Search Results

Search found 46088 results on 1844 pages for 'class loader'.

Page 313/1844 | < Previous Page | 309 310 311 312 313 314 315 316 317 318 319 320  | Next Page >

  • Java Dragging an object from one area to another [on hold]

    - by user50369
    Hello I have a game where you drag bits of food around the screen. I want to be able to click on an ingredient and drag it to another part of the screen where I release the mouse. I am new to java so I do not really know how to do this please help me Here is me code. This is the class with the mouse listeners in it: public void mousePressed(MouseEvent e) { if (e.getButton() == MouseEvent.BUTTON1) { Comp.ml = true; // placing if (manager.title == true) { if (title.r.contains(Comp.mx, Comp.my)) { title.overview = true; } else if (title.r1.contains(Comp.mx, Comp.my)) { title.options = true; } else if (title.r2.contains(Comp.mx, Comp.my)) { System.exit(0); } } if (manager.option == true) { optionsMouse(e); } mouseinventory(e); } else if (e.getButton() == MouseEvent.BUTTON3) { Comp.mr = true; } } private void mouseinventory(MouseEvent e) { if (e.getButton() == MouseEvent.BUTTON1) { } else if (e.getButton() == MouseEvent.BUTTON1) { } } @Override public void mouseReleased(MouseEvent e) { if (e.getButton() == MouseEvent.BUTTON1) { Comp.ml = false; } else if (e.getButton() == MouseEvent.BUTTON3) { Comp.mr = false; } } @Override public void mouseDragged(MouseEvent e) { for(int i = 0; i < overview.im.ing.toArray().length; i ++){ if(overview.im.ing.get(i).r.contains(Comp.mx,Comp.my)){ overview.im.ing.get(i).newx = Comp.mx; overview.im.ing.get(i).newy = Comp.my; overview.im.ing.get(i).dragged = true; }else{ overview.im.ing.get(i).dragged = false; } } } @Override public void mouseMoved(MouseEvent e) { Comp.mx = e.getX(); Comp.my = e.getY(); // System.out.println("" + Comp.my); } This is the class called ingredient public abstract class Ingrediant { public int x,y,id,lastx,lasty,newx,newy; public boolean removed = false,dragged = false; public int width; public int height; public Rectangle r = new Rectangle(x,y,width,height); public Ingrediant(){ r = new Rectangle(x,y,width,height); } public abstract void tick(); public abstract void render(Graphics g); } and this is a class which extends ingredient called hagleave public class HagLeave extends Ingrediant { private Image img; public HagLeave(int x, int y, int id) { this.x = x; this.y = y; this.newx = x; this.newy = y; this.id = id; width = 75; height = 75; r = new Rectangle(x,y,width,height); } public void tick() { r = new Rectangle(x,y,width,height); if(!dragged){ x = newx; y = newy; } } public void render(Graphics g) { ImageIcon i2 = new ImageIcon("res/ingrediants/hagleave.png"); img = i2.getImage(); g.drawImage(img, x, y, null); g.setColor(Color.red); g.drawRect(r.x, r.y, r.width, r.height); } } The arraylist is in a class called ingrediantManager: public class IngrediantsManager { public ArrayList<Ingrediant> ing = new ArrayList<Ingrediant>(); public IngrediantsManager(){ ing.add(new HagLeave(100,200,1)); ing.add(new PigHair(70,300,2)); ing.add(new GiantsToe(100,400,3)); } public void tick(){ for(int i = 0; i < ing.toArray().length; i ++){ ing.get(i).tick(); if(ing.get(i).removed){ ing.remove(i); i--; } } } public void render(Graphics g){ for(int i = 0; i < ing.toArray().length; i ++){ ing.get(i).render(g); } } }

    Read the article

  • python factory function best practices

    - by Jason S
    Suppose I have a file foo.py containing a class Foo: class Foo(object): def __init__(self, data): ... Now I want to add a function that creates a Foo object in a certain way from raw source data. Should I put it as a static method in Foo or as another separate function? class Foo(object): def __init__(self, data): ... # option 1: @staticmethod def fromSourceData(sourceData): return Foo(processData(sourceData)) # option 2: def makeFoo(sourceData): return Foo(processData(sourceData)) I don't know whether it's more important to be convenient for users: foo1 = foo.makeFoo(sourceData) or whether it's more important to maintain clear coupling between the method and the class: foo1 = foo.Foo.fromSourceData(sourceData)

    Read the article

  • Complex event system for DungeonKeeper like game

    - by paul424
    I am working on opensource GPL3 game. http://opendungeons.sourceforge.net/ , new coders would be welcome. Now there's design question regarding Event System: We want to improve the game logic, that is program a new event system. I will just repost what's settled up already on http://forum.freegamedev.net/viewtopic.php?f=45&t=3033. From the discussion came the idea of the Publisher / Subscriber pattern + "domains": My current idea is to use the subscirbers / publishers model. Its similar to Observable pattern, but instead one subscribes to Events types, not Object's Events. For each Event would like to have both static and dynamic type. Static that is its's type would be resolved by belonging to the proper inherited class from Event. That is from Event we would have EventTile, EventCreature, EvenMapLoader, EventGameMap etc. From that there are of course subtypes like EventCreature would be EventKobold, EventKnight, EventTentacle etc. The listeners would collect the event from publishers, and send them subcribers , each of them would be a global singleton. The Listeners type hierachy would exactly mirror the type hierarchy of Events. In each constructor of Event type, the created instance would notify the proper listeners. That is when calling EventKnight the proper ctor would notify the Listeners : EventListener, CreatureLisener and KnightListener. The default action for an listner would be to notify all subscribers, but there would be some exceptions , like EventAttack would notify AttackListener which would dispatch event by the dynamic part ( that is the Creature pointer or hash). Any comments ? #include <vector> class Subscriber; class SubscriberAttack; class Event{ private: int foo; int bar; protected: // static std::vector<Publisher*> publishersList; static std::vector<Subscriber*> subscribersList; static std::vector<Event*> eventQueue; public: Event(){ eventQueue.push_back(this); } static int subscribe(Subscriber* ss); static int unsubscribe(Subscriber* ss); //static int reg_publisher(Publisher* pp); //static int unreg_publisher(Publisher* pp); }; // class Publisher{ // }; class Subscriber{ public: int (*newEvent) (Event* ee); Subscriber( ){ Event::subscribe(this); } Subscriber( int (*fp) (Event* ee) ):newEvent(fp){ Subscriber(); } ~Subscriber(){ Event::unsubscribe(this); } }; class EventAttack: Event{ private: int foo; int bar; protected: // static std::vector<Publisher*> publishersList; static std::vector<SubscriberAttack*> subscribersList; static std::vector<EventAttack*> eventQueue; public: EventAttack(){ eventQueue.push_back(this); } static int subscribe(SubscriberAttack* ss); static int unsubscribe(SubscriberAttack* ss); //static int reg_publisher(Publisher* pp); //static int unreg_publisher(Publisher* pp); }; class AttackSubscriber :Subscriber{ public: int (*newEvent) (EventAttack* ee); AttackSubscriber( ){ EventAttack::subscribe(this); } AttackSubscriber( int (*fp) (EventAttack* ee) ):newEventAttack(fp){ AttackSubscriber(); } ~AttackSubscriber(){ EventAttack::unsubscribe(this); } }; From that point, others wanted the Subject-Observer pattern, that is one would subscribe to all event types produced by particular object. That way it came out to add the domain system : Huh, to meet the ability to listen to particular game's object events, I though of introducing entity domains . Domains are trees, which nodes are labeled by unique names for each level. ( like the www addresses ). Each Entity wanting to participate in our event system ( that is be able to publish / produce events ) should at least now its domain name. That would end up in Player1/Room/Treasury/#24 or Player1/Creature/Kobold/#3 producing events. The subscriber picks some part of a tree. For example by specifiing subtree with the root in one of the nodes like Player1/Room/* ,would subscribe us to all Players1's room's event, and Player1/Creature/Kobold/#3 would subscribe to Players' third kobold's event. Does such event system make sense to you ? I have many implementation details to ask as well, but first let's start some general discussion. Note1: Notice that in the case of a fight between two creatues fight , the creature being attacked would have to throw an event, becuase it is HE/SHE/IT who have its domain address. So that would be BeingAttackedEvent() etc. I will edit that post if some other reflections on this would come out. Note2: the existing class hierarchy might be used to get the domains addresses being build in constructor . In a ctor you would just add + ."className" to domain address. If you are in a class'es hierarchy leaf constructor one might use nextID , hash or any other charactteristic, just to make the addresses distinguishable . Note3:subscribing to all entity's Events would require knowledge of all possible events produced by this entity . This could be done in one function call, but information on E produced would have to be handled for every Entity. SmartNote4 : Finding proper subscribers in a tree would be easy. One would start in particular Leaf for example Player1/Creature/Kobold/#3 and go up one parent a time , notifiying each Subscriber in a Node ie. : Player1/Creature/Kobold/* , Player1/Creature/* , Player1/* etc, , up to a root that is /* .<<<< Note5: The Event system was needed to have some way of incorporating Angelscript code into application. So the Event dispatcher was to be a gate to A-script functions. But it came out to this one.

    Read the article

  • Validation and authorization in layered architecture

    - by SonOfPirate
    I know you are thinking (or maybe yelling), "not another question asking where validation belongs in a layered architecture?!?" Well, yes, but hopefully this will be a little bit of a different take on the subject. I am a firm believer that validation takes many forms, is context-based and varies at each level of the architecture. That is the basis for the post - helping to identify what type of validation should be performed in each layer. In addition, a question that often comes up is where authorization checks belong. The example scenario comes from an application for a catering business. Periodically during the day, a driver may turn in to the office any excess cash they've accumulated while taking the truck from site to site. The application allows a user to record the 'cash drop' by collecting the driver's ID, and the amount. Here's some skeleton code to illustrate the layers involved: public class CashDropApi // This is in the Service Facade Layer { [WebInvoke(Method = "POST")] public void AddCashDrop(NewCashDropContract contract) { // 1 Service.AddCashDrop(contract.Amount, contract.DriverId); } } public class CashDropService // This is the Application Service in the Domain Layer { public void AddCashDrop(Decimal amount, Int32 driverId) { // 2 CommandBus.Send(new AddCashDropCommand(amount, driverId)); } } internal class AddCashDropCommand // This is a command object in Domain Layer { public AddCashDropCommand(Decimal amount, Int32 driverId) { // 3 Amount = amount; DriverId = driverId; } public Decimal Amount { get; private set; } public Int32 DriverId { get; private set; } } internal class AddCashDropCommandHandler : IHandle<AddCashDropCommand> { internal ICashDropFactory Factory { get; set; } // Set by IoC container internal ICashDropRepository CashDrops { get; set; } // Set by IoC container internal IEmployeeRepository Employees { get; set; } // Set by IoC container public void Handle(AddCashDropCommand command) { // 4 var driver = Employees.GetById(command.DriverId); // 5 var authorizedBy = CurrentUser as Employee; // 6 var cashDrop = Factory.CreateCashDrop(command.Amount, driver, authorizedBy); // 7 CashDrops.Add(cashDrop); } } public class CashDropFactory { public CashDrop CreateCashDrop(Decimal amount, Employee driver, Employee authorizedBy) { // 8 return new CashDrop(amount, driver, authorizedBy, DateTime.Now); } } public class CashDrop // The domain object (entity) { public CashDrop(Decimal amount, Employee driver, Employee authorizedBy, DateTime at) { // 9 ... } } public class CashDropRepository // The implementation is in the Data Access Layer { public void Add(CashDrop item) { // 10 ... } } I've indicated 10 locations where I've seen validation checks placed in code. My question is what checks you would, if any, be performing at each given the following business rules (along with standard checks for length, range, format, type, etc): The amount of the cash drop must be greater than zero. The cash drop must have a valid Driver. The current user must be authorized to add cash drops (current user is not the driver). Please share your thoughts, how you have or would approach this scenario and the reasons for your choices.

    Read the article

  • Create many similar classes, or just one

    - by soandos
    The goal is to create an application that has objects that can represent some operations (add, subtract, etc). All of those objects will have common functions and members, and thus will either implement an interface or inherit from an abstract class (Which would be better practice, this will be in C# if that matters?). As far as I can see, there are two different ways of organizing all of these classes. I could create an addition class, a subtraction class, etc. This has the upside of being highly modular but the difference between classes is so minimal. I could create one class, and have a member that will say what type of operation is being represented. This means lots of switch statements, and losing some modularity, in addition to being harder to maintain. Which is is better practice? Is there a better way of doing that is not listed above? If it matters, the list of functions that should be supported is long.

    Read the article

  • Local LINQtoSQL Database For Your Windows Phone 7 Application

    - by Tim Murphy
    There aren’t many applications that are of value without having some for of data store.  In Windows Phone development we have a few options.  You can store text directly to isolated storage.  You can also use a number of third party libraries to create or mimic databases in isolated storage.  With Mango we gained the ability to have a native .NET database approach which uses LINQ to SQL.  In this article I will try to bring together the components needed to implement this last type of data store and fill in some of the blanks that I think other articles have left out. Defining A Database The first things you are going to need to do is define classes that represent your tables and a data context class that is used as the overall database definition.  The table class consists of column definitions as you would expect.  They can have relationships and constraints as with any relational DBMS.  Below is an example of a table definition. First you will need to add some assembly references to the code file. using System.ComponentModel;using System.Data.Linq;using System.Data.Linq.Mapping; You can then add the table class and its associated columns.  It needs to implement INotifyPropertyChanged and INotifyPropertyChanging.  Each level of the class needs to be decorated with the attribute appropriate for that part of the definition.  Where the class represents the table the properties represent the columns.  In this example you will see that the column is marked as a primary key and not nullable with a an auto generated value. You will also notice that the in the column property’s set method It uses the NotifyPropertyChanging and NotifyPropertyChanged methods in order to make sure that the proper events are fired. [Table]public class MyTable: INotifyPropertyChanged, INotifyPropertyChanging{ public event PropertyChangedEventHandler PropertyChanged; private void NotifyPropertyChanged(string propertyName) { if(PropertyChanged != null) { PropertyChanged(this, new PropertyChangedEventArgs(propertyName)); } } public event PropertyChangingEventHandler PropertyChanging; private void NotifyPropertyChanging(string propertyName) { if(PropertyChanging != null) { PropertyChanging(this, new PropertyChangingEventArgs(propertyName)); } } private int _TableKey; [Column(IsPrimaryKey = true, IsDbGenerated = true, DbType = "INT NOT NULL Identity", CanBeNull = false, AutoSync = AutoSync.OnInsert)] public int TableKey { get { return _TableKey; } set { NotifyPropertyChanging("TableKey"); _TableKey = value; NotifyPropertyChanged("TableKey"); } } The last part of the database definition that needs to be created is the data context.  This is a simple class that takes an isolated storage location connection string its constructor and then instantiates tables as public properties. public class MyDataContext: DataContext{ public MyDataContext(string connectionString): base(connectionString) { MyRecords = this.GetTable<MyTable>(); } public Table<MyTable> MyRecords;} Creating A New Database Instance Now that we have a database definition it is time to create an instance of the data context within our Windows Phone app.  When your app fires up it should check if the database already exists and create an instance if it does not.  I would suggest that this be part of the constructor of your ViewModel. db = new MyDataContext(connectionString);if(!db.DatabaseExists()){ db.CreateDatabase();} The next thing you have to know is how the connection string for isolated storage should be constructed.  The main sticking point I have found is that the database cannot be created unless the file mode is read/write.  You may have different connection strings but the initial one needs to be similar to the following. string connString = "Data Source = 'isostore:/MyApp.sdf'; File Mode = read write"; Using you database Now that you have done all the up front work it is time to put the database to use.  To make your life a little easier and keep proper separation between your view and your viewmodel you should add a couple of methods to the viewmodel.  These will do the CRUD work of your application.  What you will notice is that the SubmitChanges method is the secret sauce in all of the methods that change data. private myDataContext myDb;private ObservableCollection<MyTable> _viewRecords;public ObservableCollection<MyTable> ViewRecords{ get { return _viewRecords; } set { _viewRecords = value; NotifyPropertyChanged("ViewRecords"); }}public void LoadMedstarDbData(){ var tempItems = from MyTable myRecord in myDb.LocalScans select myRecord; ViewRecords = new ObservableCollection<MyTable>(tempItems);}public void SaveChangesToDb(){ myDb.SubmitChanges();}public void AddMyTableItem(MyTable newScan){ myDb.LocalScans.InsertOnSubmit(newScan); myDb.SubmitChanges();}public void DeleteMyTableItem(MyTable newScan){ myDb.LocalScans.DeleteOnSubmit(newScan); myDb.SubmitChanges();} Updating existing database What happens when you need to change the structure of your database?  Unfortunately you have to add code to your application that checks the version of the database which over time will create some pollution in your codes base.  On the other hand it does give you control of the update.  In this example you will see the DatabaseSchemaUpdater in action.  Assuming we added a “Notes” field to the MyTable structure, the following code will check if the database is the latest version and add the field if it isn’t. if(!myDb.DatabaseExists()){ myDb.CreateDatabase();}else{ DatabaseSchemaUpdater dbUdater = myDb.CreateDatabaseSchemaUpdater(); if(dbUdater.DatabaseSchemaVersion < 2) { dbUdater.AddColumn<MyTable>("Notes"); dbUdater.DatabaseSchemaVersion = 2; dbUdater.Execute(); }} Summary This approach does take a fairly large amount of work, but I think the end product is robust and very native for .NET developers.  It turns out to be worth the investment. del.icio.us Tags: Windows Phone,Windows Phone 7,LINQ to SQL,LINQ,Database,Isolated Storage

    Read the article

  • I know of three ways in which SRP helps reduce coupling. Are there even more? [closed]

    - by user1483278
    I'd like to figure all the possible ways SRP helps us reduce coupling. Thus far I can think of three: 1) If class A has more than one responsibility, these responsibilities become coupled and as such changes to one of these responsibilities may require changes to other of A's responsibilities. 2) Related functionality usually needs to be changed for the same reason and by grouping it togerther in a single class, the changes can be made in as few places as possible ( at best changes only need be made to the class which groups together these functionalities) 3) Assuming class A performs two tasks ( thus may change for two reasons ), then number of classes utilising A will be greater than if A performed just a single task ( reason being that some classes will need A to perform first task, other will need A for second task, and still others will utilise it for both tasks ).This also means that when A breaks, the number of classes ( utilising A ) being impaired will be greater than if A performed just a single task. Can SRP also help reduce coupling in any other way, not described above? Thank you

    Read the article

  • Andengine. Put bullet to pool, when it leaves screen

    - by Ashot
    i'm creating a bullet with physics body. Bullet class (extends Sprite class) has die() method, which unregister physics connector, hide sprite and put it in pool public void die() { Log.d("bulletDie", "See you in hell!"); if (this.isVisible()) { this.setVisible(false); mPhysicsWorld.unregisterPhysicsConnector(physicsConnector); physicsConnector.setUpdatePosition(false); body.setActive(false); this.setIgnoreUpdate(true); bulletsPool.recyclePoolItem(this); } } in onUpdate method of PhysicsConnector i executes die method, when sprite leaves screen physicsConnector = new PhysicsConnector(this,body,true,false) { @Override public void onUpdate(final float pSecondsElapsed) { super.onUpdate(pSecondsElapsed); if (!camera.isRectangularShapeVisible(_bullet)) { Log.d("bulletDie","Dead?"); _bullet.die(); } } }; it works as i expected, but _bullet.die() executes TWICE. what i`m doing wrong and is it right way to hide sprites? here is full code of Bullet class (it is inner class of class that represents player) private class Bullet extends Sprite implements PhysicsConstants { private final Body body; private final PhysicsConnector physicsConnector; private final Bullet _bullet; private int id; public Bullet(float x, float y, ITextureRegion texture, VertexBufferObjectManager vertexBufferObjectManager) { super(x,y,texture,vertexBufferObjectManager); _bullet = this; id = bulletId++; body = PhysicsFactory.createCircleBody(mPhysicsWorld, this, BodyDef.BodyType.DynamicBody, bulletFixture); physicsConnector = new PhysicsConnector(this,body,true,false) { @Override public void onUpdate(final float pSecondsElapsed) { super.onUpdate(pSecondsElapsed); if (!camera.isRectangularShapeVisible(_bullet)) { Log.d("bulletDie","Dead?"); Log.d("bulletDie",id+""); _bullet.die(); } } }; mPhysicsWorld.registerPhysicsConnector(physicsConnector); $this.getParent().attachChild(this); } public void reset() { final float angle = canon.getRotation(); final float x = (float) ((Math.cos(MathUtils.degToRad(angle))*radius) + centerX) / PIXEL_TO_METER_RATIO_DEFAULT; final float y = (float) ((Math.sin(MathUtils.degToRad(angle))*radius) + centerY) / PIXEL_TO_METER_RATIO_DEFAULT; this.setVisible(true); this.setIgnoreUpdate(false); body.setActive(true); mPhysicsWorld.registerPhysicsConnector(physicsConnector); body.setTransform(new Vector2(x,y),0); } public Body getBody() { return body; } public void setLinearVelocity(Vector2 velocity) { body.setLinearVelocity(velocity); } public void die() { Log.d("bulletDie", "See you in hell!"); if (this.isVisible()) { this.setVisible(false); mPhysicsWorld.unregisterPhysicsConnector(physicsConnector); physicsConnector.setUpdatePosition(false); body.setActive(false); this.setIgnoreUpdate(true); bulletsPool.recyclePoolItem(this); } } }

    Read the article

  • Best practice to collect information from child objects

    - by Markus
    I'm regularly seeing the following pattern: public abstract class BaseItem { BaseItem[] children; // ... public void DoSomethingWithStuff() { StuffCollection collection = new StuffCollection(); foreach(child c : children) c.AddRequiredStuff(collection); // do something with the collection ... } public abstract void AddRequiredStuff(StuffCollection collection); } public class ConcreteItem : BaseItem { // ... public override void AddRequiredStuff(StuffCollection collection) { Stuff stuff; // ... collection.Add(stuff); } } Where I would use something like this, for better information hiding: public abstract class BaseItem { BaseItem[] children; // ... public void DoSomethingWithStuff() { StuffCollection collection = new StuffCollection(); foreach(child c : children) collection.AddRange(c.RequiredStuff()); // do something with the collection ... } public abstract StuffCollection RequiredStuff(); } public class ConcreteItem : BaseItem { // ... public override StuffCollection RequiredStuff() { StuffCollection stuffCollection; Stuff stuff; // ... stuffCollection.Add(stuff); return stuffCollection; } } What are pros and cons of each solution? For me, giving the implementation access to parent's information is some how disconcerting. On the other hand, initializing a new list, just to collect the items is a useless overhead ... What is the better design? How would it change, if DoSomethingWithStuff wouldn't be part of BaseItem but a third class? PS: there might be missing semicolons, or typos; sorry for that! The above code is not meant to be executed, but just for illustration.

    Read the article

  • Synchronized Property Changes (Part 4)

    - by Geertjan
    The next step is to activate the undo/redo functionality... for a Node. Something I've not seen done before. I.e., when the Node is renamed via F2 on the Node, the "Undo/Redo" buttons should start working. Here is the start of the solution, via this item in the mailing list and Timon Veenstra's BeanNode class, note especially the items in bold: public class ShipNode extends BeanNode implements PropertyChangeListener, UndoRedo.Provider { private final InstanceContent ic; private final ShipSaveCapability saveCookie; private UndoRedo.Manager manager; private String oldDisplayName; private String newDisplayName; private Ship ship; public ShipNode(Ship bean) throws IntrospectionException { this(bean, new InstanceContent()); } private ShipNode(Ship bean, InstanceContent ic) throws IntrospectionException { super(bean, Children.LEAF, new ProxyLookup(new AbstractLookup(ic), Lookups.singleton(bean))); this.ic = ic; setDisplayName(bean.getType()); setShortDescription(String.valueOf(bean.getYear())); saveCookie = new ShipSaveCapability(bean); bean.addPropertyChangeListener(WeakListeners.propertyChange(this, bean)); } @Override public Action[] getActions(boolean context) { List<? extends Action> shipActions = Utilities.actionsForPath("Actions/Ship"); return shipActions.toArray(new Action[shipActions.size()]); } protected void fire(boolean modified) { if (modified) { ic.add(saveCookie); } else { ic.remove(saveCookie); } } @Override public UndoRedo getUndoRedo() { manager = Lookup.getDefault().lookup( UndoRedo.Manager.class); return manager; } private class ShipSaveCapability implements SaveCookie { private final Ship bean; public ShipSaveCapability(Ship bean) { this.bean = bean; } @Override public void save() throws IOException { StatusDisplayer.getDefault().setStatusText("Saving..."); fire(false); } } @Override public boolean canRename() { return true; } @Override public void setName(String newDisplayName) { Ship c = getLookup().lookup(Ship.class); oldDisplayName = c.getType(); c.setType(newDisplayName); fireNameChange(oldDisplayName, newDisplayName); fire(true); fireUndoableEvent("type", ship, oldDisplayName, newDisplayName); } public void fireUndoableEvent(String property, Ship source, Object oldValue, Object newValue) { ReUndoableEdit reUndoableEdit = new ReUndoableEdit( property, source, oldValue, newValue); UndoableEditEvent undoableEditEvent = new UndoableEditEvent( this, reUndoableEdit); manager.undoableEditHappened(undoableEditEvent); } private class ReUndoableEdit extends AbstractUndoableEdit { private Object oldValue; private Object newValue; private Ship source; private String property; public ReUndoableEdit(String property, Ship source, Object oldValue, Object newValue) { super(); this.oldValue = oldValue; this.newValue = newValue; this.source = source; this.property = property; } @Override public void undo() throws CannotUndoException { setName(oldValue.toString()); } @Override public void redo() throws CannotRedoException { setName(newValue.toString()); } } @Override public String getDisplayName() { Ship c = getLookup().lookup(Ship.class); if (null != c.getType()) { return c.getType(); } return super.getDisplayName(); } @Override public String getShortDescription() { Ship c = getLookup().lookup(Ship.class); if (null != String.valueOf(c.getYear())) { return String.valueOf(c.getYear()); } return super.getShortDescription(); } @Override public void propertyChange(PropertyChangeEvent evt) { if (evt.getPropertyName().equals("type")) { String oldDisplayName = evt.getOldValue().toString(); String newDisplayName = evt.getNewValue().toString(); fireDisplayNameChange(oldDisplayName, newDisplayName); } else if (evt.getPropertyName().equals("year")) { String oldToolTip = evt.getOldValue().toString(); String newToolTip = evt.getNewValue().toString(); fireShortDescriptionChange(oldToolTip, newToolTip); } fire(true); } } Undo works when rename is done, but Redo never does, because Undo is constantly activated, since it is reactivated whenever there is a name change. And why must the UndoRedoManager be retrieved from the Lookup (it doesn't work otherwise)? Don't get that part of the code either. Help welcome!

    Read the article

  • LibGDX onTouch() method kill on touch

    - by johnny-b
    How can I add this on my application. i want to use the onTouch() method from the implementation of the InputProcessor to kill the enemies on screen. how do i do that? do i have to do anything to the enemy class? please help Thank you M @Override public boolean touchDown(int screenX, int screenY, int pointer, int button) { return false; } here is my enemy class public class Bullet extends Sprite { private Vector2 velocity; private float lifetime; public Bullet(float x, float y) { velocity = new Vector2(0, 0); } public void update(float delta) { float targetX = GameWorld.getBall().getX(); float targetY = GameWorld.getBall().getY(); float dx = targetX - getX(); float dy = targetY - getY(); float distToTarget = (float) Math.sqrt(dx * dx + dy * dy); velocity.x += dx * delta; velocity.y += dy * delta; } } i am rendering all graphics in a GameRender class and a gameworld class if you need more info please let me know Thank you

    Read the article

  • Invoking JavaScript from Java

    - by Geertjan
    Here's an Action class defined in Java. The Action class executes a script via the JavaFX WebEngine: @NbBundle.Messages("CTL_AddBananasAction=Add Banana") private class AddBananasAction extends AbstractAction { public AddBananasAction() { super(Bundle.CTL_AddBananasAction()); } @Override public void actionPerformed(ActionEvent e) { Platform.runLater(new Runnable() { @Override public void run() { webengine.executeScript("addBanana(' " + newBanana + " ') "); } }); } }How does the 'executescript' call know where to find the JavaScript file? Well, earlier in the code, the WebEngine loaded an HTML file, where the JavaScript file was registered: WebView view = new WebView(); view.setMinSize(widthDouble, heightDouble); view.setPrefSize(widthDouble, heightDouble); webengine = view.getEngine(); URL url = getClass().getResource("home.html"); webengine.load(url.toExternalForm()); Finally, here's a skeleton 'addBanana' method, which is invoked via the Action class shown above: function addBanana(user){ statustext.text(user); } By the way, if you have your JavaScript and CSS embedded within your HTML file, the code navigator combines all three into the same window, which is kind of cool:

    Read the article

  • Appropriate design / technologies to handle dynamic string formatting?

    - by Mark W
    recently I was tasked with implementing a way of adding support for versioning of hardware packet specifications to one of our libraries. First a bit of information about the project. We have a hardware library which has classes for each of the various commands we support sending to our hardware. These hardware modules are essentially just lights with a few buttons, and a 2 or 4 digit display. The packets typically follow the format {SOH}AADD{ETX}, where AA is our sentinel action code, and DD is the device ID. These packet specs are different from one command to the next obviously, and the different firmware versions we have support different specifications. For example, on version 1 an action code of 14 may have a spec of {SOH}AADDTEXT{ETX} which would be AA = 14 literal, DD = device ID, TEXT = literal text to display on the device. Then we come out with a revision with adds an extended byte(s) onto the end of the packet like this {SOH}AADDTEXTE{ETX}. Assume the TEXT field is fixed width for this example. We have now added a new field onto the end which could be used to say specify the color or flash rate of the text/buttons. Currently this java library only supports one version of the commands, the latest. In our hardware library we would have a class for this command, say a DisplayTextArgs.java. That class would have fields for the device ID, the text, and the extended byte. The command class would expose a method which generates the string ("{SOH}AADDTEXTE{ETX}") using the value from the class. In practice we would create the Args class as needed, populate the fields, call the method to get our packet string, then ship that down across the CAN. Some of our other commands specification can vary for the same command, on the same version, depending on some runtime state. For example, another command for version 1 may be {SOH}AA{ETX}, where this action code clears all of the modules behind a specific controller device of their text. We may overload this packet to have option fields with multiple meanings like {SOH}AAOC{ETX} where OC is literal text, which tells the controller to only clear text on a specific module type, and to leave the others alone, or the spec could also have an option format of {SOH}AADD{ETX} to clear the text off a a specific device. Currently, in the method which generates the packet string, we would evaluate fields on the args class to determine which spec we will be using when formatting the packet. For this example, it would be along the lines of: if m_DeviceID != null then use {SOH}AADD{ETX} else if m_ClearOCs == true then use {SOH}AAOC{EXT} else use {SOH}AA{ETX} I had considered using XML, or a database to store String.format format strings, which were linked to firmware version numbers in some table. We would load them up at startup, and pass in the version number of the hardwares firmware we are currently using (I can query the devices for their firmware version, but the version is not included in all packets as part of the spec). This breaks down pretty quickly because of the dynamic nature of how we select which version of the command to use. I then considered using a rule engine to possibly build out expressions which could be interpreted at runtume, to evaluate the args class's state, and from that select the appropriate format string to use, but my brief look at rule engines for java scared me away with its complexity. While it seems like it might be a viable solution, it seems overly complex. So this is why I am here. I wouldn't say design is my strongest skill, and im having trouble figuring out the best way to approach this problem. I probably wont be able to radically change the args classes, but if the trade off was good enough, I may be able to convince my boss that the change is appropriate. What I would like from the community is some feedback on some best practices / design methodologies / API or other resources which I could use to accomplish: Logic to determine which set of commands to use for a given firmware version Of those command, which version of each command to use (based on the args classes state) Keep the rules logic decoupled from the application so as to avoid needing releases for every firmware version Be simple enough so I don't need weeks of study and trial and error to implement effectively.

    Read the article

  • Android Bitmap: Collision Detecting

    - by Aekasitt Guruvanich
    I am writing an Android game right now and I would need some help in the collision of the Pawns on screen. I figured I could run a for loop on the Player class with all Pawn objects on the screen checking whether or not Width*Height intersects with each other, but is there a more efficient way to do this? And if you do it this way, many of the transparent pixel inside the rectangular area will also be considered as collision as well. Is there a way to check for collision between Bitmap on a Canvas that disregard transparent pixels? The class for player is below and the Pawn class uses the same method of display. Class Player { private Resources res; // Used for referencing Bitmap from predefined location private Bounds bounds; // Class that holds the boundary of the screen private Bitmap image; private float x, y; private Matrix position; private int width, height; private float velocity_x, velocity_y; public Player (Resources resources, Bounds boundary) { res = resources; bounds = boundary; image = BitmapFactory.decodeResource(res, R.drawable.player); width = image.getWidth(); height = image.getHeight(); position = new Matrix(); x = bounds.xMax / 2; // Initially puts the Player in the middle of screen y = bounds.yMax / 2; position.preTranslate(x,y); } public void draw(Canvas canvas) { canvas.drawBitmap(image, position, null); } }

    Read the article

  • Why can't Java/C# implement RAII?

    - by mike30
    Question: Why can't Java/C# implement RAII? Clarification: I am aware the garbage collector is not deterministic. So with the current language features it is not possible for an object's Dispose() method to be called automatically on scope exit. But could such a deterministic feature be added? My understanding: I feel an implementation of RAII must satisfy two requirements: 1. The lifetime of a resource must be bound to a scope. 2. Implicit. The freeing of the resource must happen without an explicit statement by the programmer. Analogous to a garbage collector freeing memory without an explicit statement. The "implicitness" only needs to occur at point of use of the class. The class library creator must of course explicitly implement a destructor or Dispose() method. Java/C# satisfy point 1. In C# a resource implementing IDisposable can be bound to a "using" scope: void test() { using(Resource r = new Resource()) { r.foo(); }//resource released on scope exit } This does not satisfy point 2. The programmer must explicitly tie the object to a special "using" scope. Programmers can (and do) forget to explicitly tie the resource to a scope, creating a leak. In fact the "using" blocks are converted to try-finally-dispose() code by the compiler. It has the same explicit nature of the try-finally-dispose() pattern. Without an implicit release, the hook to a scope is syntactic sugar. void test() { //Programmer forgot (or was not aware of the need) to explicitly //bind Resource to a scope. Resource r = new Resource(); r.foo(); }//resource leaked!!! I think it is worth creating a language feature in Java/C# allowing special objects that are hooked to the stack via a smart-pointer. The feature would allow you to flag a class as scope-bound, so that it always is created with a hook to the stack. There could be a options for different for different types of smart pointers. class Resource - ScopeBound { /* class details */ void Dispose() { //free resource } } void test() { //class Resource was flagged as ScopeBound so the tie to the stack is implicit. Resource r = new Resource(); //r is a smart-pointer r.foo(); }//resource released on scope exit. I think implicitness is "worth it". Just as the implicitness of garbage collection is "worth it". Explicit using blocks are refreshing on the eyes, but offer no semantic advantage over try-finally-dispose(). Is it impractical to implement such a feature into the Java/C# languages? Could it be introduced without breaking old code?

    Read the article

  • Is it OK to introduce methods that are used only during unit tests?

    - by Mchl
    Recently I was TDDing a factory method. The method was to create either a plain object, or an object wrapped in a decorator. The decorated object could be of one of several types all extending StrategyClass. In my test I wanted to check, if the class of returned object is as expected. That's easy when plain object os returned, but what to do when it's wrapped within a decorator? I code in PHP so I could use ext/Reflection to find out a class of wrapped object, but it seemed to me to be overcomplicating things, and somewhat agains rules of TDD. Instead I decided to introduce getClassName() that would return object's class name when called from StrategyClass. When called from the decorator however, it would return the value returned by the same method in decorated object. Some code to make it more clear: interface StrategyInterface { public function getClassName(); } abstract class StrategyClass implements StrategyInterface { public function getClassName() { return \get_class($this); } } abstract class StrategyDecorator implements StrategyInterface { private $decorated; public function __construct(StrategyClass $decorated) { $this->decorated = $decorated; } public function getClassName() { return $this->decorated->getClassName(); } } And a PHPUnit test /** * @dataProvider providerForTestGetStrategy * @param array $arguments * @param string $expected */ public function testGetStrategy($arguments, $expected) { $this->assertEquals( __NAMESPACE__.'\\'.$expected, $this->object->getStrategy($arguments)->getClassName() ) } //below there's another test to check if proper decorator is being used My point here is: is it OK to introduce such methods, that have no other use than to make unit tests easier? Somehow it doesn't feel right to me.

    Read the article

  • How to create repeatable table with unique ID's using jQuery

    - by milbert
    I need to create a table structure that can be "copied" and populated with a new set of data. However, each table must have unique IDs for functions that must access them later. For example: <table class="main"> <thead><tr><th class="header"></th></tr></thead> <tbody> <tr class="row"><td class="col0"></td><td class="col1"></td></tr> </tbody> </table> My current thought is to use jQuery to load the table from a seperate html file into a variable. Using this saved table I could then create a function that copies it, traverses the table to add an ID to each section where information will need to be appended from a seperate data source, and return this new table. I am new to jQuery and feel like I may be missing an easier/better way to accomplish this. Any help on this subject would be appreciated.

    Read the article

  • What's is the point of PImpl pattern while we can use interface for same purpose in C++?

    - by ZijingWu
    I see a lot of source code which using PIMPL idiom in C++. I assume Its purposes are hidden the private data/type/implementation, so it can resolve dependence, and then reduce compile time and header include issue. But interface class in C++ also have this capability, it can also used to hidden data/type and implementation. And to hidden let the caller just see the interface when create object, we can add an factory method in it declaration in interface header. The comparison is: Cost: The interface way cost is lower, because you doesn't even need to repeat the public wrapper function implementation void Bar::doWork() { return m_impl->doWork(); }, you just need to define the signature in the interface. Well understand: The interface technology is more well understand by every C++ developer. Performance: Interface way performance not worse than PIMPL idiom, both an extra memory access. I assume the performance is same. Following is the pseudocode code to illustrate my question: // Forward declaration can help you avoid include BarImpl header, and those included in BarImpl header. class BarImpl; class Bar { public: // public functions void doWork(); private: // You doesn't need to compile Bar.cpp after change the implementation in BarImpl.cpp BarImpl* m_impl; }; The same purpose can be implement using interface: // Bar.h class IBar { public: virtual ~IBar(){} // public functions virtual void doWork() = 0; }; // to only expose the interface instead of class name to caller IBar* createObject(); So what's the point of PIMPL?

    Read the article

  • Observing MVC, can/should the Model be instantiated in the ViewController? Or where?

    - by user19410
    I'm writing an experimental iPhone app to learn about the MVC paradigm. I instantiate my Model class in the ViewController class. Is this stupid? I'm asking because storing the id of the Model class, and using it works where it's initialized, but referring to it later (in response to an interface action) crashes. Seemingly, the pointer address of my Model class instance changes, but how can that be? The code in question: @interface Soundcheck_Tone_GeneratorViewController : UIViewController { IBOutlet UIPickerView * frequencyWheel; @public Sinewave_Generation * sineGenerator; } @property(nonatomic,retain) Sinewave_Generation * sineGenerator; @end @implementation Soundcheck_Tone_GeneratorViewController @synthesize sineGenerator; - (void)viewDidLoad { [super viewDidLoad]; [self setSineGenerator:[[Sinewave_Generation alloc] initWithFrequency:20.0]]; // using reference -> fine } // pickerView handling is omitted here... - (void)pickerView:(UIPickerView *)thePickerView didSelectRow:(NSInteger)row inComponent:(NSInteger)component { [[self sineGenerator] setFrequency:20.0]; // using reference -> crash } @end // the Sinewave_Generation class... only to be thorough. Works fine so far. @interface Sinewave_Generation : NSObject { AudioComponentInstance toneUnit; @public double frequency,theta; } @property double frequency; - (Sinewave_Generation *) initWithFrequency: (int) f; @end @implementation Sinewave_Generation @synthesize frequency; - (Sinewave_Generation *) initWithFrequency: (int) f { self = [super init]; if ( self ) { [self setFrequency: f]; } return self; } @end

    Read the article

< Previous Page | 309 310 311 312 313 314 315 316 317 318 319 320  | Next Page >