Search Results

Search found 8379 results on 336 pages for 'article'.

Page 335/336 | < Previous Page | 331 332 333 334 335 336  | Next Page >

  • How do I repair the corrupted files found by sfc /scannow? "Windows Resource Protection found corrupt files but was unable to fix some of them."

    - by galacticninja
    After running chkdsk C: /F /R and finding out that my hard disk has 24 KB in bad sectors (log is posted below), I decided to run Windows 7's System File Checker utility (sfc /scannow). SFC showed the ff. message after I ran it: "Windows Resource Protection found corrupt files but was unable to fix some of them. Details are included in the CBS.Log windir\Logs\CBS\CBS.log." Since the CBS.log file is too large, I ran findstr /c:"[SR]" %windir%\Logs\CBS\CBS.log >"%userprofile%\Desktop\sfcdetails.txt" (as per Microsoft's KB 928228 article) to only get the log text pertaining to the corrupt files. (log is also posted below) How do I troubleshoot and repair the corrupted files mentioned by sfc /scannow? My OS is Windows 7, 64-bit. chkdsk log Checking file system on C: The type of the file system is NTFS. A disk check has been scheduled. Windows will now check the disk. CHKDSK is verifying files (stage 1 of 5)... 936192 file records processed. File verification completed. 25238 large file records processed. 0 bad file records processed. 4 EA records processed. 44 reparse records processed. CHKDSK is verifying indexes (stage 2 of 5)... 1051640 index entries processed. Index verification completed. 0 unindexed files scanned. 0 unindexed files recovered. CHKDSK is verifying security descriptors (stage 3 of 5)... 936192 file SDs/SIDs processed. Cleaning up 24 unused index entries from index $SII of file 0x9. Cleaning up 24 unused index entries from index $SDH of file 0x9. Cleaning up 24 unused security descriptors. Security descriptor verification completed. 57725 data files processed. CHKDSK is verifying Usn Journal... 36994248 USN bytes processed. Usn Journal verification completed. CHKDSK is verifying file data (stage 4 of 5)... 936176 files processed. File data verification completed. CHKDSK is verifying free space (stage 5 of 5)... 306238 free clusters processed. Free space verification is complete. Adding 1 bad clusters to the Bad Clusters File. Correcting errors in the Volume Bitmap. Windows has made corrections to the file system. 488282111 KB total disk space. 485595420 KB in 766458 files. 401856 KB in 57726 indexes. 24 KB in bad sectors. 1059863 KB in use by the system. 65536 KB occupied by the log file. 1224948 KB available on disk. 4096 bytes in each allocation unit. 122070527 total allocation units on disk. 306237 allocation units available on disk. Internal Info: 00 49 0e 00 81 93 0c 00 34 01 17 00 00 00 00 00 .I......4....... 6b 29 00 00 2c 00 00 00 00 00 00 00 00 00 00 00 k)..,........... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ sfc /scannow log (through findstr /c:"[SR]" %windir%\Logs\CBS\CBS.log >"%userprofile%\Desktop\sfcdetails.txt") Note: The full log is at http://pastebin.com/raw.php?i=gTEGZmWj . I've only quoted parts of the full log below (mostly from the last part), as the full log won't fit within the character limit for questions. I've added it to serve as a preview. ... 2013-12-28 19:37:50, Info CSI00000542 [SR] Beginning Verify and Repair transaction 2013-12-28 19:37:55, Info CSI00000544 [SR] Verify complete 2013-12-28 19:37:56, Info CSI00000545 [SR] Verifying 95 (0x000000000000005f) components 2013-12-28 19:37:56, Info CSI00000546 [SR] Beginning Verify and Repair transaction 2013-12-28 19:38:03, Info CSI00000548 [SR] Verify complete 2013-12-28 19:38:03, Info CSI00000549 [SR] Repairing 43 (0x000000000000002b) components 2013-12-28 19:38:03, Info CSI0000054a [SR] Beginning Verify and Repair transaction ... 2013-12-28 19:38:15, Info CSI00000730 [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:62{31}]"GroupPolicy-Admin-Gpedit-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI00000733 [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:30{15}]"frs-core-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI00000736 [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:26{13}]"gpmgmt-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI00000739 [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:74{37}]"MediaServer-ASPAdmin-Migration-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI0000073c [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:36{18}]"Ldap-Client-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI0000073f [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:38{19}]"iSNS_Service-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI00000742 [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:76{38}]"MediaServer-Multicast-Migration-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI00000745 [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:78{39}]"Kerberos-Key-Distribution-Center-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI00000748 [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:86{43}]"GroupPolicy-CSE-SoftwareInstallation-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI0000074b [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:28{14}]"ieframe-dl.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI0000074e [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:76{38}]"GroupPolicy-Admin-Gpedit-Snapin-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI00000751 [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:32{16}]"IPSec-Svc-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI00000754 [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:22{11}]"HTTP-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI00000757 [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:56{28}]"MediaServer-Migration-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI0000075a [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:26{13}]"GPBase-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI0000075d [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:38{19}]"IasMigPlugin-DL.man"; source file in store is also corrupted 2013-12-28 19:38:15, Info CSI00000760 [SR] Could not reproject corrupted file [ml:520{260},l:84{42}]"\??\C:\Windows\System32\migwiz\dlmanifests"\[l:50{25}]"International-Core-DL.man"; source file in store is also corrupted 2013-12-28 19:38:16, Info CSI00000762 [SR] Cannot repair member file [l:24{12}]"wbemdisp.dll" of Microsoft-Windows-WMI-Scripting, Version = 6.1.7600.16385, pA = PROCESSOR_ARCHITECTURE_INTEL (0), Culture neutral, VersionScope = 1 nonSxS, PublicKeyToken = {l:8 b:31bf3856ad364e35}, Type neutral, TypeName neutral, PublicKey neutral in the store, hash mismatch 2013-12-28 19:38:16, Info CSI00000763 [SR] This component was referenced by [l:202{101}]"Microsoft-Windows-Foundation-Package~31bf3856ad364e35~amd64~~6.1.7601.17514.WindowsFoundationDelivery" 2013-12-28 19:38:16, Info CSI00000766 [SR] Could not reproject corrupted file [ml:58{29},l:56{28}]"\??\C:\Windows\SysWOW64\wbem"\[l:24{12}]"wbemdisp.dll"; source file in store is also corrupted 2013-12-28 19:38:16, Info CSI00000768 [SR] Cannot repair member file [l:56{28}]"Microsoft.MediaCenter.UI.dll" of Microsoft.MediaCenter.UI, Version = 6.1.7601.17514, pA = PROCESSOR_ARCHITECTURE_MSIL (8), Culture neutral, VersionScope = 1 nonSxS, PublicKeyToken = {l:8 b:31bf3856ad364e35}, Type neutral, TypeName neutral, PublicKey neutral in the store, hash mismatch 2013-12-28 19:38:16, Info CSI00000769 [SR] This component was referenced by [l:176{88}]"Microsoft-Windows-MediaCenter-Package~31bf3856ad364e35~amd64~~6.1.7601.17514.MediaCenter" 2013-12-28 19:38:16, Info CSI0000076c [SR] Could not reproject corrupted file [ml:520{260},l:40{20}]"\??\C:\Windows\ehome"\[l:56{28}]"Microsoft.MediaCenter.UI.dll"; source file in store is also corrupted 2013-12-28 19:38:16, Info CSI0000076e [SR] Cannot repair member file [l:24{12}]"ReAgentc.exe" of Microsoft-Windows-WinRE-RecoveryTools, Version = 6.1.7601.17514, pA = PROCESSOR_ARCHITECTURE_INTEL (0), Culture neutral, VersionScope = 1 nonSxS, PublicKeyToken = {l:8 b:31bf3856ad364e35}, Type neutral, TypeName neutral, PublicKey neutral in the store, hash mismatch 2013-12-28 19:38:16, Info CSI0000076f [SR] This component was referenced by [l:202{101}]"Microsoft-Windows-Foundation-Package~31bf3856ad364e35~amd64~~6.1.7601.17514.WindowsFoundationDelivery" 2013-12-28 19:38:16, Info CSI00000772 [SR] Could not reproject corrupted file [ml:48{24},l:46{23}]"\??\C:\Windows\SysWOW64"\[l:24{12}]"ReAgentc.exe"; source file in store is also corrupted 2013-12-28 19:38:16, Info CSI00000774 [SR] Cannot repair member file [l:82{41}]"System.Management.Automation.dll-Help.xml" of Microsoft-Windows-PowerShell-PreLoc.Resources, Version = 6.1.7600.16385, pA = PROCESSOR_ARCHITECTURE_AMD64 (9), Culture = [l:10{5}]"en-US", VersionScope = 1 nonSxS, PublicKeyToken = {l:8 b:31bf3856ad364e35}, Type neutral, TypeName neutral, PublicKey neutral in the store, hash mismatch 2013-12-28 19:38:16, Info CSI00000775 [SR] This component was referenced by [l:266{133}]"Microsoft-Windows-Client-Features-Package~31bf3856ad364e35~amd64~en-US~6.1.7601.17514.Microsoft-Windows-Client-Features-Language-Pack" 2013-12-28 19:38:16, Info CSI00000778 [SR] Could not reproject corrupted file [ml:520{260},l:104{52}]"\??\C:\Windows\System32\WindowsPowerShell\v1.0\en-US"\[l:82{41}]"System.Management.Automation.dll-Help.xml"; source file in store is also corrupted 2013-12-28 19:38:16, Info CSI0000077a [SR] Cannot repair member file [l:18{9}]"hlink.dll" of Microsoft-Windows-HLink, Version = 6.1.7600.16385, pA = PROCESSOR_ARCHITECTURE_INTEL (0), Culture neutral, VersionScope = 1 nonSxS, PublicKeyToken = {l:8 b:31bf3856ad364e35}, Type neutral, TypeName neutral, PublicKey neutral in the store, hash mismatch 2013-12-28 19:38:16, Info CSI0000077b [SR] This component was referenced by [l:202{101}]"Microsoft-Windows-Foundation-Package~31bf3856ad364e35~amd64~~6.1.7601.17514.WindowsFoundationDelivery" 2013-12-28 19:38:16, Info CSI0000077e [SR] Could not reproject corrupted file [ml:48{24},l:46{23}]"\??\C:\Windows\SysWOW64"\[l:18{9}]"hlink.dll"; source file in store is also corrupted 2013-12-28 19:38:16, Info CSI00000780 [SR] Repair complete 2013-12-28 19:38:16, Info CSI00000781 [SR] Committing transaction 2013-12-28 19:38:19, Info CSI00000785 [SR] Verify and Repair Transaction completed. All files and registry keys listed in this transaction have been successfully repaired

    Read the article

  • Set up linux box for secure local hosting a-z

    - by microchasm
    I am in the process of reinstalling the OS on a machine that will be used to host a couple of apps for our business. The apps will be local only; access from external clients will be via vpn only. The prior setup used a hosting control panel (Plesk) for most of the admin, and I was looking at using another similar piece of software for the reinstall - but I figured I should finally learn how it all works. I can do most of the things the software would do for me, but am unclear on the symbiosis of it all. This is all an attempt to further distance myself from the land of Configuration Programmer/Programmer, if at all possible. I can't find a full walkthrough anywhere for what I'm looking for, so I thought I'd put up this question, and if people can help me on the way I will edit this with the answers, and document my progress/pitfalls. Hopefully someday this will help someone down the line. The details: CentOS 5.5 x86_64 httpd: Apache/2.2.3 mysql: 5.0.77 (to be upgraded) php: 5.1 (to be upgraded) The requirements: SECURITY!! Secure file transfer Secure client access (SSL Certs and CA) Secure data storage Virtualhosts/multiple subdomains Local email would be nice, but not critical The Steps: Download latest CentOS DVD-iso (torrent worked great for me). Install CentOS: While going through the install, I checked the Server Components option thinking I was going to be using another Plesk-like admin. In hindsight, considering I've decided to try to go my own way, this probably wasn't the best idea. Basic config: Setup users, networking/ip address etc. Yum update/upgrade. Upgrade PHP/MySQL: To upgrade PHP and MySQL to the latest versions, I had to look to another repo outside CentOS. IUS looks great and I'm happy I found it! Add IUS repository to our package manager cd /tmp wget http://dl.iuscommunity.org/pub/ius/stable/Redhat/5/x86_64/epel-release-1-1.ius.el5.noarch.rpm rpm -Uvh epel-release-1-1.ius.el5.noarch.rpm wget http://dl.iuscommunity.org/pub/ius/stable/Redhat/5/x86_64/ius-release-1-4.ius.el5.noarch.rpm rpm -Uvh ius-release-1-4.ius.el5.noarch.rpm yum list | grep -w \.ius\. # list all the packages in the IUS repository; use this to find PHP/MySQL version and libraries you want to install Remove old version of PHP and install newer version from IUS rpm -qa | grep php # to list all of the installed php packages we want to remove yum shell # open an interactive yum shell remove php-common php-mysql php-cli #remove installed PHP components install php53 php53-mysql php53-cli php53-common #add packages you want transaction solve #important!! checks for dependencies transaction run #important!! does the actual installation of packages. [control+d] #exit yum shell php -v PHP 5.3.2 (cli) (built: Apr 6 2010 18:13:45) Upgrade MySQL from IUS repository /etc/init.d/mysqld stop rpm -qa | grep mysql # to see installed mysql packages yum shell remove mysql mysql-server #remove installed MySQL components install mysql51 mysql51-server mysql51-devel transaction solve #important!! checks for dependencies transaction run #important!! does the actual installation of packages. [control+d] #exit yum shell service mysqld start mysql -v Server version: 5.1.42-ius Distributed by The IUS Community Project Upgrade instructions courtesy of IUS wiki: http://wiki.iuscommunity.org/Doc/ClientUsageGuide Install rssh (restricted shell) to provide scp and sftp access, without allowing ssh login cd /tmp wget http://dag.wieers.com/rpm/packages/rssh/rssh-2.3.2-1.2.el5.rf.x86_64.rpm rpm -ivh rssh-2.3.2-1.2.el5.rf.x86_64.rpm useradd -m -d /home/dev -s /usr/bin/rssh dev passwd dev Edit /etc/rssh.conf to grant access to SFTP to rssh users. vi /etc/rssh.conf Uncomment or add: allowscp allowsftp This allows me to connect to the machine via SFTP protocol in Transmit (my FTP program of choice; I'm sure it's similar with other FTP apps). rssh instructions appropriated (with appreciation!) from http://www.cyberciti.biz/tips/linux-unix-restrict-shell-access-with-rssh.html Set up virtual interfaces ifconfig eth1:1 192.168.1.3 up #start up the virtual interface cd /etc/sysconfig/network-scripts/ cp ifcfg-eth1 ifcfg-eth1:1 #copy default script and match name to our virtual interface vi ifcfg-eth1:1 #modify eth1:1 script #ifcfg-eth1:1 | modify so it looks like this: DEVICE=eth1:1 IPADDR=192.168.1.3 NETMASK=255.255.255.0 NETWORK=192.168.1.0 ONBOOT=yes NAME=eth1:1 Add more Virtual interfaces as needed by repeating. Because of the ONBOOT=yes line in the ifcfg-eth1:1 file, this interface will be brought up when the system boots, or the network starts/restarts. service network restart Shutting down interface eth0: [ OK ] Shutting down interface eth1: [ OK ] Shutting down loopback interface: [ OK ] Bringing up loopback interface: [ OK ] Bringing up interface eth0: [ OK ] Bringing up interface eth1: [ OK ] ping 192.168.1.3 64 bytes from 192.168.1.3: icmp_seq=1 ttl=64 time=0.105 ms Virtualhosts In the rssh section above I added a user to use for SFTP. In this users' home directory, I created a folder called 'https'. This is where the documents for this site will live, so I need to add a virtualhost that will point to it. I will use the above virtual interface for this site (herein called dev.site.local). vi /etc/http/conf/httpd.conf Add the following to the end of httpd.conf: <VirtualHost 192.168.1.3:80> ServerAdmin [email protected] DocumentRoot /home/dev/https ServerName dev.site.local ErrorLog /home/dev/logs/error_log TransferLog /home/dev/logs/access_log </VirtualHost> I put a dummy index.html file in the https directory just to check everything out. I tried browsing to it, and was met with permission denied errors. The logs only gave an obscure reference to what was going on: [Mon May 17 14:57:11 2010] [error] [client 192.168.1.100] (13)Permission denied: access to /index.html denied I tried chmod 777 et. al., but to no avail. Turns out, I needed to chmod+x the https directory and its' parent directories. chmod +x /home chmod +x /home/dev chmod +x /home/dev/https This solved that problem. DNS I'm handling DNS via our local Windows Server 2003 box. However, the CentOS documentation for BIND can be found here: http://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-bind.html SSL To get SSL working, I changed the following in httpd.conf: NameVirtualHost 192.168.1.3:443 #make sure this line is in httpd.conf <VirtualHost 192.168.1.3:443> #change port to 443 ServerAdmin [email protected] DocumentRoot /home/dev/https ServerName dev.site.local ErrorLog /home/dev/logs/error_log TransferLog /home/dev/logs/access_log </VirtualHost> Unfortunately, I keep getting (Error code: ssl_error_rx_record_too_long) errors when trying to access a page with SSL. As JamesHannah gracefully pointed out below, I had not set up the locations of the certs in httpd.conf, and thusly was getting the page thrown at the broswer as the cert making the browser balk. So first, I needed to set up a CA and make certificate files. I found a great (if old) walkthrough on the process here: http://www.debian-administration.org/articles/284. Here are the relevant steps I took from that article: mkdir /home/CA cd /home/CA/ mkdir newcerts private echo '01' > serial touch index.txt #this and the above command are for the database that will keep track of certs Create an openssl.cnf file in the /home/CA/ dir and edit it per the walkthrough linked above. (For reference, my finished openssl.cnf file looked like this: http://pastebin.com/raw.php?i=hnZDij4T) openssl req -new -x509 -extensions v3_ca -keyout private/cakey.pem -out cacert.pem -days 3650 -config ./openssl.cnf #this creates the cacert.pem which gets distributed and imported to the browser(s) Modified openssl.cnf again per walkthrough instructions. openssl req -new -nodes -out dev.req.pem -config ./openssl.cnf #generates certificate request, and key.pem which I renamed dev.key.pem. Modified openssl.cnf again per walkthrough instructions. openssl ca -out dev.cert.pem -config ./openssl.cnf -infiles dev.req.pem #create and sign certificate. cp dev.cert.pem /home/dev/certs/cert.pem cp dev.key.pem /home/certs/key.pem I updated httpd.conf to reflect the certs and turn SSLEngine on: NameVirtualHost 192.168.1.3:443 <VirtualHost 192.168.1.3:443> ServerAdmin [email protected] DocumentRoot /home/dev/https SSLEngine on SSLCertificateFile /home/dev/certs/cert.pem SSLCertificateKeyFile /home/dev/certs/key.pem ServerName dev.site.local ErrorLog /home/dev/logs/error_log TransferLog /home/dev/logs/access_log </VirtualHost> Put the CA cert.pem in a web-accessible place, and downloaded/imported it into my browser. Now I can visit https://dev.site.local with no errors or warnings. And this is where I'm at. I will keep editing this as I make progress. Any tips on how to configure SSL email would be appreciated.

    Read the article

  • Building applications with WPF, MVVM and Prism(aka CAG)

    - by skjagini
    In this article I am going to walk through an application using WPF and Prism (aka composite application guidance, CAG) which simulates engaging a taxi (cab).  The rules are simple, the app would have3 screens A login screen to authenticate the user An information screen. A screen to engage the cab and roam around and calculating the total fare Metered Rate of Fare The meter is required to be engaged when a cab is occupied by anyone $3.00 upon entry $0.35 for each additional unit The unit fare is: one-fifth of a mile, when the cab is traveling at 6 miles an hour or more; or 60 seconds when not in motion or traveling at less than 12 miles per hour. Night surcharge of $.50 after 8:00 PM & before 6:00 AM Peak hour Weekday Surcharge of $1.00 Monday - Friday after 4:00 PM & before 8:00 PM New York State Tax Surcharge of $.50 per ride. Example: Friday (2010-10-08) 5:30pm Start at Lexington Ave & E 57th St End at Irving Pl & E 15th St Start = $3.00 Travels 2 miles at less than 6 mph for 15 minutes = $3.50 Travels at more than 12 mph for 5 minutes = $1.75 Peak hour Weekday Surcharge = $1.00 (ride started at 5:30 pm) New York State Tax Surcharge = $0.50 Before we dive into the app, I would like to give brief description about the framework.  If you want to jump on to the source code, scroll all the way to the end of the post. MVVM MVVM pattern is in no way related to the usage of PRISM in your application and should be considered if you are using WPF irrespective of PRISM or not. Lets say you are not familiar with MVVM, your typical UI would involve adding some UI controls like text boxes, a button, double clicking on the button,  generating event handler, calling a method from business layer and updating the user interface, it works most of the time for developing small scale applications. The problem with this approach is that there is some amount of code specific to business logic wrapped in UI specific code which is hard to unit test it, mock it and MVVM helps to solve the exact problem. MVVM stands for Model(M) – View(V) – ViewModel(VM),  based on the interactions with in the three parties it should be called VVMM,  MVVM sounds more like MVC (Model-View-Controller) so the name. Why it should be called VVMM: View – View Model - Model WPF allows to create user interfaces using XAML and MVVM takes it to the next level by allowing complete separation of user interface and business logic. In WPF each view will have a property, DataContext when set to an instance of a class (which happens to be your view model) provides the data the view is interested in, i.e., view interacts with view model and at the same time view model interacts with view through DataContext. Sujith, if view and view model are interacting directly with each other how does MVVM is helping me separation of concerns? Well, the catch is DataContext is of type Object, since it is of type object view doesn’t know exact type of view model allowing views and views models to be loosely coupled. View models aggregate data from models (data access layer, services, etc) and make it available for views through properties, methods etc, i.e., View Models interact with Models. PRISM Prism is provided by Microsoft Patterns and Practices team and it can be downloaded from codeplex for source code,  samples and documentation on msdn.  The name composite implies, to compose user interface from different modules (views) without direct dependencies on each other, again allowing  loosely coupled development. Well Sujith, I can already do that with user controls, why shall I learn another framework?  That’s correct, you can decouple using user controls, but you still have to manage some amount of coupling, like how to do you communicate between the controls, how do you subscribe/unsubscribe, loading/unloading views dynamically. Prism is not a replacement for user controls, provides the following features which greatly help in designing the composite applications. Dependency Injection (DI)/ Inversion of Control (IoC) Modules Regions Event Aggregator  Commands Simply put, MVVM helps building a single view and Prism helps building an application using the views There are other open source alternatives to Prism, like MVVMLight, Cinch, take a look at them as well. Lets dig into the source code.  1. Solution The solution is made of the following projects Framework: Holds the common functionality in building applications using WPF and Prism TaxiClient: Start up project, boot strapping and app styling TaxiCommon: Helps with the business logic TaxiModules: Holds the meat of the application with views and view models TaxiTests: To test the application 2. DI / IoC Dependency Injection (DI) as the name implies refers to injecting dependencies and Inversion of Control (IoC) means the calling code has no direct control on the dependencies, opposite of normal way of programming where dependencies are passed by caller, i.e inversion; aside from some differences in terminology the concept is same in both the cases. The idea behind DI/IoC pattern is to reduce the amount of direct coupling between different components of the application, the higher the dependency the more tightly coupled the application resulting in code which is hard to modify, unit test and mock.  Initializing Dependency Injection through BootStrapper TaxiClient is the starting project of the solution and App (App.xaml)  is the starting class that gets called when you run the application. From the App’s OnStartup method we will invoke BootStrapper.   namespace TaxiClient { /// <summary> /// Interaction logic for App.xaml /// </summary> public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { base.OnStartup(e);   (new BootStrapper()).Run(); } } } BootStrapper is your contact point for initializing the application including dependency injection, creating Shell and other frameworks. We are going to use Unity for DI and there are lot of open source DI frameworks like Spring.Net, StructureMap etc with different feature set  and you can choose a framework based on your preferences. Note that Prism comes with in built support for Unity, for example we are deriving from UnityBootStrapper in our case and for any other DI framework you have to extend the Prism appropriately   namespace TaxiClient { public class BootStrapper: UnityBootstrapper { protected override IModuleCatalog CreateModuleCatalog() { return new ConfigurationModuleCatalog(); } protected override DependencyObject CreateShell() { Framework.FrameworkBootStrapper.Run(Container, Application.Current.Dispatcher);   Shell shell = new Shell(); shell.ResizeMode = ResizeMode.NoResize; shell.Show();   return shell; } } } Lets take a look into  FrameworkBootStrapper to check out how to register with unity container. namespace Framework { public class FrameworkBootStrapper { public static void Run(IUnityContainer container, Dispatcher dispatcher) { UIDispatcher uiDispatcher = new UIDispatcher(dispatcher); container.RegisterInstance<IDispatcherService>(uiDispatcher);   container.RegisterType<IInjectSingleViewService, InjectSingleViewService>( new ContainerControlledLifetimeManager());   . . . } } } In the above code we are registering two components with unity container. You shall observe that we are following two different approaches, RegisterInstance and RegisterType.  With RegisterInstance we are registering an existing instance and the same instance will be returned for every request made for IDispatcherService   and with RegisterType we are requesting unity container to create an instance for us when required, i.e., when I request for an instance for IInjectSingleViewService, unity will create/return an instance of InjectSingleViewService class and with RegisterType we can configure the life time of the instance being created. With ContaienrControllerLifetimeManager, the unity container caches the instance and reuses for any subsequent requests, without recreating a new instance. Lets take a look into FareViewModel.cs and it’s constructor. The constructor takes one parameter IEventAggregator and if you try to find all references in your solution for IEventAggregator, you will not find a single location where an instance of EventAggregator is passed directly to the constructor. The compiler still finds an instance and works fine because Prism is already configured when used with Unity container to return an instance of EventAggregator when requested for IEventAggregator and in this particular case it is called constructor injection. public class FareViewModel:ObservableBase, IDataErrorInfo { ... private IEventAggregator _eventAggregator;   public FareViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; InitializePropertyNames(); InitializeModel(); PropertyChanged += OnPropertyChanged; } ... 3. Shell Shells are very similar in operation to Master Pages in asp.net or MDI in Windows Forms. And shells contain regions which display the views, you can have as many regions as you wish in a given view. You can also nest regions. i.e, one region can load a view which in itself may contain other regions. We have to create a shell at the start of the application and are doing it by overriding CreateShell method from BootStrapper From the following Shell.xaml you shall notice that we have two content controls with Region names as ‘MenuRegion’ and ‘MainRegion’.  The idea here is that you can inject any user controls into the regions dynamically, i.e., a Menu User Control for MenuRegion and based on the user action you can load appropriate view into MainRegion.    <Window x:Class="TaxiClient.Shell" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Regions="clr-namespace:Microsoft.Practices.Prism.Regions;assembly=Microsoft.Practices.Prism" Title="Taxi" Height="370" Width="800"> <Grid Margin="2"> <ContentControl Regions:RegionManager.RegionName="MenuRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" />   <ContentControl Grid.Row="1" Regions:RegionManager.RegionName="MainRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" /> <!--<Border Grid.ColumnSpan="2" BorderThickness="2" CornerRadius="3" BorderBrush="LightBlue" />-->   </Grid> </Window> 4. Modules Prism provides the ability to build composite applications and modules play an important role in it. For example if you are building a Mortgage Loan Processor application with 3 components, i.e. customer’s credit history,  existing mortgages, new home/loan information; and consider that the customer’s credit history component involves gathering data about his/her address, background information, job details etc. The idea here using Prism modules is to separate the implementation of these 3 components into their own visual studio projects allowing to build components with no dependency on each other and independently. If we need to add another component to the application, the component can be developed by in house team or some other team in the organization by starting with a new Visual Studio project and adding to the solution at the run time with very little knowledge about the application. Prism modules are defined by implementing the IModule interface and each visual studio project to be considered as a module should implement the IModule interface.  From the BootStrapper.cs you shall observe that we are overriding the method by returning a ConfiguratingModuleCatalog which returns the modules that are registered for the application using the app.config file  and you can also add module using code. Lets take a look into configuration file.   <?xml version="1.0"?> <configuration> <configSections> <section name="modules" type="Microsoft.Practices.Prism.Modularity.ModulesConfigurationSection, Microsoft.Practices.Prism"/> </configSections> <modules> <module assemblyFile="TaxiModules.dll" moduleType="TaxiModules.ModuleInitializer, TaxiModules" moduleName="TaxiModules"/> </modules> </configuration> Here we are adding TaxiModules project to our solution and TaxiModules.ModuleInitializer implements IModule interface   5. Module Mapper With Prism modules you can dynamically add or remove modules from the regions, apart from that Prism also provides API to control adding/removing the views from a region within the same module. Taxi Information Screen: Engage the Taxi Screen: The sample application has two screens, ‘Taxi Information’ and ‘Engage the Taxi’ and they both reside in same module, TaxiModules. ‘Engage the Taxi’ is again made of two user controls, FareView on the left and TotalView on the right. We have created a Shell with two regions, MenuRegion and MainRegion with menu loaded into MenuRegion. We can create a wrapper user control called EngageTheTaxi made of FareView and TotalView and load either TaxiInfo or EngageTheTaxi into MainRegion based on the user action. Though it will work it tightly binds the user controls and for every combination of user controls, we need to create a dummy wrapper control to contain them. Instead we can apply the principles we learned so far from Shell/regions and introduce another template (LeftAndRightRegionView.xaml) made of two regions Region1 (left) and Region2 (right) and load  FareView and TotalView dynamically.  To help with loading of the views dynamically I have introduce an helper an interface, IInjectSingleViewService,  idea suggested by Mike Taulty, a must read blog for .Net developers. using System; using System.Collections.Generic; using System.ComponentModel;   namespace Framework.PresentationUtility.Navigation {   public interface IInjectSingleViewService : INotifyPropertyChanged { IEnumerable<CommandViewDefinition> Commands { get; } IEnumerable<ModuleViewDefinition> Modules { get; }   void RegisterViewForRegion(string commandName, string viewName, string regionName, Type viewType); void ClearViewFromRegion(string viewName, string regionName); void RegisterModule(string moduleName, IList<ModuleMapper> moduleMappers); } } The Interface declares three methods to work with views: RegisterViewForRegion: Registers a view with a particular region. You can register multiple views and their regions under one command.  When this particular command is invoked all the views registered under it will be loaded into their regions. ClearViewFromRegion: To unload a specific view from a region. RegisterModule: The idea is when a command is invoked you can load the UI with set of controls in their default position and based on the user interaction, you can load different contols in to different regions on the fly.  And it is supported ModuleViewDefinition and ModuleMappers as shown below. namespace Framework.PresentationUtility.Navigation { public class ModuleViewDefinition { public string ModuleName { get; set; } public IList<ModuleMapper> ModuleMappers; public ICommand Command { get; set; } }   public class ModuleMapper { public string ViewName { get; set; } public string RegionName { get; set; } public Type ViewType { get; set; } } } 6. Event Aggregator Prism event aggregator enables messaging between components as in Observable pattern, Notifier notifies the Observer which receives notification it is interested in. When it comes to Observable pattern, Observer has to unsubscribes for notifications when it no longer interested in notifications, which allows the Notifier to remove the Observer’s reference from it’s local cache. Though .Net has managed garbage collection it cannot remove inactive the instances referenced by an active instance resulting in memory leak, keeping the Observers in memory as long as Notifier stays in memory.  Developers have to be very careful to unsubscribe when necessary and it often gets overlooked, to overcome these problems Prism Event Aggregator uses weak references to cache the reference (Observer in this case)  and releases the reference (memory) once the instance goes out of scope. Using event aggregator is very simple, declare a generic type of CompositePresenationEvent by inheriting from it. using Microsoft.Practices.Prism.Events; using TaxiCommon.BAO;   namespace TaxiCommon.CompositeEvents { public class TaxiOnMoveEvent:CompositePresentationEvent<TaxiOnMove> { } }   TaxiOnMove.cs includes the properties which we want to exchange between the parties, FareView and TotalView. using System;   namespace TaxiCommon.BAO { public class TaxiOnMove { public TimeSpan MinutesAtTweleveMPH { get; set; } public double MilesAtSixMPH { get; set; } } }   Lets take a look into FareViewodel (Notifier) and how it raises the event.  Here we are raising the event by getting the event through GetEvent<..>() and publishing it with the payload private void OnAddMinutes(object obj) { TaxiOnMove payload = new TaxiOnMove(); if(MilesAtSixMPH != null) payload.MilesAtSixMPH = MilesAtSixMPH.Value; if(MinutesAtTweleveMPH != null) payload.MinutesAtTweleveMPH = new TimeSpan(0,0,MinutesAtTweleveMPH.Value,0);   _eventAggregator.GetEvent<TaxiOnMoveEvent>().Publish(payload); ResetMinutesAndMiles(); } And TotalViewModel(Observer) subscribes to notifications by getting the event through GetEvent<..>() namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { .... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; ... }   private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>() .Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>() .Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>() .Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   ... private void OnTaxiMove(TaxiOnMove taxiOnMove) { OnMoveFare fare = new OnMoveFare(taxiOnMove); Fares.Add(fare); SetTotalFare(new []{fare}); }   .... 7. MVVM through example In this section we are going to look into MVVM implementation through example.  I have all the modules declared in a single project, TaxiModules, again it is not necessary to have them into one project. Once the user logs into the application, will be greeted with the ‘Engage the Taxi’ screen which is made of two user controls, FareView.xaml and TotalView.Xaml. As you can see from the solution explorer, each of them have their own code behind files and  ViewModel classes, FareViewMode.cs, TotalViewModel.cs Lets take a look in to the FareView and how it interacts with FareViewModel using MVVM implementation. FareView.xaml acts as a view and FareViewMode.cs is it’s view model. The FareView code behind class   namespace TaxiModules.Views { /// <summary> /// Interaction logic for FareView.xaml /// </summary> public partial class FareView : UserControl { public FareView(FareViewModel viewModel) { InitializeComponent(); this.Loaded += (s, e) => { this.DataContext = viewModel; }; } } } The FareView is bound to FareViewModel through the data context  and you shall observe that DataContext is of type Object, i.e. the FareView doesn’t really know the type of ViewModel (FareViewModel). This helps separation of View and ViewModel as View and ViewModel are independent of each other, you can bind FareView to FareViewModel2 as well and the application compiles just fine. Lets take a look into FareView xaml file  <UserControl x:Class="TaxiModules.Views.FareView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Toolkit="clr-namespace:Microsoft.Windows.Controls;assembly=WPFToolkit" xmlns:Commands="clr-namespace:Microsoft.Practices.Prism.Commands;assembly=Microsoft.Practices.Prism"> <Grid Margin="10" > ....   <Border Style="{DynamicResource innerBorder}" Grid.Row="0" Grid.Column="0" Grid.RowSpan="11" Grid.ColumnSpan="2" Panel.ZIndex="1"/>   <Label Grid.Row="0" Content="Engage the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="1" Content="Select the State"/> <ComboBox Grid.Row="1" Grid.Column="1" ItemsSource="{Binding States}" Height="auto"> <ComboBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Name}"/> </DataTemplate> </ComboBox.ItemTemplate> <ComboBox.SelectedItem> <Binding Path="SelectedState" Mode="TwoWay"/> </ComboBox.SelectedItem> </ComboBox> <Label Grid.Row="2" Content="Select the Date of Entry"/> <Toolkit:DatePicker Grid.Row="2" Grid.Column="1" SelectedDate="{Binding DateOfEntry, ValidatesOnDataErrors=true}" /> <Label Grid.Row="3" Content="Enter time 24hr format"/> <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding TimeOfEntry, TargetNullValue=''}"/> <Button Grid.Row="4" Grid.Column="1" Content="Start the Meter" Commands:Click.Command="{Binding StartMeterCommand}" />   <Label Grid.Row="5" Content="Run the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="6" Content="Number of Miles &lt;@6mph"/> <TextBox Grid.Row="6" Grid.Column="1" Text="{Binding MilesAtSixMPH, TargetNullValue='', ValidatesOnDataErrors=true}"/> <Label Grid.Row="7" Content="Number of Minutes @12mph"/> <TextBox Grid.Row="7" Grid.Column="1" Text="{Binding MinutesAtTweleveMPH, TargetNullValue=''}"/> <Button Grid.Row="8" Grid.Column="1" Content="Add Minutes and Miles " Commands:Click.Command="{Binding AddMinutesCommand}"/> <Label Grid.Row="9" Content="Other Operations" Style="{DynamicResource innerHeader}"/> <Button Grid.Row="10" Grid.Column="1" Content="Reset the Meter" Commands:Click.Command="{Binding ResetCommand}"/>   </Grid> </UserControl> The highlighted code from the above code shows data binding, for example ComboBox which displays list of states has it’s ItemsSource bound to States property, with DataTemplate bound to Name and SelectedItem  to SelectedState. You might be wondering what are all these properties and how it is able to bind to them.  The answer lies in data context, i.e., when you bound a control, WPF looks for data context on the root object (Grid in this case) and if it can’t find data context it will look into root’s root, i.e. FareView UserControl and it is bound to FareViewModel.  Each of those properties have be declared on the ViewModel for the View to bind correctly. To put simply, View is bound to ViewModel through data context of type object and every control that is bound on the View actually binds to the public property on the ViewModel. Lets look into the ViewModel code (the following code is not an exact copy of FareViewMode.cs, pasted relevant code for this section)   namespace TaxiModules.ViewModels { public class FareViewModel:ObservableBase, IDataErrorInfo { public List<USState> States { get { return USStates.StateList; } }   public USState SelectedState { get { return _selectedState; } set { _selectedState = value; RaisePropertyChanged(_selectedStatePropertyName); } }   public DateTime? DateOfEntry { get { return _dateOfEntry; } set { _dateOfEntry = value; RaisePropertyChanged(_dateOfEntryPropertyName); } }   public TimeSpan? TimeOfEntry { get { return _timeOfEntry; } set { _timeOfEntry = value; RaisePropertyChanged(_timeOfEntryPropertyName); } }   public double? MilesAtSixMPH { get { return _milesAtSixMPH; } set { _milesAtSixMPH = value; RaisePropertyChanged(_distanceAtSixMPHPropertyName); } }   public int? MinutesAtTweleveMPH { get { return _minutesAtTweleveMPH; } set { _minutesAtTweleveMPH = value; RaisePropertyChanged(_minutesAtTweleveMPHPropertyName); } }   public ICommand StartMeterCommand { get { if(_startMeterCommand == null) { _startMeterCommand = new DelegateCommand<object>(OnStartMeter, CanStartMeter); } return _startMeterCommand; } }   public ICommand AddMinutesCommand { get { if(_addMinutesCommand == null) { _addMinutesCommand = new DelegateCommand<object>(OnAddMinutes, CanAddMinutes); } return _addMinutesCommand; } }   public ICommand ResetCommand { get { if(_resetCommand == null) { _resetCommand = new DelegateCommand<object>(OnResetCommand); } return _resetCommand; } }   } private void OnStartMeter(object obj) { _eventAggregator.GetEvent<TaxiStartedEvent>().Publish( new TaxiStarted() { EngagedOn = DateOfEntry.Value.Date + TimeOfEntry.Value, EngagedState = SelectedState.Value });   _isMeterStarted = true; OnPropertyChanged(this,null); } And views communicate user actions like button clicks, tree view item selections, etc using commands. When user clicks on ‘Start the Meter’ button it invokes the method StartMeterCommand, which calls the method OnStartMeter which publishes the event to TotalViewModel using event aggregator  and TaxiStartedEvent. namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { ... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator;   InitializePropertyNames(); InitializeModel(); SubscribeToEvents(); }   public decimal? TotalFare { get { return _totalFare; } set { _totalFare = value; RaisePropertyChanged(_totalFarePropertyName); } } .... private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>().Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>().Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>().Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   private void OnTaxiStarted(TaxiStarted taxiStarted) { Fares.Add(new EntryFare()); Fares.Add(new StateTaxFare(taxiStarted)); Fares.Add(new NightSurchargeFare(taxiStarted)); Fares.Add(new PeakHourWeekdayFare(taxiStarted));   SetTotalFare(Fares); }   private void SetTotalFare(IEnumerable<IFare> fares) { TotalFare = (_totalFare ?? 0) + TaxiFareHelper.GetTotalFare(fares); } ....   } }   TotalViewModel subscribes to events, TaxiStartedEvent and rest. When TaxiStartedEvent gets invoked it calls the OnTaxiStarted method which sets the total fare which includes entry fee, state tax, nightly surcharge, peak hour weekday fare.   Note that TotalViewModel derives from ObservableBase which implements the method RaisePropertyChanged which we are invoking in Set of TotalFare property, i.e, once we update the TotalFare property it raises an the event that  allows the TotalFare text box to fetch the new value through the data context. ViewModel is communicating with View through data context and it has no knowledge about View, helping in loose coupling of ViewModel and View.   I have attached the source code (.Net 4.0, Prism 4.0, VS 2010) , download and play with it and don’t forget to leave your comments.  

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • Nested property binding

    - by EtherealMonkey
    Recently, I have been trying to wrap my mind around the BindingList<T> and INotifyPropertChanged. More specifically - How do I make a collection of objects (having objects as properties) which will allow me to subscribe to events throughout the tree? To that end, I have examined the code offered as examples by others. One such project that I downloaded was Nested Property Binding - CodeProject by "seesharper". Now, the article explains the implementation, but there was a question by "Someone@AnotherWorld" about "INotifyPropertyChanged in nested objects". His question was: Hi, nice stuff! But after a couple of time using your solution I realize the ObjectBindingSource ignores the PropertyChanged event of nested objects. E.g. I've got a class 'Foo' with two properties named 'Name' and 'Bar'. 'Name' is a string an 'Bar' reference an instance of class 'Bar', which has a 'Name' property of type string too and both classes implements INotifyPropertyChanged. With your binding source reading and writing with both properties ('Name' and 'Bar_Name') works fine but the PropertyChanged event works only for the 'Name' property, because the binding source listen only for events of 'Foo'. One workaround is to retrigger the PropertyChanged event in the appropriate class (here 'Foo'). What's very unclean! The other approach would be to extend ObjectBindingSource so that all owner of nested property which implements INotifyPropertyChanged get used for receive changes, but how? Thanks! I had asked about BindingList<T> yesterday and received a good answer from Aaronaught. In my question, I had a similar point as "Someone@AnotherWorld": if Keywords were to implement INotifyPropertyChanged, would changes be accessible to the BindingList through the ScannedImage object? To which Aaronaught's response was: No, they will not. BindingList only looks at the specific object in the list, it has no ability to scan all dependencies and monitor everything in the graph (nor would that always be a good idea, if it were possible). I understand Aaronaught's comment regarding this behavior not necessarily being a good idea. Additionally, his suggestion to have my bound object "relay" events on behalf of it's member objects works fine and is perfectly acceptable. For me, "re-triggering" the PropertyChanged event does not seem so unclean as "Someone@AnotherWorld" laments. I do understand why he protests - in the interest of loosely coupled objects. However, I believe that coupling between objects that are part of a composition is logical and not so undesirable as this may be in other scenarios. (I am a newb, so I could be waaayyy off base.) Anyway, in the interest of exploring an answer to the question by "Someone@AnotherWorld", I altered the MainForm.cs file of the example project from Nested Property Binding - CodeProject by "seesharper" to the following: using System; using System.Collections.Generic; using System.ComponentModel; using System.Core.ComponentModel; using System.Windows.Forms; namespace ObjectBindingSourceDemo { public partial class MainForm : Form { private readonly List<Customer> _customers = new List<Customer>(); private readonly List<Product> _products = new List<Product>(); private List<Order> orders; public MainForm() { InitializeComponent(); dataGridView1.AutoGenerateColumns = false; dataGridView2.AutoGenerateColumns = false; CreateData(); } private void CreateData() { _customers.Add( new Customer(1, "Jane Wilson", new Address("98104", "6657 Sand Pointe Lane", "Seattle", "USA"))); _customers.Add( new Customer(1, "Bill Smith", new Address("94109", "5725 Glaze Drive", "San Francisco", "USA"))); _customers.Add( new Customer(1, "Samantha Brown", null)); _products.Add(new Product(1, "Keyboard", 49.99)); _products.Add(new Product(2, "Mouse", 10.99)); _products.Add(new Product(3, "PC", 599.99)); _products.Add(new Product(4, "Monitor", 299.99)); _products.Add(new Product(5, "LapTop", 799.99)); _products.Add(new Product(6, "Harddisc", 89.99)); customerBindingSource.DataSource = _customers; productBindingSource.DataSource = _products; orders = new List<Order>(); orders.Add(new Order(1, DateTime.Now, _customers[0])); orders.Add(new Order(2, DateTime.Now, _customers[1])); orders.Add(new Order(3, DateTime.Now, _customers[2])); #region Added by me OrderLine orderLine1 = new OrderLine(_products[0], 1); OrderLine orderLine2 = new OrderLine(_products[1], 3); orderLine1.PropertyChanged += new PropertyChangedEventHandler(OrderLineChanged); orderLine2.PropertyChanged += new PropertyChangedEventHandler(OrderLineChanged); orders[0].OrderLines.Add(orderLine1); orders[0].OrderLines.Add(orderLine2); #endregion // Removed by me in lieu of region above. //orders[0].OrderLines.Add(new OrderLine(_products[0], 1)); //orders[0].OrderLines.Add(new OrderLine(_products[1], 3)); ordersBindingSource.DataSource = orders; } #region Added by me // Have to wait until the form is Shown to wire up the events // for orderDetailsBindingSource. Otherwise, they are triggered // during MainForm().InitializeComponent(). private void MainForm_Shown(object sender, EventArgs e) { orderDetailsBindingSource.AddingNew += new AddingNewEventHandler(orderDetailsBindSrc_AddingNew); orderDetailsBindingSource.CurrentItemChanged += new EventHandler(orderDetailsBindSrc_CurrentItemChanged); orderDetailsBindingSource.ListChanged += new ListChangedEventHandler(orderDetailsBindSrc_ListChanged); } private void orderDetailsBindSrc_AddingNew( object sender, AddingNewEventArgs e) { } private void orderDetailsBindSrc_CurrentItemChanged( object sender, EventArgs e) { } private void orderDetailsBindSrc_ListChanged( object sender, ListChangedEventArgs e) { ObjectBindingSource bindingSource = (ObjectBindingSource)sender; if (!(bindingSource.Current == null)) { // Unsure if GetType().ToString() is required b/c ToString() // *seems* // to return the same value. if (bindingSource.Current.GetType().ToString() == "ObjectBindingSourceDemo.OrderLine") { if (e.ListChangedType == ListChangedType.ItemAdded) { // I wish that I knew of a way to determine // if the 'PropertyChanged' delegate assignment is null. // I don't like the current test, but it seems to work. if (orders[ ordersBindingSource.Position].OrderLines[ e.NewIndex].Product == null) { orders[ ordersBindingSource.Position].OrderLines[ e.NewIndex].PropertyChanged += new PropertyChangedEventHandler( OrderLineChanged); } } if (e.ListChangedType == ListChangedType.ItemDeleted) { // Will throw exception when leaving // an OrderLine row with unitialized properties. // // I presume this is because the item // has already been 'disposed' of at this point. // *but* // Will it be actually be released from memory // if the delegate assignment for PropertyChanged // was never removed??? if (orders[ ordersBindingSource.Position].OrderLines[ e.NewIndex].Product != null) { orders[ ordersBindingSource.Position].OrderLines[ e.NewIndex].PropertyChanged -= new PropertyChangedEventHandler( OrderLineChanged); } } } } } private void OrderLineChanged(object sender, PropertyChangedEventArgs e) { MessageBox.Show(e.PropertyName, "Property Changed:"); } #endregion } } In the method private void orderDetailsBindSrc_ListChanged(object sender, ListChangedEventArgs e) I am able to hook up the PropertyChangedEventHandler to the OrderLine object as it is being created. However, I cannot seem to find a way to unhook the PropertyChangedEventHandler from the OrderLine object before it is being removed from the orders[i].OrderLines list. So, my questions are: Am I simply trying to do something that is very, very wrong here? Will the OrderLines object that I add the delegate assignments to ever be released from memory if the assignment is not removed? Is there a "sane" method of achieving this scenario? Also, note that this question is not specifically related to my prior. I have actually solved the issue which had prompted me to inquire before. However, I have reached a point with this particular topic of discovery where my curiosity has exceeded my patience - hopefully someone here can shed some light on this?

    Read the article

  • Windows Azure: Import/Export Hard Drives, VM ACLs, Web Sockets, Remote Debugging, Continuous Delivery, New Relic, Billing Alerts and More

    - by ScottGu
    Two weeks ago we released a giant set of improvements to Windows Azure, as well as a significant update of the Windows Azure SDK. This morning we released another massive set of enhancements to Windows Azure.  Today’s new capabilities include: Storage: Import/Export Hard Disk Drives to your Storage Accounts HDInsight: General Availability of our Hadoop Service in the cloud Virtual Machines: New VM Gallery, ACL support for VIPs Web Sites: WebSocket and Remote Debugging Support Notification Hubs: Segmented customer push notification support with tag expressions TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services Developer Analytics: New Relic support for Web Sites + Mobile Services Service Bus: Support for partitioned queues and topics Billing: New Billing Alert Service that sends emails notifications when your bill hits a threshold you define All of these improvements are now available to use immediately (note that some features are still in preview).  Below are more details about them. Storage: Import/Export Hard Disk Drives to Windows Azure I am excited to announce the preview of our new Windows Azure Import/Export Service! The Windows Azure Import/Export Service enables you to move large amounts of on-premises data into and out of your Windows Azure Storage accounts. It does this by enabling you to securely ship hard disk drives directly to our Windows Azure data centers. Once we receive the drives we’ll automatically transfer the data to or from your Windows Azure Storage account.  This enables you to import or export massive amounts of data more quickly and cost effectively (and not be constrained by available network bandwidth). Encrypted Transport Our Import/Export service provides built-in support for BitLocker disk encryption – which enables you to securely encrypt data on the hard drives before you send it, and not have to worry about it being compromised even if the disk is lost/stolen in transit (since the content on the transported hard drives is completely encrypted and you are the only one who has the key to it).  The drive preparation tool we are shipping today makes setting up bitlocker encryption on these hard drives easy. How to Import/Export your first Hard Drive of Data You can read our Getting Started Guide to learn more about how to begin using the import/export service.  You can create import and export jobs via the Windows Azure Management Portal as well as programmatically using our Server Management APIs. It is really easy to create a new import or export job using the Windows Azure Management Portal.  Simply navigate to a Windows Azure storage account, and then click the new Import/Export tab now available within it (note: if you don’t have this tab make sure to sign-up for the Import/Export preview): Then click the “Create Import Job” or “Create Export Job” commands at the bottom of it.  This will launch a wizard that easily walks you through the steps required: For more comprehensive information about Import/Export, refer to Windows Azure Storage team blog.  You can also send questions and comments to the [email protected] email address. We think you’ll find this new service makes it much easier to move data into and out of Windows Azure, and it will dramatically cut down the network bandwidth required when working on large data migration projects.  We hope you like it. HDInsight: 100% Compatible Hadoop Service in the Cloud Last week we announced the general availability release of Windows Azure HDInsight. HDInsight is a 100% compatible Hadoop service that allows you to easily provision and manage Hadoop clusters for big data processing in Windows Azure.  This release is now live in production, backed by an enterprise SLA, supported 24x7 by Microsoft Support, and is ready to use for production scenarios. HDInsight allows you to use Apache Hadoop tools, such as Pig and Hive, to process large amounts of data in Windows Azure Blob Storage. Because data is stored in Windows Azure Blob Storage, you can choose to dynamically create Hadoop clusters only when you need them, and then shut them down when they are no longer required (since you pay only for the time the Hadoop cluster instances are running this provides a super cost effective way to use them).  You can create Hadoop clusters using either the Windows Azure Management Portal (see below) or using our PowerShell and Cross Platform Command line tools: The import/export hard drive support that came out today is a perfect companion service to use with HDInsight – the combination allows you to easily ingest, process and optionally export a limitless amount of data.  We’ve also integrated HDInsight with our Business Intelligence tools, so users can leverage familiar tools like Excel in order to analyze the output of jobs.  You can find out more about how to get started with HDInsight here. Virtual Machines: VM Gallery Enhancements Today’s update of Windows Azure brings with it a new Virtual Machine gallery that you can use to create new VMs in the cloud.  You can launch the gallery by doing New->Compute->Virtual Machine->From Gallery within the Windows Azure Management Portal: The new Virtual Machine Gallery includes some nice enhancements that make it even easier to use: Search: You can now easily search and filter images using the search box in the top-right of the dialog.  For example, simply type “SQL” and we’ll filter to show those images in the gallery that contain that substring. Category Tree-view: Each month we add more built-in VM images to the gallery.  You can continue to browse these using the “All” view within the VM Gallery – or now quickly filter them using the category tree-view on the left-hand side of the dialog.  For example, by selecting “Oracle” in the tree-view you can now quickly filter to see the official Oracle supplied images. MSDN and Supported checkboxes: With today’s update we are also introducing filters that makes it easy to filter out types of images that you may not be interested in. The first checkbox is MSDN: using this filter you can exclude any image that is not part of the Windows Azure benefits for MSDN subscribers (which have highly discounted pricing - you can learn more about the MSDN pricing here). The second checkbox is Supported: this filter will exclude any image that contains prerelease software, so you can feel confident that the software you choose to deploy is fully supported by Windows Azure and our partners. Sort options: We sort gallery images by what we think customers are most interested in, but sometimes you might want to sort using different views. So we’re providing some additional sort options, like “Newest,” to customize the image list for what suits you best. Pricing information: We now provide additional pricing information about images and options on how to cost effectively run them directly within the VM Gallery. The above improvements make it even easier to use the VM Gallery and quickly create launch and run Virtual Machines in the cloud. Virtual Machines: ACL Support for VIPs A few months ago we exposed the ability to configure Access Control Lists (ACLs) for Virtual Machines using Windows PowerShell cmdlets and our Service Management API. With today’s release, you can now configure VM ACLs using the Windows Azure Management Portal as well. You can now do this by clicking the new Manage ACL command in the Endpoints tab of a virtual machine instance: This will enable you to configure an ordered list of permit and deny rules to scope the traffic that can access your VM’s network endpoints. For example, if you were on a virtual network, you could limit RDP access to a Windows Azure virtual machine to only a few computers attached to your enterprise. Or if you weren’t on a virtual network you could alternatively limit traffic from public IPs that can access your workloads: Here is the default behaviors for ACLs in Windows Azure: By default (i.e. no rules specified), all traffic is permitted. When using only Permit rules, all other traffic is denied. When using only Deny rules, all other traffic is permitted. When there is a combination of Permit and Deny rules, all other traffic is denied. Lastly, remember that configuring endpoints does not automatically configure them within the VM if it also has firewall rules enabled at the OS level.  So if you create an endpoint using the Windows Azure Management Portal, Windows PowerShell, or REST API, be sure to also configure your guest VM firewall appropriately as well. Web Sites: Web Sockets Support With today’s release you can now use Web Sockets with Windows Azure Web Sites.  This feature enables you to easily integrate real-time communication scenarios within your web based applications, and is available at no extra charge (it even works with the free tier).  Higher level programming libraries like SignalR and socket.io are also now supported with it. You can enable Web Sockets support on a web site by navigating to the Configure tab of a Web Site, and by toggling Web Sockets support to “on”: Once Web Sockets is enabled you can start to integrate some really cool scenarios into your web applications.  Check out the new SignalR documentation hub on www.asp.net to learn more about some of the awesome scenarios you can do with it. Web Sites: Remote Debugging Support The Windows Azure SDK 2.2 we released two weeks ago introduced remote debugging support for Windows Azure Cloud Services. With today’s Windows Azure release we are extending this remote debugging support to also work with Windows Azure Web Sites. With live, remote debugging support inside of Visual Studio, you are able to have more visibility than ever before into how your code is operating live in Windows Azure. It is now super easy to attach the debugger and quickly see what is going on with your application in the cloud. Remote Debugging of a Windows Azure Web Site using VS 2013 Enabling the remote debugging of a Windows Azure Web Site using VS 2013 is really easy.  Start by opening up your web application’s project within Visual Studio. Then navigate to the “Server Explorer” tab within Visual Studio, and click on the deployed web-site you want to debug that is running within Windows Azure using the Windows Azure->Web Sites node in the Server Explorer.  Then right-click and choose the “Attach Debugger” option on it: When you do this Visual Studio will remotely attach the debugger to the Web Site running within Windows Azure.  The debugger will then stop the web site’s execution when it hits any break points that you have set within your web application’s project inside Visual Studio.  For example, below I set a breakpoint on the “ViewBag.Message” assignment statement within the HomeController of the standard ASP.NET MVC project template.  When I hit refresh on the “About” page of the web site within the browser, the breakpoint was triggered and I am now able to debug the app remotely using Visual Studio: Note above how we can debug variables (including autos/watchlist/etc), as well as use the Immediate and Command Windows. In the debug session above I used the Immediate Window to explore some of the request object state, as well as to dynamically change the ViewBag.Message property.  When we click the the “Continue” button (or press F5) the app will continue execution and the Web Site will render the content back to the browser.  This makes it super easy to debug web apps remotely. Tips for Better Debugging To get the best experience while debugging, we recommend publishing your site using the Debug configuration within Visual Studio’s Web Publish dialog. This will ensure that debug symbol information is uploaded to the Web Site which will enable a richer debug experience within Visual Studio.  You can find this option on the Web Publish dialog on the Settings tab: When you ultimately deploy/run the application in production we recommend using the “Release” configuration setting – the release configuration is memory optimized and will provide the best production performance.  To learn more about diagnosing and debugging Windows Azure Web Sites read our new Troubleshooting Windows Azure Web Sites in Visual Studio guide. Notification Hubs: Segmented Push Notification support with tag expressions In August we announced the General Availability of Windows Azure Notification Hubs - a powerful Mobile Push Notifications service that makes it easy to send high volume push notifications with low latency from any mobile app back-end.  Notification hubs can be used with any mobile app back-end (including ones built using our Mobile Services capability) and can also be used with back-ends that run in the cloud as well as on-premises. Beginning with the initial release, Notification Hubs allowed developers to send personalized push notifications to both individual users as well as groups of users by interest, by associating their devices with tags representing the logical target of the notification. For example, by registering all devices of customers interested in a favorite MLB team with a corresponding tag, it is possible to broadcast one message to millions of Boston Red Sox fans and another message to millions of St. Louis Cardinals fans with a single API call respectively. New support for using tag expressions to enable advanced customer segmentation With today’s release we are adding support for even more advanced customer targeting.  You can now identify customers that you want to send push notifications to by defining rich tag expressions. With tag expressions, you can now not only broadcast notifications to Boston Red Sox fans, but take that segmenting a step farther and reach more granular segments. This opens up a variety of scenarios, for example: Offers based on multiple preferences—e.g. send a game day vegetarian special to users tagged as both a Boston Red Sox fan AND a vegetarian Push content to multiple segments in a single message—e.g. rain delay information only to users who are tagged as either a Boston Red Sox fan OR a St. Louis Cardinal fan Avoid presenting subsets of a segment with irrelevant content—e.g. season ticket availability reminder to users who are tagged as a Boston Red Sox fan but NOT also a season ticket holder To illustrate with code, consider a restaurant chain app that sends an offer related to a Red Sox vs Cardinals game for users in Boston. Devices can be tagged by your app with location tags (e.g. “Loc:Boston”) and interest tags (e.g. “Follows:RedSox”, “Follows:Cardinals”), and then a notification can be sent by your back-end to “(Follows:RedSox || Follows:Cardinals) && Loc:Boston” in order to deliver an offer to all devices in Boston that follow either the RedSox or the Cardinals. This can be done directly in your server backend send logic using the code below: var notification = new WindowsNotification(messagePayload); hub.SendNotificationAsync(notification, "(Follows:RedSox || Follows:Cardinals) && Loc:Boston"); In your expressions you can use all Boolean operators: AND (&&), OR (||), and NOT (!).  Some other cool use cases for tag expressions that are now supported include: Social: To “all my group except me” - group:id && !user:id Events: Touchdown event is sent to everybody following either team or any of the players involved in the action: Followteam:A || Followteam:B || followplayer:1 || followplayer:2 … Hours: Send notifications at specific times. E.g. Tag devices with time zone and when it is 12pm in Seattle send to: GMT8 && follows:thaifood Versions and platforms: Send a reminder to people still using your first version for Android - version:1.0 && platform:Android For help on getting started with Notification Hubs, visit the Notification Hub documentation center.  Then download the latest NuGet package (or use the Notification Hubs REST APIs directly) to start sending push notifications using tag expressions.  They are really powerful and enable a bunch of great new scenarios. TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services With today’s Windows Azure release we are making it really easy to enable continuous delivery support with Windows Azure and Team Foundation Services.  Team Foundation Services is a cloud based offering from Microsoft that provides integrated source control (with both TFS and Git support), build server, test execution, collaboration tools, and agile planning support.  It makes it really easy to setup a team project (complete with automated builds and test runners) in the cloud, and it has really rich integration with Visual Studio. With today’s Windows Azure release it is now really easy to enable continuous delivery support with both TFS and Git based repositories hosted using Team Foundation Services.  This enables a workflow where when code is checked in, built successfully on an automated build server, and all tests pass on it – I can automatically have the app deployed on Windows Azure with zero manual intervention or work required. The below screen-shots demonstrate how to quickly setup a continuous delivery workflow to Windows Azure with a Git-based ASP.NET MVC project hosted using Team Foundation Services. Enabling Continuous Delivery to Windows Azure with Team Foundation Services The project I’m going to enable continuous delivery with is a simple ASP.NET MVC project whose source code I’m hosting using Team Foundation Services.  I did this by creating a “SimpleContinuousDeploymentTest” repository there using Git – and then used the new built-in Git tooling support within Visual Studio 2013 to push the source code to it.  Below is a screen-shot of the Git repository hosted within Team Foundation Services: I can access the repository within Visual Studio 2013 and easily make commits with it (as well as branch, merge and do other tasks).  Using VS 2013 I can also setup automated builds to take place in the cloud using Team Foundation Services every time someone checks in code to the repository: The cool thing about this is that I don’t have to buy or rent my own build server – Team Foundation Services automatically maintains its own build server farm and can automatically queue up a build for me (for free) every time someone checks in code using the above settings.  This build server (and automated testing) support now works with both TFS and Git based source control repositories. Connecting a Team Foundation Services project to Windows Azure Once I have a source repository hosted in Team Foundation Services with Automated Builds and Testing set up, I can then go even further and set it up so that it will be automatically deployed to Windows Azure when a source code commit is made to the repository (assuming the Build + Tests pass).  Enabling this is now really easy.  To set this up with a Windows Azure Web Site simply use the New->Compute->Web Site->Custom Create command inside the Windows Azure Management Portal.  This will create a dialog like below.  I gave the web site a name and then made sure the “Publish from source control” checkbox was selected: When we click next we’ll be prompted for the location of the source repository.  We’ll select “Team Foundation Services”: Once we do this we’ll be prompted for our Team Foundation Services account that our source repository is hosted under (in this case my TFS account is “scottguthrie”): When we click the “Authorize Now” button we’ll be prompted to give Windows Azure permissions to connect to the Team Foundation Services account.  Once we do this we’ll be prompted to pick the source repository we want to connect to.  Starting with today’s Windows Azure release you can now connect to both TFS and Git based source repositories.  This new support allows me to connect to the “SimpleContinuousDeploymentTest” respository we created earlier: Clicking the finish button will then create the Web Site with the continuous delivery hooks setup with Team Foundation Services.  Now every time someone pushes source control to the repository in Team Foundation Services, it will kick off an automated build, run all of the unit tests in the solution , and if they pass the app will be automatically deployed to our Web Site in Windows Azure.  You can monitor the history and status of these automated deployments using the Deployments tab within the Web Site: This enables a really slick continuous delivery workflow, and enables you to build and deploy apps in a really nice way. Developer Analytics: New Relic support for Web Sites + Mobile Services With today’s Windows Azure release we are making it really easy to enable Developer Analytics and Monitoring support with both Windows Azure Web Site and Windows Azure Mobile Services.  We are partnering with New Relic, who provide a great dev analytics and app performance monitoring offering, to enable this - and we have updated the Windows Azure Management Portal to make it really easy to configure. Enabling New Relic with a Windows Azure Web Site Enabling New Relic support with a Windows Azure Web Site is now really easy.  Simply navigate to the Configure tab of a Web Site and scroll down to the “developer analytics” section that is now within it: Clicking the “add-on” button will display some additional UI.  If you don’t already have a New Relic subscription, you can click the “view windows azure store” button to obtain a subscription (note: New Relic has a perpetually free tier so you can enable it even without paying anything): Clicking the “view windows azure store” button will launch the integrated Windows Azure Store experience we have within the Windows Azure Management Portal.  You can use this to browse from a variety of great add-on services – including New Relic: Select “New Relic” within the dialog above, then click the next button, and you’ll be able to choose which type of New Relic subscription you wish to purchase.  For this demo we’ll simply select the “Free Standard Version” – which does not cost anything and can be used forever:  Once we’ve signed-up for our New Relic subscription and added it to our Windows Azure account, we can go back to the Web Site’s configuration tab and choose to use the New Relic add-on with our Windows Azure Web Site.  We can do this by simply selecting it from the “add-on” dropdown (it is automatically populated within it once we have a New Relic subscription in our account): Clicking the “Save” button will then cause the Windows Azure Management Portal to automatically populate all of the needed New Relic configuration settings to our Web Site: Deploying the New Relic Agent as part of a Web Site The final step to enable developer analytics using New Relic is to add the New Relic runtime agent to our web app.  We can do this within Visual Studio by right-clicking on our web project and selecting the “Manage NuGet Packages” context menu: This will bring up the NuGet package manager.  You can search for “New Relic” within it to find the New Relic agent.  Note that there is both a 32-bit and 64-bit edition of it – make sure to install the version that matches how your Web Site is running within Windows Azure (note: you can configure your Web Site to run in either 32-bit or 64-bit mode using the Web Site’s “Configuration” tab within the Windows Azure Management Portal): Once we install the NuGet package we are all set to go.  We’ll simply re-publish the web site again to Windows Azure and New Relic will now automatically start monitoring the application Monitoring a Web Site using New Relic Now that the application has developer analytics support with New Relic enabled, we can launch the New Relic monitoring portal to start monitoring the health of it.  We can do this by clicking on the “Add Ons” tab in the left-hand side of the Windows Azure Management Portal.  Then select the New Relic add-on we signed-up for within it.  The Windows Azure Management Portal will provide some default information about the add-on when we do this.  Clicking the “Manage” button in the tray at the bottom will launch a new browser tab and single-sign us into the New Relic monitoring portal associated with our account: When we do this a new browser tab will launch with the New Relic admin tool loaded within it: We can now see insights into how our app is performing – without having to have written a single line of monitoring code.  The New Relic service provides a ton of great built-in monitoring features allowing us to quickly see: Performance times (including browser rendering speed) for the overall site and individual pages.  You can optionally set alert thresholds to trigger if the speed does not meet a threshold you specify. Information about where in the world your customers are hitting the site from (and how performance varies by region) Details on the latency performance of external services your web apps are using (for example: SQL, Storage, Twitter, etc) Error information including call stack details for exceptions that have occurred at runtime SQL Server profiling information – including which queries executed against your database and what their performance was And a whole bunch more… The cool thing about New Relic is that you don’t need to write monitoring code within your application to get all of the above reports (plus a lot more).  The New Relic agent automatically enables the CLR profiler within applications and automatically captures the information necessary to identify these.  This makes it super easy to get started and immediately have a rich developer analytics view for your solutions with very little effort. If you haven’t tried New Relic out yet with Windows Azure I recommend you do so – I think you’ll find it helps you build even better cloud applications.  Following the above steps will help you get started and deliver you a really good application monitoring solution in only minutes. Service Bus: Support for partitioned queues and topics With today’s release, we are enabling support within Service Bus for partitioned queues and topics. Enabling partitioning enables you to achieve a higher message throughput and better availability from your queues and topics. Higher message throughput is achieved by implementing multiple message brokers for each partitioned queue and topic.  The  multiple messaging stores will also provide higher availability. You can create a partitioned queue or topic by simply checking the Enable Partitioning option in the custom create wizard for a Queue or Topic: Read this article to learn more about partitioned queues and topics and how to take advantage of them today. Billing: New Billing Alert Service Today’s Windows Azure update enables a new Billing Alert Service Preview that enables you to get proactive email notifications when your Windows Azure bill goes above a certain monetary threshold that you configure.  This makes it easier to manage your bill and avoid potential surprises at the end of the month. With the Billing Alert Service Preview, you can now create email alerts to monitor and manage your monetary credits or your current bill total.  To set up an alert first sign-up for the free Billing Alert Service Preview.  Then visit the account management page, click on a subscription you have setup, and then navigate to the new Alerts tab that is available: The alerts tab allows you to setup email alerts that will be sent automatically once a certain threshold is hit.  For example, by clicking the “add alert” button above I can setup a rule to send myself email anytime my Windows Azure bill goes above $100 for the month: The Billing Alert Service will evolve to support additional aspects of your bill as well as support multiple forms of alerts such as SMS.  Try out the new Billing Alert Service Preview today and give us feedback. Summary Today’s Windows Azure release enables a ton of great new scenarios, and makes building applications hosted in the cloud even easier. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Wikipedia API: list=alllinks confusion

    - by Chris Salij
    I'm doing a research project for the summer and I've got to use get some data from Wikipedia, store it and then do some analysis on it. I'm using the Wikipedia API to gather the data and I've got that down pretty well. What my questions is in regards to the links-alllinks option in the API doc here After reading the description, both there and in the API itself (it's down and bit and I can't link directly to the section), I think I understand what it's supposed to return. However when I ran a query it gave me back something I didn't expect. Here's the query I ran: http://en.wikipedia.org/w/api.php?action=query&prop=revisions&titles=google&rvprop=ids|timestamp|user|comment|content&rvlimit=1&list=alllinks&alunique&allimit=40&format=xml Which in essence says: Get the last revision of the Google page, include the id, timestamp, user, comment and content of each revision, and return it in XML format. The allinks (I thought) should give me back a list of wikipedia pages which point to the google page (In this case the first 40 unique ones). I'm not sure what the policy is on swears, but this is the result I got back exactly: <?xml version="1.0"?> <api> <query><normalized> <n from="google" to="Google" /> </normalized> <pages> <page pageid="1092923" ns="0" title="Google"> <revisions> <rev revid="366826294" parentid="366673948" user="Citation bot" timestamp="2010-06-08T17:18:31Z" comment="Citations: [161]Tweaked: url. [[User:Mono|Mono]]" xml:space="preserve"> <!-- The page content, I've replaced this cos its not of interest --> </rev> </revisions> </page> </pages> <alllinks> <l ns="0" title="!" /> <l ns="0" title="!!" /> <l ns="0" title="!!!" /> <l ns="0" title="!!!!" /> <l ns="0" title="!!!!!!!!!!!!!!!!!!!!!" /> <l ns="0" title="!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" /> <l ns="0" title="!!!!!!!!!!!!!!!!!!!!*was up all u hater just stopingby to show u some love*!!!!!!!!!!!!!!!!!!!!!!!!!!!" /> <l ns="0" title="!!!!!!!!!!!!&amp;&amp;&amp;&amp;&amp;&amp;&amp;&amp;&amp;&amp;&amp;********(( )))))F/W///CHRYSLER/FUCKING/FUCKING/FUCKING/I HATE THE QUEEN!!!/I AM HORRID HENRY/Chrysler Cirrus/php" /> <l ns="0" title="!!!!!Hephaestos IS A FUCKING WHINY GUY!!!!!!" /> <l ns="0" title="!!!!Do you really want to see this article on your default search?" /> <l ns="0" title="!!!!Legal!!!!" /> <l ns="0" title="!!!!YOU ARE A COCKSUCKING WHINY GREASER!!!!" /> <l ns="0" title="!!!BESQUERKAN!!!" /> <l ns="0" title="!!!Fuck You!!!" /> <l ns="0" title="!!!Fuck You!!! And Then Some" /> <l ns="0" title="!!!Fuck You!!! And Then some" /> <l ns="0" title="!!!Fuck You!!! And then Some" /> <l ns="0" title="!!!Fuck You!!! and Then Some" /> <l ns="0" title="!!!Three !!! Amigos!!!" /> <l ns="0" title="!!! (album)" /> <l ns="0" title="!!! (band)" /> <l ns="0" title="!!1" /> <l ns="0" title="!!BOSS!!" /> <l ns="0" title="!!Destroy-Oh-Boy!!" /> <l ns="0" title="!!Fuck you!!" /> <l ns="0" title="!!M" /> <l ns="0" title="!!Que Corra La Voz!!" /> <l ns="0" title="!! (chess)" /> <l ns="0" title="!! (disambiguation)" /> <l ns="0" title="!! 6- -.4rtist.com" /> <l ns="0" title="!!m" /> <l ns="0" title="!!suck my balls!!" /> <l ns="0" title="!!~~YOU WIN~~!!" /> <l ns="0" title="!&#039;O-!khung language" /> <l ns="0" title="!(1)Full Name:(2)Age:(3)Sex:(4)Occupation:(5)Phone Number: (6)Delivery Address:(7)Country of Residence:. Dr.John Aboh" /> <l ns="0" title="!-" /> <l ns="0" title="!-My Degrassi Top 10 Episodes" /> <l ns="0" title="!10 Show" /> <l ns="0" title="!2005" /> <l ns="0" title="!2006" /> </alllinks> </query> <query-continue> <revisions rvstartid="366673948" /> <alllinks alfrom="!2009" /> </query-continue> </api> As you can see if you look at the <alllinks> part, its just a load of random gobbledy-gook. No nearly what I thought I'd get. I've done a fair bit of searching but I can't seem to find a direct answer to my question. What should the list=alllinks option return? Why am I getting this crap in there? Thanks for your help

    Read the article

  • How to simulate browser form POST method using PHP/cURL

    - by user283266
    I'm trying to simulate browser with POST method using PHP/cURL. When I looked at that live Http header it shows Content-Type: multipart/form-data. I checked on the internet where it was suggested that cURL will send multipart/form-data when a custom headers is specified to Content-Type: multipart/form-data. $headers = array( 'Content-Type' => 'multipart/form-data; boundary='.$boundary ); This didn't work for me either when I print_r(curl_getinfo()) it showed [content_type] => text/html; charset=UTF-8 Which means cURL sent a default headers I also read that sending/uploading a file with cURL will cause data to be send as multipart/form-data. I created a file which curl uploaded but again when I ran curl_getinfo I got [content_type] => text/html; charset=UTF-8 $data_array = array("field" => "@c:\file_location.txt"); I also tried to read a file content so that the only thing sent would be content NOT ATTACHED FILE but this didn't work for me curl_getinfo shows [content_type] => text/html; charset=UTF-8. $data_array = array("field" => "<c:\file_location.txt"); // note @ replaced with < Do I miss somthing here? This is the referer url POST somepath HTTP/1.1 Host: www(dot)domain(dot)com User-Agent: Mozilla/5.0 (Windows) Gecko/13081217 Firefox/3 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: en-us,en;q=0.5 Accept-Encoding: gzip,deflate Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7 Keep-Alive: 300 Connection: keep-alive Referer: url/some-file.php Content-Type: multipart/form-data; boundary=--------------------------$boundary Content-Length: $some_number ----------------------------$boundary Content-Disposition: form-data; name="$some_Value1" $some_text1 ----------------------------$boundary Content-Disposition: form-data; name="$some_Value2" $some_text2 ----------------------------$boundary Content-Disposition: form-data; name="$some_Value3" $some_text3 ----------------------------$boundary Content-Disposition: form-data; name="$some_Value4" $some_text4 ----------------------------$boundary Content-Disposition: form-data; name="$some_Value5" $some_text5 ----------------------------$boundary Content-Disposition: form-data; name="$some_Value6" $some_text6 ----------------------------$boundary Content-Disposition: form-data; name="$some_Value7" $some_text7 ----------------------------$boundary Content-Disposition: form-data; name="$some_Value8" $some_text8 ----------------------------$boundary Content-Disposition: form-data; name="$some_Value9" ----------------------------$boundary Content-Disposition: form-data; name="$some_Value10" ----------------------------$boundary-- Here is a piece of code. <? //Include files set_time_limit(0); include'body.php'; include'keyword.php'; include'bio.php'; include'summary.php'; include'headline.php'; include'category.php'; include'spin.php'; include'random-text.php'; $category = category(); $headline = headline() ; $summary = summary(); $keyword = keyword(); $body = body(); $bio = bio(); $target="url"; $ref ="url_ref"; $c = "Content-Disposition: form-data; name="; $boundary = "---------------------------".random_text(); $category = category(); $headline = headline() ; $summary = summary(); $keyword = keyword(); $body = body(); $bio = bio(); // emulating content form as it appears on livehttp header $data = "\r\n".$boundary."\r\n".$c."\"pen_id\"\r\n\r\n".$Auth_id."\r\n".$boundary."\r\n".$c."\"cat_id\"\r\n\r\n".category()."\r\n".$boundary."\r\n".$c."\"title\"\r\n\r\n".headline()."\r\n".$boundary."\r\n".$c."\"meta_desc\"\r\n\r\n".summary()."\r\n".$boundary."\r\n".$c."\"meta_keys\"\r\n\r\n".keyword()."\r\n".$boundary."\r\n".$c."\"content\"\r\n\r\n".body()."\r\n".$boundary."\r\n".$c."\"author_bio\"\r\n\r\n".bio()."\r\n".$boundary."\r\n".$c."\"allow_comments\"\r\n\r\ny\r\n".$boundary."\r\n".$c."\"id\"\r\n\r\n\r\n".$boundary."\r\n".$c."\"action\"\r\n\r\n\r\n".$boundary."--\r\n"; // inserting content into a file $file = "C:\file_path.txt"; $fh = fopen($file, 'w+') or die("Can't open file"); fwrite($fh,$data); fclose($fh); // pulling out content from a file as multipart/form-data $data_array = array ("field" => "<C:\file_path.txt"); $headers = array ( 'POST /myhome/article/new HTTP/1.1', 'Host: url', 'User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.20) Gecko/20081217 Firefox/2.0.0.20 (.NET CLR 3.5.30729)', 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9;q=0.8', 'Accept-Language: en-us,en;q=0.5', 'Accept-Encoding: gzip,deflate', 'Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7', 'Keep-Alive: 300', 'Connection: keep-alive', 'Content-Type: multipart/form-data; boundary='.$boundary, 'Content-Length: '.strlen($data), ); # Create the cURL session $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, $target); // Define target site curl_setopt($ch, CURLOPT_POST,1); curl_setopt($ch, CURLOPT_HEADER, $headers); // No http head //curl_setopt($ch, CURLOPT_REFERER, $ref); curl_setopt($ch, CURLOPT_NOBODY, FALSE); curl_setopt($ch, CURLOPT_RETURNTRANSFER, TRUE); // Return page in string curl_setopt($ch, CURLOPT_COOKIEJAR, "c:\cookie\cookies.txt"); // Tell cURL where to write curl_setopt($ch, CURLOPT_COOKIEFILE, "c:\cookie\cookies.txt"); // Tell cURL which cookies //curl_setopt($ch, CURLOPT_USERAGENT, $agent); curl_setopt($ch, CURLOPT_POST, TRUE); curl_setopt($ch, CURLOPT_POSTFIELDS, "$data_array"); curl_setopt($ch, CURLOPT_FOLLOWLOCATION, TRUE); // Follow redirects curl_setopt($ch, CURLOPT_MAXREDIRS, 4); # Execute the PHP/CURL session and echo the downloaded page $page = curl_exec($ch); $err = curl_error($ch); $info =curl_getinfo($ch); # Close the cURL session curl_close($ch); print_r($err); print_r($info); ?>

    Read the article

  • Need help debugging a very basic PHP SOAP Hello world app

    - by WarDoGG
    I have been breaking my head at this, reading almost every article and tutorial there is on the web, but nothing doing.. i still cannot get my first web service application to work. I would really appreciate it if anyone could debug this code for me and provide me with a good explanation as to what is wrong and why. This will help indeed ! Thanks ! I have pasted below the entire codes that i am using making it easier to debug. I'm using the PHP5 SOAP extension. Here is my WSDL: <?xml version="1.0" encoding="utf-8"?> <wsdl:definitions name="testWebservice" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:tns="http://tempuri.org/" xmlns:s1="http://microsoft.com/wsdl/types/" xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"> <wsdl:types> <s:schema elementFormDefault="qualified" targetNamespace="http://tempuri.org/"> <s:import namespace="http://microsoft.com/wsdl/types/" /> <s:element name="getUser"> <s:complexType> <s:sequence> <s:element minOccurs="0" maxOccurs="1" name="username" type="s:string" /> <s:element minOccurs="0" maxOccurs="1" name="password" type="s:string" /> </s:sequence> </s:complexType> </s:element> <s:element name="getUserResponse"> <s:complexType> <s:sequence> <s:element minOccurs="0" maxOccurs="1" name="getUserResult" type="tns:userInfo" /> </s:sequence> </s:complexType> </s:element> <s:complexType name="userInfo"> <s:sequence> <s:element minOccurs="1" maxOccurs="1" name="ID" type="s:int" /> <s:element minOccurs="1" maxOccurs="1" name="authkey" type="s:int" /> </s:sequence> </s:complexType> </s:schema> </wsdl:types> <wsdl:message name="getUserSoapIn"> <wsdl:part name="parameters" element="tns:getUser" /> </wsdl:message> <wsdl:message name="getUserSoapOut"> <wsdl:part name="parameters" element="tns:getUserResponse" /> </wsdl:message> <wsdl:portType name="testWebservice"> <wsdl:operation name="getUser"> <wsdl:input message="tns:getUserSoapIn" /> <wsdl:output message="tns:getUserSoapOut" /> </wsdl:operation> </wsdl:portType> <wsdl:binding name="testWebserviceBinding" type="tns:testWebservice"> <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" /> <wsdl:operation name="getUser"> <soap:operation soapAction="http://tempuri.org/getUser" /> <wsdl:input> <soap:body use="literal" /> </wsdl:input> <wsdl:output> <soap:body use="literal" /> </wsdl:output> </wsdl:operation> </wsdl:binding> <wsdl:service name="testWebserviceService"> <wsdl:port name="testWebservicePort" binding="tns:testWebserviceBinding"> <soap:address location="http://127.0.0.1/nusoap/storytruck/index.php" /> </wsdl:port> </wsdl:service> </wsdl:definitions> and here is the PHP Code i use to setup the server: <?php function getUser($user,$pass) { return array('ID'=>1); } ini_set("soap.wsdl_cache_enabled", "0"); // disabling WSDL cache $server = new SoapServer("http://127.0.0.1/mywsdl.wsdl"); $server->addFunction('getUser'); $server->handle(); ?> and the code for the client: <?php $client = new SoapClient("http://127.0.0.1/index.php?wsdl", array('exceptions' => 0)); try { $result = $client->getUser("username","pass"); print_r($result); } catch (SoapFault $result) { print_r($result); } ?> Here is the ERROR output i am getting on the browser : SoapFault Object ( [message:protected] => Error cannot find parameter [string:Exception:private] => [code:protected] => 0 [file:protected] => C:\xampp\htdocs\client.php [line:protected] => 6 [trace:Exception:private] => Array ( [0] => Array ( [function] => __call [class] => SoapClient [type] => -> [args] => Array ( [0] => getUser [1] => Array ( [0] => username [1] => pass ) ) ) [1] => Array ( [file] => C:\xampp\htdocs\client.php [line] => 6 [function] => getUser [class] => SoapClient [type] => -> [args] => Array ( [0] => username [1] => pass ) ) ) [previous:Exception:private] => [faultstring] => Error cannot find parameter [faultcode] => SOAP-ENV:Client )

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • How is font-size not working here?

    - by markvgti
    Following advice in The 6 Most Important CSS Techniques You Need To Know, I set my body's font-size to 62.5%, the container div's font-size to 1.4 em (slight variation from the article). p.tags and p.published's font-size is set to 1em. However, this doesn't work for me. Both the normal text and text in p.tags and p.published comes out to be the same size (16.8px as computed by Firebug). Can you explain why my code isn't working? I am testing in Firefox 3.6.3. The sample page shown by the author works just fine in the very same browser. I've reproduced the entire page below—apologies for the length of it, but I thought it better to not leave out anything. <html> <head> <title>Title</title> <style type="text/css"> body { font-family: Georgia, "Century Schoolbook", "Times New Roman", Serif; font-size: 62.5%; background-color: #2B3856; /* Dark slate blue */ } h1, h2, h3, h4, h5, h6 { font-family: Verdana, Helvetica, Tahoma, "Sans Serif"; color: #2B3856; margin-top: 2px; } h1 a, h2 a, h3 a, h4 a, h5 a, h6 a { text-decoration: none; color: #2B3856; } h1 a:hover, h2 a:hover, h3 a:hover, h4 a:hover, h5 a:hover, h6 a:hover { text-decoration: underline; } div#container { width: 800px; font-size: 1.4em; margin: 5px auto; background-color: #E3E4FA; /* Lavender */ } #sidebar { width: 200px; float: right; margin: 0px; padding: 0px; } #sidebar div { padding: 0 5px 5px; } #sidebar div.shadowbox { margin-right: 5px; } #content { width: 600px; float: left; margin: 0px; padding: 0px; } #header { /*background-color: white;*/ background-color: #2B3856; /* #E3E4FA; Lavender */ margin-bottom: 5px; height: 100px; } #header h1 { color: #B93B8F; /* Plum */ line-height: 100px; text-align: center; font-size: 45px; } #description { color: #7D1B7E /* Dark Orchid */ } a { text-decoration: underline; color: #153E7E; } a:hover { text-decoration: none; } div#posts { padding: 0px; font-size: 1.2em; margin: 0px; } div#posts div.post { padding: 5px; margin: 0px 5px 15px 5px; } p.tags, p.published { font-size: 1em; } .shadowbox { background: repeat 0 0 url('http://www.jawsalgorhythmics.com/images/darkness-100x100-10pct.png'); } .justifycenter { text-align: center; } .floatright { float:right; } .floatleft { float: left; } .clearright { clear: right; } .clearleft { clear:left; } .clearboth { clear: both; } .halfsidebarwidth { width: 82px; } </style> </head> <body> <div id="container"> <div id="header"> <h1>Odds 'n Ends</h1> </div> <!-- header --> <div id="sidebar"> <div class="shadowbox"> <br /><p class="justifycenter"><img width="64" height="64" src="{PortraitURL-64}" /></p> <div class="floatleft halfsidebarwidth"><a href="/archive" class="archive">Archives</a></div> <div class="floatleft halfsidebarwidth"><a href="{RSS}" class="rss">RSS</a></div> <div class="clearboth"></div> </div> </div> <!-- sidebar --> <div id="content"> <div id="posts"> <div class="post shadowbox"> <span class="quote"> "It does not matter how slow you go so long as you do not stop." <div class="source">Wisdom of <a href="#" title="http://en.wikipedia.org/wiki/Confucius">Confucius</a></div> </span> <p class="tags">Tags: #<a href="#" title="http://demo.tumblr.com/tagged/wisdom">wisdom</a>&nbsp; </p> <p class="published">Posted: Nov 08, 2006 at 2:27 pm &nbsp;&nbsp;<a href="#" title="http://demo.tumblr.com/post/236/it-does-not-matter-how-slow-you-go-so-long-as-you">Permalink</a>&nbsp;&nbsp; <a href="#" title="http://tumblr.com/xr06k">Short URL</a></p> </div> </div> <!-- posts --> </div> <!-- content --> <div class="clearboth"></div> <div id="footer" style="text-align: justify;"> <h1>The footer</h1> </div> </div> <!-- container --> </body> </html>

    Read the article

  • questions regarding the use of A* with the 15-square puzzle

    - by Cheeso
    I'm trying to build an A* solver for a 15-square puzzle. The goal is to re-arrange the tiles so that they appear in their natural positions. You can only slide one tile at a time. Each possible state of the puzzle is a node in the search graph. For the h(x) function, I am using an aggregate sum, across all tiles, of the tile's dislocation from the goal state. In the above image, the 5 is at location 0,0, and it belongs at location 1,0, therefore it contributes 1 to the h(x) function. The next tile is the 11, located at 0,1, and belongs at 2,2, therefore it contributes 3 to h(x). And so on. EDIT: I now understand this is what they call "Manhattan distance", or "taxicab distance". I have been using a step count for g(x). In my implementation, for any node in the state graph, g is just +1 from the prior node's g. To find successive nodes, I just examine where I can possibly move the "hole" in the puzzle. There are 3 neighbors for the puzzle state (aka node) that is displayed: the hole can move north, west, or east. My A* search sometimes converges to a solution in 20s, sometimes 180s, and sometimes doesn't converge at all (waited 10 mins or more). I think h is reasonable. I'm wondering if I've modeled g properly. In other words, is it possible that my A* function is reaching a node in the graph via a path that is not the shortest path? Maybe have I not waited long enough? Maybe 10 minutes is not long enough? For a fully random arrangement, (assuming no parity problems), What is the average number of permutations an A* solution will examine? (please show the math) I'm going to look for logic errors in my code, but in the meantime, Any tips? (ps: it's done in Javascript). Also, no, this isn't CompSci homework. It's just a personal exploration thing. I'm just trying to learn Javascript. EDIT: I've found that the run-time is highly depend upon the heuristic. I saw the 10x factor applied to the heuristic from the article someone mentioned, and it made me wonder - why 10x? Why linear? Because this is done in javascript, I could modify the code to dynamically update an html table with the node currently being considered. This allowd me to peek at the algorithm as it was progressing. With a regular taxicab distance heuristic, I watched as it failed to converge. There were 5's and 12's in the top row, and they kept hanging around. I'd see 1,2,3,4 creep into the top row, but then they'd drop out, and other numbers would move up there. What I was hoping to see was 1,2,3,4 sort of creeping up to the top, and then staying there. I thought to myself - this is not the way I solve this personally. Doing this manually, I solve the top row, then the 2ne row, then the 3rd and 4th rows sort of concurrently. So I tweaked the h(x) function to more heavily weight the higher rows and the "lefter" columns. The result was that the A* converged much more quickly. It now runs in 3 minutes instead of "indefinitely". With the "peek" I talked about, I can see the smaller numbers creep up to the higher rows and stay there. Not only does this seem like the right thing, it runs much faster. I'm in the process of trying a bunch of variations. It seems pretty clear that A* runtime is very sensitive to the heuristic. Currently the best heuristic I've found uses the summation of dislocation * ((4-i) + (4-j)) where i and j are the row and column, and dislocation is the taxicab distance. One interesting part of the result I got: with a particular heuristic I find a path very quickly, but it is obviously not the shortest path. I think this is because I am weighting the heuristic. In one case I got a path of 178 steps in 10s. My own manual effort produce a solution in 87 moves. (much more than 10s). More investigation warranted. So the result is I am seeing it converge must faster, and the path is definitely not the shortest. I have to think about this more. Code: var stop = false; function Astar(start, goal, callback) { // start and goal are nodes in the graph, represented by // an array of 16 ints. The goal is: [1,2,3,...14,15,0] // Zero represents the hole. // callback is a method to call when finished. This runs a long time, // therefore we need to use setTimeout() to break it up, to avoid // the browser warning like "Stop running this script?" // g is the actual distance traveled from initial node to current node. // h is the heuristic estimate of distance from current to goal. stop = false; start.g = start.dontgo = 0; // calcHeuristic inserts an .h member into the array calcHeuristicDistance(start); // start the stack with one element var closed = []; // set of nodes already evaluated. var open = [ start ]; // set of nodes to evaluate (start with initial node) var iteration = function() { if (open.length==0) { // no more nodes. Fail. callback(null); return; } var current = open.shift(); // get highest priority node // update the browser with a table representation of the // node being evaluated $("#solution").html(stateToString(current)); // check solution returns true if current == goal if (checkSolution(current,goal)) { // reconstructPath just records the position of the hole // through each node var path= reconstructPath(start,current); callback(path); return; } closed.push(current); // get the set of neighbors. This is 3 or fewer nodes. // (nextStates is optimized to NOT turn directly back on itself) var neighbors = nextStates(current, goal); for (var i=0; i<neighbors.length; i++) { var n = neighbors[i]; // skip this one if we've already visited it if (closed.containsNode(n)) continue; // .g, .h, and .previous get assigned implicitly when // calculating neighbors. n.g is nothing more than // current.g+1 ; // add to the open list if (!open.containsNode(n)) { // slot into the list, in priority order (minimum f first) open.priorityPush(n); n.previous = current; } } if (stop) { callback(null); return; } setTimeout(iteration, 1); }; // kick off the first iteration iteration(); return null; }

    Read the article

  • TCP RST right after FIN/ACK

    - by Nitzan Shaked
    I am having the weirdest issue: I have a web server which sometimes, only on very specific requests, will send a RST to the client after having sent the FIN datagram. First, a description of the setup: The server runs on an Ubuntu 12.04.1 LTS, which itself is a VM guest inside a Win7 x64 host, in bridged mode. ufw is disabled on the host The client runs on a iOS simulator, which runs on OS X Mountain Lion, which is a VM guest (hackintosh) inside a Win7 x64 host, in bridged mode. Both client and server are on the same LAN, one is connected to the home router via an Ethernet cable, and then other thru WiFi. I happened to glimpse over the server's http logs and found that the client sometimes issuing multiple subsequent identical requests. Further investigation led me to discover that this happens when the server sends a RST, and that the client is simply re-trying. I am attaching several tcpdump's: Good1 is the server-side tcpdump of a good session ("good" meaning no RST was generated). Good3 is another sever-side tcpdump of a good session. (The difference between Good1 and Good3 is the order in which ACK's were sent from the server to the client, ACK'ing the client's request. The client's request arives in 2 segements (specifically: one for the http headers, and another for a body containing an empty json object, "{}"). In Good1, the server ACK's both request segments, using 2 ACK segments, after the second request has arrived. In Good3, the server ACK's each request segment with an ACK segment as soon as the request segment arrives. Not that it should make a difference.) Bad1 is a dump, both client- and server-side, of a bad session. Bad2 is another bad session, this time server-side only. Note that in all "bad" sessions, the server ACK's each request segments immediately after having received it. I've looked at a few other bad sessions, and the situation is the same in all of them. But this is also the behavior in "Good3", so I don't see how that observation helps me, of for that matter why it should matter. I can't find any difference between good and bad sessions, or at least one that I think should matter. My question is: why are those RST's being generated? Or at least: how do I go about debugging this, or providing more info here that'll help? Edit 2 new facts that I have learned: Section 4.2.2.13 of the RFC (1122) (and Wikipedia, in the article "TCP", under "Connection Termination") says that a TCP application on one host may close the connection before it has read all of the data in its socket buffer, and in such a case the TCP on the host will sent a RST to the other side, to let it know that not all the data it has sent has been read. I'm not sure I completely understand this, since closing my side of the connection still allows me to read, no? It also means that I can't write any more. I am not sure this is relevant, though, since I see a RST after FIN. There are multiple complaints of this happening with wsgiref (Python's dev-mode HTTP server), which is exactly what I'm using. I'll keep updating as I find out more. Thanks! ~~~~~~~~~~~~~~~~~~~~ Good1 -- Server Side ~~~~~~~~~~~~~~~~~~~~ 13:28:02.308319 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [S], seq 94268074, win 65535, options [mss 1460,nop,wscale 4,nop,nop,TS val 943308864 ecr 0,sackOK,eol], length 0 13:28:02.308336 IP 192.168.1.132.5000 > 192.168.1.51.51479: Flags [S.], seq 1726304574, ack 94268075, win 14480, options [mss 1460,sackOK,TS val 326480982 ecr 943308864,nop,wscale 3], length 0 13:28:02.309750 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [.], ack 1, win 8235, options [nop,nop,TS val 943308865 ecr 326480982], length 0 13:28:02.310744 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [P.], seq 1:351, ack 1, win 8235, options [nop,nop,TS val 943308865 ecr 326480982], length 350 13:28:02.310766 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [P.], seq 351:353, ack 1, win 8235, options [nop,nop,TS val 943308865 ecr 326480982], length 2 13:28:02.310841 IP 192.168.1.132.5000 > 192.168.1.51.51479: Flags [.], ack 351, win 1944, options [nop,nop,TS val 326480983 ecr 943308865], length 0 13:28:02.310918 IP 192.168.1.132.5000 > 192.168.1.51.51479: Flags [.], ack 353, win 1944, options [nop,nop,TS val 326480983 ecr 943308865], length 0 13:28:02.315931 IP 192.168.1.132.5000 > 192.168.1.51.51479: Flags [P.], seq 1:18, ack 353, win 1944, options [nop,nop,TS val 326480984 ecr 943308865], length 17 13:28:02.316107 IP 192.168.1.132.5000 > 192.168.1.51.51479: Flags [FP.], seq 18:684, ack 353, win 1944, options [nop,nop,TS val 326480984 ecr 943308865], length 666 13:28:02.317651 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [.], ack 18, win 8234, options [nop,nop,TS val 943308872 ecr 326480984], length 0 13:28:02.318288 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [.], ack 685, win 8192, options [nop,nop,TS val 943308872 ecr 326480984], length 0 13:28:02.318640 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [F.], seq 353, ack 685, win 8192, options [nop,nop,TS val 943308872 ecr 326480984], length 0 13:28:02.318651 IP 192.168.1.132.5000 > 192.168.1.51.51479: Flags [.], ack 354, win 1944, options [nop,nop,TS val 326480985 ecr 943308872], length 0 ~~~~~~~~~~~~~~~~~~~~ Good3 -- Server Side ~~~~~~~~~~~~~~~~~~~~ 13:28:03.311143 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [S], seq 1982901126, win 65535, options [mss 1460,nop,wscale 4,nop,nop,TS val 943309853 ecr 0,sackOK,eol], length 0 13:28:03.311155 IP 192.168.1.132.5000 > 192.168.1.51.51486: Flags [S.], seq 2245063571, ack 1982901127, win 14480, options [mss 1460,sackOK,TS val 326481233 ecr 943309853,nop,wscale 3], length 0 13:28:03.312671 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [.], ack 1, win 8235, options [nop,nop,TS val 943309854 ecr 326481233], length 0 13:28:03.313330 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [P.], seq 1:351, ack 1, win 8235, options [nop,nop,TS val 943309855 ecr 326481233], length 350 13:28:03.313337 IP 192.168.1.132.5000 > 192.168.1.51.51486: Flags [.], ack 351, win 1944, options [nop,nop,TS val 326481234 ecr 943309855], length 0 13:28:03.313342 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [P.], seq 351:353, ack 1, win 8235, options [nop,nop,TS val 943309855 ecr 326481233], length 2 13:28:03.313346 IP 192.168.1.132.5000 > 192.168.1.51.51486: Flags [.], ack 353, win 1944, options [nop,nop,TS val 326481234 ecr 943309855], length 0 13:28:03.327942 IP 192.168.1.132.5000 > 192.168.1.51.51486: Flags [P.], seq 1:18, ack 353, win 1944, options [nop,nop,TS val 326481237 ecr 943309855], length 17 13:28:03.328253 IP 192.168.1.132.5000 > 192.168.1.51.51486: Flags [FP.], seq 18:684, ack 353, win 1944, options [nop,nop,TS val 326481237 ecr 943309855], length 666 13:28:03.329076 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [.], ack 18, win 8234, options [nop,nop,TS val 943309868 ecr 326481237], length 0 13:28:03.329688 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [.], ack 685, win 8192, options [nop,nop,TS val 943309868 ecr 326481237], length 0 13:28:03.330361 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [F.], seq 353, ack 685, win 8192, options [nop,nop,TS val 943309869 ecr 326481237], length 0 13:28:03.330370 IP 192.168.1.132.5000 > 192.168.1.51.51486: Flags [.], ack 354, win 1944, options [nop,nop,TS val 326481238 ecr 943309869], length 0 ~~~~~~~~~~~~~~~~~~~~ Bad1 -- Server Side ~~~~~~~~~~~~~~~~~~~~ 13:28:01.311876 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [S], seq 920400580, win 65535, options [mss 1460,nop,wscale 4,nop,nop,TS val 943307883 ecr 0,sackOK,eol], length 0 13:28:01.311896 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [S.], seq 3103085782, ack 920400581, win 14480, options [mss 1460,sackOK,TS val 326480733 ecr 943307883,nop,wscale 3], length 0 13:28:01.313509 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [.], ack 1, win 8235, options [nop,nop,TS val 943307884 ecr 326480733], length 0 13:28:01.315614 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [P.], seq 1:351, ack 1, win 8235, options [nop,nop,TS val 943307886 ecr 326480733], length 350 13:28:01.315727 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [.], ack 351, win 1944, options [nop,nop,TS val 326480734 ecr 943307886], length 0 13:28:01.316229 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [P.], seq 351:353, ack 1, win 8235, options [nop,nop,TS val 943307886 ecr 326480733], length 2 13:28:01.316242 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [.], ack 353, win 1944, options [nop,nop,TS val 326480734 ecr 943307886], length 0 13:28:01.321019 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [P.], seq 1:18, ack 353, win 1944, options [nop,nop,TS val 326480735 ecr 943307886], length 17 13:28:01.321294 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [FP.], seq 18:684, ack 353, win 1944, options [nop,nop,TS val 326480736 ecr 943307886], length 666 13:28:01.321386 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [R.], seq 685, ack 353, win 1944, options [nop,nop,TS val 326480736 ecr 943307886], length 0 13:28:01.322727 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [.], ack 18, win 8234, options [nop,nop,TS val 943307891 ecr 326480735], length 0 13:28:01.322733 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [R], seq 3103085800, win 0, length 0 13:28:01.323221 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [.], ack 685, win 8192, options [nop,nop,TS val 943307892 ecr 326480736], length 0 13:28:01.323231 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [R], seq 3103086467, win 0, length 0 ~~~~~~~~~~~~~~~~~~~~ Bad1 -- Client Side ~~~~~~~~~~~~~~~~~~~~ 13:28:11.374654 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [S], seq 920400580, win 65535, options [mss 1460,nop,wscale 4,nop,nop,TS val 943307883 ecr 0,sackOK,eol], length 0 13:28:11.375764 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [S.], seq 3103085782, ack 920400581, win 14480, options [mss 1460,sackOK,TS val 326480733 ecr 943307883,nop,wscale 3], length 0 13:28:11.376352 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [.], ack 1, win 8235, options [nop,nop,TS val 943307884 ecr 326480733], length 0 13:28:11.378252 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [P.], seq 1:351, ack 1, win 8235, options [nop,nop,TS val 943307886 ecr 326480733], length 350 13:28:11.379027 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [P.], seq 351:353, ack 1, win 8235, options [nop,nop,TS val 943307886 ecr 326480733], length 2 13:28:11.379732 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [.], ack 351, win 1944, options [nop,nop,TS val 326480734 ecr 943307886], length 0 13:28:11.380592 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [.], ack 353, win 1944, options [nop,nop,TS val 326480734 ecr 943307886], length 0 13:28:11.384968 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [P.], seq 1:18, ack 353, win 1944, options [nop,nop,TS val 326480735 ecr 943307886], length 17 13:28:11.385044 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [.], ack 18, win 8234, options [nop,nop,TS val 943307891 ecr 326480735], length 0 13:28:11.385586 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [FP.], seq 18:684, ack 353, win 1944, options [nop,nop,TS val 326480736 ecr 943307886], length 666 13:28:11.385743 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [.], ack 685, win 8192, options [nop,nop,TS val 943307892 ecr 326480736], length 0 13:28:11.385966 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [R.], seq 685, ack 353, win 1944, options [nop,nop,TS val 326480736 ecr 943307886], length 0 13:28:11.387343 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [R], seq 3103085800, win 0, length 0 13:28:11.387344 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [R], seq 3103086467, win 0, length 0 ~~~~~~~~~~~~~~~~~~~~ Bad2 -- Server Side ~~~~~~~~~~~~~~~~~~~~ 13:28:01.319185 IP 192.168.1.51.51473 > 192.168.1.132.5000: Flags [S], seq 1631526992, win 65535, options [mss 1460,nop,wscale 4,nop,nop,TS val 943307889 ecr 0,sackOK,eol], length 0 13:28:01.319197 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [S.], seq 2524685719, ack 1631526993, win 14480, options [mss 1460,sackOK,TS val 326480735 ecr 943307889,nop,wscale 3], length 0 13:28:01.320692 IP 192.168.1.51.51473 > 192.168.1.132.5000: Flags [.], ack 1, win 8235, options [nop,nop,TS val 943307890 ecr 326480735], length 0 13:28:01.322219 IP 192.168.1.51.51473 > 192.168.1.132.5000: Flags [P.], seq 1:351, ack 1, win 8235, options [nop,nop,TS val 943307890 ecr 326480735], length 350 13:28:01.322336 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [.], ack 351, win 1944, options [nop,nop,TS val 326480736 ecr 943307890], length 0 13:28:01.322689 IP 192.168.1.51.51473 > 192.168.1.132.5000: Flags [P.], seq 351:353, ack 1, win 8235, options [nop,nop,TS val 943307890 ecr 326480735], length 2 13:28:01.322700 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [.], ack 353, win 1944, options [nop,nop,TS val 326480736 ecr 943307890], length 0 13:28:01.326307 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [P.], seq 1:18, ack 353, win 1944, options [nop,nop,TS val 326480737 ecr 943307890], length 17 13:28:01.326614 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [FP.], seq 18:684, ack 353, win 1944, options [nop,nop,TS val 326480737 ecr 943307890], length 666 13:28:01.326710 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [R.], seq 685, ack 353, win 1944, options [nop,nop,TS val 326480737 ecr 943307890], length 0 13:28:01.328499 IP 192.168.1.51.51473 > 192.168.1.132.5000: Flags [.], ack 18, win 8234, options [nop,nop,TS val 943307896 ecr 326480737], length 0 13:28:01.328509 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [R], seq 2524685737, win 0, length 0 13:28:01.328514 IP 192.168.1.51.51473 > 192.168.1.132.5000: Flags [.], ack 685, win 8192, options [nop,nop,TS val 943307896 ecr 326480737], length 0 13:28:01.328517 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [R], seq 2524686404, win 0, length 0

    Read the article

  • LSI 9285-8e and Supermicro SC837E26-RJBOD1 duplicate enclosure ID and slot numbers

    - by Andy Shinn
    I am working with 2 x Supermicro SC837E26-RJBOD1 chassis connected to a single LSI 9285-8e card in a Supermicro 1U host. There are 28 drives in each chassis for a total of 56 drives in 28 RAID1 mirrors. The problem I am running in to is that there are duplicate slots for the 2 chassis (the slots list twice and only go from 0 to 27). All the drives also show the same enclosure ID (ID 36). However, MegaCLI -encinfo lists the 2 enclosures correctly (ID 36 and ID 65). My question is, why would this happen? Is there an option I am missing to use 2 enclosures effectively? This is blocking me rebuilding a drive that failed in slot 11 since I can only specify enclosure and slot as parameters to replace a drive. When I do this, it picks the wrong slot 11 (device ID 46 instead of device ID 19). Adapter #1 is the LSI 9285-8e, adapter #0 (which I removed due to space limitations) is the onboard LSI. Adapter information: Adapter #1 ============================================================================== Versions ================ Product Name : LSI MegaRAID SAS 9285-8e Serial No : SV12704804 FW Package Build: 23.1.1-0004 Mfg. Data ================ Mfg. Date : 06/30/11 Rework Date : 00/00/00 Revision No : 00A Battery FRU : N/A Image Versions in Flash: ================ BIOS Version : 5.25.00_4.11.05.00_0x05040000 WebBIOS Version : 6.1-20-e_20-Rel Preboot CLI Version: 05.01-04:#%00001 FW Version : 3.140.15-1320 NVDATA Version : 2.1106.03-0051 Boot Block Version : 2.04.00.00-0001 BOOT Version : 06.253.57.219 Pending Images in Flash ================ None PCI Info ================ Vendor Id : 1000 Device Id : 005b SubVendorId : 1000 SubDeviceId : 9285 Host Interface : PCIE ChipRevision : B0 Number of Frontend Port: 0 Device Interface : PCIE Number of Backend Port: 8 Port : Address 0 5003048000ee8e7f 1 5003048000ee8a7f 2 0000000000000000 3 0000000000000000 4 0000000000000000 5 0000000000000000 6 0000000000000000 7 0000000000000000 HW Configuration ================ SAS Address : 500605b0038f9210 BBU : Present Alarm : Present NVRAM : Present Serial Debugger : Present Memory : Present Flash : Present Memory Size : 1024MB TPM : Absent On board Expander: Absent Upgrade Key : Absent Temperature sensor for ROC : Present Temperature sensor for controller : Absent ROC temperature : 70 degree Celcius Settings ================ Current Time : 18:24:36 3/13, 2012 Predictive Fail Poll Interval : 300sec Interrupt Throttle Active Count : 16 Interrupt Throttle Completion : 50us Rebuild Rate : 30% PR Rate : 30% BGI Rate : 30% Check Consistency Rate : 30% Reconstruction Rate : 30% Cache Flush Interval : 4s Max Drives to Spinup at One Time : 2 Delay Among Spinup Groups : 12s Physical Drive Coercion Mode : Disabled Cluster Mode : Disabled Alarm : Enabled Auto Rebuild : Enabled Battery Warning : Enabled Ecc Bucket Size : 15 Ecc Bucket Leak Rate : 1440 Minutes Restore HotSpare on Insertion : Disabled Expose Enclosure Devices : Enabled Maintain PD Fail History : Enabled Host Request Reordering : Enabled Auto Detect BackPlane Enabled : SGPIO/i2c SEP Load Balance Mode : Auto Use FDE Only : No Security Key Assigned : No Security Key Failed : No Security Key Not Backedup : No Default LD PowerSave Policy : Controller Defined Maximum number of direct attached drives to spin up in 1 min : 10 Any Offline VD Cache Preserved : No Allow Boot with Preserved Cache : No Disable Online Controller Reset : No PFK in NVRAM : No Use disk activity for locate : No Capabilities ================ RAID Level Supported : RAID0, RAID1, RAID5, RAID6, RAID00, RAID10, RAID50, RAID60, PRL 11, PRL 11 with spanning, SRL 3 supported, PRL11-RLQ0 DDF layout with no span, PRL11-RLQ0 DDF layout with span Supported Drives : SAS, SATA Allowed Mixing: Mix in Enclosure Allowed Mix of SAS/SATA of HDD type in VD Allowed Status ================ ECC Bucket Count : 0 Limitations ================ Max Arms Per VD : 32 Max Spans Per VD : 8 Max Arrays : 128 Max Number of VDs : 64 Max Parallel Commands : 1008 Max SGE Count : 60 Max Data Transfer Size : 8192 sectors Max Strips PerIO : 42 Max LD per array : 16 Min Strip Size : 8 KB Max Strip Size : 1.0 MB Max Configurable CacheCade Size: 0 GB Current Size of CacheCade : 0 GB Current Size of FW Cache : 887 MB Device Present ================ Virtual Drives : 28 Degraded : 0 Offline : 0 Physical Devices : 59 Disks : 56 Critical Disks : 0 Failed Disks : 0 Supported Adapter Operations ================ Rebuild Rate : Yes CC Rate : Yes BGI Rate : Yes Reconstruct Rate : Yes Patrol Read Rate : Yes Alarm Control : Yes Cluster Support : No BBU : No Spanning : Yes Dedicated Hot Spare : Yes Revertible Hot Spares : Yes Foreign Config Import : Yes Self Diagnostic : Yes Allow Mixed Redundancy on Array : No Global Hot Spares : Yes Deny SCSI Passthrough : No Deny SMP Passthrough : No Deny STP Passthrough : No Support Security : No Snapshot Enabled : No Support the OCE without adding drives : Yes Support PFK : Yes Support PI : No Support Boot Time PFK Change : Yes Disable Online PFK Change : No PFK TrailTime Remaining : 0 days 0 hours Support Shield State : Yes Block SSD Write Disk Cache Change: Yes Supported VD Operations ================ Read Policy : Yes Write Policy : Yes IO Policy : Yes Access Policy : Yes Disk Cache Policy : Yes Reconstruction : Yes Deny Locate : No Deny CC : No Allow Ctrl Encryption: No Enable LDBBM : No Support Breakmirror : No Power Savings : Yes Supported PD Operations ================ Force Online : Yes Force Offline : Yes Force Rebuild : Yes Deny Force Failed : No Deny Force Good/Bad : No Deny Missing Replace : No Deny Clear : No Deny Locate : No Support Temperature : Yes Disable Copyback : No Enable JBOD : No Enable Copyback on SMART : No Enable Copyback to SSD on SMART Error : Yes Enable SSD Patrol Read : No PR Correct Unconfigured Areas : Yes Enable Spin Down of UnConfigured Drives : Yes Disable Spin Down of hot spares : No Spin Down time : 30 T10 Power State : Yes Error Counters ================ Memory Correctable Errors : 0 Memory Uncorrectable Errors : 0 Cluster Information ================ Cluster Permitted : No Cluster Active : No Default Settings ================ Phy Polarity : 0 Phy PolaritySplit : 0 Background Rate : 30 Strip Size : 64kB Flush Time : 4 seconds Write Policy : WB Read Policy : Adaptive Cache When BBU Bad : Disabled Cached IO : No SMART Mode : Mode 6 Alarm Disable : Yes Coercion Mode : None ZCR Config : Unknown Dirty LED Shows Drive Activity : No BIOS Continue on Error : No Spin Down Mode : None Allowed Device Type : SAS/SATA Mix Allow Mix in Enclosure : Yes Allow HDD SAS/SATA Mix in VD : Yes Allow SSD SAS/SATA Mix in VD : No Allow HDD/SSD Mix in VD : No Allow SATA in Cluster : No Max Chained Enclosures : 16 Disable Ctrl-R : Yes Enable Web BIOS : Yes Direct PD Mapping : No BIOS Enumerate VDs : Yes Restore Hot Spare on Insertion : No Expose Enclosure Devices : Yes Maintain PD Fail History : Yes Disable Puncturing : No Zero Based Enclosure Enumeration : No PreBoot CLI Enabled : Yes LED Show Drive Activity : Yes Cluster Disable : Yes SAS Disable : No Auto Detect BackPlane Enable : SGPIO/i2c SEP Use FDE Only : No Enable Led Header : No Delay during POST : 0 EnableCrashDump : No Disable Online Controller Reset : No EnableLDBBM : No Un-Certified Hard Disk Drives : Allow Treat Single span R1E as R10 : No Max LD per array : 16 Power Saving option : Don't Auto spin down Configured Drives Max power savings option is not allowed for LDs. Only T10 power conditions are to be used. Default spin down time in minutes: 30 Enable JBOD : No TTY Log In Flash : No Auto Enhanced Import : No BreakMirror RAID Support : No Disable Join Mirror : No Enable Shield State : Yes Time taken to detect CME : 60s Exit Code: 0x00 Enclosure information: # /opt/MegaRAID/MegaCli/MegaCli64 -encinfo -a1 Number of enclosures on adapter 1 -- 3 Enclosure 0: Device ID : 36 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port B Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 65 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11820 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 48 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 1: Device ID : 65 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port A Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 36 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11760 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 47 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 2: Device ID : 252 Number of Slots : 8 Number of Power Supplies : 0 Number of Fans : 0 Number of Temperature Sensors : 0 Number of Alarms : 0 Number of SIM Modules : 1 Number of Physical Drives : 0 Status : Normal Position : 1 Connector Name : Unavailable Enclosure type : SGPIO Failed in first Inquiry commnad FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : Unavailable Inquiry data : Vendor Identification : LSI Product Identification : SGPIO Product Revision Level : N/A Vendor Specific : Exit Code: 0x00 Now, notice that each slot 11 device shows an enclosure ID of 36, I think this is where the discrepancy happens. One should be 36. But the other should be on enclosure 65. Drives in slot 11: Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 5, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 48 WWN: Sequence Number: 11 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : YES Device Firmware Level: A5C0 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8a53 Connected Port Number: 1(path0) Inquiry Data: MJ1311YNG6YYXAHitachi HDS5C3030ALA630 MEAOA5C0 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 19, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 19 WWN: Sequence Number: 4 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : NO Device Firmware Level: A580 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8e53 Connected Port Number: 0(path0) Inquiry Data: MJ1313YNG1VA5CHitachi HDS5C3030ALA630 MEAOA580 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Update 06/28/12: I finally have some new information about (what we think) the root cause of this problem so I thought I would share. After getting in contact with a very knowledgeable Supermicro tech, they provided us with a tool called Xflash (doesn't appear to be readily available on their FTP). When we gathered some information using this utility, my colleague found something very strange: root@mogile2 test]# ./xflash.dat -i get avail Initializing Interface. Expander: SAS2X36 (SAS2x36) 1) SAS2X36 (SAS2x36) (50030480:00EE917F) (0.0.0.0) 2) SAS2X36 (SAS2x36) (50030480:00E9D67F) (0.0.0.0) 3) SAS2X36 (SAS2x36) (50030480:0112D97F) (0.0.0.0) This lists the connected enclosures. You see the 3 connected (we have since added a 3rd and a 4th which is not yet showing up) with their respective SAS address / WWN (50030480:00EE917F). Now we can use this address to get information on the individual enclosures: [root@mogile2 test]# ./xflash.dat -i 5003048000EE917F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00EE917F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 5003048000E9D67F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00E9D67F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 500304800112D97F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:0112D97F Enclosure Logical Id: 50030480:0112D97F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 Did you catch it? The first 2 enclosures logical ID is partially masked out where the 3rd one (which has a correct unique enclosure ID) is not. We pointed this out to Supermicro and were able to confirm that this address is supposed to be set during manufacturing and there was a problem with a certain batch of these enclosures where the logical ID was not set. We believe that the RAID controller is determining the ID based on the logical ID and since our first 2 enclosures have the same logical ID, they get the same enclosure ID. We also confirmed that 0000007F is the default which comes from LSI as an ID. The next pointer that helps confirm this could be a manufacturing problem with a run of JBODs is the fact that all 6 of the enclosures that have this problem begin with 00E. I believe that between 00E8 and 00EE Supermicro forgot to program the logical IDs correctly and neglected to recall or fix the problem post production. Fortunately for us, there is a tool to manage the WWN and logical ID of the devices from Supermicro: ftp://ftp.supermicro.com/utility/ExpanderXtools_Lite/. Our next step is to schedule a shutdown of these JBODs (after data migration) and reprogram the logical ID and see if it solves the problem. Update 06/28/12 #2: I just discovered this FAQ at Supermicro while Google searching for "lsi 0000007f": http://www.supermicro.com/support/faqs/faq.cfm?faq=11805. I still don't understand why, in the last several times we contacted Supermicro, they would have never directed us to this article :\

    Read the article

  • Nginx and client certificates from hierarchical OpenSSL-based certification authorities

    - by Fmy Oen
    I'm trying to set up root certification authority, subordinate certification authority and to generate the client certificates signed by any of this CA that nginx 0.7.67 on Debian Squeeze will accept. My problem is that root CA signed client certificate works fine while subordinate CA signed one results in "400 Bad Request. The SSL certificate error". Step 1: nginx virtual host configuration: server { server_name test.local; access_log /var/log/nginx/test.access.log; listen 443 default ssl; keepalive_timeout 70; ssl_protocols SSLv3 TLSv1; ssl_ciphers AES128-SHA:AES256-SHA:RC4-SHA:DES-CBC3-SHA:RC4-MD5; ssl_certificate /etc/nginx/ssl/server.crt; ssl_certificate_key /etc/nginx/ssl/server.key; ssl_client_certificate /etc/nginx/ssl/client.pem; ssl_verify_client on; ssl_session_cache shared:SSL:10m; ssl_session_timeout 5m; location / { proxy_pass http://testsite.local/; } } Step 2: PKI infrastructure organization for both root and subordinate CA (based on this article): # mkdir ~/pki && cd ~/pki # mkdir rootCA subCA # cp -v /etc/ssl/openssl.cnf rootCA/ # cd rootCA/ # mkdir certs private crl newcerts; touch serial; echo 01 > serial; touch index.txt; touch crlnumber; echo 01 > crlnumber # cp -Rvp * ../subCA/ Almost no changes was made to rootCA/openssl.cnf: [ CA_default ] dir = . # Where everything is kept ... certificate = $dir/certs/rootca.crt # The CA certificate ... private_key = $dir/private/rootca.key # The private key and to subCA/openssl.cnf: [ CA_default ] dir = . # Where everything is kept ... certificate = $dir/certs/subca.crt # The CA certificate ... private_key = $dir/private/subca.key # The private key Step 3: Self-signed root CA certificate generation: # openssl genrsa -out ./private/rootca.key -des3 2048 # openssl req -x509 -new -key ./private/rootca.key -out certs/rootca.crt -config openssl.cnf Enter pass phrase for ./private/rootca.key: You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [AU]: State or Province Name (full name) [Some-State]: Locality Name (eg, city) []: Organization Name (eg, company) [Internet Widgits Pty Ltd]: Organizational Unit Name (eg, section) []: Common Name (eg, YOUR name) []:rootca Email Address []: Step 4: Subordinate CA certificate generation: # cd ../subCA # openssl genrsa -out ./private/subca.key -des3 2048 # openssl req -new -key ./private/subca.key -out subca.csr -config openssl.cnf Enter pass phrase for ./private/subca.key: You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [AU]: State or Province Name (full name) [Some-State]: Locality Name (eg, city) []: Organization Name (eg, company) [Internet Widgits Pty Ltd]: Organizational Unit Name (eg, section) []: Common Name (eg, YOUR name) []:subca Email Address []: Please enter the following 'extra' attributes to be sent with your certificate request A challenge password []: An optional company name []: Step 5: Subordinate CA certificate signing by root CA certificate: # cd ../rootCA/ # openssl ca -in ../subCA/subca.csr -extensions v3_ca -config openssl.cnf Using configuration from openssl.cnf Enter pass phrase for ./private/rootca.key: Check that the request matches the signature Signature ok Certificate Details: Serial Number: 1 (0x1) Validity Not Before: Feb 4 10:49:43 2013 GMT Not After : Feb 4 10:49:43 2014 GMT Subject: countryName = AU stateOrProvinceName = Some-State organizationName = Internet Widgits Pty Ltd commonName = subca X509v3 extensions: X509v3 Subject Key Identifier: C9:E2:AC:31:53:81:86:3F:CD:F8:3D:47:10:FC:E5:8E:C2:DA:A9:20 X509v3 Authority Key Identifier: keyid:E9:50:E6:BF:57:03:EA:6E:8F:21:23:86:BB:44:3D:9F:8F:4A:8B:F2 DirName:/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca serial:9F:FB:56:66:8D:D3:8F:11 X509v3 Basic Constraints: CA:TRUE Certificate is to be certified until Feb 4 10:49:43 2014 GMT (365 days) Sign the certificate? [y/n]:y 1 out of 1 certificate requests certified, commit? [y/n]y ... # cd ../subCA/ # cp -v ../rootCA/newcerts/01.pem certs/subca.crt Step 6: Server certificate generation and signing by root CA (for nginx virtual host): # cd ../rootCA # openssl genrsa -out ./private/server.key -des3 2048 # openssl req -new -key ./private/server.key -out server.csr -config openssl.cnf Enter pass phrase for ./private/server.key: You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [AU]: State or Province Name (full name) [Some-State]: Locality Name (eg, city) []: Organization Name (eg, company) [Internet Widgits Pty Ltd]: Organizational Unit Name (eg, section) []: Common Name (eg, YOUR name) []:test.local Email Address []: Please enter the following 'extra' attributes to be sent with your certificate request A challenge password []: An optional company name []: # openssl ca -in server.csr -out certs/server.crt -config openssl.cnf Step 7: Client #1 certificate generation and signing by root CA: # openssl genrsa -out ./private/client1.key -des3 2048 # openssl req -new -key ./private/client1.key -out client1.csr -config openssl.cnf Enter pass phrase for ./private/client1.key: You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [AU]: State or Province Name (full name) [Some-State]: Locality Name (eg, city) []: Organization Name (eg, company) [Internet Widgits Pty Ltd]: Organizational Unit Name (eg, section) []: Common Name (eg, YOUR name) []:Client #1 Email Address []: Please enter the following 'extra' attributes to be sent with your certificate request A challenge password []: An optional company name []: # openssl ca -in client1.csr -out certs/client1.crt -config openssl.cnf Step 8: Client #1 certificate converting to PKCS12 format: # openssl pkcs12 -export -out certs/client1.p12 -inkey private/client1.key -in certs/client1.crt -certfile certs/rootca.crt Step 9: Client #2 certificate generation and signing by subordinate CA: # cd ../subCA/ # openssl genrsa -out ./private/client2.key -des3 2048 # openssl req -new -key ./private/client2.key -out client2.csr -config openssl.cnf Enter pass phrase for ./private/client2.key: You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [AU]: State or Province Name (full name) [Some-State]: Locality Name (eg, city) []: Organization Name (eg, company) [Internet Widgits Pty Ltd]: Organizational Unit Name (eg, section) []: Common Name (eg, YOUR name) []:Client #2 Email Address []: Please enter the following 'extra' attributes to be sent with your certificate request A challenge password []: An optional company name []: # openssl ca -in client2.csr -out certs/client2.crt -config openssl.cnf Step 10: Client #2 certificate converting to PKCS12 format: # openssl pkcs12 -export -out certs/client2.p12 -inkey private/client2.key -in certs/client2.crt -certfile certs/subca.crt Step 11: Passing server certificate and private key to nginx (performed with OS superuser privileges): # cd ../rootCA/ # cp -v certs/server.crt /etc/nginx/ssl/ # cp -v private/server.key /etc/nginx/ssl/ Step 12: Passing root and subordinate CA certificates to nginx (performed with OS superuser privileges): # cat certs/rootca.crt > /etc/nginx/ssl/client.pem # cat ../subCA/certs/subca.crt >> /etc/nginx/ssl/client.pem client.pem file look like this: # cat /etc/nginx/ssl/client.pem -----BEGIN CERTIFICATE----- MIID6TCCAtGgAwIBAgIJAJ/7VmaN048RMA0GCSqGSIb3DQEBBQUAMFYxCzAJBgNV BAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5ldCBX aWRnaXRzIFB0eSBMdGQxDzANBgNVBAMTBnJvb3RjYTAeFw0xMzAyMDQxMDM1NTda ... -----END CERTIFICATE----- Certificate: Data: Version: 3 (0x2) Serial Number: 1 (0x1) ... -----BEGIN CERTIFICATE----- MIID4DCCAsigAwIBAgIBATANBgkqhkiG9w0BAQUFADBWMQswCQYDVQQGEwJBVTET MBEGA1UECBMKU29tZS1TdGF0ZTEhMB8GA1UEChMYSW50ZXJuZXQgV2lkZ2l0cyBQ dHkgTHRkMQ8wDQYDVQQDEwZyb290Y2EwHhcNMTMwMjA0MTA0OTQzWhcNMTQwMjA0 ... -----END CERTIFICATE----- It looks like everything is working fine: # service nginx reload # Reloading nginx configuration: Enter PEM pass phrase: # nginx. # Step 13: Installing *.p12 certificates in browser (Firefox in my case) gives the problem I've mentioned above. Client #1 = 200 OK, Client #2 = 400 Bad request/The SSL certificate error. Any ideas what should I do? Update 1: Results of SSL connection test attempts: # openssl s_client -connect test.local:443 -CAfile ~/pki/rootCA/certs/rootca.crt -cert ~/pki/rootCA/certs/client1.crt -key ~/pki/rootCA/private/client1.key -showcerts Enter pass phrase for tmp/testcert/client1.key: CONNECTED(00000003) depth=1 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = rootca verify return:1 depth=0 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = test.local verify return:1 --- Certificate chain 0 s:/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=test.local i:/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca -----BEGIN CERTIFICATE----- MIIDpjCCAo6gAwIBAgIBAjANBgkqhkiG9w0BAQUFADBWMQswCQYDVQQGEwJBVTET MBEGA1UECBMKU29tZS1TdGF0ZTEhMB8GA1UEChMYSW50ZXJuZXQgV2lkZ2l0cyBQ dHkgTHRkMQ8wDQYDVQQDEwZyb290Y2EwHhcNMTMwMjA0MTEwNjAzWhcNMTQwMjA0 ... -----END CERTIFICATE----- 1 s:/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca i:/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca -----BEGIN CERTIFICATE----- MIID6TCCAtGgAwIBAgIJAJ/7VmaN048RMA0GCSqGSIb3DQEBBQUAMFYxCzAJBgNV BAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5ldCBX aWRnaXRzIFB0eSBMdGQxDzANBgNVBAMTBnJvb3RjYTAeFw0xMzAyMDQxMDM1NTda ... -----END CERTIFICATE----- --- Server certificate subject=/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=test.local issuer=/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca --- Acceptable client certificate CA names /C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca /C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=subca --- SSL handshake has read 3395 bytes and written 2779 bytes --- New, TLSv1/SSLv3, Cipher is AES256-SHA Server public key is 2048 bit Secure Renegotiation IS supported Compression: zlib compression Expansion: zlib compression SSL-Session: Protocol : TLSv1 Cipher : AES256-SHA Session-ID: 15BFC2029691262542FAE95A48078305E76EEE7D586400F8C4F7C516B0F9D967 Session-ID-ctx: Master-Key: 23246CF166E8F3900793F0A2561879E5DB07291F32E99591BA1CF53E6229491FEAE6858BFC9AACAF271D9C3706F139C7 Key-Arg : None PSK identity: None PSK identity hint: None SRP username: None TLS session ticket: 0000 - c2 5e 1d d2 b5 6d 40 23-b2 40 89 e4 35 75 70 07 .^...m@#[email protected]. 0010 - 1b bb 2b e6 e0 b5 ab 10-10 bf 46 6e aa 67 7f 58 ..+.......Fn.g.X 0020 - cf 0e 65 a4 67 5a 15 ba-aa 93 4e dd 3d 6e 73 4c ..e.gZ....N.=nsL 0030 - c5 56 f6 06 24 0f 48 e6-38 36 de f1 b5 31 c5 86 .V..$.H.86...1.. ... 0440 - 4c 53 39 e3 92 84 d2 d0-e5 e2 f5 8a 6a a8 86 b1 LS9.........j... Compression: 1 (zlib compression) Start Time: 1359989684 Timeout : 300 (sec) Verify return code: 0 (ok) --- Everything seems fine with Client #2 and root CA certificate but request returns 400 Bad Request error: # openssl s_client -connect test.local:443 -CAfile ~/pki/rootCA/certs/rootca.crt -cert ~/pki/subCA/certs/client2.crt -key ~/pki/subCA/private/client2.key -showcerts Enter pass phrase for tmp/testcert/client2.key: CONNECTED(00000003) depth=1 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = rootca verify return:1 depth=0 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = test.local verify return:1 ... Compression: 1 (zlib compression) Start Time: 1359989989 Timeout : 300 (sec) Verify return code: 0 (ok) --- GET / HTTP/1.0 HTTP/1.1 400 Bad Request Server: nginx/0.7.67 Date: Mon, 04 Feb 2013 15:00:43 GMT Content-Type: text/html Content-Length: 231 Connection: close <html> <head><title>400 The SSL certificate error</title></head> <body bgcolor="white"> <center><h1>400 Bad Request</h1></center> <center>The SSL certificate error</center> <hr><center>nginx/0.7.67</center> </body> </html> closed Verification fails with Client #2 certificate and subordinate CA certificate: # openssl s_client -connect test.local:443 -CAfile ~/pki/subCA/certs/subca.crt -cert ~/pki/subCA/certs/client2.crt -key ~/pki/subCA/private/client2.key -showcerts Enter pass phrase for tmp/testcert/client2.key: CONNECTED(00000003) depth=1 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = rootca verify error:num=19:self signed certificate in certificate chain verify return:0 ... Compression: 1 (zlib compression) Start Time: 1359990354 Timeout : 300 (sec) Verify return code: 19 (self signed certificate in certificate chain) --- GET / HTTP/1.0 HTTP/1.1 400 Bad Request ... Still getting 400 Bad Request error with concatenated CA certificates and Client #2 (but still everything ok with Client #1): # cat certs/rootca.crt ../subCA/certs/subca.crt > certs/concatenatedca.crt # openssl s_client -connect test.local:443 -CAfile ~/pki/rootCA/certs/concatenatedca.crt -cert ~/pki/subCA/certs/client2.crt -key ~/pki/subCA/private/client2.key -showcerts Enter pass phrase for tmp/testcert/client2.key: CONNECTED(00000003) depth=1 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = rootca verify return:1 depth=0 C = AU, ST = Some-State, O = Internet Widgits Pty Ltd, CN = test.local verify return:1 --- ... Compression: 1 (zlib compression) Start Time: 1359990772 Timeout : 300 (sec) Verify return code: 0 (ok) --- GET / HTTP/1.0 HTTP/1.1 400 Bad Request ... Update 2: I've managed to recompile nginx with enabled debug. Here is the part of successfull conection by Client #1 track: 2013/02/05 14:08:23 [debug] 38701#0: *119 accept: <MY IP ADDRESS> fd:3 2013/02/05 14:08:23 [debug] 38701#0: *119 event timer add: 3: 60000:2856497512 2013/02/05 14:08:23 [debug] 38701#0: *119 kevent set event: 3: ft:-1 fl:0025 2013/02/05 14:08:23 [debug] 38701#0: *119 malloc: 28805200:660 2013/02/05 14:08:23 [debug] 38701#0: *119 malloc: 28834400:1024 2013/02/05 14:08:23 [debug] 38701#0: *119 posix_memalign: 28860000:4096 @16 2013/02/05 14:08:23 [debug] 38701#0: *119 http check ssl handshake 2013/02/05 14:08:23 [debug] 38701#0: *119 https ssl handshake: 0x16 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL server name: "test.local" 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_do_handshake: -1 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_get_error: 2 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL handshake handler: 0 2013/02/05 14:08:23 [debug] 38701#0: *119 verify:1, error:0, depth:1, subject:"/C=AU /ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca",issuer: "/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca" 2013/02/05 14:08:23 [debug] 38701#0: *119 verify:1, error:0, depth:0, subject:"/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=Client #1",issuer: "/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca" 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_do_handshake: 1 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL: TLSv1, cipher: "AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1" 2013/02/05 14:08:23 [debug] 38701#0: *119 http process request line 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_read: -1 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_get_error: 2 2013/02/05 14:08:23 [debug] 38701#0: *119 http process request line 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_read: 1 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_read: 524 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_read: -1 2013/02/05 14:08:23 [debug] 38701#0: *119 SSL_get_error: 2 2013/02/05 14:08:23 [debug] 38701#0: *119 http request line: "GET / HTTP/1.1" And here is the part of unsuccessfull conection by Client #2 track: 2013/02/05 13:51:34 [debug] 38701#0: *112 accept: <MY_IP_ADDRESS> fd:3 2013/02/05 13:51:34 [debug] 38701#0: *112 event timer add: 3: 60000:2855488975 2013/02/05 13:51:34 [debug] 38701#0: *112 kevent set event: 3: ft:-1 fl:0025 2013/02/05 13:51:34 [debug] 38701#0: *112 malloc: 28805200:660 2013/02/05 13:51:34 [debug] 38701#0: *112 malloc: 28834400:1024 2013/02/05 13:51:34 [debug] 38701#0: *112 posix_memalign: 28860000:4096 @16 2013/02/05 13:51:34 [debug] 38701#0: *112 http check ssl handshake 2013/02/05 13:51:34 [debug] 38701#0: *112 https ssl handshake: 0x16 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL server name: "test.local" 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_do_handshake: -1 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_get_error: 2 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL handshake handler: 0 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_do_handshake: -1 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_get_error: 2 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL handshake handler: 0 2013/02/05 13:51:34 [debug] 38701#0: *112 verify:0, error:20, depth:1, subject:"/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=subca",issuer: "/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca" 2013/02/05 13:51:34 [debug] 38701#0: *112 verify:0, error:27, depth:1, subject:"/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=subca",issuer: "/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=rootca" 2013/02/05 13:51:34 [debug] 38701#0: *112 verify:1, error:27, depth:0, subject:"/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=Client #2",issuer: "/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=subca" 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_do_handshake: 1 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL: TLSv1, cipher: "AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1" 2013/02/05 13:51:34 [debug] 38701#0: *112 http process request line 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_read: 1 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_read: 524 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_read: -1 2013/02/05 13:51:34 [debug] 38701#0: *112 SSL_get_error: 2 2013/02/05 13:51:34 [debug] 38701#0: *112 http request line: "GET / HTTP/1.1" So I'm getting OpenSSL error #20 and then #27. According to verify documentation: 20 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: unable to get local issuer certificate the issuer certificate could not be found: this occurs if the issuer certificate of an untrusted certificate cannot be found. 27 X509_V_ERR_CERT_UNTRUSTED: certificate not trusted the root CA is not marked as trusted for the specified purpose.

    Read the article

  • Using IIS Application Request Routing (ARR) for ASP.NET MVC

    - by Malcolm Frexner
    I use a simple ASP.NET MVC web (the template you use when you create a new site) and the web works as expected in my live environment. I now try to use IIS Application Request Routing version 2. I have a rule that send all reuqests to a different server that match a rule. The settings are a bit like this: http://blogs.iis.net/wonyoo/archive/2008/07/09/application-request-routing-arr-as-a-reverse-proxy.aspx My rule is just a bit different it is /shop(.*). Only requests that contain shop are send to a different server. I have to use rewrite, not redirect (The same as in the Picture) This works as long as the web the original requests go to is no ASP.NET MVC web. I tried to use a plain htm file in the webfolder and it worked. If put a compiled ASP.NET application into the webfolder it worked. But as soon as I put an ASP.NET MVC web into the folder, request arr served by this application. My understanding is that the ARR should kick in before the web application gets the chance to handle the request. Did anybody use ARR sucessfully as a reverse proxy for a ASP.NET MVC web? EDIT Here is the resulting web config when the rewrite roule is entered. With this rule I get a 404 that indicates that the rule is not used. <?xml version="1.0" encoding="UTF-8"?> <configuration> <configSections> <sectionGroup name="system.web.extensions" type="System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <sectionGroup name="scripting" type="System.Web.Configuration.ScriptingSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="scriptResourceHandler" type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <sectionGroup name="webServices" type="System.Web.Configuration.ScriptingWebServicesSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="jsonSerialization" type="System.Web.Configuration.ScriptingJsonSerializationSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="Everywhere" /> <section name="profileService" type="System.Web.Configuration.ScriptingProfileServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <section name="authenticationService" type="System.Web.Configuration.ScriptingAuthenticationServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <section name="roleService" type="System.Web.Configuration.ScriptingRoleServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> </sectionGroup> </sectionGroup> </sectionGroup> </configSections> <appSettings /> <connectionStrings> <add name="ApplicationServices" connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;User Instance=true" providerName="System.Data.SqlClient" /> </connectionStrings> <system.web> <!-- Set compilation debug="true" to insert debugging symbols into the compiled page. Because this affects performance, set this value to true only during development. --> <compilation debug="false"> <assemblies> <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add assembly="System.Web.Abstractions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add assembly="System.Web.Routing, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add assembly="System.Web.Mvc, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> <add assembly="System.Data.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> </assemblies> </compilation> <!-- The <authentication> section enables configuration of the security authentication mode used by ASP.NET to identify an incoming user. --> <authentication mode="Forms"> <forms loginUrl="~/Account/LogOn" timeout="2880" /> </authentication> <membership> <providers> <clear /> <add name="AspNetSqlMembershipProvider" type="System.Web.Security.SqlMembershipProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" connectionStringName="ApplicationServices" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="false" requiresUniqueEmail="false" passwordFormat="Hashed" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="6" minRequiredNonalphanumericCharacters="0" passwordAttemptWindow="10" passwordStrengthRegularExpression="" applicationName="/" /> </providers> </membership> <profile> <providers> <clear /> <add name="AspNetSqlProfileProvider" type="System.Web.Profile.SqlProfileProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" connectionStringName="ApplicationServices" applicationName="/" /> </providers> </profile> <roleManager enabled="false"> <providers> <clear /> <add connectionStringName="ApplicationServices" applicationName="/" name="AspNetSqlRoleProvider" type="System.Web.Security.SqlRoleProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" /> <add applicationName="/" name="AspNetWindowsTokenRoleProvider" type="System.Web.Security.WindowsTokenRoleProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" /> </providers> </roleManager> <!-- The <customErrors> section enables configuration of what to do if/when an unhandled error occurs during the execution of a request. Specifically, it enables developers to configure html error pages to be displayed in place of a error stack trace. <customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm"> <error statusCode="403" redirect="NoAccess.htm" /> <error statusCode="404" redirect="FileNotFound.htm" /> </customErrors> --> <pages> <controls> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </controls> <namespaces> <add namespace="System.Web.Mvc" /> <add namespace="System.Web.Mvc.Ajax" /> <add namespace="System.Web.Mvc.Html" /> <add namespace="System.Web.Routing" /> <add namespace="System.Linq" /> <add namespace="System.Collections.Generic" /> </namespaces> </pages> <httpHandlers> <remove verb="*" path="*.asmx" /> <add verb="*" path="*.asmx" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add verb="*" path="*_AppService.axd" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" validate="false" /> <add verb="*" path="*.mvc" validate="false" type="System.Web.Mvc.MvcHttpHandler, System.Web.Mvc, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </httpHandlers> <httpModules> <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule, System.Web.Routing, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </httpModules> </system.web> <system.codedom> <compilers> <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4" type="Microsoft.CSharp.CSharpCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <providerOption name="CompilerVersion" value="v3.5" /> <providerOption name="WarnAsError" value="false" /> </compiler> <compiler language="vb;vbs;visualbasic;vbscript" extension=".vb" warningLevel="4" type="Microsoft.VisualBasic.VBCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <providerOption name="CompilerVersion" value="v3.5" /> <providerOption name="OptionInfer" value="true" /> <providerOption name="WarnAsError" value="false" /> </compiler> </compilers> </system.codedom> <system.web.extensions /> <!-- The system.webServer section is required for running ASP.NET AJAX under Internet Information Services 7.0. It is not necessary for previous version of IIS. --> <system.webServer> <rewrite> <rules> <rule name="shop" stopProcessing="true"> <match url="^shop/([_0-9a-z-.]+)" /> <action type="Rewrite" url="article.aspx?title={R:1}" logRewrittenUrl="true" /> </rule> </rules> </rewrite> <validation validateIntegratedModeConfiguration="false" /> <modules runAllManagedModulesForAllRequests="true"> <remove name="ScriptModule" /> <remove name="UrlRoutingModule" /> <add name="ScriptModule" preCondition="managedHandler" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule, System.Web.Routing, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </modules> <handlers> <remove name="WebServiceHandlerFactory-Integrated" /> <remove name="ScriptHandlerFactory" /> <remove name="ScriptHandlerFactoryAppServices" /> <remove name="ScriptResource" /> <remove name="MvcHttpHandler" /> <remove name="UrlRoutingHandler" /> <add name="ScriptHandlerFactory" verb="*" path="*.asmx" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add name="ScriptResource" preCondition="integratedMode" verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add name="MvcHttpHandler" preCondition="integratedMode" verb="*" path="*.mvc" type="System.Web.Mvc.MvcHttpHandler, System.Web.Mvc, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add name="UrlRoutingHandler" preCondition="integratedMode" verb="*" path="UrlRouting.axd" type="System.Web.HttpForbiddenHandler, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" /> </handlers> </system.webServer> </configuration>

    Read the article

  • Logging Into a site that uses Live.com authentication with C#

    - by Josh
    I've been trying to automate a log in to a website I frequent, www.bungie.net. The site is associated with Microsoft and Xbox Live, and as such makes uses of the Windows Live ID API when people log in to their site. I am relatively new to creating web spiders/robots, and I worry that I'm misunderstanding some of the most basic concepts. I've simulated logins to other sites such as Facebook and Gmail, but live.com has given me nothing but trouble. Anyways, I've been using Wireshark and the Firefox addon Tamper Data to try and figure out what I need to post, and what cookies I need to include with my requests. As far as I know these are the steps one must follow to log in to this site. 1. Visit https: //login.live.com/login.srf?wa=wsignin1.0&rpsnv=11&ct=1268167141&rver=5.5.4177.0&wp=LBI&wreply=http:%2F%2Fwww.bungie.net%2FDefault.aspx&id=42917 2. Recieve the cookies MSPRequ and MSPOK. 3. Post the values from the form ID "PPSX", the values from the form ID "PPFT", your username, your password all to a changing URL similar to: https: //login.live.com/ppsecure/post.srf?wa=wsignin1.0&rpsnv=11&ct= (there are a few numbers that change at the end of that URL) 4. Live.com returns the user a page with more hidden forms to post. The client then posts the values from the form "ANON", the value from the form "ANONExp" and the values from the form "t" to the URL: http ://www.bung ie.net/Default.aspx?wa=wsignin1.0 5. After posting that data, the user is returned a variety of cookies the most important of which is "BNGAuth" which is the log in cookie for the site. Where I am having trouble is on fifth step, but that doesn't neccesarily mean I've done all the other steps correctly. I post the data from "ANON", "ANONExp" and "t" but instead of being returned a BNGAuth cookie, I'm returned a cookie named "RSPMaybe" and redirected to the home page. When I review the Wireshark log, I noticed something that instantly stood out to me as different between the log when I logged in with Firefox and when my program ran. It could be nothing but I'll include the picture here for you to review. I'm being returned an HTTP packet from the site before I post the data in the fourth step. I'm not sure how this is happening, but it must be a side effect from something I'm doing wrong in the HTTPS steps. ![alt text][1] http://img391.imageshack.us/img391/6049/31394881.gif using System; using System.Collections.Generic; using System.Collections.Specialized; using System.Text; using System.Net; using System.IO; using System.IO.Compression; using System.Security.Cryptography; using System.Security.Cryptography.X509Certificates; using System.Web; namespace SpiderFromScratch { class Program { static void Main(string[] args) { CookieContainer cookies = new CookieContainer(); Uri url = new Uri("https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=11&ct=1268167141&rver=5.5.4177.0&wp=LBI&wreply=http:%2F%2Fwww.bungie.net%2FDefault.aspx&id=42917"); HttpWebRequest http = (HttpWebRequest)HttpWebRequest.Create(url); http.Timeout = 30000; http.UserAgent = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.8) Gecko/20100202 Firefox/3.5.8 (.NET CLR 3.5.30729)"; http.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; http.Headers.Add("Accept-Language", "en-us,en;q=0.5"); http.Headers.Add("Accept-Charset", "ISO-8859-1,utf-8;q=0.7,*;q=0.7"); http.Headers.Add("Keep-Alive", "300"); http.Referer = "http://www.bungie.net/"; http.ContentType = "application/x-www-form-urlencoded"; http.CookieContainer = new CookieContainer(); http.Method = WebRequestMethods.Http.Get; HttpWebResponse response = (HttpWebResponse)http.GetResponse(); StreamReader readStream = new StreamReader(response.GetResponseStream()); string HTML = readStream.ReadToEnd(); readStream.Close(); //gets the cookies (they are set in the eighth header) string[] strCookies = response.Headers.GetValues(8); response.Close(); string name, value; Cookie manualCookie; for (int i = 0; i < strCookies.Length; i++) { name = strCookies[i].Substring(0, strCookies[i].IndexOf("=")); value = strCookies[i].Substring(strCookies[i].IndexOf("=") + 1, strCookies[i].IndexOf(";") - strCookies[i].IndexOf("=") - 1); manualCookie = new Cookie(name, "\"" + value + "\""); Uri manualURL = new Uri("http://login.live.com"); http.CookieContainer.Add(manualURL, manualCookie); } //stores the cookies to be used later cookies = http.CookieContainer; //Get the PPSX value string PPSX = HTML.Remove(0, HTML.IndexOf("PPSX")); PPSX = PPSX.Remove(0, PPSX.IndexOf("value") + 7); PPSX = PPSX.Substring(0, PPSX.IndexOf("\"")); //Get this random PPFT value string PPFT = HTML.Remove(0, HTML.IndexOf("PPFT")); PPFT = PPFT.Remove(0, PPFT.IndexOf("value") + 7); PPFT = PPFT.Substring(0, PPFT.IndexOf("\"")); //Get the random URL you POST to string POSTURL = HTML.Remove(0, HTML.IndexOf("https://login.live.com/ppsecure/post.srf?wa=wsignin1.0&rpsnv=11&ct=")); POSTURL = POSTURL.Substring(0, POSTURL.IndexOf("\"")); //POST with cookies http = (HttpWebRequest)HttpWebRequest.Create(POSTURL); http.UserAgent = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.8) Gecko/20100202 Firefox/3.5.8 (.NET CLR 3.5.30729)"; http.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; http.Headers.Add("Accept-Language", "en-us,en;q=0.5"); http.Headers.Add("Accept-Charset", "ISO-8859-1,utf-8;q=0.7,*;q=0.7"); http.Headers.Add("Keep-Alive", "300"); http.CookieContainer = cookies; http.Referer = "https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=11&ct=1268158321&rver=5.5.4177.0&wp=LBI&wreply=http:%2F%2Fwww.bungie.net%2FDefault.aspx&id=42917"; http.ContentType = "application/x-www-form-urlencoded"; http.Method = WebRequestMethods.Http.Post; Stream ostream = http.GetRequestStream(); //used to convert strings into bytes System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncoding(); //Post information byte[] buffer = encoding.GetBytes("PPSX=" + PPSX +"&PwdPad=IfYouAreReadingThisYouHaveTooMuc&login=YOUREMAILGOESHERE&passwd=YOURWORDGOESHERE" + "&LoginOptions=2&PPFT=" + PPFT); ostream.Write(buffer, 0, buffer.Length); ostream.Close(); HttpWebResponse response2 = (HttpWebResponse)http.GetResponse(); readStream = new StreamReader(response2.GetResponseStream()); HTML = readStream.ReadToEnd(); response2.Close(); ostream.Dispose(); foreach (Cookie cookie in response2.Cookies) { Console.WriteLine(cookie.Name + ": "); Console.WriteLine(cookie.Value); Console.WriteLine(cookie.Expires); Console.WriteLine(); } //SET POSTURL value string POSTANON = "http://www.bungie.net/Default.aspx?wa=wsignin1.0"; //Get the ANON value string ANON = HTML.Remove(0, HTML.IndexOf("ANON")); ANON = ANON.Remove(0, ANON.IndexOf("value") + 7); ANON = ANON.Substring(0, ANON.IndexOf("\"")); ANON = HttpUtility.UrlEncode(ANON); //Get the ANONExp value string ANONExp = HTML.Remove(0, HTML.IndexOf("ANONExp")); ANONExp = ANONExp.Remove(0, ANONExp.IndexOf("value") + 7); ANONExp = ANONExp.Substring(0, ANONExp.IndexOf("\"")); ANONExp = HttpUtility.UrlEncode(ANONExp); //Get the t value string t = HTML.Remove(0, HTML.IndexOf("id=\"t\"")); t = t.Remove(0, t.IndexOf("value") + 7); t = t.Substring(0, t.IndexOf("\"")); t = HttpUtility.UrlEncode(t); //POST the Info and Accept the Bungie Cookies http = (HttpWebRequest)HttpWebRequest.Create(POSTANON); http.UserAgent = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.8) Gecko/20100202 Firefox/3.5.8 (.NET CLR 3.5.30729)"; http.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; http.Headers.Add("Accept-Language", "en-us,en;q=0.5"); http.Headers.Add("Accept-Encoding", "gzip,deflate"); http.Headers.Add("Accept-Charset", "ISO-8859-1,utf-8;q=0.7,*;q=0.7"); http.Headers.Add("Keep-Alive", "115"); http.CookieContainer = new CookieContainer(); http.ContentType = "application/x-www-form-urlencoded"; http.Method = WebRequestMethods.Http.Post; http.Expect = null; ostream = http.GetRequestStream(); int test = ANON.Length; int test1 = ANONExp.Length; int test2 = t.Length; buffer = encoding.GetBytes("ANON=" + ANON +"&ANONExp=" + ANONExp + "&t=" + t); ostream.Write(buffer, 0, buffer.Length); ostream.Close(); //Here lies the problem, I am not returned the correct cookies. HttpWebResponse response3 = (HttpWebResponse)http.GetResponse(); GZipStream gzip = new GZipStream(response3.GetResponseStream(), CompressionMode.Decompress); readStream = new StreamReader(gzip); HTML = readStream.ReadToEnd(); //gets both cookies string[] strCookies2 = response3.Headers.GetValues(11); response3.Close(); } } } This has given me problems and I've put many hours into learning about HTTP protocols so any help would be appreciated. If there is an article detailing a similar log in to live.com feel free to point the way. I've been looking far and wide for any articles with working solutions. If I could be clearer, feel free to ask as this is my first time using Stack Overflow. Cheers, --Josh

    Read the article

  • Logging Into a site that uses Live.com authentication

    - by Josh
    I've been trying to automate a log in to a website I frequent, www.bungie.net. The site is associated with Microsoft and Xbox Live, and as such makes uses of the Windows Live ID API when people log in to their site. I am relatively new to creating web spiders/robots, and I worry that I'm misunderstanding some of the most basic concepts. I've simulated logins to other sites such as Facebook and Gmail, but live.com has given me nothing but trouble. Anyways, I've been using Wireshark and the Firefox addon Tamper Data to try and figure out what I need to post, and what cookies I need to include with my requests. As far as I know these are the steps one must follow to log in to this site. 1. Visit https: //login.live.com/login.srf?wa=wsignin1.0&rpsnv=11&ct=1268167141&rver=5.5.4177.0&wp=LBI&wreply=http:%2F%2Fwww.bungie.net%2FDefault.aspx&id=42917 2. Recieve the cookies MSPRequ and MSPOK. 3. Post the values from the form ID "PPSX", the values from the form ID "PPFT", your username, your password all to a changing URL similar to: https: //login.live.com/ppsecure/post.srf?wa=wsignin1.0&rpsnv=11&ct= (there are a few numbers that change at the end of that URL) 4. Live.com returns the user a page with more hidden forms to post. The client then posts the values from the form "ANON", the value from the form "ANONExp" and the values from the form "t" to the URL: http ://www.bung ie.net/Default.aspx?wa=wsignin1.0 5. After posting that data, the user is returned a variety of cookies the most important of which is "BNGAuth" which is the log in cookie for the site. Where I am having trouble is on fifth step, but that doesn't neccesarily mean I've done all the other steps correctly. I post the data from "ANON", "ANONExp" and "t" but instead of being returned a BNGAuth cookie, I'm returned a cookie named "RSPMaybe" and redirected to the home page. When I review the Wireshark log, I noticed something that instantly stood out to me as different between the log when I logged in with Firefox and when my program ran. It could be nothing but I'll include the picture here for you to review. I'm being returned an HTTP packet from the site before I post the data in the fourth step. I'm not sure how this is happening, but it must be a side effect from something I'm doing wrong in the HTTPS steps. using System; using System.Collections.Generic; using System.Collections.Specialized; using System.Text; using System.Net; using System.IO; using System.IO.Compression; using System.Security.Cryptography; using System.Security.Cryptography.X509Certificates; using System.Web; namespace SpiderFromScratch { class Program { static void Main(string[] args) { CookieContainer cookies = new CookieContainer(); Uri url = new Uri("https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=11&ct=1268167141&rver=5.5.4177.0&wp=LBI&wreply=http:%2F%2Fwww.bungie.net%2FDefault.aspx&id=42917"); HttpWebRequest http = (HttpWebRequest)HttpWebRequest.Create(url); http.Timeout = 30000; http.UserAgent = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.8) Gecko/20100202 Firefox/3.5.8 (.NET CLR 3.5.30729)"; http.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; http.Headers.Add("Accept-Language", "en-us,en;q=0.5"); http.Headers.Add("Accept-Charset", "ISO-8859-1,utf-8;q=0.7,*;q=0.7"); http.Headers.Add("Keep-Alive", "300"); http.Referer = "http://www.bungie.net/"; http.ContentType = "application/x-www-form-urlencoded"; http.CookieContainer = new CookieContainer(); http.Method = WebRequestMethods.Http.Get; HttpWebResponse response = (HttpWebResponse)http.GetResponse(); StreamReader readStream = new StreamReader(response.GetResponseStream()); string HTML = readStream.ReadToEnd(); readStream.Close(); //gets the cookies (they are set in the eighth header) string[] strCookies = response.Headers.GetValues(8); response.Close(); string name, value; Cookie manualCookie; for (int i = 0; i < strCookies.Length; i++) { name = strCookies[i].Substring(0, strCookies[i].IndexOf("=")); value = strCookies[i].Substring(strCookies[i].IndexOf("=") + 1, strCookies[i].IndexOf(";") - strCookies[i].IndexOf("=") - 1); manualCookie = new Cookie(name, "\"" + value + "\""); Uri manualURL = new Uri("http://login.live.com"); http.CookieContainer.Add(manualURL, manualCookie); } //stores the cookies to be used later cookies = http.CookieContainer; //Get the PPSX value string PPSX = HTML.Remove(0, HTML.IndexOf("PPSX")); PPSX = PPSX.Remove(0, PPSX.IndexOf("value") + 7); PPSX = PPSX.Substring(0, PPSX.IndexOf("\"")); //Get this random PPFT value string PPFT = HTML.Remove(0, HTML.IndexOf("PPFT")); PPFT = PPFT.Remove(0, PPFT.IndexOf("value") + 7); PPFT = PPFT.Substring(0, PPFT.IndexOf("\"")); //Get the random URL you POST to string POSTURL = HTML.Remove(0, HTML.IndexOf("https://login.live.com/ppsecure/post.srf?wa=wsignin1.0&rpsnv=11&ct=")); POSTURL = POSTURL.Substring(0, POSTURL.IndexOf("\"")); //POST with cookies http = (HttpWebRequest)HttpWebRequest.Create(POSTURL); http.UserAgent = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.8) Gecko/20100202 Firefox/3.5.8 (.NET CLR 3.5.30729)"; http.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; http.Headers.Add("Accept-Language", "en-us,en;q=0.5"); http.Headers.Add("Accept-Charset", "ISO-8859-1,utf-8;q=0.7,*;q=0.7"); http.Headers.Add("Keep-Alive", "300"); http.CookieContainer = cookies; http.Referer = "https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=11&ct=1268158321&rver=5.5.4177.0&wp=LBI&wreply=http:%2F%2Fwww.bungie.net%2FDefault.aspx&id=42917"; http.ContentType = "application/x-www-form-urlencoded"; http.Method = WebRequestMethods.Http.Post; Stream ostream = http.GetRequestStream(); //used to convert strings into bytes System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncoding(); //Post information byte[] buffer = encoding.GetBytes("PPSX=" + PPSX +"&PwdPad=IfYouAreReadingThisYouHaveTooMuc&login=YOUREMAILGOESHERE&passwd=YOURWORDGOESHERE" + "&LoginOptions=2&PPFT=" + PPFT); ostream.Write(buffer, 0, buffer.Length); ostream.Close(); HttpWebResponse response2 = (HttpWebResponse)http.GetResponse(); readStream = new StreamReader(response2.GetResponseStream()); HTML = readStream.ReadToEnd(); response2.Close(); ostream.Dispose(); foreach (Cookie cookie in response2.Cookies) { Console.WriteLine(cookie.Name + ": "); Console.WriteLine(cookie.Value); Console.WriteLine(cookie.Expires); Console.WriteLine(); } //SET POSTURL value string POSTANON = "http://www.bungie.net/Default.aspx?wa=wsignin1.0"; //Get the ANON value string ANON = HTML.Remove(0, HTML.IndexOf("ANON")); ANON = ANON.Remove(0, ANON.IndexOf("value") + 7); ANON = ANON.Substring(0, ANON.IndexOf("\"")); ANON = HttpUtility.UrlEncode(ANON); //Get the ANONExp value string ANONExp = HTML.Remove(0, HTML.IndexOf("ANONExp")); ANONExp = ANONExp.Remove(0, ANONExp.IndexOf("value") + 7); ANONExp = ANONExp.Substring(0, ANONExp.IndexOf("\"")); ANONExp = HttpUtility.UrlEncode(ANONExp); //Get the t value string t = HTML.Remove(0, HTML.IndexOf("id=\"t\"")); t = t.Remove(0, t.IndexOf("value") + 7); t = t.Substring(0, t.IndexOf("\"")); t = HttpUtility.UrlEncode(t); //POST the Info and Accept the Bungie Cookies http = (HttpWebRequest)HttpWebRequest.Create(POSTANON); http.UserAgent = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.8) Gecko/20100202 Firefox/3.5.8 (.NET CLR 3.5.30729)"; http.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; http.Headers.Add("Accept-Language", "en-us,en;q=0.5"); http.Headers.Add("Accept-Encoding", "gzip,deflate"); http.Headers.Add("Accept-Charset", "ISO-8859-1,utf-8;q=0.7,*;q=0.7"); http.Headers.Add("Keep-Alive", "115"); http.CookieContainer = new CookieContainer(); http.ContentType = "application/x-www-form-urlencoded"; http.Method = WebRequestMethods.Http.Post; http.Expect = null; ostream = http.GetRequestStream(); int test = ANON.Length; int test1 = ANONExp.Length; int test2 = t.Length; buffer = encoding.GetBytes("ANON=" + ANON +"&ANONExp=" + ANONExp + "&t=" + t); ostream.Write(buffer, 0, buffer.Length); ostream.Close(); //Here lies the problem, I am not returned the correct cookies. HttpWebResponse response3 = (HttpWebResponse)http.GetResponse(); GZipStream gzip = new GZipStream(response3.GetResponseStream(), CompressionMode.Decompress); readStream = new StreamReader(gzip); HTML = readStream.ReadToEnd(); //gets both cookies string[] strCookies2 = response3.Headers.GetValues(11); response3.Close(); } } } This has given me problems and I've put many hours into learning about HTTP protocols so any help would be appreciated. If there is an article detailing a similar log in to live.com feel free to point the way. I've been looking far and wide for any articles with working solutions. If I could be clearer, feel free to ask as this is my first time using Stack Overflow.

    Read the article

  • RUN FUNCTION AFTER SOMETIME IN JQUERY & AUTOMATIC SLICING OF IMAGES

    - by user2697032
    I am not being able to start the automatic slicing of images, it is happening only after a click, how should i modify my code so that i get to change the slicing of the images automatically. <!DOCTYPE html> <html lang="en"> <head> <title>Slicebox - 3D Image Slider</title> <meta charset="UTF-8" /> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="description" content="Slicebox - 3D Image Slider with Fallback" /> <meta name="keywords" content="jquery, css3, 3d, webkit, fallback, slider, css3, 3d transforms, slices, rotate, box, automatic" /> <meta name="author" content="Pedro Botelho for Codrops" /> <link rel="shortcut icon" href="../favicon.ico"> <link rel="stylesheet" type="text/css" href="css/demo.css" /> <link rel="stylesheet" type="text/css" href="css/slicebox.css" /> <link rel="stylesheet" type="text/css" href="css/custom.css" /> <script type="text/javascript" src="js/modernizr.custom.46884.js"></script> </head> <body onload="funct()"> <div class="container"> <div class="codrops-top clearfix"> <a href="http://tympanus.net/Development/AutomaticImageMontage/"><span>&laquo; Previous Demo: </span>Automatic Image Montage</a> <span class="right"> <a target="_blank" href="http://www.flickr.com/photos/strupler/">Images by <strong>ND Strupler</strong></a> <a href="http://tympanus.net/codrops/?p=5657"><strong>Back to the Codrops Article</strong></a> </span> </div> <h1>Slicebox <span>A fresh 3D image slider with graceful fallback</span></h1> <div class="more"> <ul id="sb-examples"> <li>More examples:</li> <li class="selected"><a href="index.html">Example 1</a></li> <li><a href="index2.html">Example 2</a></li> <li><a href="index3.html">Example 3</a></li> <li><a href="index4.html">Example 4</a></li> </ul> </div> <div class="wrapper" id="checkthis"> <ul id="sb-slider" class="sb-slider"> <li> <a href="http://www.flickr.com/photos/strupler/2969141180" target="_blank"><img src="images/1.jpg" alt="image1"/></a> <div class="sb-description"> <h3>Creative Lifesaver</h3> </div> </li> <li> <a href="http://www.flickr.com/photos/strupler/2968268187" target="_blank"><img src="images/2.jpg" alt="image2"/></a> <div class="sb-description"> <h3>Honest Entertainer</h3> </div> </li> <li> <a href="http://www.flickr.com/photos/strupler/2968114825" target="_blank"><img src="images/3.jpg" alt="image1"/></a> <div class="sb-description"> <h3>Brave Astronaut</h3> </div> </li> <li> <a href="http://www.flickr.com/photos/strupler/2968122059" target="_blank"><img src="images/4.jpg" alt="image1"/></a> <div class="sb-description"> <h3>Affectionate Decision Maker</h3> </div> </li> <li> <a href="http://www.flickr.com/photos/strupler/2969119944" target="_blank"><img src="images/5.jpg" alt="image1"/></a> <div class="sb-description"> <h3>Faithful Investor</h3> </div> </li> <li> <a href="http://www.flickr.com/photos/strupler/2968126177" target="_blank"><img src="images/6.jpg" alt="image1"/></a> <div class="sb-description"> <h3>Groundbreaking Artist</h3> </div> </li> <li> <a href="http://www.flickr.com/photos/strupler/2968945158" target="_blank"><img src="images/7.jpg" alt="image1"/></a> <div class="sb-description"> <h3>Selfless Philantropist</h3> </div> </li> </ul> <div id="shadow" class="shadow"></div> <div id="nav-arrows" class="nav-arrows"> <a href="#x">Next</a> <a href="#y">Previous</a> </div> <div id="nav-dots" class="nav-dots"> <span class="nav-dot-current"></span> <span></span> <span></span> <span></span> <span></span> <span></span> <span></span> </div> </div><!-- /wrapper --> <p class="info"><strong>Example 1:</strong> Default settings</p> </div> <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery.min.js"></script> <script type="text/javascript" src="js/jquery.slicebox.js"></script> <script type="text/javascript"> $(function() { var Page = (function() { var $navArrows = $( '#nav-arrows' ).hide(), $navDots = $( '#nav-dots' ).hide(), $nav = $navDots.children( 'span' ), $shadow = $( '#shadow' ).hide(), slicebox = $( '#sb-slider' ).slicebox( { onReady : function() { $navArrows.show(); $navDots.show(); $shadow.show(); }, onBeforeChange : function( pos ) { $nav.removeClass( 'nav-dot-current' ); $nav.eq( pos ).addClass( 'nav-dot-current' ); } } ), init = function() { initEvents(); }, initEvents = function() { // add navigation events $navArrows.children( ':first' ).on( 'click', function() { setInterval("callme()", 1000); return false; } ); //$(function(){ //callme(); //}); function callme(){ //$('#checkit').append("callme loaded<br />"); slicebox.next(); setInterval("callme()", 1000); } $navArrows.children( ':last' ).on( 'click', function() { slicebox.previous(); return false; } ); $nav.each( function( i ) { $( this ).on( 'click', function( event ) { var $dot = $( this ); if( !slicebox.isActive() ) { $nav.removeClass( 'nav-dot-current' ); $dot.addClass( 'nav-dot-current' ); } slicebox.jump( i + 1 ); return false; } ); } ); }; return { init : init }; })(); Page.init(); }); </script> <script> // make sure the "myContainer" id in the script is the same id of the div $(document).ready(function() { slicebox.next(); $('#nav-arrows').sbslider(); // this is the piece of code that will do the magic thing }); </script> </body> </html> I am not being able to start the automatic slicing of images, it is happening only after a click, how should i modify my code so that i get to change the slicing of the images automatically.

    Read the article

  • "database already closed" is shown using a custom cursor adapter

    - by kiduxa
    I'm using a cursor with a custom adapter that extends SimpleCursorAdapter: public class ListWordAdapter extends SimpleCursorAdapter { private LayoutInflater inflater; private Cursor mCursor; private int mLayout; private String[] from; private int[] to; public ListWordAdapter(Context context, int layout, Cursor c, String[] from, int[] to, int flags) { super(context, layout, c, from, to, flags); this.mCursor = c; this.inflater = LayoutInflater.from(context); this.mLayout = layout; this.from = from; this.to = to; } private static class ViewHolder { //public ImageView img; public TextView name; public TextView type; public TextView translate; } @Override public View getView(int position, View convertView, ViewGroup parent) { if (mCursor.moveToPosition(position)) { ViewHolder holder; if (convertView == null) { convertView = inflater.inflate(mLayout, null); holder = new ViewHolder(); // holder.img = (ImageView) convertView.findViewById(R.id.img_row); holder.name = (TextView) convertView.findViewById(to[0]); holder.type = (TextView) convertView.findViewById(to[1]); holder.translate = (TextView) convertView.findViewById(to[2]); convertView.setTag(holder); } else { holder = (ViewHolder) convertView.getTag(); } holder.name.setText(mCursor.getString(mCursor.getColumnIndex(from[0]))); holder.type.setText(mCursor.getString(mCursor.getColumnIndex(from[1]))); holder.translate.setText(mCursor.getString(mCursor.getColumnIndex(from[2]))); // holder.img.setImageResource(img_resource); } return convertView; } } And in the main activity I call it as: adapter = new ListWordAdapter(getSherlockActivity(), R.layout.row_list_words, mCursorWords, from, to, 0); When a modification in the list is made, I call this method: public void onWordSaved() { WordDAO wordsDao = new WordSqliteDAO(); Cursor mCursorWords = wordsDao.list(getSherlockActivity()); adapter.changeCursor(mCursorWords); } The thing here is that this produces me this exception: 10-29 11:14:33.810: E/AndroidRuntime(18659): java.lang.IllegalStateException: database /data/data/com.example.palabrasdeldia/databases/palabrasDelDia (conn# 0) already closed Complete stack trace: 10-29 11:14:33.810: E/AndroidRuntime(18659): FATAL EXCEPTION: main 10-29 11:14:33.810: E/AndroidRuntime(18659): java.lang.IllegalStateException: database /data/data/com.example.palabrasdeldia/databases/palabrasDelDia (conn# 0) already closed 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.sqlite.SQLiteDatabase.verifyDbIsOpen(SQLiteDatabase.java:2123) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.sqlite.SQLiteDatabase.lock(SQLiteDatabase.java:398) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.sqlite.SQLiteDatabase.lock(SQLiteDatabase.java:390) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.sqlite.SQLiteQuery.fillWindow(SQLiteQuery.java:74) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.sqlite.SQLiteCursor.fillWindow(SQLiteCursor.java:311) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.sqlite.SQLiteCursor.onMove(SQLiteCursor.java:283) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.database.AbstractCursor.moveToPosition(AbstractCursor.java:173) 10-29 11:14:33.810: E/AndroidRuntime(18659): at com.example.palabrasdeldia.adapters.ListWordAdapter.getView(ListWordAdapter.java:42) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.AbsListView.obtainView(AbsListView.java:2128) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.ListView.makeAndAddView(ListView.java:1817) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.ListView.fillSpecific(ListView.java:1361) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.ListView.layoutChildren(ListView.java:1646) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.AbsListView.onLayout(AbsListView.java:1979) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.setChildFrame(LinearLayout.java:1542) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.layoutHorizontal(LinearLayout.java:1527) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.onLayout(LinearLayout.java:1316) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.FrameLayout.onLayout(FrameLayout.java:400) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.support.v4.view.ViewPager.onLayout(ViewPager.java:1589) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.FrameLayout.onLayout(FrameLayout.java:400) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.setChildFrame(LinearLayout.java:1542) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.layoutVertical(LinearLayout.java:1403) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.onLayout(LinearLayout.java:1314) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.FrameLayout.onLayout(FrameLayout.java:400) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.setChildFrame(LinearLayout.java:1542) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.layoutVertical(LinearLayout.java:1403) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.LinearLayout.onLayout(LinearLayout.java:1314) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.FrameLayout.onLayout(FrameLayout.java:400) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.widget.FrameLayout.onLayout(FrameLayout.java:400) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.View.layout(View.java:9593) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewGroup.layout(ViewGroup.java:3877) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewRoot.performTraversals(ViewRoot.java:1253) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.view.ViewRoot.handleMessage(ViewRoot.java:2017) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.os.Handler.dispatchMessage(Handler.java:99) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.os.Looper.loop(Looper.java:132) 10-29 11:14:33.810: E/AndroidRuntime(18659): at android.app.ActivityThread.main(ActivityThread.java:4028) 10-29 11:14:33.810: E/AndroidRuntime(18659): at java.lang.reflect.Method.invokeNative(Native Method) 10-29 11:14:33.810: E/AndroidRuntime(18659): at java.lang.reflect.Method.invoke(Method.java:491) 10-29 11:14:33.810: E/AndroidRuntime(18659): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:844) 10-29 11:14:33.810: E/AndroidRuntime(18659): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:602) 10-29 11:14:33.810: E/AndroidRuntime(18659): at dalvik.system.NativeStart.main(Native Method) If I use SimpleCursorAdapter directly instead of ListWordAdapter, it works fine. What's wrong with my custom adapter implementation? The line in bold in the stack trace corresponds with: if (mCursor.moveToPosition(position)) inside getView method. EDIT: I have created a custom class to manage DB operations as open and close: public class ConexionBD { private Context context; private SQLiteDatabase database; private DataBaseHelper dbHelper; public ConexionBD(Context context) { this.context = context; } public ConexionBD open() throws SQLException { this.dbHelper = DataBaseHelper.getInstance(context); this.database = dbHelper.getWritableDatabase(); database.execSQL("PRAGMA foreign_keys=ON"); return this; } public void close() { if (database.isOpen() && database != null) { dbHelper.close(); } } /*Getters y setters*/ public SQLiteDatabase getDatabase() { return database; } public void setDatabase(SQLiteDatabase database) { this.database = database; } } And this is my DataBaseHelper: public class DataBaseHelper extends SQLiteOpenHelper { private static final String DATABASE_NAME = "myDb"; private static final int DATABASE_VERSION = 1; private static DataBaseHelper sInstance = null; public static DataBaseHelper getInstance(Context context) { // Use the application context, which will ensure that you // don't accidentally leak an Activity's context. // See this article for more information: http://bit.ly/6LRzfx if (sInstance == null) { sInstance = new DataBaseHelper(context.getApplicationContext()); } return sInstance; } @Override public void onCreate(SQLiteDatabase database) { ... } .... And this is an example of how I manage a query: public Cursor list(Context context) { ConexionBD conexion = new ConexionBD(context); Cursor mCursor = null; try{ conexion.open(); mCursor = conexion.getDatabase().query(DataBaseHelper.TABLE_WORD , null , null, null, null, null, Word.NAME); if (mCursor != null) { mCursor.moveToFirst(); } }finally{ conexion.close(); } return mCursor; } For every connection to the DB I open it and close it.

    Read the article

  • custom collection in property grid

    - by guyl
    Hi guys. I'm using this article as a reference to use custom collection in propertygrid: LINK When I open the collectioneditor and remove all items then I press OK, I get an exception if null. How can i solve that ? I am using: public T this[int index] { get { if (List.Count == 0) { return default(T); } else { return (T)this.List[index]; } } } as a getter for an item, of course if I have no object how can i restart the whole collection ? this is the whole code /// <summary> /// A generic folder settings collection to use in a property grid. /// </summary> /// <typeparam name="T">can be import or export folder settings.</typeparam> [Serializable] [TypeConverter(typeof(FolderSettingsCollectionConverter)), Editor(typeof(FolderSettingsCollectionEditor), typeof(UITypeEditor))] public class FolderSettingsCollection_New<T> : CollectionBase, ICustomTypeDescriptor { private bool m_bRestrictNumberOfItems; private int m_bNumberOfItems; private Dictionary<string, int> m_UID2Idx = new Dictionary<string, int>(); private T[] arrTmp; /// <summary> /// C'tor, can determine the number of objects to hold. /// </summary> /// <param name="bRestrictNumberOfItems">restrict the number of folders to hold.</param> /// <param name="iNumberOfItems">The number of folders to hold.</param> public FolderSettingsCollection_New(bool bRestrictNumberOfItems = false , int iNumberOfItems = 1) { m_bRestrictNumberOfItems = bRestrictNumberOfItems; m_bNumberOfItems = iNumberOfItems; } /// <summary> /// Add folder to collection. /// </summary> /// <param name="t">Folder to add.</param> public void Add(T t) { if (m_bRestrictNumberOfItems) { if (this.List.Count >= m_bNumberOfItems) { return; } } int index = this.List.Add(t); if (t is WriteDataFolderSettings || t is ReadDataFolderSettings) { FolderSettingsBase tmp = t as FolderSettingsBase; m_UID2Idx.Add(tmp.UID, index); } } /// <summary> /// Remove folder to collection. /// </summary> /// <param name="t">Folder to remove.</param> public void Remove(T t) { this.List.Remove(t); if (t is WriteDataFolderSettings || t is ReadDataFolderSettings) { FolderSettingsBase tmp = t as FolderSettingsBase; m_UID2Idx.Remove(tmp.UID); } } /// <summary> /// Gets ot sets a folder. /// </summary> /// <param name="index">The index of the folder in the collection.</param> /// <returns>A folder object.</returns> public T this[int index] { get { //if (List.Count == 0) //{ // return default(T); //} //else //{ return (T)this.List[index]; //} } } /// <summary> /// Gets or sets a folder. /// </summary> /// <param name="sUID">The UID of the folder.</param> /// <returns>A folder object.</returns> public T this[string sUID] { get { if (this.Count == 0 || !m_UID2Idx.ContainsKey(sUID)) { return default(T); } else { return (T)this.List[m_UID2Idx[sUID]]; } } } /// <summary> /// /// </summary> /// <param name="sUID"></param> /// <returns></returns> public bool ContainsItemByUID(string sUID) { return m_UID2Idx.ContainsKey(sUID); } /// <summary> /// /// </summary> /// <returns></returns> public String GetClassName() { return TypeDescriptor.GetClassName(this, true); } /// <summary> /// /// </summary> /// <returns></returns> public AttributeCollection GetAttributes() { return TypeDescriptor.GetAttributes(this, true); } /// <summary> /// /// </summary> /// <returns></returns> public String GetComponentName() { return TypeDescriptor.GetComponentName(this, true); } /// <summary> /// /// </summary> /// <returns></returns> public TypeConverter GetConverter() { return TypeDescriptor.GetConverter(this, true); } /// <summary> /// /// </summary> /// <returns></returns> public EventDescriptor GetDefaultEvent() { return TypeDescriptor.GetDefaultEvent(this, true); } /// <summary> /// /// </summary> /// <returns></returns> public PropertyDescriptor GetDefaultProperty() { return TypeDescriptor.GetDefaultProperty(this, true); } /// <summary> /// /// </summary> /// <param name="editorBaseType"></param> /// <returns></returns> public object GetEditor(Type editorBaseType) { return TypeDescriptor.GetEditor(this, editorBaseType, true); } /// <summary> /// /// </summary> /// <param name="attributes"></param> /// <returns></returns> public EventDescriptorCollection GetEvents(Attribute[] attributes) { return TypeDescriptor.GetEvents(this, attributes, true); } /// <summary> /// /// </summary> /// <returns></returns> public EventDescriptorCollection GetEvents() { return TypeDescriptor.GetEvents(this, true); } /// <summary> /// /// </summary> /// <param name="pd"></param> /// <returns></returns> public object GetPropertyOwner(PropertyDescriptor pd) { return this; } /// <summary> /// /// </summary> /// <param name="attributes"></param> /// <returns></returns> public PropertyDescriptorCollection GetProperties(Attribute[] attributes) { return GetProperties(); } /// <summary> /// Called to get the properties of this type. /// </summary> /// <returns></returns> public PropertyDescriptorCollection GetProperties() { // Create a collection object to hold property descriptors PropertyDescriptorCollection pds = new PropertyDescriptorCollection(null); // Iterate the list of employees for (int i = 0; i < this.List.Count; i++) { // Create a property descriptor for the employee item and add to the property descriptor collection CollectionPropertyDescriptor_New<T> pd = new CollectionPropertyDescriptor_New<T>(this, i); pds.Add(pd); } // return the property descriptor collection return pds; } public T[] ToArray() { if (arrTmp == null) { arrTmp = new T[List.Count]; for (int i = 0; i < List.Count; i++) { arrTmp[i] = (T)List[i]; } } return arrTmp; } } /// <summary> /// Enable to display data about a collection in a property grid. /// </summary> /// <typeparam name="T">Folder object.</typeparam> public class CollectionPropertyDescriptor_New<T> : PropertyDescriptor { private FolderSettingsCollection_New<T> collection = null; private int index = -1; /// <summary> /// /// </summary> /// <param name="coll"></param> /// <param name="idx"></param> public CollectionPropertyDescriptor_New(FolderSettingsCollection_New<T> coll, int idx) : base("#" + idx.ToString(), null) { this.collection = coll; this.index = idx; } /// <summary> /// /// </summary> public override AttributeCollection Attributes { get { return new AttributeCollection(null); } } /// <summary> /// /// </summary> /// <param name="component"></param> /// <returns></returns> public override bool CanResetValue(object component) { return true; } /// <summary> /// /// </summary> public override Type ComponentType { get { return this.collection.GetType(); } } /// <summary> /// /// </summary> public override string DisplayName { get { if (this.collection[index] != null) { return this.collection[index].ToString(); } else { return null; } } } public override string Description { get { return ""; } } /// <summary> /// /// </summary> /// <param name="component"></param> /// <returns></returns> public override object GetValue(object component) { if (this.collection[index] != null) { return this.collection[index]; } else { return null; } } /// <summary> /// /// </summary> public override bool IsReadOnly { get { return false; } } public override string Name { get { return "#" + index.ToString(); } } /// <summary> /// /// </summary> public override Type PropertyType { get { return this.collection[index].GetType(); } } public override void ResetValue(object component) { } /// <summary> /// /// </summary> /// <param name="component"></param> /// <returns></returns> public override bool ShouldSerializeValue(object component) { return true; } /// <summary> /// /// </summary> /// <param name="component"></param> /// <param name="value"></param> public override void SetValue(object component, object value) { // this.collection[index] = value; } }

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

< Previous Page | 331 332 333 334 335 336  | Next Page >