Search Results

Search found 39047 results on 1562 pages for 'process control'.

Page 331/1562 | < Previous Page | 327 328 329 330 331 332 333 334 335 336 337 338  | Next Page >

  • gunzip: invalid compressed data--format violated

    - by Arunjith
    Problem definition: I transferred a tar.gz file from a Linux machine to a Windows partition.The Windows partition has mounted with the Linux server as cifs. OS : Red Hat Enterprise Linux Server release 5 Symptom: After the copy process is successful, doing an integrity check with gunzip -t and the process get the following error: gunzip -t Backup-28--Jun--2011--Tuesday.tar.gz gunzip: Backup-28--Jun--2011--Tuesday.tar.gz: invalid compressed data--format violated And further tried to untar (tar -xvzf) and the process as well is failed.

    Read the article

  • Is NFS capable of preserving order of operations?

    - by JustJeff
    I have a diskless host 'A', that has a directory NFS mounted on server 'B'. A process on A writes to two files F1 and F2 in that directory, and a process on B monitors these files for changes. Assume that B polls for changes faster than A is expected to make them. Process A seeks the head of the files, writes data, and flushes. Process B seeks the head of the files and does reads. Are there any guarantees about how the order of the changes performed by A will be detected at B? Specifically, if A alternately writes to one file, and then the other, is it reasonable to expect that B will notice alternating changes to F1 and F2? Or could B conceivably detect a series of changes on F1 and then a series on F2? I know there are a lot of assumptions embedded in the question. For instance, I am virtually certain that, even operating on just one file, if A performs 100 operations on the file, B may see a smaller number of changes that give the same result, due to NFS caching some of the actions on A before they are communicated to B. And of course there would be issues with concurrent file access even if NFS weren't involved and both the reading and the writing process were running on the same real file system. The reason I'm even putting the question up here is that it seems like most of the time, the setup described above does detect the changes at B in the same order they are made at A, but that occasionally some events come through in transposed order. So, is it worth trying to make this work? Is there some way to tune NFS to make it work, perhaps cache settings or something? Or is fine-grained behavior like this just too much expect from NFS?

    Read the article

  • how to write or what is the concept behind the file unlocker program

    - by Jach Many
    Recently i was trying to delete a file thinking that i had closed the program which is manipulating the file but it did not delete because the program was still running. I misunderstood that file as an unwanted file. So i used the file unlocker program to find which process is manipulating that file. That program really worked well by showing the process which was handling that file. and that file was http://download.cnet.com/Unlocker/3000-2248_4-10493998.html. What i want to know is i would like to write a program in win32 C or .net to mimic the same process. Just to find which process is handling which file. and if possible to close it. Or i want to know the concept behind that. I know this cannot be explained in a few paragraphs yet if i could get some references or external links to references then that could be nice.

    Read the article

  • ionice idle is ignored

    - by Ferran Basora
    I have been testing the ionice command for a while and the idle (3) mode seems to be ignored in most cases. My test is to run both command at the same time: du <big folder> ionice -c 3 du <another big folder> If I check both process in iotop I see no difference in the percentage of io utilization for each process. To provide more information about the CFQ scheduler I'm using a 3.5.0 linux kernel. I started doing this test because I'm experimenting a system lag each time a daily cron job updatedb.mlocate is executed in my Ubuntu 12.10 machine. If you check the /etc/cron.daily/mlocate file you realize that the command is executed like: /usr/bin/ionice -c3 /usr/bin/updatedb.mlocate Also, the funny thing is that whenever my system for some reason starts using swap memory, the updatedb.mlocate io process is been scheduled faster than kswapd0 process, and then my system gets stuck. Some suggestion? References: http://ubuntuforums.org/showthread.php?t=1243951&page=2 https://bugs.launchpad.net/ubuntu/+source/findutils/+bug/332790

    Read the article

  • Firefox needs 1GB of RAM

    - by Davincho
    I work as a webdeveloper and for that I'm using firefox with firebug. I have noticed in the last time that after 2 hours of work, the firefox.exe process needed more than 1 GB of my working memory! Even if I close the window, the process still remains in the taskmanager and the only thing I can do is to 'kill' the process. Any suggestions? I'm using Windows7 with 2GB RAM, FF 3.6.8 y normally i have opened 10 tabs.

    Read the article

  • Windows 7 x64 - Problem with 32-bit processes...

    - by Will A
    Hi All, Is it just me, or is Windows 7 x64 awfully unstable when it comes to 32-bit processes? If I ever find myself in a situation where a 32-bit process hangs or otherwise misbehaves, terminating the process (through e.g. task manager) seems to fail every time - there are no error messages or anything, it's just that the process refuses to terminate. Anyone else have the same problems running 32-bit applications on x64 Windows? Thanks, Will.

    Read the article

  • FTP Folder Permissions / IIS8

    - by raam030
    I am having trouble copying information from one folder on an FTP site to another folder. Accessing the FTP site from a windows explorer. I have set Full Control over the parent folder, and I double checked...I have full control over the two folders that is trying to copy information from and to. It actually lets you right click and copy. Then when you try to go to another folder and right-click and paste, the paste option is grayed out. I was able to do it before and no one has changed the IIS permissions. I believe it's a Windows issue. Is it possible that even though the permissions are set to give full control over that directory, that something else is interfering? I did double check the IIS permissions. I am not on a domain, using anonymous access, made sure the access control is set to read/write.

    Read the article

  • Distribution upgrade (12.04 -> 14.04 LTS) halted while unpacking/installing packages

    - by Bob Sully
    As the title states...it just stopped unpacking/installing. "Preparing to unpack .../lirc_0.9.0-0ubuntu5_amd64.deb ..." then stopped in its tracks. Everything else is still running. The update manager process is still alive; if I hit ctrl-c, it gives me the warning message about leaving the system in a broken state. Also, if I run top, there is a process called "trusty" which is still running. I have NOT killed either process. lsb_release -a gives: LSB Version: core-2.0-amd64:core-2.0-noarch:core-3.0-amd64:core-3.0-noarch:core-3.1-amd64:core-3.1-noarch:core-3.2-amd64:core-3.2-noarch:core-4.0-amd64:core-4.0-noarch Distributor ID: Ubuntu Description: Ubuntu 14.04.1 LTS Release: 14.04 Codename: trusty I assume that if I try to restart update-manager, I won't be offered the option to upgrade again. Anyone have a way I can get the update-manager/dist-upgrade process to simply finish the upgrade? Thanks!

    Read the article

  • How to put text in same row but different column if a certain text is present in the same row?

    - by melai
    How can I put text in the same row but different column if a certain text is present in the same row? Issue Area Correction Done Process changed bin Process skip lap converted to global Security done global migration Process changed bin How can I code this in a macro? For example: If the correction done is in the cell, the Issue should be Process automatically. If the word global is present the Issue should be Security. I have 500 rows and I want to have the code until row 500.

    Read the article

  • Where are the Record Volume Controls in Windows 7?

    - by DJbigJack
    Windows XP (and previous versions) had a Record Volume Control panel that could be used to select between music inputs (Stereo Mix, Wav, etc) and a microphone. There doesn't seem to be an equivalent capability in Windows 7 . Is there a third party application that provides this functionality? Note: the Windows XP Record Volume Control was accessed by doubleclicking the Speaker icon in the system try which displayed the (Listen) Volume Control. In the menu there was a "properties" which gave you the option of displaying the RECORD Volume Control instead. I used this capabiliy in Win XP to select the required inputs for an Internet Radio Station and now with Win 7, I can't do it any longer

    Read the article

  • How do I create a Word 2007 form that will tab between text fields, and not within the text field?

    - by RoxzM
    I am trying to create a protected form in MS Word 2007. However, once created it won't tab between the text fields, or from a text field to the next field, it only tabs inside of the text fields. It will tab to the next field for everything else, ie date boxes, list boxes, etc. I have tried using the Rich Text control, the Plain Text control, the Text Form field and the Text Box control and it all does the same thing.

    Read the article

  • Nginx rewrites - When does one use the break flag (pattern target break)?

    - by anonymous-one
    The nginx wiki states: break - completes processing of current rewrite directives and non-rewrite processing continues within the current location block only. Is this to say that: If the rewrite pattern matches, process the rewrite (rewrite to target) but do not process any of the other rules in the location block, and process all other (cache, proxy, etc) directives in the location block? I am talking about the break flag as per: PATTERN TARGET FLAG Not the "break;" directive. Thanks.

    Read the article

  • Block a Server from reaching a machine

    - by user
    I have a Windows 2003 server that I want to block from accessing a specific IP address. I want to control this from the Server. because I control the machine. The traffic is http traffic (webservice call). It uses a non-standard port, so IP address+ Port combination would also work. Background: I have a development enviornment that for some reason is ignoring host file enteries under some circumstances. These host files point the enviornment at services in another Dev enviornment. Wne th host files are ignored, dev is talking to production. This is not my question, rather the motivation for this inquiry. I want is a failsafe to ensure dev will error instead of happily engaging in transactions with production. I control the dev server, I do not control the firewalls or the target production machine.

    Read the article

  • System.Reflection and InvokeMember, storing type, assembly, and object in a class

    - by Cyclone
    I have tested code to call a method inside of a compiled DLL, and it works. I created a class to store the object, type, and loaded assembly, but something is lost in translation because it is unable to find the member I wish to invoke. If I create a type, object, and assembly, and properly load everything into these and perform InvokeMember on the type, it works just fine. However, when I use the things inside of my class, it throws a MissingMemberException and does not invoke the member, obviously. What am I doing wrong? The member in question is a subroutine which takes one argument, a string. This is quite frustrating. Code being called: Dim MyLoadedAssembly As New LoadedAssembly() MyLoadedAssembly.MyAssembly = Assembly.LoadFrom("display.dll") MyLoadedAssembly.MyObject = MyLoadedAssembly.MyAssembly.CreateInstance("Display.UI.Window") MyLoadedAssembly.MyType = MyLoadedAssembly.MyAssembly.GetType("Display.UI.Window") Dim args() As Object = {"test"} MyLoadedAssembly.InvokeMember("Show", args) Private Class LoadedAssembly Public MyType As Type Public MyObject As Object Public MyAssembly As Assembly Public Function InvokeMember(ByVal name As String, ByVal args() As Object) Return MyType.InvokeMember(name, BindingFlags.Default Or BindingFlags.InvokeMethod Or BindingFlags.GetProperty Or BindingFlags.Instance, Nothing, MyObject, args) End Function End Class Code inside of display.dll: Namespace UI Public Class Window Private wind As New System.Windows.Forms.Form Public FullScreen As Boolean = False Public Overloads Sub Show(ByVal text As String) wind.Show() wind.Text = text End Sub Public Overloads Sub Show() wind.Show() End Sub End Class End Namespace The root namespace for display.dll is Display. Why is my code only working when not within this class? System.MissingMethodException was unhandled Message="Method 'Display.UI.Window.Show' not found." Source="mscorlib" StackTrace: at System.RuntimeType.InvokeMember(String name, BindingFlags bindingFlags, Binder binder, Object target, Object[] providedArgs, ParameterModifier[] modifiers, CultureInfo culture, String[] namedParams) at System.Type.InvokeMember(String name, BindingFlags invokeAttr, Binder binder, Object target, Object[] args) at IDE.IDE.LoadedAssembly.InvokeMember(String name, Object[] args) in C:\Documents and Settings\Davey\Desktop\RaptorScript\RaptorScript\RaptorScript\IDE.vb:line 69 at IDE.IDE.IDE_Load(Object sender, EventArgs e) in C:\Documents and Settings\Davey\Desktop\RaptorScript\RaptorScript\RaptorScript\IDE.vb:line 50 at System.EventHandler.Invoke(Object sender, EventArgs e) at System.Windows.Forms.Form.OnLoad(EventArgs e) at System.Windows.Forms.Form.OnCreateControl() at System.Windows.Forms.Control.CreateControl(Boolean fIgnoreVisible) at System.Windows.Forms.Control.CreateControl() at System.Windows.Forms.Control.WmShowWindow(Message& m) at System.Windows.Forms.Control.WndProc(Message& m) at System.Windows.Forms.ScrollableControl.WndProc(Message& m) at System.Windows.Forms.ContainerControl.WndProc(Message& m) at System.Windows.Forms.Form.WmShowWindow(Message& m) at System.Windows.Forms.Form.WndProc(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.OnMessage(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.WndProc(Message& m) at System.Windows.Forms.NativeWindow.DebuggableCallback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam) at System.Windows.Forms.SafeNativeMethods.ShowWindow(HandleRef hWnd, Int32 nCmdShow) at System.Windows.Forms.Control.SetVisibleCore(Boolean value) at System.Windows.Forms.Form.SetVisibleCore(Boolean value) at System.Windows.Forms.Control.set_Visible(Boolean value) at System.Windows.Forms.Application.ThreadContext.RunMessageLoopInner(Int32 reason, ApplicationContext context) at System.Windows.Forms.Application.ThreadContext.RunMessageLoop(Int32 reason, ApplicationContext context) at System.Windows.Forms.Application.Run(ApplicationContext context) at Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.OnRun() at Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.DoApplicationModel() at Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.Run(String[] commandLine) at IDE.My.MyApplication.Main(String[] Args) in 17d14f5c-a337-4978-8281-53493378c1071.vb:line 81 at System.AppDomain._nExecuteAssembly(Assembly assembly, String[] args) at System.AppDomain.ExecuteAssembly(String assemblyFile, Evidence assemblySecurity, String[] args) at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly() at System.Threading.ThreadHelper.ThreadStart_Context(Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ThreadHelper.ThreadStart() InnerException:

    Read the article

  • Preventing multiple repeat selection of synchronized Controls ?

    - by BillW
    The working code sample here synchronizes (single) selection in a TreeView, ListView, and ComboBox via the use of lambda expressions in a dictionary where the Key in the dictionary is a Control, and the Value of each Key is an Action<int. Where I am stuck is that I am getting multiple repetitions of execution of the code that sets the selection in the various controls in a way that's unexpected : it's not recursing : there's no StackOverFlow error happening; but, I would like to figure out why the current strategy for preventing multiple selection of the same controls is not working. Perhaps the real problem here is distinguishing between a selection update triggered by the end-user and a selection update triggered by the code that synchronizes the other controls ? Note: I've been experimenting with using Delegates, and forms of Delegates like Action<T>, to insert executable code in Dictionaries : I "learn best" by posing programming "challenges" to myself, and implementing them, as well as studying, at the same time, the "golden words" of luminaries like Skeet, McDonald, Liberty, Troelsen, Sells, Richter. Note: Appended to this question/code, for "deep background," is a statement of how I used to do things in pre C#3.0 days where it seemed like I did need to use explicit measures to prevent recursion when synchronizing selection. Code : Assume a WinForms standard TreeView, ListView, ComboBox, all with the same identical set of entries (i.e., the TreeView has only root nodes; the ListView, in Details View, has one Column). private Dictionary<Control, Action<int>> ControlToAction = new Dictionary<Control, Action<int>>(); private void Form1_Load(object sender, EventArgs e) { // add the Controls to be synchronized to the Dictionary // with appropriate Action<int> lambda expressions ControlToAction.Add(treeView1, (i => { treeView1.SelectedNode = treeView1.Nodes[i]; })); ControlToAction.Add(listView1, (i => { listView1.Items[i].Selected = true; })); ControlToAction.Add(comboBox1, (i => { comboBox1.SelectedIndex = i; })); } private void synchronizeSelection(int i, Control currentControl) { foreach(Control theControl in ControlToAction.Keys) { // skip the 'current control' if (theControl == currentControl) continue; // for debugging only Console.WriteLine(theControl.Name + " synchronized"); // execute the Action<int> associated with the Control ControlToAction[theControl](i); } } private void treeView1_AfterSelect(object sender, TreeViewEventArgs e) { synchronizeSelection(e.Node.Index, treeView1); } private void listView1_SelectedIndexChanged(object sender, EventArgs e) { // weed out ListView SelectedIndexChanged firing // with SelectedIndices having a Count of #0 if (listView1.SelectedIndices.Count > 0) { synchronizeSelection(listView1.SelectedIndices[0], listView1); } } private void comboBox1_SelectedValueChanged(object sender, EventArgs e) { if (comboBox1.SelectedIndex > -1) { synchronizeSelection(comboBox1.SelectedIndex, comboBox1); } } background : pre C# 3.0 Seems like, back in pre C# 3.0 days, I was always using a boolean flag to prevent recursion when multiple controls were updated. For example, I'd typically have code like this for synchronizing a TreeView and ListView : assuming each Item in the ListView was synchronized with a root-level node of the TreeView via a common index : // assume ListView is in 'Details View,' has a single column, // MultiSelect = false // FullRowSelect = true // HideSelection = false; // assume TreeView // HideSelection = false // FullRowSelect = true // form scoped variable private bool dontRecurse = false; private void treeView1_AfterSelect(object sender, TreeViewEventArgs e) { if(dontRecurse) return; dontRecurse = true; listView1.Items[e.Node.Index].Selected = true; dontRecurse = false; } private void listView1_SelectedIndexChanged(object sender, EventArgs e) { if(dontRecurse) return // weed out ListView SelectedIndexChanged firing // with SelectedIndices having a Count of #0 if (listView1.SelectedIndices.Count > 0) { dontRecurse = true; treeView1.SelectedNode = treeView1.Nodes[listView1.SelectedIndices[0]]; dontRecurse = false; } } Then it seems, somewhere around FrameWork 3~3.5, I could get rid of the code to suppress recursion, and there was was no recursion (at least not when synchronizing a TreeView and a ListView). By that time it had become a "habit" to use a boolean flag to prevent recursion, and that may have had to do with using a certain third party control.

    Read the article

  • Input string was not in a correct format.

    - by Jon
    I have this error which doesn't happen on my local machine but it does when the code is built by our build sever and deployed to the target server. I can't work out what the problem is, after having spent many hours on this issue. Here is an error trace: [FormatException: Input string was not in a correct format.] System.Number.StringToNumber(String str, NumberStyles options, NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal) +7469351 System.Number.ParseInt32(String s, NumberStyles style, NumberFormatInfo info) +119 System.Byte.Parse(String s, NumberStyles style, NumberFormatInfo info) +35 System.String.System.IConvertible.ToByte(IFormatProvider provider) +46 System.Convert.ChangeType(Object value, TypeCode typeCode, IFormatProvider provider) +199 System.Web.UI.WebControls.Parameter.GetValue(Object value, String defaultValue, TypeCode type, Boolean convertEmptyStringToNull, Boolean ignoreNullableTypeChanges) +127 System.Web.UI.WebControls.Parameter.GetValue(Object value, Boolean ignoreNullableTypeChanges) +66 System.Web.UI.WebControls.ParameterCollection.GetValues(HttpContext context, Control control) +285 System.Web.UI.WebControls.SqlDataSourceView.InitializeParameters(DbCommand command, ParameterCollection parameters, IDictionary exclusionList) +251 System.Web.UI.WebControls.SqlDataSourceView.ExecuteSelect(DataSourceSelectArguments arguments) +476 System.Web.UI.WebControls.SqlDataSource.Select(DataSourceSelectArguments arguments) +19 Customer_NewTenancyList.BindReport(GridSortEventArgs e) +442 Customer_NewTenancyList.Page_Load(Object sender, EventArgs e) +345 System.Web.UI.Control.OnLoad(EventArgs e) +73 baseRslpage.OnLoad(EventArgs e) +16 System.Web.UI.Control.LoadRecursive() +52 System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) +2170 Here is my own trace: Begin PreInit aspx.page End PreInit 3.12888928620816E-05 0.000031 aspx.page Begin Init 7.43111205474439E-05 0.000043 aspx.page End Init 0.00122138428208054 0.001147 aspx.page Begin InitComplete 0.00125379063540199 0.000032 aspx.page End InitComplete 0.00127781603527823 0.000024 aspx.page Begin PreLoad 0.00131022238859967 0.000032 aspx.page End PreLoad 0.00133424778847591 0.000024 aspx.page Begin Load 0.00135575890231859 0.000022 Page_Load 0.00145996209015392 0.000104 BindReport 0.0014856636807192 0.000026 Parameters add start: 30/03/2010 30/04/2010 0.0015569017850034 0.000071 Parameters add ended 0.00160048274291844 0.000044 Trace 1 0.00162450814279468 0.000024 Unhandled Execution Error Input string was not in a correct format. at System.Number.StringToNumber(String str, NumberStyles options, NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal) at System.Number.ParseInt32(String s, NumberStyles style, NumberFormatInfo info) at System.Byte.Parse(String s, NumberStyles style, NumberFormatInfo info) at System.String.System.IConvertible.ToByte(IFormatProvider provider) at System.Convert.ChangeType(Object value, TypeCode typeCode, IFormatProvider provider) at System.Web.UI.WebControls.Parameter.GetValue(Object value, String defaultValue, TypeCode type, Boolean convertEmptyStringToNull, Boolean ignoreNullableTypeChanges) at System.Web.UI.WebControls.Parameter.GetValue(Object value, Boolean ignoreNullableTypeChanges) at System.Web.UI.WebControls.ParameterCollection.GetValues(HttpContext context, Control control) at System.Web.UI.WebControls.SqlDataSourceView.InitializeParameters(DbCommand command, ParameterCollection parameters, IDictionary exclusionList) at System.Web.UI.WebControls.SqlDataSourceView.ExecuteSelect(DataSourceSelectArguments arguments) at System.Web.UI.WebControls.SqlDataSource.Select(DataSourceSelectArguments arguments) at Customer_NewTenancyList.BindReport(GridSortEventArgs e) at Customer_NewTenancyList.Page_Load(Object sender, EventArgs e) at System.Web.UI.Control.OnLoad(EventArgs e) at baseRslpage.OnLoad(EventArgs e) at System.Web.UI.Control.LoadRecursive() at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) And here is my code: Trace.Warn("BindReport") Dim sds As New SqlDataSource sds.SelectCommand = "C_MYSTORED_PROC" sds.ConnectionString = ConfigurationManager.ConnectionStrings("connstring").ConnectionString sds.SelectCommandType = SqlDataSourceCommandType.StoredProcedure Trace.Warn(String.Format("Parameters add start: {0} {1}", dpFrom.Text, dpTo.Text)) sds.SelectParameters.Add(New Parameter("FROMDATE", DbType.DateTime, dpFrom.Text)) sds.SelectParameters.Add(New Parameter("TODATE", DbType.DateTime, dpTo.Text)) Trace.Warn("Parameters add ended") Dim dv As DataView Dim dt As DataTable Trace.Warn("Trace 1") dv = sds.Select(New DataSourceSelectArguments()) Trace.Warn("Trace 2") If e IsNot Nothing Then dv.Sort = String.Format("{0} {1}", e.SortField, e.SortDirection) Trace.Warn("Trace 3") Else gvReport.CurrentSortColumnIndex = 0 gvReport.Columns(0).SortDirection = "DESC" Trace.Warn("Trace 4") End If Trace.Warn("Trace 5") dt = dv.ToTable() Cache("NewTenancyList") = dt Trace.Warn("Trace 6") Trace.Warn("About to databind") gvReport.DataSource = dt gvReport.DataBind() Trace.Warn("Databinded") What I don't understand and this is really weird, why does it work on my local machine but not on the live server? If i build the code on my local machine then copy over the complete \bin directory it works. If I pull the code from source safe, build then copy, I get this error. It seems to choke after the line "dv = sds.Select(New DataSourceSelectArguments())" in the code.

    Read the article

  • ValidationProperty not returning entered value for textbox in custom ontrol

    - by nat
    hi I have a custom control, (relevant code at the bottom) it consists of some text/links and a hidden textbox (rather than a hidden input). when rendered, the user via another dialog and some JS sets the value of the textbox to an integer and clicks submit on the form. i am trying to assure that the user has entered a number (via the JS) and that the textbox is not still set to its default of "0" the requiredfieldvalidator works just fine, if i dont change the value it spots it on the client and fills the validation summary on the page with the appropriate message. unfortunately when i do fill the textbox, the validator also rejests the post as the controls textbox text value is still set to "0", even though on the form it has changed. clearly i am doing something wrong.. but cant work out what it is? could someone enlighten me please, this is driving me potty if i step through the code, when the get of the mediaidtext is hit,the findcontrol finds does not the textbox, if i inspect the controls collection however i can find the textbox, but its value is still "0" it also seems that when findcontrol is called, the createchildcontrols is called again - thus resetting the value back to "0" there.. ! how can i ever assure the control realises that the textbox value has changed? many thanks code below nat [ValidationProperty("MediaIdText")] public class MediaLibraryFileControl: CompositeControl { private int mediaId = 0; public int MediaId { get { return mediaId; } set { mediaId = value; } } public string MediaIdText { get { string txt = "0"; Control ctrl = this.FindControl(this.UniqueID+ "_hidden"); try { txt = ((TextBox)ctrl).Text; MediaId = Convert.ToInt32(txt); } catch { MediaId = 0; } return txt; } } protected override void CreateChildControls() { this.Controls.Add(new LiteralControl("<span>")); this.Controls.Add(new LiteralControl("<span id=\"" + TextControlName + "\">" + getMediaDetails() + "</span>")); TextBox tb = new TextBox(); tb.Text = this.MediaId.ToString(); tb.ID = this.UniqueID + "_hidden"; tb.CssClass = "hidden"; this.Controls.Add(tb); if (Select == true) { this.Controls.Add(new LiteralControl(string.Format("&nbsp;[<a href=\"javascript:{0}(this,'{1}','{2}')\" class=\"select\">{3}</a>]", dialog, this.UniqueID, this.categoryId, "select"))); this.Controls.Add(new LiteralControl(string.Format("&nbsp;[<a href=\"javascript:{0}(this,'{1}')\" class=\"select\">{2}</a>]", clearDialog, this.ID, "clear"))); } this.Controls.Add(new LiteralControl("</span>")); } protected virtual string getMediaDetails() { //... return String.Empty; } } this is the code adding the validationcontrol the editcontrol is the instance of the control above public override Control RenderValidationControl(Control editControl) { Control ctrl = new PlaceHolder(); RequiredFieldValidator req = new RequiredFieldValidator(); req.ID = editControl.ClientID + "_validator"; req.ControlToValidate = editControl.ID; req.Display = ValidatorDisplay.None; req.InitialValue = "0"; req.EnableClientScript = false; req.ErrorMessage = "control cannot be blank"; ctrl.Controls.Add(req); return ctrl; }

    Read the article

  • How to insert and reterive key from registry editor

    - by deepa
    Hi.. I am new to cryptography.. i have to develop project based on cryptography..In part of my project I have to insert a key to the registry and afterwards i have to reterive the same key for decryption.. i done until getting the path of the registry .. Here i given my code.. import java.io.IOException; import java.io.InputStream; import java.io.StringWriter; public static final String readRegistry(String location, String key) { try { // Run reg query, then read output with StreamReader (internal class) Process process = Runtime.getRuntime().exec("reg query " + '"' + location + "\" /v " + key); StreamReader reader = new StreamReader(process.getInputStream()); reader.start(); process.waitFor(); reader.join(); String output = reader.getResult(); // Output has the following format: // \n<Version information>\n\n<key>\t<registry type>\t<value> if (!output.contains("\t")) { return null; } // Parse out the value String[] parsed = output.split("\t"); return parsed[parsed.length - 1]; } catch (Exception e) { return null; } } static class StreamReader extends Thread { private InputStream is; private StringWriter sw = new StringWriter(); ; public StreamReader(InputStream is) { this.is = is; } public void run() { try { int c; while ((c = is.read()) != -1) { System.out.println("Reading" + c); sw.write(c); } } catch (IOException e) { System.out.println("Exception in run() " + e); } } public String getResult() { System.out.println("Content " + sw.toString()); return sw.toString(); } } public static boolean addValue(String key, String valName, String val) { try { // Run reg query, then read output with StreamReader (internal class) Process process = Runtime.getRuntime().exec("reg add \"" + key + "\" /v \"" + valName + "\" /d \"\\\"" + val + "\\\"\" /f"); StreamReader reader = new StreamReader(process.getInputStream()); reader.start(); process.waitFor(); reader.join(); String output = reader.getResult(); System.out.println("Processing........ggggggggggggggggggggg." + output); // Output has the following format: // \n&lt;Version information&gt;\n\n&lt;key&gt;\t&lt;registry type&gt;\t&lt;value&gt; return output.contains("The operation completed successfully"); } catch (Exception e) { System.out.println("Exception in addValue() " + e); } return false; } public static void main(String[] args) { // Sample usage JAXRDeleteConcept hc = new JAXRDeleteConcept(); System.out.println("Before Insertion"); if (JAXRDeleteConcept.addValue("HKEY_CURRENT_USER\\Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\ComDlg32\\OpenSaveMRU", "REG_SZ", "Muthus")) { System.out.println("Inserted Successfully"); } String value = JAXRDeleteConcept.readRegistry("HKEY_CURRENT_USER\\Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\ComDlg32\\OpenSaveMRU" , "Project_Key"); System.out.println(value); } } But i dont know how to insert a key in a registry and read the particular key which i inserted..Please help me.. Thanks in advance..

    Read the article

  • how can I invoke a webservice from another webservice

    - by vinny
    I have two webservices A and B. A needs to invoke one of the webMethods in B. How can I achieve this? I am using maven's wsimport plugin to build A. This is to generate the necessary stubs for B and include them as part of the Webservice A. However, when I try to Invoke the webmethod o f B, I get an Exception. Can anyone please tell me what is going on? Below Is the code and the exception trace: Code: BBeanService bbs = new BBeanService(); BBean bb = bbs.getBBeanPort(); bb.invokeWebService(); // this is throwing exception This is the exception trace: java.lang.NullPointerException at com.sun.xml.ws.fault.SOAP11Fault.getProtocolException(SOAP11Fault.java:188) at com.sun.xml.ws.fault.SOAPFaultBuilder.createException(SOAPFaultBuilder.java:116) at com.sun.xml.ws.client.sei.SyncMethodHandler.invoke(SyncMethodHandler.java:119) at com.sun.xml.ws.client.sei.SyncMethodHandler.invoke(SyncMethodHandler.java:89) at com.sun.xml.ws.client.sei.SEIStub.invoke(SEIStub.java:118) at $Proxy175.getCase(Unknown Source) at com.kebok.ais.billing.server.ejb.impl.ChargeManagerBean.generateBillDetails(ChargeManagerBean.java:144) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at com.sun.enterprise.security.application.EJBSecurityManager.runMethod(EJBSecurityManager.java:1011) at com.sun.enterprise.security.SecurityUtil.invoke(SecurityUtil.java:175) at com.sun.ejb.containers.BaseContainer.invokeTargetBeanMethod(BaseContainer.java:2920) at com.sun.ejb.containers.BaseContainer.intercept(BaseContainer.java:4011) at com.sun.ejb.containers.WebServiceInvocationHandler.invoke(WebServiceInvocationHandler.java:190) at $Proxy173.generateBillDetails(Unknown Source) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at com.sun.enterprise.webservice.InvokerImpl.invoke(InvokerImpl.java:78) at com.sun.enterprise.webservice.EjbInvokerImpl.invoke(EjbInvokerImpl.java:82) at com.sun.xml.ws.server.InvokerTube$2.invoke(InvokerTube.java:146) at com.sun.xml.ws.server.sei.EndpointMethodHandler.invoke(EndpointMethodHandler.java:257) at com.sun.xml.ws.server.sei.SEIInvokerTube.processRequest(SEIInvokerTube.java:93) at com.sun.xml.ws.api.pipe.Fiber.__doRun(Fiber.java:595) at com.sun.xml.ws.api.pipe.Fiber.doRun(Fiber.java:554) at com.sun.xml.ws.api.pipe.Fiber.doRun(Fiber.java:539) at com.sun.xml.ws.api.pipe.Fiber.runSync(Fiber.java:436) at com.sun.xml.ws.api.pipe.helper.AbstractTubeImpl.process(AbstractTubeImpl.java:106) at com.sun.enterprise.webservice.MonitoringPipe.process(MonitoringPipe.java:147) at com.sun.xml.ws.api.pipe.helper.PipeAdapter.processRequest(PipeAdapter.java:115) at com.sun.xml.ws.api.pipe.Fiber._doRun(Fiber.java:595) at com.sun.xml.ws.api.pipe.Fiber.doRun(Fiber.java:554) at com.sun.xml.ws.api.pipe.Fiber.doRun(Fiber.java:539) at com.sun.xml.ws.api.pipe.Fiber.runSync(Fiber.java:436) at com.sun.xml.ws.api.pipe.helper.AbstractTubeImpl.process(AbstractTubeImpl.java:106) at com.sun.xml.ws.tx.service.TxServerPipe.process(TxServerPipe.java:317) at com.sun.enterprise.webservice.CommonServerSecurityPipe.processRequest(CommonServerSecurityPipe.java:222) at com.sun.enterprise.webservice.CommonServerSecurityPipe.process(CommonServerSecurityPipe.java:133) at com.sun.xml.ws.api.pipe.helper.PipeAdapter.processRequest(PipeAdapter.java:115) at com.sun.xml.ws.api.pipe.Fiber._doRun(Fiber.java:595) at com.sun.xml.ws.api.pipe.Fiber.doRun(Fiber.java:554) at com.sun.xml.ws.api.pipe.Fiber.doRun(Fiber.java:539) at com.sun.xml.ws.api.pipe.Fiber.runSync(Fiber.java:436) at com.sun.xml.ws.server.WSEndpointImpl$2.process(WSEndpointImpl.java:243) at com.sun.xml.ws.transport.http.HttpAdapter$HttpToolkit.handle(HttpAdapter.java:444) at com.sun.xml.ws.transport.http.HttpAdapter.handle(HttpAdapter.java:244) at com.sun.xml.ws.transport.http.servlet.ServletAdapter.handle(ServletAdapter.java:135) at com.sun.enterprise.webservice.Ejb3MessageDispatcher.handlePost(Ejb3MessageDispatcher.java:113) at com.sun.enterprise.webservice.Ejb3MessageDispatcher.invoke(Ejb3MessageDispatcher.java:87) at com.sun.enterprise.webservice.EjbWebServiceServlet.dispatchToEjbEndpoint(EjbWebServiceServlet.java:228) at com.sun.enterprise.webservice.EjbWebServiceServlet.service(EjbWebServiceServlet.java:157) at javax.servlet.http.HttpServlet.service(HttpServlet.java:847) at com.sun.enterprise.web.AdHocContextValve.invoke(AdHocContextValve.java:114) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:648) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:593) at org.apache.catalina.core.StandardPipeline.invoke(StandardPipeline.java:587) at com.sun.enterprise.web.WebPipeline.invoke(WebPipeline.java:87) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:222) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:648) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:593) at org.apache.catalina.core.StandardPipeline.invoke(StandardPipeline.java:587) at org.apache.catalina.core.ContainerBase.invoke(ContainerBase.java:1096) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:166) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:648) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:593) at org.apache.catalina.core.StandardPipeline.invoke(StandardPipeline.java:587) at org.apache.catalina.core.ContainerBase.invoke(ContainerBase.java:1096) at org.apache.coyote.tomcat5.CoyoteAdapter.service(CoyoteAdapter.java:288) at com.sun.enterprise.web.connector.grizzly.DefaultProcessorTask.invokeAdapter(DefaultProcessorTask.java:647) at com.sun.enterprise.web.connector.grizzly.DefaultProcessorTask.doProcess(DefaultProcessorTask.java:579) at com.sun.enterprise.web.connector.grizzly.DefaultProcessorTask.process(DefaultProcessorTask.java:831) at com.sun.enterprise.web.connector.grizzly.DefaultReadTask.executeProcessorTask(DefaultReadTask.java:341) at com.sun.enterprise.web.connector.grizzly.DefaultReadTask.doTask(DefaultReadTask.java:263) at com.sun.enterprise.web.connector.grizzly.DefaultReadTask.doTask(DefaultReadTask.java:214) at com.sun.enterprise.web.portunif.PortUnificationPipeline$PUTask.doTask(PortUnificationPipeline.java:380) at com.sun.enterprise.web.connector.grizzly.TaskBase.run(TaskBase.java:265) at com.sun.enterprise.web.connector.grizzly.ssl.SSLWorkerThread.run(SSLWorkerThread.java:106) Caused by: javax.xml.ws.WebServiceException: java.lang.NullPointerException at com.sun.enterprise.security.jmac.config.PipeHelper.makeFaultResponse(PipeHelper.java:328) at com.sun.enterprise.security.jmac.config.PipeHelper.getFaultResponse(PipeHelper.java:366) at com.sun.enterprise.webservice.CommonServerSecurityPipe.processRequest(CommonServerSecurityPipe.java:227) at com.sun.enterprise.webservice.CommonServerSecurityPipe.process(CommonServerSecurityPipe.java:133) at com.sun.xml.ws.api.pipe.helper.PipeAdapter.processRequest(PipeAdapter.java:115) at com.sun.xml.ws.api.pipe.Fiber._doRun(Fiber.java:595) at com.sun.xml.ws.api.pipe.Fiber._doRun(Fiber.java:554) at com.sun.xml.ws.api.pipe.Fiber.doRun(Fiber.java:539) at com.sun.xml.ws.api.pipe.Fiber.runSync(Fiber.java:436) at com.sun.xml.ws.server.WSEndpointImpl$2.process(WSEndpointImpl.java:243) at com.sun.xml.ws.transport.http.HttpAdapter$HttpToolkit.handle(HttpAdapter.java:444) at com.sun.xml.ws.transport.http.HttpAdapter.handle(HttpAdapter.java:244) at com.sun.xml.ws.transport.http.servlet.ServletAdapter.handle(ServletAdapter.java:135) at com.sun.enterprise.webservice.Ejb3MessageDispatcher.handlePost(Ejb3MessageDispatcher.java:113) at com.sun.enterprise.webservice.Ejb3MessageDispatcher.invoke(Ejb3MessageDispatcher.java:87) at com.sun.enterprise.webservice.EjbWebServiceServlet.dispatchToEjbEndpoint(EjbWebServiceServlet.java:228) at com.sun.enterprise.webservice.EjbWebServiceServlet.service(EjbWebServiceServlet.java:157) at javax.servlet.http.HttpServlet.service(HttpServlet.java:847) at com.sun.enterprise.web.AdHocContextValve.invoke(AdHocContextValve.java:114) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:648) at org.apache.catalina.

    Read the article

  • What is causing a Hibernate SQL query exception?

    - by Dark Star1
    Hi all and sorry in advance for this post but I've spent way too much time going around in circles so I'm hoping someone could shed a light on it here for me. I updated a webapp on Tomcat and I'm getting the following error which didn't exist on the previous version. Though I am quite confident that the part of code I modifed isn't to blame as I have tested the app on two different dev servers. The production server is configured thus: CentOS 5.4 virtual server with tomcat 5.5.23 running mysql 5.0.77. The two dev servers are: Windows XP SP2 running tomcat 5.5.23 with mysql 5.1.49 Mac OSX 10.6.6 Running tomcat 6 with mysql 5.1.51 The application was developed using struts (1.1 as far as I can gather) with hibernate 3 as the peristence layer. It only fails on the production server for some reason I can't fathom. I'd like to draw your attention to the java.sql.SQLException near the bottom. After some long searching I found this but because it was posted years ago (about 1 year before development started on this app I'm sure Hibernate has evolved from that version. as I can't find a way of implementing his solution. I use Eclipse Helios as an IDE. Thanks in advance for taking your time to read this, to all who manage to reply. javax.servlet.ServletException: org.hibernate.exception.SQLGrammarException: could not execute query at fr.company.action.login.LoginAction.execute(LoginAction.java:219) at org.apache.struts.action.RequestProcessor.processActionPerform(RequestProcessor.java:484) at org.apache.struts.action.RequestProcessor.process(RequestProcessor.java:274) at org.apache.struts.action.ActionServlet.process(ActionServlet.java:1482) at org.apache.struts.action.ActionServlet.doPost(ActionServlet.java:525) at javax.servlet.http.HttpServlet.service(HttpServlet.java:710) at javax.servlet.http.HttpServlet.service(HttpServlet.java:803) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:269) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:188) at fr.company.util.EncodingFilter.doFilter(EncodingFilter.java:37) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:215) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:188) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:210) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:172) at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:525) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:117) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:108) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:151) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:875) at org.apache.coyote.http11.Http11BaseProtocol$Http11ConnectionHandler.processConnection(Http11BaseProtocol.java:665) at org.apache.tomcat.util.net.PoolTcpEndpoint.processSocket(PoolTcpEndpoint.java:528) at org.apache.tomcat.util.net.MasterSlaveWorkerThread.run(MasterSlaveWorkerThread.java:113) at java.lang.Thread.run(Thread.java:636) javax.servlet.ServletException: org.hibernate.exception.SQLGrammarException: could not execute query at fr.company.action.login.LoginAction.execute(LoginAction.java:219) at org.apache.struts.action.RequestProcessor.processActionPerform(RequestProcessor.java:484) at org.apache.struts.action.RequestProcessor.process(RequestProcessor.java:274) at org.apache.struts.action.ActionServlet.process(ActionServlet.java:1482) at org.apache.struts.action.ActionServlet.doPost(ActionServlet.java:525) at javax.servlet.http.HttpServlet.service(HttpServlet.java:710) at javax.servlet.http.HttpServlet.service(HttpServlet.java:803) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:269) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:188) at fr.company.util.EncodingFilter.doFilter(EncodingFilter.java:37) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:215) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:188) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:210) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:172) at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:525) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:117) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:108) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:151) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:875) at org.apache.coyote.http11.Http11BaseProtocol$Http11ConnectionHandler.processConnection(Http11BaseProtocol.java:665) at org.apache.tomcat.util.net.PoolTcpEndpoint.processSocket(PoolTcpEndpoint.java:528) at org.apache.tomcat.util.net.MasterSlaveWorkerThread.run(MasterSlaveWorkerThread.java:113) at java.lang.Thread.run(Thread.java:636) java.lang.Exception: org.hibernate.exception.SQLGrammarException: could not execute query at fr.company.dao.GenericDAO.findOne(GenericDAO.java:204) at fr.company.dao.UserDAO.findOneUser(UserDAO.java:146) at fr.company.service.UserPeer.logUser(UserPeer.java:72) at fr.company.action.login.LoginAction.execute(LoginAction.java:127) at org.apache.struts.action.RequestProcessor.processActionPerform(RequestProcessor.java:484) at org.apache.struts.action.RequestProcessor.process(RequestProcessor.java:274) at org.apache.struts.action.ActionServlet.process(ActionServlet.java:1482) at org.apache.struts.action.ActionServlet.doPost(ActionServlet.java:525) at javax.servlet.http.HttpServlet.service(HttpServlet.java:710) at javax.servlet.http.HttpServlet.service(HttpServlet.java:803) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:269) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:188) at fr.company.util.EncodingFilter.doFilter(EncodingFilter.java:37) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:215) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:188) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:210) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:172) at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:525) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:117) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:108) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:151) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:875) at org.apache.coyote.http11.Http11BaseProtocol$Http11ConnectionHandler.processConnection(Http11BaseProtocol.java:665) at org.apache.tomcat.util.net.PoolTcpEndpoint.processSocket(PoolTcpEndpoint.java:528) at org.apache.tomcat.util.net.MasterSlaveWorkerThread.run(MasterSlaveWorkerThread.java:113) at java.lang.Thread.run(Thread.java:636) Caused by: org.hibernate.exception.SQLGrammarException: could not execute query at org.hibernate.exception.SQLStateConverter.convert(SQLStateConverter.java:65) at org.hibernate.exception.JDBCExceptionHelper.convert(JDBCExceptionHelper.java:43) at org.hibernate.loader.Loader.doList(Loader.java:2153) at org.hibernate.loader.Loader.listIgnoreQueryCache(Loader.java:2029) at org.hibernate.loader.Loader.list(Loader.java:2024) at org.hibernate.loader.hql.QueryLoader.list(QueryLoader.java:369) at org.hibernate.hql.ast.QueryTranslatorImpl.list(QueryTranslatorImpl.java:300) at org.hibernate.engine.query.HQLQueryPlan.performList(HQLQueryPlan.java:153) at org.hibernate.impl.SessionImpl.list(SessionImpl.java:1128) at org.hibernate.impl.QueryImpl.list(QueryImpl.java:79) at org.hibernate.impl.AbstractQueryImpl.uniqueResult(AbstractQueryImpl.java:749) at fr.company.dao.GenericDAO.findOne(GenericDAO.java:198) ... 26 more Caused by: java.sql.SQLException: Unknown column 'user0_1_.poloSize' in 'field list' at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:2928) at com.mysql.jdbc.MysqlIO.sendCommand(MysqlIO.java:1571) at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:1666) at com.mysql.jdbc.Connection.execSQL(Connection.java:2994) at com.mysql.jdbc.PreparedStatement.executeInternal(PreparedStatement.java:936) at com.mysql.jdbc.PreparedStatement.executeQuery(PreparedStatement.java:1030) at com.mchange.v2.c3p0.impl.NewProxyPreparedStatement.executeQuery(NewProxyPreparedStatement.java:76) at org.hibernate.jdbc.AbstractBatcher.getResultSet(AbstractBatcher.java:139) at org.hibernate.loader.Loader.getResultSet(Loader.java:1669) at org.hibernate.loader.Loader.doQuery(Loader.java:662) at org.hibernate.loader.Loader.doQueryAndInitializeNonLazyCollections(Loader.java:224) at org.hibernate.loader.Loader.doList(Loader.java:2150) ... 35 more

    Read the article

  • Silverlight 4 Tools for VS 2010 and WCF RIA Services Released

    - by ScottGu
    The final release of the Silverlight 4 Tools for Visual Studio 2010 and WCF RIA Services is now available for download.  Download and Install If you already have Visual Studio 2010 installed (or the free Visual Web Developer 2010 Express), then you can install both the Silverlight 4 Tooling Support as well as WCF RIA Services support by downloading and running this setup package (note: please make sure to uninstall the preview release of the Silverlight 4 Tools for VS 2010 if you have previously installed that).  The Silverlight 4 Tools for VS 2010 package extends the Silverlight support built into Visual Studio 2010 and enables support for Silverlight 4 applications as well.  It also installs WCF RIA Services application templates and libraries: Today’s release includes the English edition of the Silverlight 4 Tooling – localized versions will be available next month for other Visual Studio languages as well. Silverlight Tooling Support Visual Studio 2010 includes rich tooling support for building Silverlight and WPF applications. It includes a WYSIWYG designer surface that enables you to easily use controls to construct UI – including the ability to take advantage of layout containers, and apply styles and resources: The VS 2010 designer enables you to leverage the rich data binding support within Silverlight and WPF, and easily wire-up bindings on controls.  The Data Sources window within Silverlight projects can be used to reference POCO objects (plain old CLR objects), WCF Services, WCF RIA Services client proxies or SharePoint Lists.  For example, let’s assume we add a “Person” class like below to our project: We could then add it to the Data Source window which will cause it to show up like below in the IDE: We can optionally customize the default UI control types that are associated for each property on the object.  For example, below we’ll default the BirthDate property to be represented by a “DatePicker” control: And then when we drag/drop the Person type from the Data Sources onto the design-surface it will automatically create UI controls that are bound to the properties of our Person class: VS 2010 allows you to optionally customize each UI binding further by selecting a control, and then right-click on any of its properties within the property-grid and pull up the “Apply Bindings” dialog: This will bring up a floating data-binding dialog that enables you to easily configure things like the binding path on the data source object, specify a format convertor, specify string-format settings, specify how validation errors should be handled, etc: In addition to providing WYSIWYG designer support for WPF and Silverlight applications, VS 2010 also provides rich XAML intellisense and code editing support – enabling a rich source editing environment. Silverlight 4 Tool Enhancements Today’s Silverlight 4 Tooling Release for VS 2010 includes a bunch of nice new features.  These include: Support for Silverlight Out of Browser Applications and Elevated Trust Applications You can open up a Silverlight application’s project properties window and click the “Enable Running Application Out of Browser” checkbox to enable you to install an offline, out of browser, version of your Silverlight 4 application.  You can then customize a number of “out of browser” settings of your application within Visual Studio: Notice above how you can now indicate that you want to run with elevated trust, with hardware graphics acceleration, as well as customize things like the Window style of the application (allowing you to build a nice polished window style for consumer applications). Support for Implicit Styles and “Go to Value Definition” Support: Silverlight 4 now allows you to define “implicit styles” for your applications.  This allows you to style controls by type (for example: have a default look for all buttons) and avoid you having to explicitly reference styles from each control.  In addition to honoring implicit styles on the designer-surface, VS 2010 also now allows you to right click on any control (or on one of it properties) and choose the “Go to Value Definition…” context menu to jump to the XAML where the style is defined, and from there you can easily navigate onward to any referenced resources.  This makes it much easier to figure out questions like “why is my button red?”: Style Intellisense VS 2010 enables you to easily modify styles you already have in XAML, and now you get intellisense for properties and their values within a style based on the TargetType of the specified control.  For example, below we have a style being set for controls of type “Button” (this is indicated by the “TargetType” property).  Notice how intellisense now automatically shows us properties for the Button control (even within the <Setter> element): Great Video - Watch the Silverlight Designer Features in Action You can see all of the above Silverlight 4 Tools for Visual Studio 2010 features (and some more cool ones I haven’t mentioned) demonstrated in action within this 20 minute Silverlight.TV video on Channel 9: WCF RIA Services Today we also shipped the V1 release of WCF RIA Services.  It is included and automatically installed as part of the Silverlight 4 Tools for Visual Studio 2010 setup. WCF RIA Services makes it much easier to build business applications with Silverlight.  It simplifies the traditional n-tier application pattern by bringing together the ASP.NET and Silverlight platforms using the power of WCF for communication.  WCF RIA Services provides a pattern to write application logic that runs on the mid-tier and controls access to data for queries, changes and custom operations. It also provides end-to-end support for common tasks such as data validation, authentication and authorization based on roles by integrating with Silverlight components on the client and ASP.NET on the mid-tier. Put simply – it makes it much easier to query data stored on a server from a client machine, optionally manipulate/modify the data on the client, and then save it back to the server.  It supports a validation architecture that helps ensure that your data is kept secure and business rules are applied consistently on both the client and middle-tiers. WCF RIA Services uses WCF for communication between the client and the server  It supports both an optimized .NET to .NET binary serialization format, as well as a set of open extensions to the ATOM format known as ODATA and an optional JavaScript Object Notation (JSON) format that can be used by any client. You can hear Nikhil and Dinesh talk a little about WCF RIA Services in this 13 minutes Channel 9 video. Putting it all Together – the Silverlight 4 Training Kit Check out the Silverlight 4 Training Kit to learn more about how to build business applications with Silverlight 4, Visual Studio 2010 and WCF RIA Services. The training kit includes 8 modules, 25 videos, and several hands-on labs that explain Silverlight 4 and WCF RIA Services concepts and walks you through building an end-to-end application with them.    The training kit is available for free and is a great way to get started. Summary I’m really excited about today’s release – as they really complete the Silverlight development story and deliver a great end to end runtime + tooling story for building applications.  All of the above features are available for use both in VS 2010 as well as the free Visual Web Developer 2010 Express Edition – making it really easy to get started building great solutions. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Parallelism in .NET – Part 5, Partitioning of Work

    - by Reed
    When parallelizing any routine, we start by decomposing the problem.  Once the problem is understood, we need to break our work into separate tasks, so each task can be run on a different processing element.  This process is called partitioning. Partitioning our tasks is a challenging feat.  There are opposing forces at work here: too many partitions adds overhead, too few partitions leaves processors idle.  Trying to work the perfect balance between the two extremes is the goal for which we should aim.  Luckily, the Task Parallel Library automatically handles much of this process.  However, there are situations where the default partitioning may not be appropriate, and knowledge of our routines may allow us to guide the framework to making better decisions. First off, I’d like to say that this is a more advanced topic.  It is perfectly acceptable to use the parallel constructs in the framework without considering the partitioning taking place.  The default behavior in the Task Parallel Library is very well-behaved, even for unusual work loads, and should rarely be adjusted.  I have found few situations where the default partitioning behavior in the TPL is not as good or better than my own hand-written partitioning routines, and recommend using the defaults unless there is a strong, measured, and profiled reason to avoid using them.  However, understanding partitioning, and how the TPL partitions your data, helps in understanding the proper usage of the TPL. I indirectly mentioned partitioning while discussing aggregation.  Typically, our systems will have a limited number of Processing Elements (PE), which is the terminology used for hardware capable of processing a stream of instructions.  For example, in a standard Intel i7 system, there are four processor cores, each of which has two potential hardware threads due to Hyperthreading.  This gives us a total of 8 PEs – theoretically, we can have up to eight operations occurring concurrently within our system. In order to fully exploit this power, we need to partition our work into Tasks.  A task is a simple set of instructions that can be run on a PE.  Ideally, we want to have at least one task per PE in the system, since fewer tasks means that some of our processing power will be sitting idle.  A naive implementation would be to just take our data, and partition it with one element in our collection being treated as one task.  When we loop through our collection in parallel, using this approach, we’d just process one item at a time, then reuse that thread to process the next, etc.  There’s a flaw in this approach, however.  It will tend to be slower than necessary, often slower than processing the data serially. The problem is that there is overhead associated with each task.  When we take a simple foreach loop body and implement it using the TPL, we add overhead.  First, we change the body from a simple statement to a delegate, which must be invoked.  In order to invoke the delegate on a separate thread, the delegate gets added to the ThreadPool’s current work queue, and the ThreadPool must pull this off the queue, assign it to a free thread, then execute it.  If our collection had one million elements, the overhead of trying to spawn one million tasks would destroy our performance. The answer, here, is to partition our collection into groups, and have each group of elements treated as a single task.  By adding a partitioning step, we can break our total work into small enough tasks to keep our processors busy, but large enough tasks to avoid overburdening the ThreadPool.  There are two clear, opposing goals here: Always try to keep each processor working, but also try to keep the individual partitions as large as possible. When using Parallel.For, the partitioning is always handled automatically.  At first, partitioning here seems simple.  A naive implementation would merely split the total element count up by the number of PEs in the system, and assign a chunk of data to each processor.  Many hand-written partitioning schemes work in this exactly manner.  This perfectly balanced, static partitioning scheme works very well if the amount of work is constant for each element.  However, this is rarely the case.  Often, the length of time required to process an element grows as we progress through the collection, especially if we’re doing numerical computations.  In this case, the first PEs will finish early, and sit idle waiting on the last chunks to finish.  Sometimes, work can decrease as we progress, since previous computations may be used to speed up later computations.  In this situation, the first chunks will be working far longer than the last chunks.  In order to balance the workload, many implementations create many small chunks, and reuse threads.  This adds overhead, but does provide better load balancing, which in turn improves performance. The Task Parallel Library handles this more elaborately.  Chunks are determined at runtime, and start small.  They grow slowly over time, getting larger and larger.  This tends to lead to a near optimum load balancing, even in odd cases such as increasing or decreasing workloads.  Parallel.ForEach is a bit more complicated, however. When working with a generic IEnumerable<T>, the number of items required for processing is not known in advance, and must be discovered at runtime.  In addition, since we don’t have direct access to each element, the scheduler must enumerate the collection to process it.  Since IEnumerable<T> is not thread safe, it must lock on elements as it enumerates, create temporary collections for each chunk to process, and schedule this out.  By default, it uses a partitioning method similar to the one described above.  We can see this directly by looking at the Visual Partitioning sample shipped by the Task Parallel Library team, and available as part of the Samples for Parallel Programming.  When we run the sample, with four cores and the default, Load Balancing partitioning scheme, we see this: The colored bands represent each processing core.  You can see that, when we started (at the top), we begin with very small bands of color.  As the routine progresses through the Parallel.ForEach, the chunks get larger and larger (seen by larger and larger stripes). Most of the time, this is fantastic behavior, and most likely will out perform any custom written partitioning.  However, if your routine is not scaling well, it may be due to a failure in the default partitioning to handle your specific case.  With prior knowledge about your work, it may be possible to partition data more meaningfully than the default Partitioner. There is the option to use an overload of Parallel.ForEach which takes a Partitioner<T> instance.  The Partitioner<T> class is an abstract class which allows for both static and dynamic partitioning.  By overriding Partitioner<T>.SupportsDynamicPartitions, you can specify whether a dynamic approach is available.  If not, your custom Partitioner<T> subclass would override GetPartitions(int), which returns a list of IEnumerator<T> instances.  These are then used by the Parallel class to split work up amongst processors.  When dynamic partitioning is available, GetDynamicPartitions() is used, which returns an IEnumerable<T> for each partition.  If you do decide to implement your own Partitioner<T>, keep in mind the goals and tradeoffs of different partitioning strategies, and design appropriately. The Samples for Parallel Programming project includes a ChunkPartitioner class in the ParallelExtensionsExtras project.  This provides example code for implementing your own, custom allocation strategies, including a static allocator of a given chunk size.  Although implementing your own Partitioner<T> is possible, as I mentioned above, this is rarely required or useful in practice.  The default behavior of the TPL is very good, often better than any hand written partitioning strategy.

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Underwriting in a New Frontier: Spurring Innovation

    - by [email protected]
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} Susan Keuer, product strategy manager for Oracle Insurance, shares her experiences and insight from the 2010 Association of Home Office Underwriters (AHOU) Annual Conference, April 11-14, in San Antonio, Texas    How can I be more innovative in underwriting?  It's a common question I hear from insurance carriers, producers and others, so it was no surprise that it was the key theme at the recent 2010 AHOU Annual Conference.  This year's event drew more than 900 insurance professionals involved in the underwriting process across life and annuities, property and casualty and reinsurance from around the globe, including the U.S., Canada, Australia, Bahamas, and more, to San Antonio - a Texas city where innovation transformed a series of downtown drainage canals into its premiere River Walk tourist destination.   CNN's Medical Correspondent Dr. Sanjay Gupta kicked off the conference with a phenomenal opening session that drove home the theme of the conference, "Underwriting in a New Frontier:  Spurring Innovation."   Drawing from his own experience as a neurosurgeon treating critically injured medical patients in the field in Iraq, Gupta inspired audience members to think outside the box during the underwriting process. He shared a compelling story of operating on a soldier who had suffered a head-related trauma in a field hospital.  With minimal supplies available Gupta used a Black and Decker saw to operate on the soldier's head and reduce pressure on his swelling brain. Drawing from this example, Gupta encouraged underwriters to think creatively, be innovative, and consider new tools and sources of information, such as social networking sites, during the underwriting process. So as you are looking at risk take into consideration all resources you have available.    Gupta also stressed the concept of IKIGAI - noting that individuals who believe that their life is worth living are less likely to die than are their counterparts without this belief.  How does one quantify this approach to life or thought process when evaluating risk?  Could this be something to consider as a "category" in the near future? How can this same belief in your own work spur innovation?   The role of technology was a hot topic of discussion throughout the conference.  Sessions delved into the latest in underwriting software to the rise of social media and how it is being increasingly integrated into underwriting process and solutions.  In one session a trio of panelists representing the carrier, producer and vendor communities stressed the importance to underwriters of leveraging new technology and the plethora of online information sources, which all could be used to accurately, honestly and consistently evaluate the risk throughout the underwriting process.   Another focused on the explosion of social media noting:  1.    Social media is growing exponentially - About eight percent of Americans used social media five years ago. Today about 46 percent of Americans do so, with 85 percent of financial services professionals using social media in their work.  2.    It will impact your business - Underwriters reconfirmed over and over that they are increasingly using "free" tools that are available in cyberspace in lieu of more costly solutions, such as inspection reports conducted by individuals in the field.  3.    Information is instantly available on the Web, anytime, anywhere - LinkedIn was mentioned as a way to connect to peers in the underwriting community and producers alike.  Many carriers and agents also are using Facebook to promote their company to customers - and as a point-of-entry to allow them to perform some functionality - such as accessing product marketing information versus directing users to go to the carrier's own proprietary website.  Other carriers have released their tight brand marketing to allow their producers to drive more business to their personal Facebook site where they offer innovative tools such as Application Capture or asking medical information in a more relaxed fashion.     Other key topics at the conference included the economy, ongoing industry consolidation, real-estate valuations as an asset and input into the underwriting process, and producer trends.  All stressed a "back to basics" approach for low cost, term products.   Finally, Connie Merritt, RN, PHN, entertained the large group of atttendees with audience-engaging insight on how to "Tame the Lions in Your Life - Dealing with Complainers, Bullies, Grump and Curmudgeon." Merritt noted "we are too busy for our own good." She shared how her overachieving personality had impacted her life.  Audience members then were asked to pick red, yellow, blue, or green shapes, without knowing that each one represented a specific personality trait.  For example, those who picked blue were the peacemakers. Those who choose yellow were social - the hint was to "Be Quiet Longer."  She then offered these "lion taming" steps:   1.    Admit It 2.    Accept It 3.    Let Go 4.    Be Present (which paralleled Gupta's IKIGAI concept)   When thinking about underwriting I encourage you to be present in the moment and think creatively, but don't be afraid to look ahead to the future and be an innovator.  I hope to see you at next year's AHOU Annual Conference, May 1-4, 2011 at The Mirage in Las Vegas, Nev.     Susan Keuer is the product strategy manager for new business underwriting.  She brings more than 20 years of insurance industry experience working with leading insurance carriers and technology companies to her role on the product strategy team for life/annuities solutions within the Oracle Insurance Global Business Unit  

    Read the article

  • Does Test Driven Development (TDD) improve Quality and Correctness? (Part 1)

    - by David V. Corbin
    Since the dawn of the computer age, various methodologies have been introduced to improve quality and reduce cost. In this posting, I will by sharing my experiences with Test Driven Development; both its benefits and limitations. To start this topic, we need to agree on what TDD is. The first is to define each of the three words as used in this context. Test - An item or action which measures something in some quantifiable form. Driven - The primary motivation or focus of a series of activities (process) Development - All phases of a software project/product from concept through delivery. The above are very simple definitions that result in the following: "TDD is a process where the primary focus is on measuring and quantifying all aspects of the creation of a (software) product." There are many places where TDD is used outside of software development, even though it is not known by this name. Consider the (conventional) education process that most of us grew up on. The focus was to get the best grades as measured by different tests. Many of these tests measured rote memorization and not understanding of the subject matter. The result of this that many people graduated with high scores but without "quality and correctness" in their ability to utilize the subject matter (of course, the flip side is true where certain people DID understand the material but were not very good at taking this type of test). Returning to software development, let us look at some common scenarios. While these items are generally applicable regardless of platform, language and tools; the remainder of this post will utilize Microsoft Visual Studio and Team Foundation Server (TFS) for examples. It should be realized that everyone does at least some aspect of TDD. At the most rudimentary level, getting a program to compile involves a "pass/fail" measurement (is the syntax valid) that drives their ability to proceed further (run the program). Other developers may create "Unit Tests" in the belief that having a test for every method/property of a class and good code coverage is the goal of TDD. These items may be helpful and even important, but really only address a small aspect of the overall effort. To see TDD in a bigger view, lets identify the various activities that are part of the Software Development LifeCycle. These are going to be presented in a Waterfall style for simplicity, but each item also occurs within Iterative methodologies such as Agile/Scrum. the key ones here are: Requirements Gathering Architecture Design Implementation Quality Assurance Can each of these items be subjected to a process which establishes metrics (quantified metrics) that reflect both the quality and correctness of each item? It should be clear that conventional Unit Tests do not apply to all of these items; at best they can verify that a local aspect (e.g. a Class/Method) of implementation matches the (test writers perspective of) the appropriate design document. So what can we do? For each of area, the goal is to create tests that are quantifiable and durable. The ability to quantify the measurements (beyond a simple pass/fail) is critical to tracking progress(eventually measuring the level of success that has been achieved) and for providing clear information on what items need to be addressed (along with the appropriate time to address them - in varying levels of detail) . Durability is important so that the test can be reapplied (ideally in an automated fashion) over the entire cycle. Returning for a moment back to our "education example", one must also be careful of how the tests are organized and how the measurements are taken. If a test is in a multiple choice format, there is a significant statistical probability that a correct answer might be the result of a random guess. Also, in many situations, having the student simply provide a final answer can obscure many important elements. For example, on a math test, having the student simply provide a numeric answer (rather than showing the methodology) may result in a complete mismatch between the process and the result. It is hard to determine which is worse: The student who makes a simple arithmetric error at one step of a long process (resulting in a wrong answer) or The student who (without providing the "workflow") uses a completely invalid approach, yet still comes up with the right number. The "Wrong Process"/"Right Answer" is probably the single biggest problem in software development. Even very simple items can suffer from this. As an example consider the following code for a "straight line" calculation....Is it correct? (for Integral Points)         int Solve(int m, int b, int x) { return m * x + b; }   Most people would respond "Yes". But let's take the question one step further... Is it correct for all possible values of m,b,x??? (no fair if you cheated by being focused on the bolded text!)  Without additional information regarding constrains on "the possible values of m,b,x" the answer must be NO, there is the risk of overflow/wraparound that will produce an incorrect result! To properly answer this question (i.e. Test the Code), one MUST be able to backtrack from the implementation through the design, and architecture all the way back to the requirements. And the requirement itself must be tested against the stakeholder(s). It is only when the bounding conditions are defined that it is possible to determine if the code is "Correct" and has "Quality". Yet, how many of us (myself included) have written such code without even thinking about it. In many canses we (think we) "know" what the bounds are, and that the code will be correct. As we all know, requirements change, "code reuse" causes implementations to be applied to different scenarios, etc. This leads directly to the types of system failures that plague so many projects. This approach to TDD is much more holistic than ones which start by focusing on the details. The fundamental concepts still apply: Each item should be tested. The test should be defined/implemented before (or concurrent with) the definition/implementation of the actual item. We also add concepts that expand the scope and alter the style by recognizing: There are many things beside "lines of code" that benefit from testing (measuring/evaluating in a formal way) Correctness and Quality can not be solely measured by "correct results" In the future parts, we will examine in greater detail some of the techniques that can be applied to each of these areas....

    Read the article

< Previous Page | 327 328 329 330 331 332 333 334 335 336 337 338  | Next Page >