Search Results

Search found 36981 results on 1480 pages for 'string formatting'.

Page 318/1480 | < Previous Page | 314 315 316 317 318 319 320 321 322 323 324 325  | Next Page >

  • ILMerge - Unresolved assembly reference not allowed: System.Core

    - by Steve Michelotti
    ILMerge is a utility which allows you the merge multiple .NET assemblies into a single binary assembly more for convenient distribution. Recently we ran into problems when attempting to use ILMerge on a .NET 4 project. We received the error message: An exception occurred during merging: Unresolved assembly reference not allowed: System.Core.     at System.Compiler.Ir2md.GetAssemblyRefIndex(AssemblyNode assembly)     at System.Compiler.Ir2md.GetTypeRefIndex(TypeNode type)     at System.Compiler.Ir2md.VisitReferencedType(TypeNode type)     at System.Compiler.Ir2md.GetMemberRefIndex(Member m)     at System.Compiler.Ir2md.PopulateCustomAttributeTable()     at System.Compiler.Ir2md.SetupMetadataWriter(String debugSymbolsLocation)     at System.Compiler.Ir2md.WritePE(Module module, String debugSymbolsLocation, BinaryWriter writer)     at System.Compiler.Writer.WritePE(String location, Boolean writeDebugSymbols, Module module, Boolean delaySign, String keyFileName, String keyName)     at System.Compiler.Writer.WritePE(CompilerParameters compilerParameters, Module module)     at ILMerging.ILMerge.Merge()     at ILMerging.ILMerge.Main(String[] args) It turns out that this issue is caused by ILMerge.exe not being able to find the .NET 4 framework by default. The answer was ultimately found here. You either have to use the /lib option to point to your .NET 4 framework directory (e.g., “C:\Windows\Microsoft.NET\Framework\v4.0.30319” or “C:\Windows\Microsoft.NET\Framework64\v4.0.30319”) or just use an ILMerge.exe.config file that looks like this: 1: <configuration> 2: <startup useLegacyV2RuntimeActivationPolicy="true"> 3: <requiredRuntime safemode="true" imageVersion="v4.0.30319" version="v4.0.30319"/> 4: </startup> 5: </configuration> This was able to successfully resolve my issue.

    Read the article

  • WPF ListView as a DataGrid – Part 2

    - by psheriff
    In my last blog post I showed you how to create GridViewColumn objects on the fly from the meta-data in a DataTable. By doing this you can create columns for a ListView at runtime instead of having to pre-define each ListView for each different DataTable. Well, many of us use collections of our classes and it would be nice to be able to do the same thing for our collection classes as well. This blog post will show you one approach for using collection classes as the source of the data for your ListView.  Figure 1: A List of Data using a ListView Load Property NamesYou could use reflection to gather the property names in your class, however there are two things wrong with this approach. First, reflection is too slow, and second you may not want to display all your properties from your class in the ListView. Instead of reflection you could just create your own custom collection class of PropertyHeader objects. Each PropertyHeader object will contain a property name and a header text value at a minimum. You could add a width property if you wanted as well. All you need to do is to create a collection of property header objects where each object represents one column in your ListView. Below is a simple example: PropertyHeaders coll = new PropertyHeaders(); coll.Add(new PropertyHeader("ProductId", "Product ID"));coll.Add(new PropertyHeader("ProductName", "Product Name"));coll.Add(new PropertyHeader("Price", "Price")); Once you have this collection created, you could pass this collection to a method that would create the GridViewColumn objects based on the information in this collection. Below is the full code for the PropertyHeader class. Besides the PropertyName and Header properties, there is a constructor that will allow you to set both properties when the object is created. C#public class PropertyHeader{  public PropertyHeader()  {  }   public PropertyHeader(string propertyName, string headerText)  {    PropertyName = propertyName;    HeaderText = headerText;  }   public string PropertyName { get; set; }  public string HeaderText { get; set; }} VB.NETPublic Class PropertyHeader  Public Sub New()  End Sub   Public Sub New(ByVal propName As String, ByVal header As String)    PropertyName = propName    HeaderText = header  End Sub   Private mPropertyName As String  Private mHeaderText As String   Public Property PropertyName() As String    Get      Return mPropertyName    End Get    Set(ByVal value As String)      mPropertyName = value    End Set  End Property   Public Property HeaderText() As String    Get      Return mHeaderText    End Get    Set(ByVal value As String)      mHeaderText = value    End Set  End PropertyEnd Class You can use a Generic List class to create a collection of PropertyHeader objects as shown in the following code. C#public class PropertyHeaders : List<PropertyHeader>{} VB.NETPublic Class PropertyHeaders  Inherits List(Of PropertyHeader)End Class Create Property Header Objects You need to create a method somewhere that will create and return a collection of PropertyHeader objects that will represent the columns you wish to add to your ListView prior to binding your collection class to that ListView. Below is a sample method called GetProperties that builds a list of PropertyHeader objects with properties and headers for a Product object. C#public PropertyHeaders GetProperties(){  PropertyHeaders coll = new PropertyHeaders();   coll.Add(new PropertyHeader("ProductId", "Product ID"));  coll.Add(new PropertyHeader("ProductName", "Product Name"));  coll.Add(new PropertyHeader("Price", "Price"));   return coll;} VB.NETPublic Function GetProperties() As PropertyHeaders  Dim coll As New PropertyHeaders()   coll.Add(New PropertyHeader("ProductId", "Product ID"))  coll.Add(New PropertyHeader("ProductName", "Product Name"))  coll.Add(New PropertyHeader("Price", "Price"))   Return collEnd Function WPFListViewCommon Class Now that you have a collection of PropertyHeader objects you need a method that will create a GridView and a collection of GridViewColumn objects based on this PropertyHeader collection. Below is a static/Shared method that you might put into a class called WPFListViewCommon. C#public static GridView CreateGridViewColumns(  PropertyHeaders properties){  GridView gv;  GridViewColumn gvc;   // Create the GridView  gv = new GridView();  gv.AllowsColumnReorder = true;   // Create the GridView Columns  foreach (PropertyHeader item in properties)  {    gvc = new GridViewColumn();    gvc.DisplayMemberBinding = new Binding(item.PropertyName);    gvc.Header = item.HeaderText;    gvc.Width = Double.NaN;    gv.Columns.Add(gvc);  }   return gv;} VB.NETPublic Shared Function CreateGridViewColumns( _    ByVal properties As PropertyHeaders) As GridView  Dim gv As GridView  Dim gvc As GridViewColumn   ' Create the GridView  gv = New GridView()  gv.AllowsColumnReorder = True   ' Create the GridView Columns  For Each item As PropertyHeader In properties    gvc = New GridViewColumn()    gvc.DisplayMemberBinding = New Binding(item.PropertyName)    gvc.Header = item.HeaderText    gvc.Width = [Double].NaN    gv.Columns.Add(gvc)  Next   Return gvEnd Function Build the Product Screen To build the window shown in Figure 1, you might write code like the following: C#private void CollectionSample(){  Product prod = new Product();   // Setup the GridView Columns  lstData.View = WPFListViewCommon.CreateGridViewColumns(       prod.GetProperties());  lstData.DataContext = prod.GetProducts();} VB.NETPrivate Sub CollectionSample()  Dim prod As New Product()   ' Setup the GridView Columns  lstData.View = WPFListViewCommon.CreateGridViewColumns( _       prod.GetProperties())  lstData.DataContext = prod.GetProducts()End Sub The Product class contains a method called GetProperties that returns a PropertyHeaders collection. You pass this collection to the WPFListViewCommon’s CreateGridViewColumns method and it will create a GridView for the ListView. When you then feed the DataContext property of the ListView the Product collection the appropriate columns have already been created and data bound. Summary In this blog you learned how to create a ListView that acts like a DataGrid using a collection class. While it does take a little code to do this, it is an alternative to creating each GridViewColumn in XAML. This gives you a lot of flexibility. You could even read in the property names and header text from an XML file for a truly configurable ListView. NOTE: You can download the complete sample code (in both VB and C#) at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "WPF ListView as a DataGrid – Part 2" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free eBook on "Fundamentals of N-Tier".  

    Read the article

  • Adventures in MVVM &ndash; My ViewModel Base

    - by Brian Genisio's House Of Bilz
    More Adventures in MVVM First, I’d like to say: THIS IS NOT A NEW MVVM FRAMEWORK. I tend to believe that MVVM support code should be specific to the system you are building and the developers working on it.  I have yet to find an MVVM framework that does everything I want it to without doing too much.  Don’t get me wrong… there are some good frameworks out there.  I just like to pick and choose things that make sense for me.  I’d also like to add that some of these features only work in WPF.  As of Silveright 4, they don’t support binding to dynamic properties, so some of the capabilities are lost. That being said, I want to share my ViewModel base class with the world.  I have had several conversations with people about the problems I have solved using this ViewModel base.  A while back, I posted an article about some experiments with a “Rails Inspired ViewModel”.  What followed from those ideas was a ViewModel base class that I take with me and use in my projects.  It has a lot of features, all designed to reduce the friction in writing view models. I have put the code out on Codeplex under the project: ViewModelSupport. Finally, this article focuses on the ViewModel and only glosses over the View and the Model.  Without all three, you don’t have MVVM.  But this base class is for the ViewModel, so that is what I am focusing on. Features: Automatic Command Plumbing Property Change Notification Strongly Typed Property Getter/Setters Dynamic Properties Default Property values Derived Properties Automatic Method Execution Command CanExecute Change Notification Design-Time Detection What about Silverlight? Automatic Command Plumbing This feature takes the plumbing out of creating commands.  The common pattern for commands in a ViewModel is to have an Execute method as well as an optional CanExecute method.  To plumb that together, you create an ICommand Property, and set it in the constructor like so: Before public class AutomaticCommandViewModel { public AutomaticCommandViewModel() { MyCommand = new DelegateCommand(Execute_MyCommand, CanExecute_MyCommand); } public void Execute_MyCommand() { // Do something } public bool CanExecute_MyCommand() { // Are we in a state to do something? return true; } public DelegateCommand MyCommand { get; private set; } } With the base class, this plumbing is automatic and the property (MyCommand of type ICommand) is created for you.  The base class uses the convention that methods be prefixed with Execute_ and CanExecute_ in order to be plumbed into commands with the property name after the prefix.  You are left to be expressive with your behavior without the plumbing.  If you are wondering how CanExecuteChanged is raised, see the later section “Command CanExecute Change Notification”. After public class AutomaticCommandViewModel : ViewModelBase { public void Execute_MyCommand() { // Do something } public bool CanExecute_MyCommand() { // Are we in a state to do something? return true; } }   Property Change Notification One thing that always kills me when implementing ViewModels is how to make properties that notify when they change (via the INotifyPropertyChanged interface).  There have been many attempts to make this more automatic.  My base class includes one option.  There are others, but I feel like this works best for me. The common pattern (without my base class) is to create a private backing store for the variable and specify a getter that returns the private field.  The setter will set the private field and fire an event that notifies the change, only if the value has changed. Before public class PropertyHelpersViewModel : INotifyPropertyChanged { private string text; public string Text { get { return text; } set { if(text != value) { text = value; RaisePropertyChanged("Text"); } } } protected void RaisePropertyChanged(string propertyName) { var handlers = PropertyChanged; if(handlers != null) handlers(this, new PropertyChangedEventArgs(propertyName)); } public event PropertyChangedEventHandler PropertyChanged; } This way of defining properties is error-prone and tedious.  Too much plumbing.  My base class eliminates much of that plumbing with the same functionality: After public class PropertyHelpersViewModel : ViewModelBase { public string Text { get { return Get<string>("Text"); } set { Set("Text", value);} } }   Strongly Typed Property Getters/Setters It turns out that we can do better than that.  We are using a strongly typed language where the use of “Magic Strings” is often frowned upon.  Lets make the names in the getters and setters strongly typed: A refinement public class PropertyHelpersViewModel : ViewModelBase { public string Text { get { return Get(() => Text); } set { Set(() => Text, value); } } }   Dynamic Properties In C# 4.0, we have the ability to program statically OR dynamically.  This base class lets us leverage the powerful dynamic capabilities in our ecosystem. (This is how the automatic commands are implemented, BTW)  By calling Set(“Foo”, 1), you have now created a dynamic property called Foo.  It can be bound against like any static property.  The opportunities are endless.  One great way to exploit this behavior is if you have a customizable view engine with templates that bind to properties defined by the user.  The base class just needs to create the dynamic properties at runtime from information in the model, and the custom template can bind even though the static properties do not exist. All dynamic properties still benefit from the notifiable capabilities that static properties do. For any nay-sayers out there that don’t like using the dynamic features of C#, just remember this: the act of binding the View to a ViewModel is dynamic already.  Why not exploit it?  Get over it :) Just declare the property dynamically public class DynamicPropertyViewModel : ViewModelBase { public DynamicPropertyViewModel() { Set("Foo", "Bar"); } } Then reference it normally <TextBlock Text="{Binding Foo}" />   Default Property Values The Get() method also allows for default properties to be set.  Don’t set them in the constructor.  Set them in the property and keep the related code together: public string Text { get { return Get(() => Text, "This is the default value"); } set { Set(() => Text, value);} }   Derived Properties This is something I blogged about a while back in more detail.  This feature came from the chaining of property notifications when one property affects the results of another, like this: Before public class DependantPropertiesViewModel : ViewModelBase { public double Score { get { return Get(() => Score); } set { Set(() => Score, value); RaisePropertyChanged("Percentage"); RaisePropertyChanged("Output"); } } public int Percentage { get { return (int)(100 * Score); } } public string Output { get { return "You scored " + Percentage + "%."; } } } The problem is: The setter for Score has to be responsible for notifying the world that Percentage and Output have also changed.  This, to me, is backwards.    It certainly violates the “Single Responsibility Principle.” I have been bitten in the rear more than once by problems created from code like this.  What we really want to do is invert the dependency.  Let the Percentage property declare that it changes when the Score Property changes. After public class DependantPropertiesViewModel : ViewModelBase { public double Score { get { return Get(() => Score); } set { Set(() => Score, value); } } [DependsUpon("Score")] public int Percentage { get { return (int)(100 * Score); } } [DependsUpon("Percentage")] public string Output { get { return "You scored " + Percentage + "%."; } } }   Automatic Method Execution This one is extremely similar to the previous, but it deals with method execution as opposed to property.  When you want to execute a method triggered by property changes, let the method declare the dependency instead of the other way around. Before public class DependantMethodsViewModel : ViewModelBase { public double Score { get { return Get(() => Score); } set { Set(() => Score, value); WhenScoreChanges(); } } public void WhenScoreChanges() { // Handle this case } } After public class DependantMethodsViewModel : ViewModelBase { public double Score { get { return Get(() => Score); } set { Set(() => Score, value); } } [DependsUpon("Score")] public void WhenScoreChanges() { // Handle this case } }   Command CanExecute Change Notification Back to Commands.  One of the responsibilities of commands that implement ICommand – it must fire an event declaring that CanExecute() needs to be re-evaluated.  I wanted to wait until we got past a few concepts before explaining this behavior.  You can use the same mechanism here to fire off the change.  In the CanExecute_ method, declare the property that it depends upon.  When that property changes, the command will fire a CanExecuteChanged event, telling the View to re-evaluate the state of the command.  The View will make appropriate adjustments, like disabling the button. DependsUpon works on CanExecute methods as well public class CanExecuteViewModel : ViewModelBase { public void Execute_MakeLower() { Output = Input.ToLower(); } [DependsUpon("Input")] public bool CanExecute_MakeLower() { return !string.IsNullOrWhiteSpace(Input); } public string Input { get { return Get(() => Input); } set { Set(() => Input, value);} } public string Output { get { return Get(() => Output); } set { Set(() => Output, value); } } }   Design-Time Detection If you want to add design-time data to your ViewModel, the base class has a property that lets you ask if you are in the designer.  You can then set some default values that let your designer see what things might look like in runtime. Use the IsInDesignMode property public DependantPropertiesViewModel() { if(IsInDesignMode) { Score = .5; } }   What About Silverlight? Some of the features in this base class only work in WPF.  As of version 4, Silverlight does not support binding to dynamic properties.  This, in my opinion, is a HUGE limitation.  Not only does it keep you from using many of the features in this ViewModel, it also keeps you from binding to ViewModels designed in IronRuby.  Does this mean that the base class will not work in Silverlight?  No.  Many of the features outlined in this article WILL work.  All of the property abstractions are functional, as long as you refer to them statically in the View.  This, of course, means that the automatic command hook-up doesn’t work in Silverlight.  You need to plumb it to a static property in order for the Silverlight View to bind to it.  Can I has a dynamic property in SL5?     Good to go? So, that concludes the feature explanation of my ViewModel base class.  Feel free to take it, fork it, whatever.  It is hosted on CodePlex.  When I find other useful additions, I will add them to the public repository.  I use this base class every day.  It is mature, and well tested.  If, however, you find any problems with it, please let me know!  Also, feel free to suggest patches to me via the CodePlex site.  :)

    Read the article

  • Formating Columns in Excel created by af:exportCollectionActionListener

    - by Duncan Mills
    The af:exportCollectionActionListener behavior in ADF Faces Rich client provides a very simple way of quickly dumping out the contents or selected rows in a table or treeTable to Excel. However, that simplicity comes at a price as it pretty much left up to Excel how to format the data. A common use case where you have a problem is that of ID columns which are often long numerics. You probably want to represent this data as a string, Excel however will probably have other ideas and render it as an exponent  - not what you intended. In earlier releases of the framework you could sort of work around this by taking advantage of a bug which would allow you to surround the outputText in question with invisible outputText components which provided formatting hints to Excel. Something like this: <af:column headertext="Some wide label">  <af:panelgrouplayout layout="horizontal">     <af:outputtext value="=TEXT(" visible="false">     <af:outputtext value="#{row.bigNumberValue}" rendered="true"/>    <af:outputtext value=",0)" visible="false">   </af:panelgrouplayout> </af:column> However, this bug was fixed and so it can no longer be used as a trick, the export now ignores invisible columns. So, if you really need control over the formatting there are several alternatives: First the more powerful ADF Desktop Integration (ADFdi) package which allows you to build fully transactional spreadsheets that "pull" the data and can update it. This gives you all the control that might need on formatting but it does need specific Excel Add-ins on the client to work. For more information about ADFdi have a look at this tutorial on OTN. Or you can of course look at BI Publisher or Apache POI if you're happy with output only spreadsheets

    Read the article

  • OAF Page to Upload Files into Server from local Machine

    - by PRajkumar
    1. Create a New Workspace and Project File > New > General > Workspace Configured for Oracle Applications File Name – PrajkumarFileUploadDemo   Automatically a new OA Project will also be created   Project Name -- FileUploadDemo Default Package -- prajkumar.oracle.apps.fnd.fileuploaddemo   2. Create a New Application Module (AM) Right Click on FileUploadDemo > New > ADF Business Components > Application Module Name -- FileUploadAM Package -- prajkumar.oracle.apps.fnd.fileuploaddemo.server Check Application Module Class: FileUploadAMImpl Generate JavaFile(s)   3. Create a New Page Right click on FileUploadDemo > New > Web Tier > OA Components > Page Name -- FileUploadPG Package -- prajkumar.oracle.apps.fnd.fileuploaddemo.webui   4. Select the FileUploadPG and go to the strcuture pane where a default region has been created   5. Select region1 and set the following properties --     Attribute Property ID PageLayoutRN AM Definition prajkumar.oracle.apps.fnd.fileuploaddemo.server.FileUploadAM Window Title Uploading File into Server from Local Machine Demo Window Title Uploading File into Server from Local Machine Demo     6. Create Stack Layout Region Under Page Layout Region Right click PageLayoutRN > New > Region   Attribute Property ID MainRN AM Definition messageComponentLayout   7. Create a New Item messageFileUpload Bean under MainRN Right click on MainRN > New > messageFileUpload Set Following Properties for New Item --   Attribute Property ID MessageFileUpload Item Style messageFileUpload   8. Create a New Item Submit Button Bean under MainRN Right click on MainRN > New > messageLayout Set Following Properties for messageLayout --   Attribute Property ID ButtonLayout   Right Click on ButtonLayout > New > Item   Attribute Property ID Submit Item Style submitButton Attribute Set /oracle/apps/fnd/attributesets/Buttons/Go   9. Create Controller for page FileUploadPG Right Click on PageLayoutRN > Set New Controller Package Name: prajkumar.oracle.apps.fnd.fileuploaddemo.webui Class Name: FileUploadCO   Write Following Code in FileUploadCO processFormRequest   import oracle.cabo.ui.data.DataObject; import java.io.FileOutputStream; import java.io.InputStream; import oracle.jbo.domain.BlobDomain; import java.io.File; import oracle.apps.fnd.framework.OAException; public void processFormRequest(OAPageContext pageContext, OAWebBean webBean) { super.processFormRequest(pageContext, webBean);    if(pageContext.getParameter("Submit")!=null)  {   upLoadFile(pageContext,webBean);      } }   -- Use Following Code if want to Upload Files in Local Machine -- ----------------------------------------------------------------------------------- public void upLoadFile(OAPageContext pageContext,OAWebBean webBean) { String filePath = "D:\\PRajkumar";  System.out.println("Default File Path---->"+filePath);  String fileUrl = null;  try  {   DataObject fileUploadData =  pageContext.getNamedDataObject("MessageFileUpload"); //FileUploading is my MessageFileUpload Bean Id   if(fileUploadData!=null)   {    String uFileName = (String)fileUploadData.selectValue(null, "UPLOAD_FILE_NAME");  // include this line    String contentType = (String) fileUploadData.selectValue(null, "UPLOAD_FILE_MIME_TYPE");  // For Mime Type    System.out.println("User File Name---->"+uFileName);    FileOutputStream output = null;    InputStream input = null;    BlobDomain uploadedByteStream = (BlobDomain)fileUploadData.selectValue(null, uFileName);    System.out.println("uploadedByteStream---->"+uploadedByteStream);                               File file = new File("D:\\PRajkumar", uFileName);    System.out.println("File output---->"+file);    output = new FileOutputStream(file);    System.out.println("output----->"+output);    input = uploadedByteStream.getInputStream();    System.out.println("input---->"+input);    byte abyte0[] = new byte[0x19000];    int i;         while((i = input.read(abyte0)) > 0)    output.write(abyte0, 0, i);    output.close();    input.close();   }  }  catch(Exception ex)  {   throw new OAException(ex.getMessage(), OAException.ERROR);  }     }   -- Use Following Code if want to Upload File into Server -- ------------------------------------------------------------------------- public void upLoadFile(OAPageContext pageContext,OAWebBean webBean) { String filePath = "/u01/app/apnac03r12/PRajkumar/";  System.out.println("Default File Path---->"+filePath);  String fileUrl = null;  try  {   DataObject fileUploadData =  pageContext.getNamedDataObject("MessageFileUpload");  //FileUploading is my MessageFileUpload Bean Id     if(fileUploadData!=null)   {    String uFileName = (String)fileUploadData.selectValue(null, "UPLOAD_FILE_NAME");   // include this line    String contentType = (String) fileUploadData.selectValue(null, "UPLOAD_FILE_MIME_TYPE");   // For Mime Type    System.out.println("User File Name---->"+uFileName);    FileOutputStream output = null;    InputStream input = null;    BlobDomain uploadedByteStream = (BlobDomain)fileUploadData.selectValue(null, uFileName);    System.out.println("uploadedByteStream---->"+uploadedByteStream);                               File file = new File("/u01/app/apnac03r12/PRajkumar", uFileName);    System.out.println("File output---->"+file);    output = new FileOutputStream(file);    System.out.println("output----->"+output);    input = uploadedByteStream.getInputStream();    System.out.println("input---->"+input);    byte abyte0[] = new byte[0x19000];    int i;         while((i = input.read(abyte0)) > 0)    output.write(abyte0, 0, i);    output.close();    input.close();   }  }  catch(Exception ex)  {   throw new OAException(ex.getMessage(), OAException.ERROR);  }     }   10. Congratulation you have successfully finished. Run Your page and Test Your Work           -- Used Code to Upload files into Server   -- Before Upload files into Server     -- After Upload files into Server       -- Used Code to Upload files into Local Machine   -- Before Upload files into Local Machine       -- After Upload files into Local Machine

    Read the article

  • Ajax-based data loading using jQuery.load() function in ASP.NET

    - by hajan
    In general, jQuery has made Ajax very easy by providing low-level interface, shorthand methods and helper functions, which all gives us great features of handling Ajax requests in our ASP.NET Webs. The simplest way to load data from the server and place the returned HTML in browser is to use the jQuery.load() function. The very firs time when I started playing with this function, I didn't believe it will work that much easy. What you can do with this method is simply call given url as parameter to the load function and display the content in the selector after which this function is chained. So, to clear up this, let me give you one very simple example: $("#result").load("AjaxPages/Page.html"); As you can see from the above image, after clicking the ‘Load Content’ button which fires the above code, we are making Ajax Get and the Response is the entire page HTML. So, rather than using (old) iframes, you can now use this method to load other html pages inside the page from where the script with load function is called. This method is equivalent to the jQuery Ajax Get method $.get(url, data, function () { }) only that the $.load() is method rather than global function and has an implicit callback function. To provide callback to your load, you can simply add function as second parameter, see example: $("#result").load("AjaxPages/Page.html", function () { alert("Page.html has been loaded successfully!") }); Since load is part of the chain which is follower of the given jQuery Selector where the content should be loaded, it means that the $.load() function won't execute if there is no such selector found within the DOM. Another interesting thing to mention, and maybe you've asked yourself is how we know if GET or POST method type is executed? It's simple, if we provide 'data' as second parameter to the load function, then POST is used, otherwise GET is assumed. POST $("#result").load("AjaxPages/Page.html", { "name": "hajan" }, function () { ////callback function implementation });   GET $("#result").load("AjaxPages/Page.html", function () { ////callback function implementation });   Another important feature that $.load() has ($.get() does not) is loading page fragments. Using jQuery's selector capability, you can do this: $("#result").load("AjaxPages/Page.html #resultTable"); In our Page.html, the content now is: So, after the call, only the table with id resultTable will load in our page.   As you can see, we have loaded only the table with id resultTable (1) inside div with id result (2). This is great feature since we won't need to filter the returned HTML content again in our callback function on the master page from where we have called $.load() function. Besides the fact that you can simply call static HTML pages, you can also use this function to load dynamic ASPX pages or ASP.NET ASHX Handlers . Lets say we have another page (ASPX) in our AjaxPages folder with name GetProducts.aspx. This page has repeater control (or anything you want to bind dynamic server-side content) that displays set of data in it. Now, I want to filter the data in the repeater based on the Query String parameter provided when calling that page. For example, if I call the page using GetProducts.aspx?category=computers, it will load only computers… so, this will filter the products automatically by given category. The example ASPX code of GetProducts.aspx page is: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="GetProducts.aspx.cs" Inherits="WebApplication1.AjaxPages.GetProducts" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title></title> </head> <body> <form id="form1" runat="server"> <div> <table id="tableProducts"> <asp:Repeater ID="rptProducts" runat="server"> <HeaderTemplate> <tr> <th>Product</th> <th>Price</th> <th>Category</th> </tr> </HeaderTemplate> <ItemTemplate> <tr> <td> <%# Eval("ProductName")%> </td> <td> <%# Eval("Price") %> </td> <td> <%# Eval("Category") %> </td> </tr> </ItemTemplate> </asp:Repeater> </ul> </div> </form> </body> </html> The C# code-behind sample code is: public partial class GetProducts : System.Web.UI.Page { public List<Product> products; protected override void OnInit(EventArgs e) { LoadSampleProductsData(); //load sample data base.OnInit(e); } protected void Page_Load(object sender, EventArgs e) { if (Request.QueryString.Count > 0) { if (!string.IsNullOrEmpty(Request.QueryString["category"])) { string category = Request.QueryString["category"]; //get query string into string variable //filter products sample data by category using LINQ //and add the collection as data source to the repeater rptProducts.DataSource = products.Where(x => x.Category == category); rptProducts.DataBind(); //bind repeater } } } //load sample data method public void LoadSampleProductsData() { products = new List<Product>(); products.Add(new Product() { Category = "computers", Price = 200, ProductName = "Dell PC" }); products.Add(new Product() { Category = "shoes", Price = 90, ProductName = "Nike" }); products.Add(new Product() { Category = "shoes", Price = 66, ProductName = "Adidas" }); products.Add(new Product() { Category = "computers", Price = 210, ProductName = "HP PC" }); products.Add(new Product() { Category = "shoes", Price = 85, ProductName = "Puma" }); } } //sample Product class public class Product { public string ProductName { get; set; } public decimal Price { get; set; } public string Category { get; set; } } Mainly, I just have sample data loading function, Product class and depending of the query string, I am filtering the products list using LINQ Where statement. If we run this page without query string, it will show no data. If we call the page with category query string, it will filter automatically. Example: /AjaxPages/GetProducts.aspx?category=shoes The result will be: or if we use category=computers, like this /AjaxPages/GetProducts.aspx?category=computers, the result will be: So, now using jQuery.load() function, we can call this page with provided query string parameter and load appropriate content… The ASPX code in our Default.aspx page, which will call the AjaxPages/GetProducts.aspx page using jQuery.load() function is: <asp:RadioButtonList ID="rblProductCategory" runat="server"> <asp:ListItem Text="Shoes" Value="shoes" Selected="True" /> <asp:ListItem Text="Computers" Value="computers" /> </asp:RadioButtonList> <asp:Button ID="btnLoadProducts" runat="server" Text="Load Products" /> <!-- Here we will load the products, based on the radio button selection--> <div id="products"></div> </form> The jQuery code: $("#<%= btnLoadProducts.ClientID %>").click(function (event) { event.preventDefault(); //preventing button's default behavior var selectedRadioButton = $("#<%= rblProductCategory.ClientID %> input:checked").val(); //call GetProducts.aspx with the category query string for the selected category in radio button list //filter and get only the #tableProducts content inside #products div $("#products").load("AjaxPages/GetProducts.aspx?category=" + selectedRadioButton + " #tableProducts"); }); The end result: You can download the code sample from here. You can read more about jQuery.load() function here. I hope this was useful blog post for you. Please do let me know your feedback. Best Regards, Hajan

    Read the article

  • C#/.NET Little Wonders: Tuples and Tuple Factory Methods

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can really help improve your code by making it easier to write and maintain.  This week, we look at the System.Tuple class and the handy factory methods for creating a Tuple by inferring the types. What is a Tuple? The System.Tuple is a class that tends to inspire a reaction in one of two ways: love or hate.  Simply put, a Tuple is a data structure that holds a specific number of items of a specific type in a specific order.  That is, a Tuple<int, string, int> is a tuple that contains exactly three items: an int, followed by a string, followed by an int.  The sequence is important not only to distinguish between two members of the tuple with the same type, but also for comparisons between tuples.  Some people tend to love tuples because they give you a quick way to combine multiple values into one result.  This can be handy for returning more than one value from a method (without using out or ref parameters), or for creating a compound key to a Dictionary, or any other purpose you can think of.  They can be especially handy when passing a series of items into a call that only takes one object parameter, such as passing an argument to a thread's startup routine.  In these cases, you do not need to define a class, simply create a tuple containing the types you wish to return, and you are ready to go? On the other hand, there are some people who see tuples as a crutch in object-oriented design.  They may view the tuple as a very watered down class with very little inherent semantic meaning.  As an example, what if you saw this in a piece of code: 1: var x = new Tuple<int, int>(2, 5); What are the contents of this tuple?  If the tuple isn't named appropriately, and if the contents of each member are not self evident from the type this can be a confusing question.  The people who tend to be against tuples would rather you explicitly code a class to contain the values, such as: 1: public sealed class RetrySettings 2: { 3: public int TimeoutSeconds { get; set; } 4: public int MaxRetries { get; set; } 5: } Here, the meaning of each int in the class is much more clear, but it's a bit more work to create the class and can clutter a solution with extra classes. So, what's the correct way to go?  That's a tough call.  You will have people who will argue quite well for one or the other.  For me, I consider the Tuple to be a tool to make it easy to collect values together easily.  There are times when I just need to combine items for a key or a result, in which case the tuple is short lived and so the meaning isn't easily lost and I feel this is a good compromise.  If the scope of the collection of items, though, is more application-wide I tend to favor creating a full class. Finally, it should be noted that tuples are immutable.  That means they are assigned a value at construction, and that value cannot be changed.  Now, of course if the tuple contains an item of a reference type, this means that the reference is immutable and not the item referred to. Tuples from 1 to N Tuples come in all sizes, you can have as few as one element in your tuple, or as many as you like.  However, since C# generics can't have an infinite generic type parameter list, any items after 7 have to be collapsed into another tuple, as we'll show shortly. So when you declare your tuple from sizes 1 (a 1-tuple or singleton) to 7 (a 7-tuple or septuple), simply include the appropriate number of type arguments: 1: // a singleton tuple of integer 2: Tuple<int> x; 3:  4: // or more 5: Tuple<int, double> y; 6:  7: // up to seven 8: Tuple<int, double, char, double, int, string, uint> z; Anything eight and above, and we have to nest tuples inside of tuples.  The last element of the 8-tuple is the generic type parameter Rest, this is special in that the Tuple checks to make sure at runtime that the type is a Tuple.  This means that a simple 8-tuple must nest a singleton tuple (one of the good uses for a singleton tuple, by the way) for the Rest property. 1: // an 8-tuple 2: Tuple<int, int, int, int, int, double, char, Tuple<string>> t8; 3:  4: // an 9-tuple 5: Tuple<int, int, int, int, double, int, char, Tuple<string, DateTime>> t9; 6:  7: // a 16-tuple 8: Tuple<int, int, int, int, int, int, int, Tuple<int, int, int, int, int, int, int, Tuple<int,int>>> t14; Notice that on the 14-tuple we had to have a nested tuple in the nested tuple.  Since the tuple can only support up to seven items, and then a rest element, that means that if the nested tuple needs more than seven items you must nest in it as well.  Constructing tuples Constructing tuples is just as straightforward as declaring them.  That said, you have two distinct ways to do it.  The first is to construct the tuple explicitly yourself: 1: var t3 = new Tuple<int, string, double>(1, "Hello", 3.1415927); This creates a triple that has an int, string, and double and assigns the values 1, "Hello", and 3.1415927 respectively.  Make sure the order of the arguments supplied matches the order of the types!  Also notice that we can't half-assign a tuple or create a default tuple.  Tuples are immutable (you can't change the values once constructed), so thus you must provide all values at construction time. Another way to easily create tuples is to do it implicitly using the System.Tuple static class's Create() factory methods.  These methods (much like C++'s std::make_pair method) will infer the types from the method call so you don't have to type them in.  This can dramatically reduce the amount of typing required especially for complex tuples! 1: // this 4-tuple is typed Tuple<int, double, string, char> 2: var t4 = Tuple.Create(42, 3.1415927, "Love", 'X'); Notice how much easier it is to use the factory methods and infer the types?  This can cut down on typing quite a bit when constructing tuples.  The Create() factory method can construct from a 1-tuple (singleton) to an 8-tuple (octuple), which of course will be a octuple where the last item is a singleton as we described before in nested tuples. Accessing tuple members Accessing a tuple's members is simplicity itself… mostly.  The properties for accessing up to the first seven items are Item1, Item2, …, Item7.  If you have an octuple or beyond, the final property is Rest which will give you the nested tuple which you can then access in a similar matter.  Once again, keep in mind that these are read-only properties and cannot be changed. 1: // for septuples and below, use the Item properties 2: var t1 = Tuple.Create(42, 3.14); 3:  4: Console.WriteLine("First item is {0} and second is {1}", 5: t1.Item1, t1.Item2); 6:  7: // for octuples and above, use Rest to retrieve nested tuple 8: var t9 = new Tuple<int, int, int, int, int, int, int, 9: Tuple<int, int>>(1,2,3,4,5,6,7,Tuple.Create(8,9)); 10:  11: Console.WriteLine("The 8th item is {0}", t9.Rest.Item1); Tuples are IStructuralComparable and IStructuralEquatable Most of you know about IComparable and IEquatable, what you may not know is that there are two sister interfaces to these that were added in .NET 4.0 to help support tuples.  These IStructuralComparable and IStructuralEquatable make it easy to compare two tuples for equality and ordering.  This is invaluable for sorting, and makes it easy to use tuples as a compound-key to a dictionary (one of my favorite uses)! Why is this so important?  Remember when we said that some folks think tuples are too generic and you should define a custom class?  This is all well and good, but if you want to design a custom class that can automatically order itself based on its members and build a hash code for itself based on its members, it is no longer a trivial task!  Thankfully the tuple does this all for you through the explicit implementations of these interfaces. For equality, two tuples are equal if all elements are equal between the two tuples, that is if t1.Item1 == t2.Item1 and t1.Item2 == t2.Item2, and so on.  For ordering, it's a little more complex in that it compares the two tuples one at a time starting at Item1, and sees which one has a smaller Item1.  If one has a smaller Item1, it is the smaller tuple.  However if both Item1 are the same, it compares Item2 and so on. For example: 1: var t1 = Tuple.Create(1, 3.14, "Hi"); 2: var t2 = Tuple.Create(1, 3.14, "Hi"); 3: var t3 = Tuple.Create(2, 2.72, "Bye"); 4:  5: // true, t1 == t2 because all items are == 6: Console.WriteLine("t1 == t2 : " + t1.Equals(t2)); 7:  8: // false, t1 != t2 because at least one item different 9: Console.WriteLine("t2 == t2 : " + t2.Equals(t3)); The actual implementation of IComparable, IEquatable, IStructuralComparable, and IStructuralEquatable is explicit, so if you want to invoke the methods defined there you'll have to manually cast to the appropriate interface: 1: // true because t1.Item1 < t3.Item1, if had been same would check Item2 and so on 2: Console.WriteLine("t1 < t3 : " + (((IComparable)t1).CompareTo(t3) < 0)); So, as I mentioned, the fact that tuples are automatically equatable and comparable (provided the types you use define equality and comparability as needed) means that we can use tuples for compound keys in hashing and ordering containers like Dictionary and SortedList: 1: var tupleDict = new Dictionary<Tuple<int, double, string>, string>(); 2:  3: tupleDict.Add(t1, "First tuple"); 4: tupleDict.Add(t2, "Second tuple"); 5: tupleDict.Add(t3, "Third tuple"); Because IEquatable defines GetHashCode(), and Tuple's IStructuralEquatable implementation creates this hash code by combining the hash codes of the members, this makes using the tuple as a complex key quite easy!  For example, let's say you are creating account charts for a financial application, and you want to cache those charts in a Dictionary based on the account number and the number of days of chart data (for example, a 1 day chart, 1 week chart, etc): 1: // the account number (string) and number of days (int) are key to get cached chart 2: var chartCache = new Dictionary<Tuple<string, int>, IChart>(); Summary The System.Tuple, like any tool, is best used where it will achieve a greater benefit.  I wouldn't advise overusing them, on objects with a large scope or it can become difficult to maintain.  However, when used properly in a well defined scope they can make your code cleaner and easier to maintain by removing the need for extraneous POCOs and custom property hashing and ordering. They are especially useful in defining compound keys to IDictionary implementations and for returning multiple values from methods, or passing multiple values to a single object parameter. Tweet Technorati Tags: C#,.NET,Tuple,Little Wonders

    Read the article

  • C# Simple Twitter Update

    - by mroberts
    For what it's worth a simple twitter update. 1: using System; 2: using System.IO; 3: using System.Net; 4: using System.Text; 5:   6: namespace Server.Actions 7: { 8: public class TwitterUpdate 9: { 10: public string Body { get; set; } 11: public string Login { get; set; } 12: public string Password { get; set; } 13:   14: public override void Execute() 15: { 16: try 17: { 18: //encode user name and password 19: string creds = Convert.ToBase64String(Encoding.ASCII.GetBytes(string.Format("{0}:{1}", this.Login, this.Password))); 20:   21: //encode tweet 22: byte[] tweet = Encoding.ASCII.GetBytes("status=" + this.Body); 23:   24: //setup request 25: HttpWebRequest request = (HttpWebRequest)WebRequest.Create("http://twitter.com/statuses/update.xml"); 26: request.Method = "POST"; 27: request.ServicePoint.Expect100Continue = false; 28: request.Headers.Add("Authorization", string.Format("Basic {0}", creds)); 29: request.ContentType = "application/x-www-form-urlencoded"; 30: request.ContentLength = tweet.Length; 31:   32: //write to stream 33: Stream reqStream = request.GetRequestStream(); 34: reqStream.Write(tweet, 0, tweet.Length); 35: reqStream.Close(); 36:   37: //check response 38: HttpWebResponse response = (HttpWebResponse)request.GetResponse(); 39:   40: //... 41: } 42: catch (Exception e) 43: { 44: //... 45: } 46: } 47: } 48: }   BTW, this is my first blog post.  Nothing earth shattering, I admit, but I needed to figure out how to post formatted code.  In the past I’ve used Alex Gorbatchev’s Syntax Highlighter with great success, but here at GWB I couldn’t get it to work. Windows Live Writer though, being a stand alone writer, worked with no problems.  For now, that’s what I’ll use.

    Read the article

  • Is it a "pattern smell" to put getters like "FullName" or "FormattedPhoneNumber" in your model?

    - by DanM
    I'm working on an ASP.NET MVC app, and I've been getting into the habit of putting what seem like helpful and convenient getters into my model/entity classes. For example: public class Member { public int Id { get; set; } public string FirstName { get; set; } public string LastName { get; set; } public string PhoneNumber { get; set; } public string FullName { get { return FirstName + " " + LastName; } } public string FormattedPhoneNumber { get { return "(" + PhoneNumber.Substring(0, 3) + ") " + PhoneNumber.Substring(3, 3) + "-" + PhoneNumber.Substring(6); } } } I'm wondering people think about the FullName and FormattedPhoneNumber getters. They make it very easy to create standardized data formats throughout the app, and they seem to save a lot of repeated code, but it could definitely be argued that data format is something that should be handled in mapping from model to view-model. In fact, I was originally applying these data formats in my service layer where I do my mapping, but it was becoming a burden to constantly have to write formatters then apply them in many different places. E.g., I use "Full Name" in most views, and having to type something like model.FullName = MappingUtilities.GetFullName(entity.FirstName, entity.LastName); all over the place seemed a lot less elegant than just typing model.FullName = entity.FullName (or, if you use something like AutoMapper, potentially not typing anything at all). So, where do you draw the line when it comes to data formatting. Is it "okay" to do data formatting in your model or is that a "pattern smell"? Note: I definitely do not have any html in my model. I use html helpers for that. I'm strictly talking about formatting or combining data (and especially data that is frequently used).

    Read the article

  • Dapper and object validation/business rules enforcement

    - by Eugene
    This isn't really Dapper-specific, actually, as it relates to any XML-serializeable object.. but it came up when I was storing an object using Dapper. Anyways, say I have a user class. Normally, I'd do something like this: class User { public string SIN {get; private set;} public string DisplayName {get;set;} public User(string sin) { if (string.IsNullOrWhiteSpace(sin)) throw new ArgumentException("SIN must be specified"); this.SIN = sin; } } Since a SIN is required, I'd just create a constructor with a sin parameter, and make it read-only. However, with a Dapper (and probably any other ORM), I need to provide a parameterless constructor, and make all properties writeable. So now I have this: class User: IValidatableObject { public int Id { get; set; } public string SIN { get; set; } public string DisplayName { get; set; } public IEnumerable<ValidationResult> Validate(ValidationContext validationContext) { // implementation } } This seems.. can't really pick the word, a bad smell? A) I'm allowing to change properties that should not be changed ever after an object has been created (SIN, userid) B) Now I have to implement IValidatableObject or something like that to test those properties before updating them to db. So how do you go about it ?

    Read the article

  • ASP.NET MVC: Moving code from controller action to service layer

    - by DigiMortal
    I fixed one controller action in my application that doesn’t seemed good enough for me. It wasn’t big move I did but worth to show to beginners how nice code you can write when using correct layering in your application. As an example I use code from my posting ASP.NET MVC: How to implement invitation codes support. Problematic controller action Although my controller action works well I don’t like how it looks. It is too much for controller action in my opinion. [HttpPost] public ActionResult GetAccess(string accessCode) {     if(string.IsNullOrEmpty(accessCode.Trim()))     {         ModelState.AddModelError("accessCode", "Insert invitation code!");         return View();     }       Guid accessGuid;       try     {         accessGuid = Guid.Parse(accessCode);     }     catch     {         ModelState.AddModelError("accessCode", "Incorrect format of invitation code!");         return View();                    }       using(var ctx = new EventsEntities())     {         var user = ctx.GetNewUserByAccessCode(accessGuid);         if(user == null)         {             ModelState.AddModelError("accessCode", "Cannot find account with given invitation code!");             return View();         }           user.UserToken = User.Identity.GetUserToken();         ctx.SaveChanges();     }       Session["UserId"] = accessGuid;       return Redirect("~/admin"); } Looking at this code my first idea is that all this access code stuff must be located somewhere else. We have working functionality in wrong place and we should do something about it. Service layer I add layers to my application very carefully because I don’t like to use hand grenade to kill a fly. When I see real need for some layer and it doesn’t add too much complexity I will add new layer. Right now it is good time to add service layer to my small application. After that it is time to move code to service layer and inject service class to controller. public interface IUserService {     bool ClaimAccessCode(string accessCode, string userToken,                          out string errorMessage);       // Other methods of user service } I need this interface when writing unit tests because I need fake service that doesn’t communicate with database and other external sources. public class UserService : IUserService {     private readonly IDataContext _context;       public UserService(IDataContext context)     {         _context = context;     }       public bool ClaimAccessCode(string accessCode, string userToken, out string errorMessage)     {         if (string.IsNullOrEmpty(accessCode.Trim()))         {             errorMessage = "Insert invitation code!";             return false;         }           Guid accessGuid;         if (!Guid.TryParse(accessCode, out accessGuid))         {             errorMessage = "Incorrect format of invitation code!";             return false;         }           var user = _context.GetNewUserByAccessCode(accessGuid);         if (user == null)         {             errorMessage = "Cannot find account with given invitation code!";             return false;         }           user.UserToken = userToken;         _context.SaveChanges();           errorMessage = string.Empty;         return true;     } } Right now I used simple solution for errors and made access code claiming method to follow usual TrySomething() methods pattern. This way I can keep error messages and their retrieval away from controller and in controller I just mediate error message from service to view. Controller Now all the code is moved to service layer and we need also some modifications to controller code so it makes use of users service. I don’t show here DI/IoC details about how to give service instance to controller. GetAccess() action of controller looks like this right now. [HttpPost] public ActionResult GetAccess(string accessCode) {     var userToken = User.Identity.GetUserToken();     string errorMessage;       if (!_userService.ClaimAccessCode(accessCode, userToken,                                       out errorMessage))     {                       ModelState.AddModelError("accessCode", errorMessage);         return View();     }       Session["UserId"] = Guid.Parse(accessCode);     return Redirect("~/admin"); } It’s short and nice now and it deals with web site part of access code claiming. In the case of error user is shown access code claiming view with error message that ClaimAccessCode() method returns as output parameter. If everything goes fine then access code is reserved for current user and user is authenticated. Conclusion When controller action grows big you have to move code to layers it actually belongs. In this posting I showed you how I moved access code claiming functionality from controller action to user service class that belongs to service layer of my application. As the result I have controller action that coordinates the user interaction when going through access code claiming process. Controller communicates with service layer and gets information about how access code claiming succeeded.

    Read the article

  • Getting Started with TypeScript – Classes, Static Types and Interfaces

    - by dwahlin
    I had the opportunity to speak on different JavaScript topics at DevConnections in Las Vegas this fall and heard a lot of interesting comments about JavaScript as I talked with people. The most frequent comment I heard from people was, “I guess it’s time to start learning JavaScript”. Yep – if you don’t already know JavaScript then it’s time to learn it. As HTML5 becomes more and more popular the amount of JavaScript code written will definitely increase. After all, many of the HTML5 features available in browsers have little to do with “tags” and more to do with JavaScript (web workers, web sockets, canvas, local storage, etc.). As the amount of JavaScript code being used in applications increases, it’s more important than ever to structure the code in a way that’s maintainable and easy to debug. While JavaScript patterns can certainly be used (check out my previous posts on the subject or my course on Pluralsight.com), several alternatives have come onto the scene such as CoffeeScript, Dart and TypeScript. In this post I’ll describe some of the features TypeScript offers and the benefits that they can potentially offer enterprise-scale JavaScript applications. It’s important to note that while TypeScript has several great features, it’s definitely not for everyone or every project especially given how new it is. The goal of this post isn’t to convince you to use TypeScript instead of standard JavaScript….I’m a big fan of JavaScript. Instead, I’ll present several TypeScript features and let you make the decision as to whether TypeScript is a good fit for your applications. TypeScript Overview Here’s the official definition of TypeScript from the http://typescriptlang.org site: “TypeScript is a language for application-scale JavaScript development. TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. Any browser. Any host. Any OS. Open Source.” TypeScript was created by Anders Hejlsberg (the creator of the C# language) and his team at Microsoft. To sum it up, TypeScript is a new language that can be compiled to JavaScript much like alternatives such as CoffeeScript or Dart. It isn’t a stand-alone language that’s completely separate from JavaScript’s roots though. It’s a superset of JavaScript which means that standard JavaScript code can be placed in a TypeScript file (a file with a .ts extension) and used directly. That’s a very important point/feature of the language since it means you can use existing code and frameworks with TypeScript without having to do major code conversions to make it all work. Once a TypeScript file is saved it can be compiled to JavaScript using TypeScript’s tsc.exe compiler tool or by using a variety of editors/tools. TypeScript offers several key features. First, it provides built-in type support meaning that you define variables and function parameters as being “string”, “number”, “bool”, and more to avoid incorrect types being assigned to variables or passed to functions. Second, TypeScript provides a way to write modular code by directly supporting class and module definitions and it even provides support for custom interfaces that can be used to drive consistency. Finally, TypeScript integrates with several different tools such as Visual Studio, Sublime Text, Emacs, and Vi to provide syntax highlighting, code help, build support, and more depending on the editor. Find out more about editor support at http://www.typescriptlang.org/#Download. TypeScript can also be used with existing JavaScript frameworks such as Node.js, jQuery, and others and even catch type issues and provide enhanced code help. Special “declaration” files that have a d.ts extension are available for Node.js, jQuery, and other libraries out-of-the-box. Visit http://typescript.codeplex.com/SourceControl/changeset/view/fe3bc0bfce1f#samples%2fjquery%2fjquery.d.ts for an example of a jQuery TypeScript declaration file that can be used with tools such as Visual Studio 2012 to provide additional code help and ensure that a string isn’t passed to a parameter that expects a number. Although declaration files certainly aren’t required, TypeScript’s support for declaration files makes it easier to catch issues upfront while working with existing libraries such as jQuery. In the future I expect TypeScript declaration files will be released for different HTML5 APIs such as canvas, local storage, and others as well as some of the more popular JavaScript libraries and frameworks. Getting Started with TypeScript To get started learning TypeScript visit the TypeScript Playground available at http://www.typescriptlang.org. Using the playground editor you can experiment with TypeScript code, get code help as you type, and see the JavaScript that TypeScript generates once it’s compiled. Here’s an example of the TypeScript playground in action:   One of the first things that may stand out to you about the code shown above is that classes can be defined in TypeScript. This makes it easy to group related variables and functions into a container which helps tremendously with re-use and maintainability especially in enterprise-scale JavaScript applications. While you can certainly simulate classes using JavaScript patterns (note that ECMAScript 6 will support classes directly), TypeScript makes it quite easy especially if you come from an object-oriented programming background. An example of the Greeter class shown in the TypeScript Playground is shown next: class Greeter { greeting: string; constructor (message: string) { this.greeting = message; } greet() { return "Hello, " + this.greeting; } } Looking through the code you’ll notice that static types can be defined on variables and parameters such as greeting: string, that constructors can be defined, and that functions can be defined such as greet(). The ability to define static types is a key feature of TypeScript (and where its name comes from) that can help identify bugs upfront before even running the code. Many types are supported including primitive types like string, number, bool, undefined, and null as well as object literals and more complex types such as HTMLInputElement (for an <input> tag). Custom types can be defined as well. The JavaScript output by compiling the TypeScript Greeter class (using an editor like Visual Studio, Sublime Text, or the tsc.exe compiler) is shown next: var Greeter = (function () { function Greeter(message) { this.greeting = message; } Greeter.prototype.greet = function () { return "Hello, " + this.greeting; }; return Greeter; })(); Notice that the code is using JavaScript prototyping and closures to simulate a Greeter class in JavaScript. The body of the code is wrapped with a self-invoking function to take the variables and functions out of the global JavaScript scope. This is important feature that helps avoid naming collisions between variables and functions. In cases where you’d like to wrap a class in a naming container (similar to a namespace in C# or a package in Java) you can use TypeScript’s module keyword. The following code shows an example of wrapping an AcmeCorp module around the Greeter class. In order to create a new instance of Greeter the module name must now be used. This can help avoid naming collisions that may occur with the Greeter class.   module AcmeCorp { export class Greeter { greeting: string; constructor (message: string) { this.greeting = message; } greet() { return "Hello, " + this.greeting; } } } var greeter = new AcmeCorp.Greeter("world"); In addition to being able to define custom classes and modules in TypeScript, you can also take advantage of inheritance by using TypeScript’s extends keyword. The following code shows an example of using inheritance to define two report objects:   class Report { name: string; constructor (name: string) { this.name = name; } print() { alert("Report: " + this.name); } } class FinanceReport extends Report { constructor (name: string) { super(name); } print() { alert("Finance Report: " + this.name); } getLineItems() { alert("5 line items"); } } var report = new FinanceReport("Month's Sales"); report.print(); report.getLineItems();   In this example a base Report class is defined that has a variable (name), a constructor that accepts a name parameter of type string, and a function named print(). The FinanceReport class inherits from Report by using TypeScript’s extends keyword. As a result, it automatically has access to the print() function in the base class. In this example the FinanceReport overrides the base class’s print() method and adds its own. The FinanceReport class also forwards the name value it receives in the constructor to the base class using the super() call. TypeScript also supports the creation of custom interfaces when you need to provide consistency across a set of objects. The following code shows an example of an interface named Thing (from the TypeScript samples) and a class named Plane that implements the interface to drive consistency across the app. Notice that the Plane class includes intersect and normal as a result of implementing the interface.   interface Thing { intersect: (ray: Ray) => Intersection; normal: (pos: Vector) => Vector; surface: Surface; } class Plane implements Thing { normal: (pos: Vector) =>Vector; intersect: (ray: Ray) =>Intersection; constructor (norm: Vector, offset: number, public surface: Surface) { this.normal = function (pos: Vector) { return norm; } this.intersect = function (ray: Ray): Intersection { var denom = Vector.dot(norm, ray.dir); if (denom > 0) { return null; } else { var dist = (Vector.dot(norm, ray.start) + offset) / (-denom); return { thing: this, ray: ray, dist: dist }; } } } }   At first glance it doesn’t appear that the surface member is implemented in Plane but it’s actually included automatically due to the public surface: Surface parameter in the constructor. Adding public varName: Type to a constructor automatically adds a typed variable into the class without having to explicitly write the code as with normal and intersect. TypeScript has additional language features but defining static types and creating classes, modules, and interfaces are some of the key features it offers. So is TypeScript right for you and your applications? That’s a not a question that I or anyone else can answer for you. You’ll need to give it a spin to see what you think. In future posts I’ll discuss additional details about TypeScript and how it can be used with enterprise-scale JavaScript applications. In the meantime, I’m in the process of working with John Papa on a new Typescript course for Pluralsight that we hope to have out in December of 2012.

    Read the article

  • Haskell: Best tools to validate textual input?

    - by Ana
    In Haskell, there are a few different options to "parsing text". I know of Alex & Happy, Parsec and Attoparsec. Probably some others. I'd like to put together a library where the user can input pieces of a URL (scheme e.g. HTTP, hostname, username, port, path, query, etc.) I'd like to validate the pieces according to the ABNF specified in RFC 3986. In other words, I'd like to put together a set of functions such as: validateScheme :: String -> Bool validateUsername :: String -> Bool validatePassword :: String -> Bool validateAuthority :: String -> Bool validatePath :: String -> Bool validateQuery :: String -> Bool What is the most appropriate tool to use to write these functions? Alex's regexps is very concise, but it's a tokenizer and doesn't straightforwardly allow you to parse using specific rules, so it's not quite what I'm looking for, but perhaps it can be wrangled into doing this easily. I've written Parsec code that does some of the above, but it looks very different from the original ABNF and unnecessarily long. So, there must be an easier and/or more appropriate way. Recommendations?

    Read the article

  • C# Role Provider for multiple applications

    - by Juventus18
    I'm making a custom RoleProvider that I would like to use across multiple applications in the same application pool. For the administration of roles (create new role, add users to role, etc..) I would like to create a master application that I could login to and set the roles for each additional application. So for example, I might have AppA and AppB in my organization, and I need to make an application called AppRoleManager that can set roles for AppA and AppB. I am having troubles implementing my custom RoleProvider because it uses an initialize method that gets the application name from the config file, but I need the application name to be a variable (i.e. "AppA" or "AppB") and passed as a parameter. I thought about just implementing the required methods, and then also having additional methods that pass application name as a parameter, but that seems clunky. i.e. public override CreateRole(string roleName) { //uses the ApplicationName property of this, which is set in web.config //creates role in db } public CreateRole(string ApplicationName, string roleName) { //creates role in db with specified params. } Also, I would prefer if people were prevented from calling CreateRole(string roleName) because the current instance of the class might have a different applicationName value than intended (what should i do here? throw NotImplementedException?). I tried just writing the class without inheriting RoleProvider. But it is required by the framework. Any general ideas on how to structure this project? I was thinking make a wrapper class that uses the role provider, and explicitly sets the application name before (and after) and calls to the provider something like this: static class RoleProviderWrapper { public static CreateRole(string pApplicationName, string pRoleName) { Roles.Provider.ApplicationName = pApplicationName; Roles.Provider.CreateRole(pRoleName); Roles.Provider.ApplicationName = "Generic"; } } is this my best-bet?

    Read the article

  • How I use RegExp in my Java program? [migrated]

    - by MIH1406
    I have the following string examples: 00001 1 12 123 00002 3 7 321 00003 99 23 332 00004 192 50 912 In a separate text file. Numbers are separated by tabs not spaces. I tried to read the file and print each line if it matches a given RegExp, but I could not find the suitable RegExp for these lines. private static void readFile() { String fileName = "processes.lst"; FileReader file = null; String result = ""; try { file = new FileReader(fileName); BufferedReader reader = new BufferedReader(file); String line = null; String regEx = "[0-9]\t[0-9]\t[0-9]\t[0-9]"; while((line = reader.readLine()) != null) { if(line.matches(regEx)) { result += "\n" + line; } } } catch(Exception e) { System.out.println(e.getMessage()); } finally { if(file != null) try { file.close(); } catch(Exception e) { System.out.println(e.getMessage()); } } System.out.println(result); } I ended up without any string being printed!!

    Read the article

  • Problem displaying tiles using tiled map loader with SFML

    - by user1905192
    I've been searching fruitlessly for what I did wrong for the past couple of days and I was wondering if anyone here could help me. My program loads my tile map, but then crashes with an assertion error. The program breaks at this line: spacing = atoi(tilesetElement-Attribute("spacing")); Here's my main game.cpp file. #include "stdafx.h" #include "Game.h" #include "Ball.h" #include "level.h" using namespace std; Game::Game() { gameState=NotStarted; ball.setPosition(500,500); level.LoadFromFile("meow.tmx"); } void Game::Start() { if (gameState==NotStarted) { window.create(sf::VideoMode(1024,768,320),"game"); view.reset(sf::FloatRect(0,0,1000,1000));//ball drawn at 500,500 level.SetDrawingBounds(sf::FloatRect(view.getCenter().x-view.getSize().x/2,view.getCenter().y-view.getSize().y/2,view.getSize().x, view.getSize().y)); window.setView(view); gameState=Playing; } while(gameState!=Exiting) { GameLoop(); } window.close(); } void Game::GameLoop() { sf::Event CurrentEvent; window.pollEvent(CurrentEvent); switch(gameState) { case Playing: { window.clear(sf::Color::White); window.setView(view); if (CurrentEvent.type==sf::Event::Closed) { gameState=Exiting; } if ( !ball.IsFalling() &&!ball.IsJumping() &&sf::Keyboard::isKeyPressed(sf::Keyboard::Space)) { ball.setJState(); } ball.Update(view); level.Draw(window); ball.Draw(window); window.display(); break; } } } And here's the file where the error happens: /********************************************************************* Quinn Schwab 16/08/2010 SFML Tiled Map Loader The zlib license has been used to make this software fully compatible with SFML. See http://www.sfml-dev.org/license.php This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. *********************************************************************/ #include "level.h" #include <iostream> #include "tinyxml.h" #include <fstream> int Object::GetPropertyInt(std::string name) { int i; i = atoi(properties[name].c_str()); return i; } float Object::GetPropertyFloat(std::string name) { float f; f = strtod(properties[name].c_str(), NULL); return f; } std::string Object::GetPropertyString(std::string name) { return properties[name]; } Level::Level() { //ctor } Level::~Level() { //dtor } using namespace std; bool Level::LoadFromFile(std::string filename) { TiXmlDocument levelFile(filename.c_str()); if (!levelFile.LoadFile()) { std::cout << "Loading level \"" << filename << "\" failed." << std::endl; return false; } //Map element. This is the root element for the whole file. TiXmlElement *map; map = levelFile.FirstChildElement("map"); //Set up misc map properties. width = atoi(map->Attribute("width")); height = atoi(map->Attribute("height")); tileWidth = atoi(map->Attribute("tilewidth")); tileHeight = atoi(map->Attribute("tileheight")); //Tileset stuff TiXmlElement *tilesetElement; tilesetElement = map->FirstChildElement("tileset"); firstTileID = atoi(tilesetElement->Attribute("firstgid")); spacing = atoi(tilesetElement->Attribute("spacing")); margin = atoi(tilesetElement->Attribute("margin")); //Tileset image TiXmlElement *image; image = tilesetElement->FirstChildElement("image"); std::string imagepath = image->Attribute("source"); if (!tilesetImage.loadFromFile(imagepath))//Load the tileset image { std::cout << "Failed to load tile sheet." << std::endl; return false; } tilesetImage.createMaskFromColor(sf::Color(255, 0, 255)); tilesetTexture.loadFromImage(tilesetImage); tilesetTexture.setSmooth(false); //Columns and rows (of tileset image) int columns = tilesetTexture.getSize().x / tileWidth; int rows = tilesetTexture.getSize().y / tileHeight; std::vector <sf::Rect<int> > subRects;//container of subrects (to divide the tilesheet image up) //tiles/subrects are counted from 0, left to right, top to bottom for (int y = 0; y < rows; y++) { for (int x = 0; x < columns; x++) { sf::Rect <int> rect; rect.top = y * tileHeight; rect.height = y * tileHeight + tileHeight; rect.left = x * tileWidth; rect.width = x * tileWidth + tileWidth; subRects.push_back(rect); } } //Layers TiXmlElement *layerElement; layerElement = map->FirstChildElement("layer"); while (layerElement) { Layer layer; if (layerElement->Attribute("opacity") != NULL)//check if opacity attribute exists { float opacity = strtod(layerElement->Attribute("opacity"), NULL);//convert the (string) opacity element to float layer.opacity = 255 * opacity; } else { layer.opacity = 255;//if the attribute doesnt exist, default to full opacity } //Tiles TiXmlElement *layerDataElement; layerDataElement = layerElement->FirstChildElement("data"); if (layerDataElement == NULL) { std::cout << "Bad map. No layer information found." << std::endl; } TiXmlElement *tileElement; tileElement = layerDataElement->FirstChildElement("tile"); if (tileElement == NULL) { std::cout << "Bad map. No tile information found." << std::endl; return false; } int x = 0; int y = 0; while (tileElement) { int tileGID = atoi(tileElement->Attribute("gid")); int subRectToUse = tileGID - firstTileID;//Work out the subrect ID to 'chop up' the tilesheet image. if (subRectToUse >= 0)//we only need to (and only can) create a sprite/tile if there is one to display { sf::Sprite sprite;//sprite for the tile sprite.setTexture(tilesetTexture); sprite.setTextureRect(subRects[subRectToUse]); sprite.setPosition(x * tileWidth, y * tileHeight); sprite.setColor(sf::Color(255, 255, 255, layer.opacity));//Set opacity of the tile. //add tile to layer layer.tiles.push_back(sprite); } tileElement = tileElement->NextSiblingElement("tile"); //increment x, y x++; if (x >= width)//if x has "hit" the end (right) of the map, reset it to the start (left) { x = 0; y++; if (y >= height) { y = 0; } } } layers.push_back(layer); layerElement = layerElement->NextSiblingElement("layer"); } //Objects TiXmlElement *objectGroupElement; if (map->FirstChildElement("objectgroup") != NULL)//Check that there is atleast one object layer { objectGroupElement = map->FirstChildElement("objectgroup"); while (objectGroupElement)//loop through object layers { TiXmlElement *objectElement; objectElement = objectGroupElement->FirstChildElement("object"); while (objectElement)//loop through objects { std::string objectType; if (objectElement->Attribute("type") != NULL) { objectType = objectElement->Attribute("type"); } std::string objectName; if (objectElement->Attribute("name") != NULL) { objectName = objectElement->Attribute("name"); } int x = atoi(objectElement->Attribute("x")); int y = atoi(objectElement->Attribute("y")); int width = atoi(objectElement->Attribute("width")); int height = atoi(objectElement->Attribute("height")); Object object; object.name = objectName; object.type = objectType; sf::Rect <int> objectRect; objectRect.top = y; objectRect.left = x; objectRect.height = y + height; objectRect.width = x + width; if (objectType == "solid") { solidObjects.push_back(objectRect); } object.rect = objectRect; TiXmlElement *properties; properties = objectElement->FirstChildElement("properties"); if (properties != NULL) { TiXmlElement *prop; prop = properties->FirstChildElement("property"); if (prop != NULL) { while(prop) { std::string propertyName = prop->Attribute("name"); std::string propertyValue = prop->Attribute("value"); object.properties[propertyName] = propertyValue; prop = prop->NextSiblingElement("property"); } } } objects.push_back(object); objectElement = objectElement->NextSiblingElement("object"); } objectGroupElement = objectGroupElement->NextSiblingElement("objectgroup"); } } else { std::cout << "No object layers found..." << std::endl; } return true; } Object Level::GetObject(std::string name) { for (int i = 0; i < objects.size(); i++) { if (objects[i].name == name) { return objects[i]; } } } void Level::SetDrawingBounds(sf::Rect<float> bounds) { drawingBounds = bounds; cout<<tileHeight; //Adjust the rect so that tiles are drawn just off screen, so you don't see them disappearing. drawingBounds.top -= tileHeight; drawingBounds.left -= tileWidth; drawingBounds.width += tileWidth; drawingBounds.height += tileHeight; } void Level::Draw(sf::RenderWindow &window) { for (int layer = 0; layer < layers.size(); layer++) { for (int tile = 0; tile < layers[layer].tiles.size(); tile++) { if (drawingBounds.contains(layers[layer].tiles[tile].getPosition().x, layers[layer].tiles[tile].getPosition().y)) { window.draw(layers[layer].tiles[tile]); } } } } I really hope that one of you can help me and I'm sorry if I've made any formatting issues. Thanks!

    Read the article

  • Rhino Mocks, AssertWasCalled with Arg Constraint on array parameter

    - by Etienne Giust
    Today, I had a hard time unit testing a function to make sure a Method with some array parameters was called. Method to be called : void AddUsersToRoles(string[] usernames, string[] roleNames);   I had previously used Arg<T>.Matches on complex types in other unit tests, but for some reason I was unable to find out how to apply the same logic with an array of strings.   It is actually quite simple to do, T really is a string[], so we use Arg<string[]>. As for the Matching part, a ToList() allows us to leverage the lambda expression.   sut.PermissionServices.AssertWasCalled(                 l => l.AddUsersToRoles(                     Arg<string[]>.Matches(a => a.ToList().First() == UserId.ToString())                     ,Arg<string[]>.Matches(a => a.ToList().First() == expectedRole1 && a.ToList()[1] == expectedRole2)                     )                     );   Of course, iw we expect an array with 2 or more values, the math would be something like : a => a.ToList()[0] == value1 && a.ToList()[1] == value2    … etc.

    Read the article

  • A Look Inside JSR 360 - CLDC 8

    - by Roger Brinkley
    If you didn't notice during JavaOne the Java Micro Edition took a major step forward in its consolidation with Java Standard Edition when JSR 360 was proposed to the JCP community. Over the last couple of years there has been a focus to move Java ME back in line with it's big brother Java SE. We see evidence of this in JCP itself which just recently merged the ME and SE/EE Executive Committees into a single Java Executive Committee. But just before that occurred JSR 360 was proposed and approved for development on October 29. So let's take a look at what changes are now being proposed. In a way JSR 360 is returning back to the original roots of Java ME when it was first introduced. It was indeed a subset of the JDK 4 language, but as Java progressed many of the language changes were not implemented in the Java ME. Back then the tradeoff was still a functionality, footprint trade off but the major market was feature phones. Today the market has changed and CLDC, while it will still target feature phones, will have it primary emphasis on embedded devices like wireless modules, smart meters, health care monitoring and other M2M devices. The major changes will come in three areas: language feature changes, library changes, and consolidating the Generic Connection Framework.  There have been three Java SE versions that have been implemented since JavaME was first developed so the language feature changes can be divided into changes that came in JDK 5 and those in JDK 7, which mostly consist of the project Coin changes. There were no language changes in JDK 6 but the changes from JDK 5 are: Assertions - Assertions enable you to test your assumptions about your program. For example, if you write a method that calculates the speed of a particle, you might assert that the calculated speed is less than the speed of light. In the example code below if the interval isn't between 0 and and 1,00 the an error of "Invalid value?" would be thrown. private void setInterval(int interval) { assert interval > 0 && interval <= 1000 : "Invalid value?" } Generics - Generics add stability to your code by making more of your bugs detectable at compile time. Code that uses generics has many benefits over non-generic code with: Stronger type checks at compile time. Elimination of casts. Enabling programming to implement generic algorithms. Enhanced for Loop - the enhanced for loop allows you to iterate through a collection without having to create an Iterator or without having to calculate beginning and end conditions for a counter variable. The enhanced for loop is the easiest of the new features to immediately incorporate in your code. In this tip you will see how the enhanced for loop replaces more traditional ways of sequentially accessing elements in a collection. void processList(Vector<string> list) { for (String item : list) { ... Autoboxing/Unboxing - This facility eliminates the drudgery of manual conversion between primitive types, such as int and wrapper types, such as Integer.  Hashtable<Integer, string=""> data = new Hashtable<>(); void add(int id, String value) { data.put(id, value); } Enumeration - Prior to JDK 5 enumerations were not typesafe, had no namespace, were brittle because they were compile time constants, and provided no informative print values. JDK 5 added support for enumerated types as a full-fledged class (dubbed an enum type). In addition to solving all the problems mentioned above, it allows you to add arbitrary methods and fields to an enum type, to implement arbitrary interfaces, and more. Enum types provide high-quality implementations of all the Object methods. They are Comparable and Serializable, and the serial form is designed to withstand arbitrary changes in the enum type. enum Season {WINTER, SPRING, SUMMER, FALL}; } private Season season; void setSeason(Season newSeason) { season = newSeason; } Varargs - Varargs eliminates the need for manually boxing up argument lists into an array when invoking methods that accept variable-length argument lists. The three periods after the final parameter's type indicate that the final argument may be passed as an array or as a sequence of arguments. Varargs can be used only in the final argument position. void warning(String format, String... parameters) { .. for(String p : parameters) { ...process(p);... } ... } Static Imports -The static import construct allows unqualified access to static members without inheriting from the type containing the static members. Instead, the program imports the members either individually or en masse. Once the static members have been imported, they may be used without qualification. The static import declaration is analogous to the normal import declaration. Where the normal import declaration imports classes from packages, allowing them to be used without package qualification, the static import declaration imports static members from classes, allowing them to be used without class qualification. import static data.Constants.RATIO; ... double r = Math.cos(RATIO * theta); Annotations - Annotations provide data about a program that is not part of the program itself. They have no direct effect on the operation of the code they annotate. There are a number of uses for annotations including information for the compiler, compiler-time and deployment-time processing, and run-time processing. They can be applied to a program's declarations of classes, fields, methods, and other program elements. @Deprecated public void clear(); The language changes from JDK 7 are little more familiar as they are mostly the changes from Project Coin: String in switch - Hey it only took us 18 years but the String class can be used in the expression of a switch statement. Fortunately for us it won't take that long for JavaME to adopt it. switch (arg) { case "-data": ... case "-out": ... Binary integral literals and underscores in numeric literals - Largely for readability, the integral types (byte, short, int, and long) can also be expressed using the binary number system. and any number of underscore characters (_) can appear anywhere between digits in a numerical literal. byte flags = 0b01001111; long mask = 0xfff0_ff08_4fff_0fffl; Multi-catch and more precise rethrow - A single catch block can handle more than one type of exception. In addition, the compiler performs more precise analysis of rethrown exceptions than earlier releases of Java SE. This enables you to specify more specific exception types in the throws clause of a method declaration. catch (IOException | InterruptedException ex) { logger.log(ex); throw ex; } Type Inference for Generic Instance Creation - Otherwise known as the diamond operator, the type arguments required to invoke the constructor of a generic class can be replaced with an empty set of type parameters (<>) as long as the compiler can infer the type arguments from the context.  map = new Hashtable<>(); Try-with-resource statement - The try-with-resources statement is a try statement that declares one or more resources. A resource is an object that must be closed after the program is finished with it. The try-with-resources statement ensures that each resource is closed at the end of the statement.  try (DataInputStream is = new DataInputStream(...)) { return is.readDouble(); } Simplified varargs method invocation - The Java compiler generates a warning at the declaration site of a varargs method or constructor with a non-reifiable varargs formal parameter. Java SE 7 introduced a compiler option -Xlint:varargs and the annotations @SafeVarargs and @SuppressWarnings({"unchecked", "varargs"}) to supress these warnings. On the library side there are new features that will be added to satisfy the language requirements above and some to improve the currently available set of APIs.  The library changes include: Collections update - New Collection, List, Set and Map, Iterable and Iteratator as well as implementations including Hashtable and Vector. Most of the work is too support generics String - New StringBuilder and CharSequence as well as a Stirng formatter. The javac compiler  now uses the the StringBuilder instead of String Buffer. Since StringBuilder is synchronized there is a performance increase which has necessitated the wahat String constructor works. Comparable interface - The comparable interface works with Collections, making it easier to reuse. Try with resources - Closeable and AutoCloseable Annotations - While support for Annotations is provided it will only be a compile time support. SuppressWarnings, Deprecated, Override NIO - There is a subset of NIO Buffer that have been in use on the of the graphics packages and needs to be pulled in and also support for NIO File IO subset. Platform extensibility via Service Providers (ServiceLoader) - ServiceLoader interface dos late bindings of interface to existing implementations. It helpe to package an interface and behavior of the implementation at a later point in time.Provider classes must have a zero-argument constructor so that they can be instantiated during loading. They are located and instantiated on demand and are identified via a provider-configuration file in the METAINF/services resource directory. This is a mechansim from Java SE. import com.XYZ.ServiceA; ServiceLoader<ServiceA> sl1= new ServiceLoader(ServiceA.class); Resources: META-INF/services/com.XYZ.ServiceA: ServiceAProvider1 ServiceAProvider2 ServiceAProvider3 META-INF/services/ServiceB: ServiceBProvider1 ServiceBProvider2 From JSR - I would rather use this list I think The Generic Connection Framework (GCF) was previously specified in a number of different JSRs including CLDC, MIDP, CDC 1.2, and JSR 197. JSR 360 represents a rare opportunity to consolidated and reintegrate parts that were duplicated in other specifications into a single specification, upgrade the APIs as well provide new functionality. The proposal is to specify a combined GCF specification that can be used with Java ME or Java SE and be backwards compatible with previous implementations. Because of size limitations as well as the complexity of the some features like InvokeDynamic and Unicode 6 will not be included. Additionally, any language or library changes in JDK 8 will be not be included. On the upside, with all the changes being made, backwards compatibility will still be maintained. JSR 360 is a major step forward for Java ME in terms of platform modernization, language alignment, and embedded support. If you're interested in following the progress of this JSR see the JSR's java.net project for details of the email lists, discussions groups.

    Read the article

  • F# Simple Twitter Update

    - by mroberts
    A short while ago I posted some code for a C# twitter update.  I decided to move the same functionality / logic to F#.  Here is what I came up with. 1: namespace Server.Actions 2:   3: open System 4: open System.IO 5: open System.Net 6: open System.Text 7:   8: type public TwitterUpdate() = 9: 10: //member variables 11: [<DefaultValue>] val mutable _body : string 12: [<DefaultValue>] val mutable _userName : string 13: [<DefaultValue>] val mutable _password : string 14:   15: //Properties 16: member this.Body with get() = this._body and set(value) = this._body <- value 17: member this.UserName with get() = this._userName and set(value) = this._userName <- value 18: member this.Password with get() = this._password and set(value) = this._password <- value 19:   20: //Methods 21: member this.Execute() = 22: let login = String.Format("{0}:{1}", this._userName, this._password) 23: let creds = Convert.ToBase64String(Encoding.ASCII.GetBytes(login)) 24: let tweet = Encoding.ASCII.GetBytes(String.Format("status={0}", this._body)) 25: let request = WebRequest.Create("http://twitter.com/statuses/update.xml") :?> HttpWebRequest 26: 27: request.Method <- "POST" 28: request.ServicePoint.Expect100Continue <- false 29: request.Headers.Add("Authorization", String.Format("Basic {0}", creds)) 30: request.ContentType <- "application/x-www-form-urlencoded" 31: request.ContentLength <- int64 tweet.Length 32: 33: let reqStream = request.GetRequestStream() 34: reqStream.Write(tweet, 0, tweet.Length) 35: reqStream.Close() 36:   37: let response = request.GetResponse() :?> HttpWebResponse 38:   39: match response.StatusCode with 40: | HttpStatusCode.OK -> true 41: | _ -> false   While the above seems to work, it feels to me like it is not taking advantage of some functional concepts.  Love to get some feedback as to how to make the above more “functional” in nature.  For example, I don’t like the mutable properties.

    Read the article

  • How to make Unity 3D work with Bumblebee using the Intel chipset

    - by EboMike
    I have a Sony VAIO S laptop with the dreaded Optimus and finally managed to get Bumblebee to work fully on Ubuntu 12.04 so that I can utilize both the hardware acceleration of the Intel chipset as well as the Nvidia one via optirun and/or bumble-app-settings. However, the desktop effects don't work. But they should, I vaguely remember that they worked for a while before I had Bumblebee installed. This is what I get with the support test: :~$ /usr/lib/nux/unity_support_test -p Xlib: extension "NV-GLX" missing on display ":0". OpenGL vendor string: Tungsten Graphics, Inc OpenGL renderer string: Mesa DRI Intel(R) Ivybridge Mobile OpenGL version string: 1.4 (2.1 Mesa 8.0.2) Not software rendered: yes Not blacklisted: yes GLX fbconfig: yes GLX texture from pixmap: yes GL npot or rect textures: yes GL vertex program: yes GL fragment program: yes GL vertex buffer object: no GL framebuffer object: yes GL version is 1.4+: yes Unity 3D supported: no First of all, I kind of doubt that the chipset doesn't support VBOs (essentially a standard feature in GL). Neither Xorg.0.log nor Xorg.8.log show any particular errors. As for the Nvidia drivers: In order to get them to work, I had to install the 304.22 drivers (older ones wouldn't work). They clobbered libglx.so, so I reinstated the xserver-xorg-core libglx.so in its original place, moved Nvidia's libglx.so to an nvidia-specific folder and specified that folder in the bumblebee.config. That seems to work and shouldn't cause the problem I see here. For fun, I tried to use the Nvidia chipset for Unity, but that didn't fly either: ~$ optirun /usr/lib/nux/unity_support_test -p OpenGL vendor string: NVIDIA Corporation OpenGL renderer string: GeForce GT 640M LE/PCIe/SSE2 OpenGL version string: 4.2.0 NVIDIA 304.22 Not software rendered: yes Not blacklisted: yes GLX fbconfig: yes GLX texture from pixmap: no GL npot or rect textures: yes GL vertex program: yes GL fragment program: yes GL vertex buffer object: yes GL framebuffer object: yes GL version is 1.4+: yes Unity 3D supported: no

    Read the article

  • C# Simple Twitter Update

    - by mroberts
    For what it's worth a simple twitter update. using System; using System.IO; using System.Net; using System.Text; namespace Server.Actions { public class TwitterUpdate { public string Body { get; set; } public string Login { get; set; } public string Password { get; set; } public override void Execute() { try { //encode user name and password string creds = Convert.ToBase64String(Encoding.ASCII.GetBytes(string.Format("{0}:{1}", this.Login, this.Password))); //encode tweet byte[] tweet = Encoding.ASCII.GetBytes("status=" + this.Body); //setup request HttpWebRequest request = (HttpWebRequest)WebRequest.Create("http://twitter.com/statuses/update.xml"); request.Method = "POST"; request.ServicePoint.Expect100Continue = false; request.Headers.Add("Authorization", string.Format("Basic {0}", creds)); request.ContentType = "application/x-www-form-urlencoded"; request.ContentLength = tweet.Length; //write to stream Stream reqStream = request.GetRequestStream(); reqStream.Write(tweet, 0, tweet.Length); reqStream.Close(); //check response HttpWebResponse response = (HttpWebResponse)request.GetResponse(); //... } catch (Exception e) { //... } } } }

    Read the article

  • Can I set my Optimus Nvidia card to run Unity3D with bumblebee?

    - by manuhalo
    I'd like to know whether I can run compiz on my Nvidia card to speed things up. It's a Dell XPS15 laptop but I'm mostly using it as a desktop, so battery life is not important. Apparently my Intel integrated card is able to run unity 3D, but my Nvidia GT 420M is not. Here's the output of unity_support_test, both with optirun and without it: manuhalo@Ubuntu-XPS-L501X:~$ optirun /usr/lib/nux/unity_support_test -p OpenGL vendor string: NVIDIA Corporation OpenGL renderer string: GeForce GT 420M/PCI/SSE2 OpenGL version string: 4.1.0 NVIDIA 280.13 Not software rendered: yes Not blacklisted: yes GLX fbconfig: yes GLX texture from pixmap: no GL npot or rect textures: yes GL vertex program: yes GL fragment program: yes GL vertex buffer object: yes GL framebuffer object: yes GL version is 1.4+: yes Unity 3D supported: no manuhalo@Ubuntu-XPS-L501X:~$ /usr/lib/nux/unity_support_test -p OpenGL vendor string: Tungsten Graphics, Inc OpenGL renderer string: Mesa DRI Intel(R) Ironlake Mobile OpenGL version string: 2.1 Mesa 7.11 Not software rendered: yes Not blacklisted: yes GLX fbconfig: yes GLX texture from pixmap: yes GL npot or rect textures: yes GL vertex program: yes GL fragment program: yes GL vertex buffer object: yes GL framebuffer object: yes GL version is 1.4+: yes Unity 3D supported: yes Any ideas of why this is happening? Thanks in advance to anyone able to shed some light on this. What I have tried: Installed the v290 drivers from the x-stable PPA. Tried forcing Unity-3D to work by telling Unity to ignore the unity-support-test results i.e. gksudo gedit /etc/environment add the following UNITY_FORCE_START=1 to the end of the file.

    Read the article

  • Importing tab delimited file into array in Visual Basic 2013 [migrated]

    - by JaceG
    I am needing to import a tab delimited text file that has 11 columns and an unknown number of rows (always minimum 3 rows). I would like to import this text file as an array and be able to call data from it as needed, throughout my project. And then, to make things more difficult, I need to replace items in the array, and even add more rows to it as the project goes on (all at runtime). Hopefully someone can suggest code corrections or useful methods. I'm hoping to use something like the array style sMyStrings(3,2), which I believe would be the easiest way to control my data. Any help is gladly appreciated, and worthy of a slab of beer. Here's the coding I have so far: Imports System.IO Imports Microsoft.VisualBasic.FileIO Public Class Main Dim strReadLine As String Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load Dim sReader As IO.StreamReader = Nothing Dim sRawString As String = Nothing Dim sMyStrings() As String = Nothing Dim intCount As Integer = -1 Dim intFullLoop As Integer = 0 If IO.File.Exists("C:\MyProject\Hardware.txt") Then ' Make sure the file exists sReader = New IO.StreamReader("C:\MyProject\Hardware.txt") Else MsgBox("File doesn't exist.", MsgBoxStyle.Critical, "Error") End End If Do While sReader.Peek >= 0 ' Make sure you can read beyond the current position sRawString = sReader.ReadLine() ' Read the current line sMyStrings = sRawString.Split(New Char() {Chr(9)}) ' Separate values and store in a string array For Each s As String In sMyStrings ' Loop through the string array intCount = intCount + 1 ' Increment If TextBox1.Text <> "" Then TextBox1.Text = TextBox1.Text & vbCrLf ' Add line feed TextBox1.Text = TextBox1.Text & s ' Add line to debug textbox If intFullLoop > 14 And intCount > -1 And CBool((intCount - 0) / 11 Mod 0) Then cmbSelectHinge.Items.Add(sMyStrings(intCount)) End If Next intCount = -1 intFullLoop = intFullLoop + 1 Loop End Sub

    Read the article

  • Eclipse Java Code Formatter in NetBeans Plugin Manager

    - by Geertjan
    Great news for Eclipse refugees everywhere. Benno Markiewicz forked the Eclipse formatter plugin that I blogged about sometime ago (here and here)... and he fixed many bugs, while also adding new features. It's a handy plugin when you're (a) switching from Eclipse to NetBeans and want to continue using your old formatting rules and (b) working in a polyglot IDE team, i.e., now the formatting rules defined in Eclipse can be imported into NetBeans IDE and everyone will happily be able to conform to the same set of formatting standards. And now you can get it directly from Tools | Plugins in NetBeans IDE 7.4: News from Benno on the plugin, received from him today: The plugin is verified by the NetBeans community and available in the Plugin Manager in NetBeans IDE 7.4 (as shown above) and also at the NetBeans Plugin Portal here, where you can also read quite some info about the plugin:  http://plugins.netbeans.org/plugin/50877/eclipse-code-formatter-for-java The issue with empty undo buffer was solved with the help of junichi11: https://github.com/markiewb/eclipsecodeformatter_for_netbeans/issues/18 The issue with the lost breakpoints remains unsolved and there was no further feedback. That is the main reason why the save action isn't activated by default. See also the open known issues at https://github.com/markiewb/eclipsecodeformatter_for_netbeans/issues?state=open Features are as follows:  Global configuration and project specific configuration.  On save action, which is disabled by default. Show the used formatter as a notification, which is enabled by default.  Finally, Benno testifies to the usefulness, stability, and reliability of the plugin: I use the Eclipse formatter provided by this plugin every day at work. Before I commit, I format the sources. It works and that's it. I am pleased with it. Here's where the Eclipse formatter is defined globally in Tools | Options: And here is per-project configuration, i.e., use the Project Properties dialog of any project to override the global settings:  Interested to hear from anyone who tries the plugin and has any feedback of any kind! 

    Read the article

  • Is encoding needed in this decryption?

    - by Lijo
    I have a Encryption – Decryption scenario as shown below. //[Clear text ID string as input] -- [(ASCII GetByte) + Encoding] -- [Encrption as byte array] -- [Database column is in VarBinary] -- [Pass byte[] as VarBinary parameter to SP for comparison] //[ID stored as VarBinary in Database] -- [Read as byte array] -- [(Decrypt as byte array) + Encoding + (ASCII Get String)] -- Show as string in the UI My question is in the decryption scenario. After decryption I get a byte array. I am doing an encoding (IBM037) after that. Is it correct? Is there something wrong in the flow shown above? private static byte[] GetEncryptedID(string id) { Interface_Request input = new Interface_Request(); input.RequestText = Encodeto64(id); input.RequestType = Encryption; ProgramInterface inputRequest = new ProgramInterface(); inputRequest.Test_Trial_Request = input; using (KTestService operation = new KTestService()) { return ((operation.KTrialOperation(inputRequest)).Test_Trial_Response.ResponseText); } } private static string GetDecryptedID(byte[] id) { Interface_Request input = new Interface_Request(); input.RequestText = id; input.RequestType = Decryption; ProgramInterface request = new ProgramInterface(); request.Test_Trial_Request = input; using (KTestService operationD = new KTestService()) { ProgramInterface1 response = operationD.KI014Operation(request); byte[] decryptedValue = response.ICSF_AES_Response.ResponseText; Encoding sourceByteFormat = Encoding.GetEncoding("IBM037"); Encoding destinationByteFormat = Encoding.ASCII; //Convert from one byte format to other (IBM to ASCII) byte[] ibmEncodedBytes = Encoding.Convert(sourceByteFormat, destinationByteFormat,decryptedValue); return System.Text.ASCIIEncoding.ASCII.GetString(ibmEncodedBytes); } } private static byte[] EncodeTo64(string toEncode) { byte[] dataInBytes = System.Text.ASCIIEncoding.ASCII.GetBytes(toEncode); Encoding destinationByteFormat = Encoding.GetEncoding("IBM037"); Encoding sourceByteFormat = Encoding.ASCII; //Convert from one byte format to other (ASCII to IBM) byte[] asciiBytes = Encoding.Convert(sourceByteFormat, destinationByteFormat, dataInBytes); return asciiBytes; }

    Read the article

< Previous Page | 314 315 316 317 318 319 320 321 322 323 324 325  | Next Page >