup Schedule Boot Snooze – Reboot and then Standby or Hibernate Customize Everything Related to Dates, Times, Currency and Measurement in Windows 7 Google Earth replacement Icon (Icons we like) Build Great Charts in Excel with Chart Advisor tinysong gives a shortened URL for you to post on Twitter (or anywhere)

    Read the article

  • SQL SERVER – Simple Demo of New Cardinality Estimation Features of SQL Server 2014

    - by Pinal Dave
    SQL Server 2014 has new cardinality estimation logic/algorithm. The cardinality estimation logic is responsible for quality of query plans and majorly responsible for improving performance for any query. This logic was not updated for quite a while, but in the latest version of SQL Server 2104 this logic is re-designed. The new logic now incorporates various assumptions and algorithms of OLTP and warehousing workload. Cardinality estimates are a prediction of the number of rows in the query result. The query optimizer uses these estimates to choose a plan for executing the query. The quality of the query plan has a direct impact on improving query performance. ~ Souce MSDN Let us see a quick example of how cardinality improves performance for a query. I will be using the AdventureWorks database for my example. Before we start with this demonstration, remember that even though you have SQL Server 2014 to see the effect of new cardinality estimates, you will need your database compatibility mode set to 120 which is for SQL Server 2014. If your server instance of SQL Server 2014 but you have set up your database compatibility mode to 110 or any other earlier version, you will get performance from your query like older version of SQL Server. Now we will execute following query in two different compatibility mode and see its performance. (Note that my SQL Server instance is of version 2014). USE AdventureWorks2014 GO -- ------------------------------- -- NEW Cardinality Estimation ALTER DATABASE AdventureWorks2014 SET COMPATIBILITY_LEVEL = 120 GO EXEC [dbo].[uspGetManagerEmployees] 44 GO -- ------------------------------- -- Old Cardinality Estimation ALTER DATABASE AdventureWorks2014 SET COMPATIBILITY_LEVEL = 110 GO EXEC [dbo].[uspGetManagerEmployees] 44 GO Result of Statistics IO Compatibility level 120 Table ‘Person’. Scan count 0, logical reads 6, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table ‘Employee’. Scan count 2, logical reads 7, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table ‘Worktable’. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table ‘Worktable’. Scan count 2, logical reads 7, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Compatibility level 110 Table ‘Worktable’. Scan count 2, logical reads 7, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table ‘Person’. Scan count 0, logical reads 137, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table ‘Employee’. Scan count 2, logical reads 7, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table ‘Worktable’. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. You will notice in the case of compatibility level 110 there 137 logical read from table person where as in the case of compatibility level 120 there are only 6 physical reads from table person. This drastically improves the performance of the query. If we enable execution plan, we can see the same as well. I hope you will find this quick example helpful. You can read more about this in my latest Pluralsight Course. Reference: Pinal Dave (http://blog.SQLAuthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Deploying Data Mining Models using Model Export and Import

    - by [email protected]
    In this post, we'll take a look at how Oracle Data Mining facilitates model deployment. After building and testing models, a next step is often putting your data mining model into a production system -- referred to as model deployment. The ability to move data mining model(s) easily into a production system can greatly speed model deployment, and reduce the overall cost. Since Oracle Data Mining provides models as first class database objects, models can be manipulated using familiar database techniques and technology. For example, one or more models can be exported to a flat file, similar to a database table dump file (.dmp). This file can be moved to a different instance of Oracle Database EE, and then imported. All methods for exporting and importing models are based on Oracle Data Pump technology and found in the DBMS_DATA_MINING package. Before performing the actual export or import, a directory object must be created. A directory object is a logical name in the database for a physical directory on the host computer. Read/write access to a directory object is necessary to access the host computer file system from within Oracle Database. For our example, we'll work in the DMUSER schema. First, DMUSER requires the privilege to create any directory. This is often granted through the sysdba account. grant create any directory to dmuser; Now, DMUSER can create the directory object specifying the path where the exported model file (.dmp) should be placed. In this case, on a linux machine, we have the directory /scratch/oracle. CREATE OR REPLACE DIRECTORY dmdir AS '/scratch/oracle'; If you aren't sure of the exact name of the model or models to export, you can find the list of models using the following query: select model_name from user_mining_models; There are several options when exporting models. We can export a single model, multiple models, or all models in a schema using the following procedure calls: BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('MY_MODEL.dmp','dmdir','name =''MY_DT_MODEL'''); END; BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('MY_MODELS.dmp','dmdir',              'name IN (''MY_DT_MODEL'',''MY_KM_MODEL'')'); END; BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('ALL_DMUSER_MODELS.dmp','dmdir'); END; A .dmp file can be imported into another schema or database using the following procedure call, for example: BEGIN   DBMS_DATA_MINING.IMPORT_MODEL('MY_MODELS.dmp', 'dmdir'); END; As with models from any data mining tool, when moving a model from one environment to another, care needs to be taken to ensure the transformations that prepare the data for model building are matched (with appropriate parameters and statistics) in the system where the model is deployed. Oracle Data Mining provides automatic data preparation (ADP) and embedded data preparation (EDP) to reduce, or possibly eliminate, the need to explicitly transport transformations with the model. In the case of ADP, ODM automatically prepares the data and includes the necessary transformations in the model itself. In the case of EDP, users can associate their own transformations with attributes of a model. These transformations are automatically applied when applying the model to data, i.e., scoring. Exporting and importing a model with ADP or EDP results in these transformations being immediately available with the model in the production system.

    Read the article

< Previous Page | 307 308 309 310 311 312 313 314 315 316 317 318  | Next Page >