Search Results

Search found 8925 results on 357 pages for 'customer care and billing'.

Page 340/357 | < Previous Page | 336 337 338 339 340 341 342 343 344 345 346 347  | Next Page >

  • Integrating Coherence & Java EE 6 Applications using ActiveCache

    - by Ricardo Ferreira
    OK, so you are a developer and are starting a new Java EE 6 application using the most wonderful features of the Java EE platform like Enterprise JavaBeans, JavaServer Faces, CDI, JPA e another cool stuff technologies. And your architecture need to hold piece of data into distributed caches to improve application's performance, scalability and reliability? If this is your current facing scenario, maybe you should look closely in the solutions provided by Oracle WebLogic Server. Oracle had integrated WebLogic Server and its champion data caching technology called Oracle Coherence. This seamless integration between this two products provides a comprehensive environment to develop applications without the complexity of extra Java code to manage cache as a dependency, since Oracle provides an DI ("Dependency Injection") mechanism for Coherence, the same DI mechanism available in standard Java EE applications. This feature is called ActiveCache. In this article, I will show you how to configure ActiveCache in WebLogic and at your Java EE application. Configuring WebLogic to manage Coherence Before you start changing your application to use Coherence, you need to configure your Coherence distributed cache. The good news is, you can manage all this stuff without writing a single line of code of XML or even Java. This configuration can be done entirely in the WebLogic administration console. The first thing to do is the setup of a Coherence cluster. A Coherence cluster is a set of Coherence JVMs configured to form one single view of the cache. This means that you can insert or remove members of the cluster without the client application (the application that generates or consume data from the cache) knows about the changes. This concept allows your solution to scale-out without changing the application server JVMs. You can growth your application only in the data grid layer. To start the configuration, you need to configure an machine that points to the server in which you want to execute the Coherence JVMs. WebLogic Server allows you to do this very easily using the Administration Console. In this example, I will call the machine as "coherence-server". Remember that in order to the machine concept works, you need to ensure that the NodeManager are being executed in the target server that the machine points to. The NodeManager executable can be found in <WLS_HOME>/server/bin/startNodeManager.sh. The next thing to do is to configure a Coherence cluster. In the WebLogic administration console, go to Environment > Coherence Clusters and click in "New". Call this Coherence cluster of "my-coherence-cluster". Click in next. Specify a valid cluster address and port. The Coherence members will communicate with each other through this address and port. Our Coherence cluster are now configured. Now it is time to configure the Coherence members and add them to this cluster. In the WebLogic administration console, go to Environment > Coherence Servers and click in "New". In the field "Name" set to "coh-server-1". In the field "Machine", associate this Coherence server to the machine "coherence-server". In the field "Cluster", associate this Coherence server to the cluster named "my-coherence-cluster". Click in "Finish". Start the Coherence server using the "Control" tab of WebLogic administration console. This will instruct WebLogic to start a new JVM of Coherence in the target machine that should join the pre-defined Coherence cluster. Configuring your Java EE Application to Access Coherence Now lets pass to the funny part of the configuration. The first thing to do is to inform your Java EE application which Coherence cluster to join. Oracle had updated WebLogic server deployment descriptors so you will not have to change your code or the containers deployment descriptors like application.xml, ejb-jar.xml or web.xml. In this example, I will show you how to enable DI ("Dependency Injection") to a Coherence cache from a Servlet 3.0 component. In the WEB-INF/weblogic.xml deployment descriptor, put the following metadata information: <?xml version="1.0" encoding="UTF-8"?> <wls:weblogic-web-app xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-app" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd http://xmlns.oracle.com/weblogic/weblogic-web-app http://xmlns.oracle.com/weblogic/weblogic-web-app/1.4/weblogic-web-app.xsd"> <wls:context-root>myWebApp</wls:context-root> <wls:coherence-cluster-ref> <wls:coherence-cluster-name>my-coherence-cluster</wls:coherence-cluster-name> </wls:coherence-cluster-ref> </wls:weblogic-web-app> As you can see, using the "coherence-cluster-name" tag, we are informing our Java EE application that it should join the "my-coherence-cluster" when it loads in the web container. Without this information, the application will not be able to access the predefined Coherence cluster. It will form its own Coherence cluster without any members. So never forget to put this information. Now put the coherence.jar and active-cache-1.0.jar dependencies at your WEB-INF/lib application classpath. You need to deploy this dependencies so ActiveCache can automatically take care of the Coherence cluster join phase. This dependencies can be found in the following locations: - <WLS_HOME>/common/deployable-libraries/active-cache-1.0.jar - <COHERENCE_HOME>/lib/coherence.jar Finally, you need to write down the access code to the Coherence cache at your Servlet. In the following example, we have a Servlet 3.0 component that access a Coherence cache named "transactions" and prints into the browser output the content (the ammount property) of one specific transaction. package com.oracle.coherence.demo.activecache; import java.io.IOException; import javax.annotation.Resource; import javax.servlet.ServletException; import javax.servlet.annotation.WebServlet; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import com.tangosol.net.NamedCache; @WebServlet("/demo/specificTransaction") public class TransactionServletExample extends HttpServlet { @Resource(mappedName = "transactions") NamedCache transactions; protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { int transId = Integer.parseInt(request.getParameter("transId")); Transaction transaction = (Transaction) transactions.get(transId); response.getWriter().println("<center>" + transaction.getAmmount() + "</center>"); } } Thats it! No more configuration is necessary and you have all set to start producing and getting data to/from Coherence. As you can see in the example code, the Coherence cache are treated as a normal dependency in the Java EE container. The magic happens behind the scenes when the ActiveCache allows your application to join the defined Coherence cluster. The most interesting thing about this approach is, no matter which type of Coherence cache your are using (Distributed, Partitioned, Replicated, WAN-Remote) for the client application, it is just a simple attribute member of com.tangosol.net.NamedCache type. And its all managed by the Java EE container as an dependency. This means that if you inject the same dependency (the Coherence cache named "transactions") in another Java EE component (JSF managed-bean, Stateless EJB) the cache will be the same. Cool isn't it? Thanks to the CDI technology, we can extend the same support for non-Java EE standards components like simple POJOs. This means that you are not forced to only use Servlets, EJBs or JSF in order to inject Coherence caches. You can do the same approach for regular POJOs created for you and managed by lightweight containers like Spring or Seam.

    Read the article

  • Windows Azure Virtual Machine Readiness and Capacity Assessment for SQL Server

    - by SQLOS Team
    Windows Azure Virtual Machine Readiness and Capacity Assessment for Windows Server Machine Running SQL Server With the release of MAP Toolkit 8.0 Beta, we have added a new scenario to assess your Windows Azure Virtual Machine Readiness. The MAP 8.0 Beta performs a comprehensive assessment of Windows Servers running SQL Server to determine you level of readiness to migrate an on-premise physical or virtual machine to Windows Azure Virtual Machines. The MAP Toolkit then offers suggested changes to prepare the machines for migration, such as upgrading the operating system or SQL Server. MAP Toolkit 8.0 Beta is available for download here Your participation and feedback is very important to make the MAP Toolkit work better for you. We encourage you to participate in the beta program and provide your feedback at [email protected] or through one of our surveys. Now, let’s walk through the MAP Toolkit task for completing the Windows Azure Virtual Machine assessment and capacity planning. The tasks include the following: Perform an inventory View the Windows Azure VM Readiness results and report Collect performance data for determine VM sizing View the Windows Azure Capacity results and report Perform an inventory: 1. To perform an inventory against a single machine or across a complete environment, choose Perform an Inventory to launch the Inventory and Assessment Wizard as shown below: 2. After the Inventory and Assessment Wizard launches, select either the Windows computers or SQL Server scenario to inventory Windows machines. HINT: If you don’t care about completely inventorying a machine, just select the SQL Server scenario. Click Next to Continue. 3. On the Discovery Methods page, select how you want to discover computers and then click Next to continue. Description of Discovery Methods: Use Active Directory Domain Services -- This method allows you to query a domain controller via the Lightweight Directory Access Protocol (LDAP) and select computers in all or specific domains, containers, or OUs. Use this method if all computers and devices are in AD DS. Windows networking protocols --  This method uses the WIN32 LAN Manager application programming interfaces to query the Computer Browser service for computers in workgroups and Windows NT 4.0–based domains. If the computers on the network are not joined to an Active Directory domain, use only the Windows networking protocols option to find computers. System Center Configuration Manager (SCCM) -- This method enables you to inventory computers managed by System Center Configuration Manager (SCCM). You need to provide credentials to the System Center Configuration Manager server in order to inventory the managed computers. When you select this option, the MAP Toolkit will query SCCM for a list of computers and then MAP will connect to these computers. Scan an IP address range -- This method allows you to specify the starting address and ending address of an IP address range. The wizard will then scan all IP addresses in the range and inventory only those computers. Note: This option can perform poorly, if many IP addresses aren’t being used within the range. Manually enter computer names and credentials -- Use this method if you want to inventory a small number of specific computers. Import computer names from a files -- Using this method, you can create a text file with a list of computer names that will be inventoried. 4. On the All Computers Credentials page, enter the accounts that have administrator rights to connect to the discovered machines. This does not need to a domain account, but needs to be a local administrator. I have entered my domain account that is an administrator on my local machine. Click Next after one or more accounts have been added. NOTE: The MAP Toolkit primarily uses Windows Management Instrumentation (WMI) to collect hardware, device, and software information from the remote computers. In order for the MAP Toolkit to successfully connect and inventory computers in your environment, you have to configure your machines to inventory through WMI and also allow your firewall to enable remote access through WMI. The MAP Toolkit also requires remote registry access for certain assessments. In addition to enabling WMI, you need accounts with administrative privileges to access desktops and servers in your environment. 5. On the Credentials Order page, select the order in which want the MAP Toolkit to connect to the machine and SQL Server. Generally just accept the defaults and click Next. 6. On the Enter Computers Manually page, click Create to pull up at dialog to enter one or more computer names. 7. On the Summary page confirm your settings and then click Finish. After clicking Finish the inventory process will start, as shown below: Windows Azure Readiness results and report After the inventory progress has completed, you can review the results under the Database scenario. On the tile, you will see the number of Windows Server machine with SQL Server that were analyzed, the number of machines that are ready to move without changes and the number of machines that require further changes. If you click this Azure VM Readiness tile, you will see additional details and can generate the Windows Azure VM Readiness Report. After the report is generated, select View | Saved Reports and Proposals to view the location of the report. Open up WindowsAzureVMReadiness* report in Excel. On the Windows tab, you can see the results of the assessment. This report has a column for the Operating System and SQL Server assessment and provides a recommendation on how to resolve, if there a component is not supported. Collect Performance Data Launch the Performance Wizard to collect performance information for the Windows Server machines that you would like the MAP Toolkit to suggest a Windows Azure VM size for. Windows Azure Capacity results and report After the performance metrics are collected, the Azure VM Capacity title will display the number of Virtual Machine sizes that are suggested for the Windows Server and Linux machines that were analyzed. You can then click on the Azure VM Capacity tile to see the capacity details and generate the Windows Azure VM Capacity Report. Within this report, you can view the performance data that was collected and the Virtual Machine sizes.   MAP Toolkit 8.0 Beta is available for download here Your participation and feedback is very important to make the MAP Toolkit work better for you. We encourage you to participate in the beta program and provide your feedback at [email protected] or through one of our surveys. Useful References: Windows Azure Homepage How to guides for Windows Azure Virtual Machines Provisioning a SQL Server Virtual Machine on Windows Azure Windows Azure Pricing     Peter Saddow Senior Program Manager – MAP Toolkit Team

    Read the article

  • Personal Development : Time, Planning , Repairs & Maintenance

    - by Rajesh Pillai
    Personal Development : Time, Planning, Repairs & Maintenance These are just my thoughts, but some you may find something interesting in it. Please think over it. We may know many things, but still we always keeps procrastinating it. I have written this as I have heard many people coming back and saying they don’t have time to do things they like. These are my thoughts buy may be useful to someone else too. Certain things in life needs periodic repairs and maintenance. To cite some examples , your CAR, your HOUSE, your personal laptop/desktop, your health etc. Likewise there are certain other things in professional life that requires repair/ maintenance /or some kind of polishing, so that you always stay on top of it. But they are not always obvious. Some of them are - Improving your communication skills - Increasing your vocabulary - Upgrading your technical skills - Pursuing your hobby - Increasing your knowledge/awareness etc… etc… And then there are certain things that we are always short of…. one is TIME. We all know TIME is one of the most precious things in life and yet we all are very miserable at managing it. Remember you can only manage it and not control it. You can only control which you own or which you create. In theory time is infinite. So, there should be abundant of it. But remember one thing, you know this, it’s not reversible. Once it has elapsed you cannot live it again. Think over it. So, how do find that golden 25th hour every day. To find the 25th hour you need to reflect back on your current daily activities. Analyze them and see where you are spending most of your time and is it really important. Even the 8 hours that you spent in the office, is it spent fruitfully. At the end of the day is the 8 precious hour that you spent was worth it. Just reflect back on your activities. Did you learn something? If yes did you make a point to NOTE IT. If you didn’t NOTED it then was the time you spent really worth it. Just ponder over it. Some calculations of your daily activities where most of the time is spent. Let’s start (in no particular order though) - Sleep (6.5 hours) [Remember you only require 6 good hours of sleep every day]. Some may thing it is 8, but it’s a myth.   o To achive 6 hours of sleep and be in good health you can practice 15 minutes of daily meditation. So effectively you can    round it to 6.5 hours. - Morning chores(2 hours) : Some may need to prepare breakfast and all other things. - Office commuting (avg. to and fro 3 hours) - Office Work (avg 9.5 hours) Total Hours: 21 hours effective time which is spent irrespective of what you do. There may be some variations here and there. Still you have 3 hours EXTRA. Where do these 3 hours go? If you can find it, then you may get that golden 25th hour out of these 3 hours. Let’s discount 2 hours for contingencies, still you have 1 hour with you. If you can’t find it then you are living a direction less life. As you can see, the 25th Hour lies within the 24 hours of the day. It’s upto each one of us to find and make use of it. Now what can you do with that 25th hour i.e. 1 hour extra of your life. Imagine the possibility. Again some calculations 1 hour daily * 30 days = 30 hours every month 30 hours pm * 12 month = 360 hours every year. 360 hours every year seems very promising. Let’s add some contingencies, say, let’s be optimistic and say 50 % contingency. Still you have 180 hours every year. That leaves with 30 minutes every day of extra time. That’s hell a lot of time, if you could manage it. These may sound like a high talk [yes, it is, unless you apply these simple rules and rationalize your everyday living and stop procrastinating]. NOTE: I haven’t taken weekend, holidays and leaves into account. So, that leaves us with a lot of buffer time. You can meet family friends, relatives, other tasks, and yet have these 180 pure hours of joy every year. Do whatever you want to do with it. So, how important is this 180 hours per year to you? Just think over it. You may use it the way you like - 50 hours [pursue your hobby like drawing, crafting, learn dance, learn juggling, learn swimming, travelling hmm.. anything you like doing and you didn’t had time to do it.] - 30 hours you can learn a new programming language or technology (i.e. you can get comfortable with it) - 50 hours [improve existing skills] - 20 hours [improve you communication skill]. Do some light reading. - 30 hours [YOU DECIDE WHAT TO DO]? So, if you had done this for one year you would have learnt a new programming language, upgraded existing skills, improved you communication etc.. If you had done this for two years.. imagine the level of personal development or growth which you may have attained….. If you had done this for three years….. NOW I think I don’t need to mention this… So, you still have TIME, as they say TIME is infinite. So, make judicious use of this precious thing. And never ever comeback saying “I don’t have time”. So, if you are RICH in TIME, everything else will be automatically taken care of, as those things may just be a byproduct of how you spend your time… So, happy TIMING your TIME everyday.

    Read the article

  • How to Achieve OC4J RMI Load Balancing

    - by fip
    This is an old, Oracle SOA and OC4J 10G topic. In fact this is not even a SOA topic per se. Questions of RMI load balancing arise when you developed custom web applications accessing human tasks running off a remote SOA 10G cluster. Having returned from a customer who faced challenges with OC4J RMI load balancing, I felt there is still some confusions in the field how OC4J RMI load balancing work. Hence I decide to dust off an old tech note that I wrote a few years back and share it with the general public. Here is the tech note: Overview A typical use case in Oracle SOA is that you are building web based, custom human tasks UI that will interact with the task services housed in a remote BPEL 10G cluster. Or, in a more generic way, you are just building a web based application in Java that needs to interact with the EJBs in a remote OC4J cluster. In either case, you are talking to an OC4J cluster as RMI client. Then immediately you must ask yourself the following questions: 1. How do I make sure that the web application, as an RMI client, even distribute its load against all the nodes in the remote OC4J cluster? 2. How do I make sure that the web application, as an RMI client, is resilient to the node failures in the remote OC4J cluster, so that in the unlikely case when one of the remote OC4J nodes fail, my web application will continue to function? That is the topic of how to achieve load balancing with OC4J RMI client. Solutions You need to configure and code RMI load balancing in two places: 1. Provider URL can be specified with a comma separated list of URLs, so that the initial lookup will land to one of the available URLs. 2. Choose a proper value for the oracle.j2ee.rmi.loadBalance property, which, along side with the PROVIDER_URL property, is one of the JNDI properties passed to the JNDI lookup.(http://docs.oracle.com/cd/B31017_01/web.1013/b28958/rmi.htm#BABDGFBI) More details below: About the PROVIDER_URL The JNDI property java.name.provider.url's job is, when the client looks up for a new context at the very first time in the client session, to provide a list of RMI context The value of the JNDI property java.name.provider.url goes by the format of a single URL, or a comma separate list of URLs. A single URL. For example: opmn:ormi://host1:6003:oc4j_instance1/appName1 A comma separated list of multiple URLs. For examples:  opmn:ormi://host1:6003:oc4j_instanc1/appName, opmn:ormi://host2:6003:oc4j_instance1/appName, opmn:ormi://host3:6003:oc4j_instance1/appName When the client looks up for a new Context the very first time in the client session, it sends a query against the OPMN referenced by the provider URL. The OPMN host and port specifies the destination of such query, and the OC4J instance name and appName are actually the “where clause” of the query. When the PROVIDER URL reference a single OPMN server Let's consider the case when the provider url only reference a single OPMN server of the destination cluster. In this case, that single OPMN server receives the query and returns a list of the qualified Contexts from all OC4Js within the cluster, even though there is a single OPMN server in the provider URL. A context represent a particular starting point at a particular server for subsequent object lookup. For example, if the URL is opmn:ormi://host1:6003:oc4j_instance1/appName, then, OPMN will return the following contexts: appName on oc4j_instance1 on host1 appName on oc4j_instance1 on host2, appName on oc4j_instance1 on host3,  (provided that host1, host2, host3 are all in the same cluster) Please note that One OPMN will be sufficient to find the list of all contexts from the entire cluster that satisfy the JNDI lookup query. You can do an experiment by shutting down appName on host1, and observe that OPMN on host1 will still be able to return you appname on host2 and appName on host3. When the PROVIDER URL reference a comma separated list of multiple OPMN servers When the JNDI propery java.naming.provider.url references a comma separated list of multiple URLs, the lookup will return the exact same things as with the single OPMN server: a list of qualified Contexts from the cluster. The purpose of having multiple OPMN servers is to provide high availability in the initial context creation, such that if OPMN at host1 is unavailable, client will try the lookup via OPMN on host2, and so on. After the initial lookup returns and cache a list of contexts, the JNDI URL(s) are no longer used in the same client session. That explains why removing the 3rd URL from the list of JNDI URLs will not stop the client from getting the EJB on the 3rd server. About the oracle.j2ee.rmi.loadBalance Property After the client acquires the list of contexts, it will cache it at the client side as “list of available RMI contexts”.  This list includes all the servers in the destination cluster. This list will stay in the cache until the client session (JVM) ends. The RMI load balancing against the destination cluster is happening at the client side, as the client is switching between the members of the list. Whether and how often the client will fresh the Context from the list of Context is based on the value of the  oracle.j2ee.rmi.loadBalance. The documentation at http://docs.oracle.com/cd/B31017_01/web.1013/b28958/rmi.htm#BABDGFBI list all the available values for the oracle.j2ee.rmi.loadBalance. Value Description client If specified, the client interacts with the OC4J process that was initially chosen at the first lookup for the entire conversation. context Used for a Web client (servlet or JSP) that will access EJBs in a clustered OC4J environment. If specified, a new Context object for a randomly-selected OC4J instance will be returned each time InitialContext() is invoked. lookup Used for a standalone client that will access EJBs in a clustered OC4J environment. If specified, a new Context object for a randomly-selected OC4J instance will be created each time the client calls Context.lookup(). Please note the regardless of the setting of oracle.j2ee.rmi.loadBalance property, the “refresh” only occurs at the client. The client can only choose from the "list of available context" that was returned and cached from the very first lookup. That is, the client will merely get a new Context object from the “list of available RMI contexts” from the cache at the client side. The client will NOT go to the OPMN server again to get the list. That also implies that if you are adding a node to the server cluster AFTER the client’s initial lookup, the client would not know it because neither the server nor the client will initiate a refresh of the “list of available servers” to reflect the new node. About High Availability (i.e. Resilience Against Node Failure of Remote OC4J Cluster) What we have discussed above is about load balancing. Let's also discuss high availability. This is how the High Availability works in RMI: when the client use the context but get an exception such as socket is closed, it knows that the server referenced by that Context is problematic and will try to get another unused Context from the “list of available contexts”. Again, this list is the list that was returned and cached at the very first lookup in the entire client session.

    Read the article

  • The Data Scientist

    - by BuckWoody
    A new term - well, perhaps not that new - has come up and I’m actually very excited about it. The term is Data Scientist, and since it’s new, it’s fairly undefined. I’ll explain what I think it means, and why I’m excited about it. In general, I’ve found the term deals at its most basic with analyzing data. Of course, we all do that, and the term itself in that definition is redundant. There is no science that I know of that does not work with analyzing lots of data. But the term seems to refer to more than the common practices of looking at data visually, putting it in a spreadsheet or report, or even using simple coding to examine data sets. The term Data Scientist (as far as I can make out this early in it’s use) is someone who has a strong understanding of data sources, relevance (statistical and otherwise) and processing methods as well as front-end displays of large sets of complicated data. Some - but not all - Business Intelligence professionals have these skills. In other cases, senior developers, database architects or others fill these needs, but in my experience, many lack the strong mathematical skills needed to make these choices properly. I’ve divided the knowledge base for someone that would wear this title into three large segments. It remains to be seen if a given Data Scientist would be responsible for knowing all these areas or would specialize. There are pretty high requirements on the math side, specifically in graduate-degree level statistics, but in my experience a company will only have a few of these folks, so they are expected to know quite a bit in each of these areas. Persistence The first area is finding, cleaning and storing the data. In some cases, no cleaning is done prior to storage - it’s just identified and the cleansing is done in a later step. This area is where the professional would be able to tell if a particular data set should be stored in a Relational Database Management System (RDBMS), across a set of key/value pair storage (NoSQL) or in a file system like HDFS (part of the Hadoop landscape) or other methods. Or do you examine the stream of data without storing it in another system at all? This is an important decision - it’s a foundation choice that deals not only with a lot of expense of purchasing systems or even using Cloud Computing (PaaS, SaaS or IaaS) to source it, but also the skillsets and other resources needed to care and feed the system for a long time. The Data Scientist sets something into motion that will probably outlast his or her career at a company or organization. Often these choices are made by senior developers, database administrators or architects in a company. But sometimes each of these has a certain bias towards making a decision one way or another. The Data Scientist would examine these choices in light of the data itself, starting perhaps even before the business requirements are created. The business may not even be aware of all the strategic and tactical data sources that they have access to. Processing Once the decision is made to store the data, the next set of decisions are based around how to process the data. An RDBMS scales well to a certain level, and provides a high degree of ACID compliance as well as offering a well-known set-based language to work with this data. In other cases, scale should be spread among multiple nodes (as in the case of Hadoop landscapes or NoSQL offerings) or even across a Cloud provider like Windows Azure Table Storage. In fact, in many cases - most of the ones I’m dealing with lately - the data should be split among multiple types of processing environments. This is a newer idea. Many data professionals simply pick a methodology (RDBMS with Star Schemas, NoSQL, etc.) and put all data there, regardless of its shape, processing needs and so on. A Data Scientist is familiar not only with the various processing methods, but how they work, so that they can choose the right one for a given need. This is a huge time commitment, hence the need for a dedicated title like this one. Presentation This is where the need for a Data Scientist is most often already being filled, sometimes with more or less success. The latest Business Intelligence systems are quite good at allowing you to create amazing graphics - but it’s the data behind the graphics that are the most important component of truly effective displays. This is where the mathematics requirement of the Data Scientist title is the most unforgiving. In fact, someone without a good foundation in statistics is not a good candidate for creating reports. Even a basic level of statistics can be dangerous. Anyone who works in analyzing data will tell you that there are multiple errors possible when data just seems right - and basic statistics bears out that you’re on the right track - that are only solvable when you understanding why the statistical formula works the way it does. And there are lots of ways of presenting data. Sometimes all you need is a “yes” or “no” answer that can only come after heavy analysis work. In that case, a simple e-mail might be all the reporting you need. In others, complex relationships and multiple components require a deep understanding of the various graphical methods of presenting data. Knowing which kind of chart, color, graphic or shape conveys a particular datum best is essential knowledge for the Data Scientist. Why I’m excited I love this area of study. I like math, stats, and computing technologies, but it goes beyond that. I love what data can do - how it can help an organization. I’ve been fortunate enough in my professional career these past two decades to work with lots of folks who perform this role at companies from aerospace to medical firms, from manufacturing to retail. Interestingly, the size of the company really isn’t germane here. I worked with one very small bio-tech (cryogenics) company that worked deeply with analysis of complex interrelated data. So  watch this space. No, I’m not leaving Azure or distributed computing or Microsoft. In fact, I think I’m perfectly situated to investigate this role further. We have a huge set of tools, from RDBMS to Hadoop to allow me to explore. And I’m happy to share what I learn along the way.

    Read the article

  • SQL SERVER – Thinking about Deprecated, Discontinued Features and Breaking Changes while Upgrading to SQL Server 2012 – Guest Post by Nakul Vachhrajani

    - by pinaldave
    Nakul Vachhrajani is a Technical Specialist and systems development professional with iGATE having a total IT experience of more than 7 years. Nakul is an active blogger with BeyondRelational.com (150+ blogs), and can also be found on forums at SQLServerCentral and BeyondRelational.com. Nakul has also been a guest columnist for SQLAuthority.com and SQLServerCentral.com. Nakul presented a webcast on the “Underappreciated Features of Microsoft SQL Server” at the Microsoft Virtual Tech Days Exclusive Webcast series (May 02-06, 2011) on May 06, 2011. He is also the author of a research paper on Database upgrade methodologies, which was published in a CSI journal, published nationwide. In addition to his passion about SQL Server, Nakul also contributes to the academia out of personal interest. He visits various colleges and universities as an external faculty to judge project activities being carried out by the students. Disclaimer: The opinions expressed herein are his own personal opinions and do not represent his employer’s view in anyway. Blog | LinkedIn | Twitter | Google+ Let us hear the thoughts of Nakul in first person - Those who have been following my blogs would be aware that I am recently running a series on the database engine features that have been deprecated in Microsoft SQL Server 2012. Based on the response that I have received, I was quite surprised to know that most of the audience found these to be breaking changes, when in fact, they were not! It was then that I decided to write a little piece on how to plan your database upgrade such that it works with the next version of Microsoft SQL Server. Please note that the recommendations made in this article are high-level markers and are intended to help you think over the specific steps that you would need to take to upgrade your database. Refer the documentation – Understand the terms Change is the only constant in this world. Therefore, whenever customer requirements, newer architectures and designs require software vendors to make a change to the keywords, functions, etc; they ensure that they provide their end users sufficient time to migrate over to the new standards before dropping off the old ones. Microsoft does that too with it’s Microsoft SQL Server product. Whenever a new SQL Server release is announced, it comes with a list of the following features: Breaking changes These are changes that would break your currently running applications, scripts or functionalities that are based on earlier version of Microsoft SQL Server These are mostly features whose behavior has been changed keeping in mind the newer architectures and designs Lesson: These are the changes that you need to be most worried about! Discontinued features These features are no longer available in the associated version of Microsoft SQL Server These features used to be “deprecated” in the prior release Lesson: Without these changes, your database would not be compliant/may not work with the version of Microsoft SQL Server under consideration Deprecated features These features are those that are still available in the current version of Microsoft SQL Server, but are scheduled for removal in a future version. These may be removed in either the next version or any other future version of Microsoft SQL Server The features listed for deprecation will compose the list of discontinued features in the next version of SQL Server Lesson: Plan to make necessary changes required to remove/replace usage of the deprecated features with the latest recommended replacements Once a feature appears on the list, it moves from bottom to the top, i.e. it is first marked as “Deprecated” and then “Discontinued”. We know of “Breaking change” comes later on in the product life cycle. What this means is that if you want to know what features would not work with SQL Server 2012 (and you are currently using SQL Server 2008 R2), you need to refer the list of breaking changes and discontinued features in SQL Server 2012. Use the tools! There are a lot of tools and technologies around us, but it is rarely that I find teams using these tools religiously and to the best of their potential. Below are the top two tools, from Microsoft, that I use every time I plan a database upgrade. The SQL Server Upgrade Advisor Ever since SQL Server 2005 was announced, Microsoft provides a small, very light-weight tool called the “SQL Server upgrade advisor”. The upgrade advisor analyzes installed components from earlier versions of SQL Server, and then generates a report that identifies issues to fix either before or after you upgrade. The analysis examines objects that can be accessed, such as scripts, stored procedures, triggers, and trace files. Upgrade Advisor cannot analyze desktop applications or encrypted stored procedures. Refer the links towards the end of the post to know how to get the Upgrade Advisor. The SQL Server Profiler Another great tool that you can use is the one most SQL Server developers & administrators use often – the SQL Server profiler. SQL Server Profiler provides functionality to monitor the “Deprecation” event, which contains: Deprecation announcement – equivalent to features to be deprecated in a future release of SQL Server Deprecation final support – equivalent to features to be deprecated in the next release of SQL Server You can learn more using the links towards the end of the post. A basic checklist There are a lot of finer points that need to be taken care of when upgrading your database. But, it would be worth-while to identify a few basic steps in order to make your database compliant with the next version of SQL Server: Monitor the current application workload (on a test bed) via the Profiler in order to identify usage of features marked as Deprecated If none appear, you are all set! (This almost never happens) Note down all the offending queries and feature usages Run analysis sessions using the SQL Server upgrade advisor on your database Based on the inputs from the analysis report and Profiler trace sessions, Incorporate solutions for the breaking changes first Next, incorporate solutions for the discontinued features Revisit and document the upgrade strategy for your deployment scenarios Revisit the fall-back, i.e. rollback strategies in case the upgrades fail Because some programming changes are dependent upon the SQL server version, this may need to be done in consultation with the development teams Before any other enhancements are incorporated by the development team, send out the database changes into QA QA strategy should involve a comparison between an environment running the old version of SQL Server against the new one Because minimal application changes have gone in (essential changes for SQL Server version compliance only), this would be possible As an ongoing activity, keep incorporating changes recommended as per the deprecated features list As a DBA, update your coding standards to ensure that the developers are using ANSI compliant code – this code will require a change only if the ANSI standard changes Remember this: Change management is a continuous process. Keep revisiting the product release notes and incorporate recommended changes to stay prepared for the next release of SQL Server. May the power of SQL Server be with you! Links Referenced in this post Breaking changes in SQL Server 2012: Link Discontinued features in SQL Server 2012: Link Get the upgrade advisor from the Microsoft Download Center at: Link Upgrade Advisor page on MSDN: Link Profiler: Review T-SQL code to identify objects no longer supported by Microsoft: Link Upgrading to SQL Server 2012 by Vinod Kumar: Link Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Upgrade

    Read the article

  • SQL SERVER – Core Concepts – Elasticity, Scalability and ACID Properties – Exploring NuoDB an Elastically Scalable Database System

    - by pinaldave
    I have been recently exploring Elasticity and Scalability attributes of databases. You can see that in my earlier blog posts about NuoDB where I wanted to look at Elasticity and Scalability concepts. The concepts are very interesting, and intriguing as well. I have discussed these concepts with my friend Joyti M and together we have come up with this interesting read. The goal of this article is to answer following simple questions What is Elasticity? What is Scalability? How ACID properties vary from NOSQL Concepts? What are the prevailing problems in the current database system architectures? Why is NuoDB  an innovative and welcome change in database paradigm? Elasticity This word’s original form is used in many different ways and honestly it does do a decent job in holding things together over the years as a person grows and contracts. Within the tech world, and specifically related to software systems (database, application servers), it has come to mean a few things - allow stretching of resources without reaching the breaking point (on demand). What are resources in this context? Resources are the usual suspects – RAM/CPU/IO/Bandwidth in the form of a container (a process or bunch of processes combined as modules). When it is about increasing resources the simplest idea which comes to mind is the addition of another container. Another container means adding a brand new physical node. When it is about adding a new node there are two questions which comes to mind. 1) Can we add another node to our software system? 2) If yes, does adding new node cause downtime for the system? Let us assume we have added new node, let us see what the new needs of the system are when a new node is added. Balancing incoming requests to multiple nodes Synchronization of a shared state across multiple nodes Identification of “downstate” and resolution action to bring it to “upstate” Well, adding a new node has its advantages as well. Here are few of the positive points Throughput can increase nearly horizontally across the node throughout the system Response times of application will increase as in-between layer interactions will be improved Now, Let us put the above concepts in the perspective of a Database. When we mention the term “running out of resources” or “application is bound to resources” the resources can be CPU, Memory or Bandwidth. The regular approach to “gain scalability” in the database is to look around for bottlenecks and increase the bottlenecked resource. When we have memory as a bottleneck we look at the data buffers, locks, query plans or indexes. After a point even this is not enough as there needs to be an efficient way of managing such large workload on a “single machine” across memory and CPU bound (right kind of scheduling)  workload. We next move on to either read/write separation of the workload or functionality-based sharing so that we still have control of the individual. But this requires lots of planning and change in client systems in terms of knowing where to go/update/read and for reporting applications to “aggregate the data” in an intelligent way. What we ideally need is an intelligent layer which allows us to do these things without us getting into managing, monitoring and distributing the workload. Scalability In the context of database/applications, scalability means three main things Ability to handle normal loads without pressure E.g. X users at the Y utilization of resources (CPU, Memory, Bandwidth) on the Z kind of hardware (4 processor, 32 GB machine with 15000 RPM SATA drives and 1 GHz Network switch) with T throughput Ability to scale up to expected peak load which is greater than normal load with acceptable response times Ability to provide acceptable response times across the system E.g. Response time in S milliseconds (or agreed upon unit of measure) – 90% of the time The Issue – Need of Scale In normal cases one can plan for the load testing to test out normal, peak, and stress scenarios to ensure specific hardware meets the needs. With help from Hardware and Software partners and best practices, bottlenecks can be identified and requisite resources added to the system. Unfortunately this vertical scale is expensive and difficult to achieve and most of the operational people need the ability to scale horizontally. This helps in getting better throughput as there are physical limits in terms of adding resources (Memory, CPU, Bandwidth and Storage) indefinitely. Today we have different options to achieve scalability: Read & Write Separation The idea here is to do actual writes to one store and configure slaves receiving the latest data with acceptable delays. Slaves can be used for balancing out reads. We can also explore functional separation or sharing as well. We can separate data operations by a specific identifier (e.g. region, year, month) and consolidate it for reporting purposes. For functional separation the major disadvantage is when schema changes or workload pattern changes. As the requirement grows one still needs to deal with scale need in manual ways by providing an abstraction in the middle tier code. Using NOSQL solutions The idea is to flatten out the structures in general to keep all values which are retrieved together at the same store and provide flexible schema. The issue with the stores is that they are compromising on mostly consistency (no ACID guarantees) and one has to use NON-SQL dialect to work with the store. The other major issue is about education with NOSQL solutions. Would one really want to make these compromises on the ability to connect and retrieve in simple SQL manner and learn other skill sets? Or for that matter give up on ACID guarantee and start dealing with consistency issues? Hybrid Deployment – Mac, Linux, Cloud, and Windows One of the challenges today that we see across On-premise vs Cloud infrastructure is a difference in abilities. Take for example SQL Azure – it is wonderful in its concepts of throttling (as it is shared deployment) of resources and ability to scale using federation. However, the same abilities are not available on premise. This is not a mistake, mind you – but a compromise of the sweet spot of workloads, customer requirements and operational SLAs which can be supported by the team. In today’s world it is imperative that databases are available across operating systems – which are a commodity and used by developers of all hues. An Ideal Database Ability List A system which allows a linear scale of the system (increase in throughput with reasonable response time) with the addition of resources A system which does not compromise on the ACID guarantees and require developers to learn new paradigms A system which does not force fit a new way interacting with database by learning Non-SQL dialect A system which does not force fit its mechanisms for providing availability across its various modules. Well NuoDB is the first database which has all of the above abilities and much more. In future articles I will cover my hands-on experience with it. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: NuoDB

    Read the article

  • At most how many customized P3 attributes could be added into Agile?

    - by Jie Chen
    I have one customer/Oracle Partner Consultant asking me such question: how many customized attributes can be allowed to add to Agile's subclass Page Three? I never did research against this because Agile User Guide never says this and theoretically Agile supports unlimited amount of customized attributes, unless the browser itself cannot handle them in allocated memory. However my customers says when to add almost 1000 attributes, the browser (Web Client) will not show any Page Three attributes, including all the out-of-box attributes. Let's see why. Analysis It is horrible to add 1000 attributes manually. Let's do it by a batch SQL like below to add them to Item's subclass Page Three tab. Do not execute below SQL because it will not take effect due to your different node id. CREATE OR REPLACE PROCEDURE createP3Text(v_name IN VARCHAR2) IS v_nid NUMBER; v_pid NUMBER; BEGIN select SEQNODETABLE.nextval into v_nid from dual; Insert Into nodeTable ( id,parentID,description,objType,inherit,helpID,version,name ) values ( v_nid,2473003, v_name ,1,0,0,0, v_name); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,925, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,1,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,2,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,2,0,1,3,'50'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,5, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,2,0,1,6,'50'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,2,0,0,7,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,8,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,9,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,1,10,v_name); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,11,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,11743,1,14,'2'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,30, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,38, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,59,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,60,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,724,0,61, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,0,232,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,233,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,12239,1,415,'13307'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,0,605,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,610,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,716,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,795,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,2000008821,1,864,'2'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,923,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,0,719,'0'); Insert Into tableInfo ( tabID,tableID,classID,att,ordering ) values ( 2473005,1501,2473002,v_nid,9999); commit; END createP3Text; / BEGIN FOR i in 1..1000 LOOP createP3Text('MyText' || i); END LOOP; END; / DROP PROCEDURE createP3Text; COMMIT; Now restart Agile Server and check the Server's log, we noticed below: ***** Node Created : 85625 ***** Property Created : 184579 +++++++++++++++++++++++++++++++++++++ + Agile PLM Server Starting Up... + +++++++++++++++++++++++++++++++++++++ However the previously log before batch SQL is ***** Node Created : 84625 ***** Property Created : 157579 +++++++++++++++++++++++++++++++++++++ + Agile PLM Server Starting Up... + +++++++++++++++++++++++++++++++++++++ Obviously we successfully imported 1000 (85625-84625) attributes. Now go to JavaClient and confirm if we have them or not. Theoretically we are able to open such item object and see all these 1000 attributes and their values, but we get below error. We have no error tips in server log. But never mind we have the Java Console for JavaClient. If to open the same item in JavaClient we get a clear error and detailed trace in Java Console. ORA-01795: maximum number of expressions in a list is 1000 java.sql.SQLException: ORA-01795: maximum number of expressions in a list is 1000 at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:125) ... ... at weblogic.jdbc.wrapper.PreparedStatement.executeQuery(PreparedStatement.java:128) at com.agile.pc.cmserver.base.AgileFlexUtil.setFlexValuesForOneRowTable(AgileFlexUtil.java:1104) at com.agile.pc.cmserver.base.BaseFlexTableDAO.loadExtraFlexAttValues(BaseFlexTableDAO.java:111) at com.agile.pc.cmserver.base.BasePageThreeDAO.loadTable(BasePageThreeDAO.java:108) If you are interested in the background of the problem, you may de-compile the class com.agile.pc.cmserver.base.AgileFlexUtil.setFlexValuesForOneRowTable and find the root cause that Agile happens to hit Oracle Database's limitation that more than 1000 values in the "IN" clause. Check here http://ora-01795.ora-code.com If you need Oracle Agile's final solution, please contact Oracle Agile Support. Performance Below two screenshot are jvm heap usage from before-SQL and after-SQL. We can see there is no big memory gap between two cases. So definitely there is no performance impact to Agile Application Server unless you have more than 1000 attributes for EACH of your dozens of  subclasses. And for client, 1000 attributes should not impact the browser's performance because in HTML we only use dt and dd for each attribute's pair: label and value. It is quite lightweight.

    Read the article

  • CodePlex Daily Summary for Sunday, March 28, 2010

    CodePlex Daily Summary for Sunday, March 28, 2010New ProjectsFeed Tracker: Feed Tracker allows you to track your favorite feeds (RSS 2.0 and Atom 1.0) and open them up directly in your browser.FIM 2010 Resource Management Client: The Forefront Identity Management 2010 Resource Management Client is a library to communicate with the FIM 2010 web service. The development langu...Infection Protection: A game about controlling disease outbreak in a city. Developed for OGPC 2010, using Qt.OrthoLab: Homepage of Orthocone open-source laboratory.Paragliding ThermalMarker: Paragliding / Hanggliding Windows Application that receives waypoint files and returns only the thermals that get triggered more often in a place.RSSFalls: RssFalls makes it easier for developers to download RSS or Podcast enclosures.String Library for C++ Language: StrLib++ is a string library for C++ language. for now it support only ANSI strings, later Unicode support will added for UT8, UTF16 and UTF32 for...Sweeper: Sweeper is a Visual Studio 2008 add-in for C# that takes care of many of the trivial code-formatting issues that developers run into - particularly...System.Common: A .Net library that provides methods, properties and more that the .Net Framework doesn't provide.Tiveriad: The framework is designed to help you more easily build modular Windows applicationT-Shirts Online: Online shop build in Silverlight 4 using DIBS as payment module.New ReleasesArkSwitch: ArkSwitch v1.1.3: This release has some important changes. Thanks to MichyPrima for helping with some of the code. 1. Improved theming to more easily support multip...Catharsis: Catharsis 2.5 on catarsa.com: The Catharsis framework has finally its own portal http://catarsa.com The latest release version is 2.5 - string names of properties are not any ...EffiProz - A Pure C# Database: EffiProz CF 1.0: EffiProz for .Net compact framework.Encrypted Notes: Encrypted Notes 1.6: This is the latest version of Encrypted Notes (1.6). It has an installer - it will create a directory 'CPascoe' in My Documents. Once you have ext...Extend SmallBasic: Teaching Extensions v.009: Added Pentagon Crazy Recipe QuizGapi.NET - .NET (C#) wrapper for Google API: Gapi.NET 0.5.0.0: - Fixed some minor bugs. - Add minor features. - Performance improvement. See code check-ins for detailed informationHouseFly experimental controls: HouseFly experimental control: Alpha version of HouseFly experimental controlsiTuner - The iTunes Companion: iTuner 1.2.3738 Beta 2: V1.2 allows you to synchronize one or more iTunes playlists to a USB MP3 player. Beta 2 resolves all known issues. This continues the evolution ye...jQuery Library for SharePoint Web Services: SPServices 0.5.4: IMPORTANT NOTE: This release is in an alpha state. You should only download it if you know what you are getting and are interested in testing it f...JSINQ - LINQ to Objects for JavaScript: JSINQ 1.0: This is the first stable release of JSINQ. It is fully compatible with the 0.9 beta release. It contains the following new features: Now supports ...MSBuild Mercurial Tasks: 1.0.0 Beta: First release of the application. This version integrates all the basic functionalities of Mercurial as defined in the Use Case 1.Open Portal Foundation: Open Portal Foundation V1.4.2: What's news? noscript template was updated naming convention for layout autogenerated controls now use the "master" prefix. The documentation ce...Open Portal Foundation: Open Portal Foundation V1.4.4: What's news? ASP .NET Master page support for custom aspx integrated pages New usercontrols for ASCX, ASPX and Master page integration : Link: f...Paint.NET PSD Plugin: 1.5.0: RLE compression is now working fully on save. File sizes are now competitive with Photoshop's. Saving takes about twice as long with RLE compressi...Paragliding ThermalMarker: ThermalMarker_Alfa0.1: Release Alfa 1Simple Service Locator: Simple Service Locator v0.7: The Simple Service Locator is an easy-to-use Inversion of Control library that is a complete implementation of the Common Service Locator interface...String Library for C++ Language: Release 0.9: version 0.9 beta release DO NOT USE IN SERIOUS PROJECTS this release use default application heap, and because visual studio is using special debug...Sweeper: Sweeper Alpha 1: SweeperA Visual Studio Add-in for C# Code Formatting - Visual Studio 2008 Includes: A UI for options, Enable or disable any specific task you want ...T-Shirts Online: 1.0: First release of the online shop.Twilio Server Library for .NET (TSL.NET): v0.1.0 Beta: This is the first release of TSL.NET. This v0.1.0 release is a Beta. Subsequent builds will be posted as v0.1.x and release-candidate Betas will be...Vr30 OS: Facebook 1.0: Connect you to Facebook without your web browser.Vr30 OS: SkyBlog 1.0: SkyBlog without web browser.Vr30 OS: YouTube 1.0: Youtube without web browserWeb Image Resize Handler: Web Image Resize, Zoom, Rotate and Greyscale v.1.0: Efficient Web Image Resize, Zoom, Rotate and Greyscale cacheing handler for ASP.Net.WinXound: WinXound 3.3.0 Beta 1 for Mac OsX: This is the first Beta release for Apple Mac OsX (Universal Binary). DEBUG HELP NEEDED ! Please signal bugs, suggestions or feedback to: stefano_b...Most Popular ProjectsMetaSharpRawrWBFS ManagerASP.NET Ajax LibraryMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitAJAX Control ToolkitLiveUpload to FacebookWindows Presentation Foundation (WPF)ASP.NETMost Active ProjectsRawrjQuery Library for SharePoint Web ServicesManaged Extensibility FrameworkBlogEngine.NETMicrosoft Biology Foundationpatterns & practices: Composite WPF and SilverlightLINQ to TwitterFarseer Physics EngineTable2ClassNB_Store - Free DotNetNuke Ecommerce Catalog Module

    Read the article

  • Reg Gets a Job at Red Gate (and what happens behind the scenes)

    - by red(at)work
    Mr Reg Gater works at one of Cambridge’s many high-tech companies. He doesn’t love his job, but he puts up with it because... well, it could be worse. Every day he drives to work around the Red Gate roundabout, wondering what his boss is going to blame him for today, and wondering if there could be a better job out there for him. By late morning he already feels like handing his notice in. He got the hacky look from his boss for being 5 minutes late, and then they ran out of tea. Again. He goes to the local sandwich shop for lunch, and picks up a Red Gate job menu and a Book of Red Gate while he’s waiting for his order. That night, he goes along to Cambridge Geek Nights and sees some very enthusiastic Red Gaters talking about the work they do; it sounds interesting and, of all things, fun. He takes a quick look at the job vacancies on the Red Gate website, and an hour later realises he’s still there – looking at videos, photos and people profiles. He especially likes the Red Gate’s Got Talent page, and is very impressed with Simon Johnson’s marathon time. He thinks that he’d quite like to work with such awesome people. It just so happens that Red Gate recently decided that they wanted to hire another hot shot team member. Behind the scenes, the wheels were set in motion: the recruitment team met with the hiring manager to understand exactly what they’re looking for, and to decide what interview tests to do, who will do the interviews, and to kick-start any interview training those people might need. Next up, a job description and job advert were written, and the job was put on the market. Reg applies, and his CV lands in the Recruitment team’s inbox and they open it up with eager anticipation that Reg could be the next awesome new starter. He looks good, and in a jiffy they’ve arranged an interview. Reg arrives for his interview, and is greeted by a smiley receptionist. She offers him a selection of drinks and he feels instantly relaxed. A couple of interviews and an assessment later, he gets a job offer. We make his day and he makes ours by accepting, and becoming one of the 60 new starters so far this year. Behind the scenes, things start moving all over again. The HR team arranges for a “Welcome” goodie box to be whisked out to him, prepares his contract, sends an email to Information Services (Or IS for short - we’ll come back to them), keeps in touch with Reg to make sure he knows what to expect on his first day, and of course asks him to fill in the all-important wiki questionnaire so his new colleagues can start to get to know him before he even joins. Meanwhile, the IS team see an email in SupportWorks from HR. They see that Reg will be starting in the sales team in a few days’ time, and they know exactly what to do. They pull out a new machine, and within minutes have used their automated deployment software to install every piece of software that a new recruit could ever need. They also check with Reg’s new manager to see if he has any special requirements that they could help with. Reg starts and is amazed to find a fully configured machine sitting on his desk, complete with stationery and all the other tools he’ll need to do his job. He feels even more cared for after he gets a workstation assessment, and realises he’d be comfier with an ergonomic keyboard and a footstool. They arrive minutes later, just like that. His manager starts him off on his induction and sales training. Along with job-specific training, he’ll also have a buddy to help him find his feet, and loads of pre-arranged demos and introductions. Reg settles in nicely, and is great at his job. He enjoys the canteen, and regularly eats one of the 40,000 meals provided each year. He gets used to the selection of teas that are available, develops a taste for champagne launch parties, and has his fair share of the 25,000 cups of coffee downed at Red Gate towers each year. He goes along to some Feel Good Fund events, and donates a little something to charity in exchange for a turn on the chocolate fountain. He’s looking a little scruffy, so he decides to get his hair cut in between meetings, just in time for the Red Gate birthday company photo. Reg starts a new project: identifying existing customers to up-sell to new bundles. He talks with the web team to generate lists of qualifying customers who haven’t recently been sent marketing emails, and sends emails out, using a new in-house developed tool to schedule follow-up calls in CRM for the same group. The customer responds, saying they’d like to upgrade but are having a licensing problem – Reg sends the issue to Support, and it gets routed to the web team. The team identifies a workaround, and the bug gets scheduled into the next maintenance release in a fortnight’s time (hey; they got lucky). With all the new stuff Reg is working on, he realises that he’d be way more efficient if he had a third monitor. He speaks to IS and they get him one - no argument. He also needs a test machine and then some extra memory. Done. He then thinks he needs an iPad, and goes to ask for one. He gets told to stop pushing his luck. Some time later, Reg’s wife has a baby, so Reg gets 2 weeks of paid paternity leave and a bunch of flowers sent to his house. He signs up to the childcare scheme so that he doesn’t have to pay National Insurance on the first £243 of his childcare. The accounts team makes it all happen seamlessly, as they did with his Give As You Earn payments, which come out of his wages and go straight to his favorite charity. Reg’s sales career is going well. He’s grateful for the help that he gets from the product support team. How do they answer all those 900-ish support calls so effortlessly each month? He’s impressed with the patches that are sent out to customers who find “interesting behavior” in their tools, and to the customers who just must have that new feature. A little later in his career at Red Gate, Reg decides that he’d like to learn about management. He goes on some management training specially customised for Red Gate, joins the Management Book Club, and gets together with other new managers to brainstorm how to get the most out of one to one meetings with his team. Reg decides to go for a game of Foosball to celebrate his good fortune with his team, and has to wait for Finance to finish. While he’s waiting, he reflects on the wonderful time he’s had at Red Gate. He can’t put his finger on what it is exactly, but he knows he’s on to a good thing. All of the stuff that happened to Reg didn’t just happen magically. We’ve got teams of people working relentlessly behind the scenes to make sure that everyone here is comfortable, safe, well fed and caffeinated to the max.

    Read the article

  • Is RTD Stateless or Stateful?

    - by [email protected]
    Yes.   A stateless service is one where each request is an independent transaction that can be processed by any of the servers in a cluster.  A stateful service is one where state is kept in a server's memory from transaction to transaction, thus necessitating the proper routing of requests to the right server. The main advantage of stateless systems is simplicity of design. The main advantage of stateful systems is performance. I'm often asked whether RTD is a stateless or stateful service, so I wanted to clarify this issue in depth so that RTD's architecture will be properly understood. The short answer is: "RTD can be configured as a stateless or stateful service." The performance difference between stateless and stateful systems can be very significant, and while in a call center implementation it may be reasonable to use a pure stateless configuration, a web implementation that produces thousands of requests per second is practically impossible with a stateless configuration. RTD's performance is orders of magnitude better than most competing systems. RTD was architected from the ground up to achieve this performance. Features like automatic and dynamic compression of prediction models, automatic translation of metadata to machine code, lack of interpreted languages, and separation of model building from decisioning contribute to achieving this performance level. Because  of this focus on performance we decided to have RTD's default configuration work in a stateful manner. By being stateful RTD requests are typically handled in a few milliseconds when repeated requests come to the same session. Now, those readers that have participated in implementations of RTD know that RTD's architecture is also focused on reducing Total Cost of Ownership (TCO) with features like automatic model building, automatic time windows, automatic maintenance of database tables, automatic evaluation of data mining models, automatic management of models partitioned by channel, geography, etcetera, and hot swapping of configurations. How do you reconcile the need for a low TCO and the need for performance? How do you get the performance of a stateful system with the simplicity of a stateless system? The answer is that you make the system behave like a stateless system to the exterior, but you let it automatically take advantage of situations where being stateful is better. For example, one of the advantages of stateless systems is that you can route a message to any server in a cluster, without worrying about sending it to the same server that was handling the session in previous messages. With an RTD stateful configuration you can still route the message to any server in the cluster, so from the point of view of the configuration of other systems, it is the same as a stateless service. The difference though comes in performance, because if the message arrives to the right server, RTD can serve it without any external access to the session's state, thus tremendously reducing processing time. In typical implementations it is not rare to have high percentages of messages routed directly to the right server, while those that are not, are easily handled by forwarding the messages to the right server. This architecture usually provides the best of both worlds with performance and simplicity of configuration.   Configuring RTD as a pure stateless service A pure stateless configuration requires session data to be persisted at the end of handling each and every message and reloading that data at the beginning of handling any new message. This is of course, the root of the inefficiency of these configurations. This is also the reason why many "stateless" implementations actually do keep state to take advantage of a request coming back to the same server. Nevertheless, if the implementation requires a pure stateless decision service, this is easy to configure in RTD. The way to do it is: Mark every Integration Point to Close the session at the end of processing the message In the Session entity persist the session data on closing the session In the session entity check if a persisted version exists and load it An excellent solution for persisting the session data is Oracle Coherence, which provides a high performance, distributed cache that minimizes the performance impact of persisting and reloading the session. Alternatively, the session can be persisted to a local database. An interesting feature of the RTD stateless configuration is that it can cope with serializing concurrent requests for the same session. For example, if a web page produces two requests to the decision service, these requests could come concurrently to the decision services and be handled by different servers. Most stateless implementation would have the two requests step onto each other when saving the state, or fail one of the messages. When properly configured, RTD will make one message wait for the other before processing.   A Word on Context Using the context of a customer interaction typically significantly increases lift. For example, offer success in a call center could double if the context of the call is taken into account. For this reason, it is important to utilize the contextual information in decision making. To make the contextual information available throughout a session it needs to be persisted. When there is a well defined owner for the information then there is no problem because in case of a session restart, the information can be easily retrieved. If there is no official owner of the information, then RTD can be configured to persist this information.   Once again, RTD provides flexibility to ensure high performance when it is adequate to allow for some loss of state in the rare cases of server failure. For example, in a heavy use web site that serves 1000 pages per second the navigation history may be stored in the in memory session. In such sites it is typical that there is no OLTP that stores all the navigation events, therefore if an RTD server were to fail, it would be possible for the navigation to that point to be lost (note that a new session would be immediately established in one of the other servers). In most cases the loss of this navigation information would be acceptable as it would happen rarely. If it is desired to save this information, RTD would persist it every time the visitor navigates to a new page. Note that this practice is preferred whether RTD is configured in a stateless or stateful manner.  

    Read the article

  • Adding proper THEAD sections to a GridView

    - by Rick Strahl
    I’m working on some legacy code for a customer today and dealing with a page that has my favorite ‘friend’ on it: A GridView control. The ASP.NET GridView control (and also the older DataGrid control) creates some pretty messed up HTML. One of the more annoying things it does is to generate all rows including the header into the page in the <tbody> section of the document rather than in a properly separated <thead> section. Here’s is typical GridView generated HTML output: <table class="tablesorter blackborder" cellspacing="0" rules="all" border="1" id="Table1" style="border-collapse:collapse;"> <tr> <th scope="col">Name</th> <th scope="col">Company</th> <th scope="col">Entered</th><th scope="col">Balance</th> </tr> <tr> <td>Frank Hobson</td><td>Hobson Inc.</td> <td>10/20/2010 12:00:00 AM</td><td>240.00</td> </tr> ... </table> Notice that all content – both the headers and the body of the table – are generated directly under the <table> tag and there’s no explicit use of <tbody> or <thead> (or <tfooter> for that matter). When the browser renders this the document some default settings kick in and the DOM tree turns into something like this: <table> <tbody> <tr> <-- header <tr> <—detail row <tr> <—detail row </tbody> </table> Now if you’re just rendering the Grid server side and you’re applying all your styles through CssClass assignments this isn’t much of a problem. However, if you want to style your grid more generically using hierarchical CSS selectors it gets a lot more tricky to format tables that don’t properly delineate headers and body content. Also many plug-ins and other JavaScript utilities that work on tables require a properly formed table layout, and many of these simple won’t work out of the box with a GridView. For example, one of the things I wanted to do for this app is use the jQuery TableSorter plug-in which – not surprisingly – requires to work of table headers in the DOM document. Out of the box, the TableSorter plug-in doesn’t work with GridView controls, because the lack of a <thead> section to work on. Luckily with a little help of some jQuery scripting there’s a real easy fix to this problem. Basically, if we know the GridView generated table has a header in it, code like the following will move the headers from <tbody> to <thead>: <script type="text/javascript"> $(document).ready(function () { // Fix up GridView to support THEAD tags $("#gvCustomers tbody").before("<thead><tr></tr></thead>"); $("#gvCustomers thead tr").append($("#gvCustomers th")); $("#gvCustomers tbody tr:first").remove(); $("#gvCustomers").tablesorter({ sortList: [[1, 0]] }); }); </script> And voila you have a table that now works with the TableSorter plug-in. If you use GridView’s a lot you might want something a little more generic so the following does the same thing but should work more generically on any GridView/DataGrid missing its <thead> tag: function fixGridView(tableEl) {            var jTbl = $(tableEl);         if(jTbl.find("tbody>tr>th").length > 0) {         jTbl.find("tbody").before("<thead><tr></tr></thead>");         jTbl.find("thead tr").append(jTbl.find("th"));         jTbl.find("tbody tr:first").remove();     } } which you can call like this: $(document).ready(function () { fixGridView( $("#gvCustomers") ); $("#gvCustomers").tablesorter({ sortList: [[1, 0]] }); }); Server Side THEAD Rendering [updated from comments 11/21/2010] Several commenters pointed out that you can also do this on the server side by using the GridView.HeaderRow.TableSection property to force rendering with a proper table header. I was unaware of this option actually – not exactly an easy one to discover. One issue here is that timing of this needs to happen during the databinding process so you need to use an event handler: this.gvCustomers.DataBound += (object o, EventArgs ev) => { gvCustomers.HeaderRow.TableSection = TableRowSection.TableHeader; }; this.gvCustomers.DataSource = custList; this.gvCustomers.DataBind(); You can apply the same logic for the FooterRow. It’s beyond me why this rendering mode isn’t the default for a GridView – why would you ever want to have a table that doesn’t use a THEAD section??? But I disgress :-) I don’t use GridViews much anymore – opting for more flexible approaches using ListViews or even plain code based views or other custom displays that allow more control over layout, but I still see a lot of old code that does use them old clunkers including my own :) (gulp) and this does make life a little bit easier especially if you’re working with any of the jQuery table related plug-ins that expect a proper table structure.© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  jQuery  

    Read the article

  • Prevent your Silverlight XAP file from caching in your browser.

    - by mbcrump
    If you work with Silverlight daily then you have run into this problem. Your XAP file has been cached in your browser and you have to empty your browser cache to resolve it. If your using Google Chrome then you typically do the following: Go to Options –> Clear Browsing History –> Empty the Cache and finally click Clear Browsing data. As you can see, this is a lot of unnecessary steps. It is even worse when you have a customer that says, “I can’t see the new features you just implemented!” and you realize it’s a cached xap problem.  I have been struggling with a way to prevent my XAP file from caching inside of a browser for a while now and decided to implement the following solution. If the Visual Studio Debugger is attached then add a unique query string to the source param to force the XAP file to be refreshed. If the Visual Studio Debugger is not attached then add the source param as Visual Studio generates it. This is also in case I forget to remove the above code in my production environment. I want the ASP.NET code to be inline with my .ASPX page. (I do not want a separate code behind .cs page or .vb page attached to the .aspx page.) Below is an example of the hosting code generated when you create a new Silverlight project. As a quick refresher, the hard coded param name = “source” specifies the location of your XAP file.  <form id="form1" runat="server" style="height:100%"> <div id="silverlightControlHost"> <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <param name="source" value="ClientBin/SilverlightApplication2.xap"/> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50826.0" /> <param name="autoUpgrade" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe></div> </form> We are going to use a little bit of inline ASP.NET to generate the param name = source dynamically to prevent the XAP file from caching. Lets look at the completed solution: <form id="form1" runat="server" style="height:100%"> <div id="silverlightControlHost"> <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <% string strSourceFile = @"ClientBin/SilverlightApplication2.xap"; string param; if (System.Diagnostics.Debugger.IsAttached) //Debugger Attached - Refresh the XAP file. param = "<param name=\"source\" value=\"" + strSourceFile + "?" + DateTime.Now.Ticks + "\" />"; else { //Production Mode param = "<param name=\"source\" value=\"" + strSourceFile + "\" />"; } Response.Write(param); %> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50826.0" /> <param name="autoUpgrade" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe></div> </form> We add the location to our XAP file to strSourceFile and if the debugger is attached then it will append DateTime.Now.Ticks to the XAP file source and force the browser to download the .XAP. If you view the page source of your Silverlight Application then you can verify it worked properly by looking at the param name = “source” tag as shown below. <param name="source" value="ClientBin/SilverlightApplication2.xap?634299001187160148" /> If the debugger is not attached then it will use the standard source tag as shown below. <param name="source" value="ClientBin/SilverlightApplication2.xap"/> At this point you may be asking, How do I prevent my XAP file from being cached on my production app? Well, you have two easy options: 1) I really don’t recommend this approach but you can force the XAP to be refreshed everytime with the following code snippet.  <param name="source" value="ClientBin/SilverlightApplication2.xap?<%=Guid.NewGuid().ToString() %>"/> NOTE: You could also substitute the “Guid.NewGuid().ToString() for anything that create a random field. (I used DateTime.Now.Ticks earlier). 2) Another solution that I like even better involves checking the XAP Creation Date and appending it to the param name = source. This method was described by Lars Holm Jenson. <% string strSourceFile = @"ClientBin/SilverlightApplication2.xap"; string param; if (System.Diagnostics.Debugger.IsAttached) param = "<param name=\"source\" value=\"" + strSourceFile + "\" />"; else { string xappath = HttpContext.Current.Server.MapPath(@"") + @"\" + strSourceFile; DateTime xapCreationDate = System.IO.File.GetLastWriteTime(xappath); param = "<param name=\"source\" value=\"" + strSourceFile + "?ignore=" + xapCreationDate.ToString() + "\" />"; } Response.Write(param); %> As you can see, this problem has been solved. It will work with all web browsers and stubborn proxy servers that are caching your .XAP. If you enjoyed this article then check out my blog for others like this. You may also want to subscribe to my blog or follow me on Twitter.   Subscribe to my feed

    Read the article

  • Curing the Database-Application mismatch

    - by Phil Factor
    If an application requires access to a database, then you have to be able to deploy it so as to be version-compatible with the database, in phase. If you can deploy both together, then the application and database must normally be deployed at the same version in which they, together, passed integration and functional testing.  When a single database supports more than one application, then the problem gets more interesting. I’ll need to be more precise here. It is actually the application-interface definition of the database that needs to be in a compatible ‘version’.  Most databases that get into production have no separate application-interface; in other words they are ‘close-coupled’.  For this vast majority, the whole database is the application-interface, and applications are free to wander through the bowels of the database scot-free.  If you’ve spurned the perceived wisdom of application architects to have a defined application-interface within the database that is based on views and stored procedures, any version-mismatch will be as sensitive as a kitten.  A team that creates an application that makes direct access to base tables in a database will have to put a lot of energy into keeping Database and Application in sync, to say nothing of having to tackle issues such as security and audit. It is not the obvious route to development nirvana. I’ve been in countless tense meetings with application developers who initially bridle instinctively at the apparent restrictions of being ‘banned’ from the base tables or routines of a database.  There is no good technical reason for needing that sort of access that I’ve ever come across.  Everything that the application wants can be delivered via a set of views and procedures, and with far less pain for all concerned: This is the application-interface.  If more than zero developers are creating a database-driven application, then the project will benefit from the loose-coupling that an application interface brings. What is important here is that the database development role is separated from the application development role, even if it is the same developer performing both roles. The idea of an application-interface with a database is as old as I can remember. The big corporate or government databases generally supported several applications, and there was little option. When a new application wanted access to an existing corporate database, the developers, and myself as technical architect, would have to meet with hatchet-faced DBAs and production staff to work out an interface. Sure, they would talk up the effort involved for budgetary reasons, but it was routine work, because it decoupled the database from its supporting applications. We’d be given our own stored procedures. One of them, I still remember, had ninety-two parameters. All database access was encapsulated in one application-module. If you have a stable defined application-interface with the database (Yes, one for each application usually) you need to keep the external definitions of the components of this interface in version control, linked with the application source,  and carefully track and negotiate any changes between database developers and application developers.  Essentially, the application development team owns the interface definition, and the onus is on the Database developers to implement it and maintain it, in conformance.  Internally, the database can then make all sorts of changes and refactoring, as long as source control is maintained.  If the application interface passes all the comprehensive integration and functional tests for the particular version they were designed for, nothing is broken. Your performance-testing can ‘hang’ on the same interface, since databases are judged on the performance of the application, not an ‘internal’ database process. The database developers have responsibility for maintaining the application-interface, but not its definition,  as they refactor the database. This is easily tested on a daily basis since the tests are normally automated. In this setting, the deployment can proceed if the more stable application-interface, rather than the continuously-changing database, passes all tests for the version of the application. Normally, if all goes well, a database with a well-designed application interface can evolve gracefully without changing the external appearance of the interface, and this is confirmed by integration tests that check the interface, and which hopefully don’t need to be altered at all often.  If the application is rapidly changing its ‘domain model’  in the light of an increased understanding of the application domain, then it can change the interface definitions and the database developers need only implement the interface rather than refactor the underlying database.  The test team will also have to redo the functional and integration tests which are, of course ‘written to’ the definition.  The Database developers will find it easier if these tests are done before their re-wiring  job to implement the new interface. If, at the other extreme, an application receives no further development work but survives unchanged, the database can continue to change and develop to keep pace with the requirements of the other applications it supports, and needs only to take care that the application interface is never broken. Testing is easy since your automated scripts to test the interface do not need to change. The database developers will, of course, maintain their own source control for the database, and will be likely to maintain versions for all major releases. However, this will not need to be shared with the applications that the database servers. On the other hand, the definition of the application interfaces should be within the application source. Changes in it have to be subject to change-control procedures, as they will require a chain of tests. Once you allow, instead of an application-interface, an intimate relationship between application and database, we are in the realms of impedance mismatch, over and above the obvious security problems.  Part of this impedance problem is a difference in development practices. Whereas the application has to be regularly built and integrated, this isn’t necessarily the case with the database.  An RDBMS is inherently multi-user and self-integrating. If the developers work together on the database, then a subsequent integration of the database on a staging server doesn’t often bring nasty surprises. A separate database-integration process is only needed if the database is deliberately built in a way that mimics the application development process, but which hampers the normal database-development techniques.  This process is like demanding a official walking with a red flag in front of a motor car.  In order to closely coordinate databases with applications, entire databases have to be ‘versioned’, so that an application version can be matched with a database version to produce a working build without errors.  There is no natural process to ‘version’ databases.  Each development project will have to define a system for maintaining the version level. A curious paradox occurs in development when there is no formal application-interface. When the strains and cracks happen, the extra meetings, bureaucracy, and activity required to maintain accurate deployments looks to IT management like work. They see activity, and it looks good. Work means progress.  Management then smile on the design choices made. In IT, good design work doesn’t necessarily look good, and vice versa.

    Read the article

  • The Business of Winning Innovation: An Exclusive Blog Series

    - by Kerrie Foy
    "The Business of Winning Innovation” is a series of articles authored by Oracle Agile PLM experts on what it takes to make innovation a successful and lucrative competitive advantage. Our customers have proven Agile PLM applications to be enormously flexible and comprehensive, so we’ve launched this article series to showcase some of the most fascinating, value-packed use cases. In this article by Keith Colonna, we kick-off the series by taking a look at the science side of innovation within the Consumer Products industry and how PLM can help companies innovate faster, cheaper, smarter. This article will review how innovation has become the lifeline for growth within consumer products companies and how certain companies are “winning” by creating a competitive advantage for themselves by taking a more enterprise-wide,systematic approach to “innovation”.   Managing the Science of Innovation within the Consumer Products Industry By: Keith Colonna, Value Chain Solution Manager, Oracle The consumer products (CP) industry is very mature and competitive. Most companies within this industry have saturated North America (NA) with their products thus maximizing their NA growth potential. Future growth is expected to come from either expansion outside of North America and/or by way of new ideas and products. Innovation plays an integral role in both of these strategies, whether you’re innovating business processes or the products themselves, and may cause several challenges for the typical CP company, Becoming more innovative is both an art and a science. Most CP companies are very good at the art of coming up with new innovative ideas, but many struggle with perfecting the science aspect that involves the best practice processes that help companies quickly turn ideas into sellable products and services. Symptoms and Causes of Business Pain Struggles associated with the science of innovation show up in a variety of ways, like: · Establishing and storing innovative product ideas and data · Funneling these ideas to the chosen few · Time to market cycle time and on-time launch rates · Success rates, or how often the best idea gets chosen · Imperfect decision making (i.e. the ability to kill projects that are not projected to be winners) · Achieving financial goals · Return on R&D investment · Communicating internally and externally as more outsource partners are added globally · Knowing your new product pipeline and project status These challenges (and others) can be consolidated into three root causes: A lack of visibility Poor data with limited access The inability to truly collaborate enterprise-wide throughout your extended value chain Choose the Right Remedy Product Lifecycle Management (PLM) solutions are uniquely designed to help companies solve these types challenges and their root causes. However, PLM solutions can vary widely in terms of configurability, functionality, time-to-value, etc. Business leaders should evaluate PLM solution in terms of their own business drivers and long-term vision to determine the right fit. Many of these solutions are point solutions that can help you cure only one or two business pains in the short term. Others have been designed to serve other industries with different needs. Then there are those solutions that demo well but are owned by companies that are either unable or unwilling to continuously improve their solution to stay abreast of the ever changing needs of the CP industry to grow through innovation. What the Right PLM Solution Should Do for You Based on more than twenty years working in the CP industry, I recommend investing in a single solution that can help you solve all of the issues associated with the science of innovation in a totally integrated fashion. By integration I mean the (1) integration of the all of the processes associated with the development, maintenance and delivery of your product data, and (2) the integration, or harmonization of this product data with other downstream sources, like ERP, product catalogues and the GS1 Global Data Synchronization Network (or GDSN, which is now a CP industry requirement for doing business with most retailers). The right PLM solution should help you: Increase Revenue. A best practice PLM solution should help a company grow its revenues by consolidating product development cycle-time and helping companies get new and improved products to market sooner. PLM should also eliminate many of the root causes for a product being returned, refused and/or reclaimed (which takes away from top-line growth) by creating an enterprise-wide, collaborative, workflow-driven environment. Reduce Costs. A strong PLM solution should help shave many unnecessary costs that companies typically take for granted. Rationalizing SKU’s, components (ingredients and packaging) and suppliers is a major opportunity at most companies that PLM should help address. A natural outcome of this rationalization is lower direct material spend and a reduction of inventory. Another cost cutting opportunity comes with PLM when it helps companies avoid certain costs associated with process inefficiencies that lead to scrap, rework, excess and obsolete inventory, poor end of life administration, higher cost of quality and regulatory and increased expediting. Mitigate Risk. Risks are the hardest to quantify but can be the most costly to a company. Food safety, recalls, line shutdowns, customer dissatisfaction and, worst of all, the potential tarnishing of your brands are a few of the debilitating risks that CP companies deal with on a daily basis. These risks are so uniquely severe that they require an enterprise PLM solution specifically designed for the CP industry that safeguards product information and processes while still allowing the art of innovation to flourish. Many CP companies have already created a winning advantage by leveraging a single, best practice PLM solution to establish an enterprise-wide, systematic approach to innovation. Oracle’s Answer for the Consumer Products Industry Oracle is dedicated to solving the growth and innovation challenges facing the CP industry. Oracle’s Agile Product Lifecycle Management for Process solution was originally developed with and for CP companies and is driven by a specialized development staff solely focused on maintaining and continuously improving the solution per the latest industry requirements. Agile PLM for Process helps CP companies handle all of the processes associated with managing the science of the innovation process, including: specification management, new product development/project and portfolio management, formulation optimization, supplier management, and quality and regulatory compliance to name a few. And as I mentioned earlier, integration is absolutely critical. Many Oracle CP customers, both with Oracle ERP systems and non-Oracle ERP systems, report benefits from Oracle’s Agile PLM for Process. In future articles we will explain in greater detail how both existing Oracle customers (like Gallo, Smuckers, Land-O-Lakes and Starbucks) and new Oracle customers (like ConAgra, Tyson, McDonalds and Heinz) have all realized the benefits of Agile PLM for Process and its integration to their ERP systems. More to Come Stay tuned for more articles in our blog series “The Business of Winning Innovation.” While we will also feature articles focused on other industries, look forward to more on how Agile PLM for Process addresses innovation challenges facing the CP industry. Additional topics include: Innovation Data Management (IDM), New Product Development (NPD), Product Quality Management (PQM), Menu Management,Private Label Management, and more! . Watch this video for more info about Agile PLM for Process

    Read the article

  • Using Open MQ as an Oracle CEP Event Source

    - by seth.white
    I helped an Oracle CEP customer recently who wanted to use Open MQ has an event source for their Oracle CEP application.  In this case, the Oracle CEP application was being used to provide monitoring for an electronic commerce website, however, the steps for configuring Open MQ are entirely independent of the application logic. I thought I would list the configuration steps in a blog post in case they might help others in the future. Note that although the Oracle CEP documentation states that only WebLogic and Tibco JMS are "officially" supported, any JMS implementation that provides a Java client should work with Oracle CEP. The first step is to add an adapter to the application's EPN. This can be done in the usual way, using the Eclipse IDE. The end result is something like the following bit of configuration in the application's Spring application context. Note that the provider attribute value of 'jms-inbound' specifies that the out-of-the-box JMS adapter is being used. <wlevs:adapter id="helloworldAdapter" provider="jms-inbound"> </wlevs:adapter>   Next, configure the inbound adapter so that it can connect to Open MQ in the Oracle CEP configuration file (config.xml). The snippet below provides an example of what this configuration should look like. The exact values specified for jndi-provider-url, jndi-factory, connection-jndi-name, destination-jndi-name elements will depend on your Open MQ configuration.  For example , if the name of your Open MQ topic destination is 'ElectronicCommerceTopic', then you would specify that as the destination-jndi-name.  The name of your Open MQ connection factory goes in the connection-jndi-name element. In my simple example, I also specify in event-type element so that the out-of-the-box JMS adapter will attempt to automatically convert incoming messages to events of type HelloWorldEvent. In a more complex application, one would configure a custom converter on the JMS adapter to convert from messages to events.  The Oracle CEP 11.1.3 documentation describes how to do this.   <jms-adapter> <name>helloworldAdapter</name> <event-type>HelloWorldEvent</event-type> <jndi-provider-url>file:///C:/Temp</jndi-provider-url> <jndi-factory>com.sun.jndi.fscontext.RefFSContextFactory</jndi-factory> <connection-jndi-name>YourJMSConnectionFactoryName</connection-jndi-name> <destination-jndi-name>YourJMSDestinationName</destination-jndi-name> </jms-adapter>   Finally, one needs to package the client-side Open MQ jars so that the classes that they contain are available to the Oracle CEP runtime. The recommended way for doing this in the Oracle CEP 11.1.3 release is to package the classes as a library module or simply place them in the application bundle.  The advantage of deploying the classes as a library module is that they are available to any application that wants to connect to Open MQ. In my case, I packaged the classes in my application bundle. A best practice when you want to include additional jars in your application bundle is to create a 'lib' directory in your Eclipse project and then copy the required jars into that directory.  Then, use the support that Eclipse provides to add the jars to the bundle classpath (which makes the classes part of your application in the same way that regular application classes are), and export all of the classes from your application bundle so that they are available to the Oracle CEP server runtime.  The screenshot below Illustrates how this is done in Eclipse.  The bundle classpath contains two Open MQ jars and all packages in the jars are exported.     Finally, import the javax.jms and javax.naming packages into the application module as these are needed by the Open MQ classes. The screenshot below shows the complete list of package imports for my sample application.       Once you have completed these steps, you should be able to build and deploy your application and begin receiving inbound messages from Open MQ. Technorati Tags: CEP,JMS,Adapter,Open MQ,Eclipse .csharpcode { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { margin: 0em } .csharpcode .rem { color: #008000 } .csharpcode .kwrd { color: #0000ff } .csharpcode .str { color: #006080 } .csharpcode .op { color: #0000c0 } .csharpcode .preproc { color: #cc6633 } .csharpcode .asp { background-color: #ffff00 } .csharpcode .html { color: #800000 } .csharpcode .attr { color: #ff0000 } .csharpcode .alt { background-color: #f4f4f4; margin: 0em; width: 100% } .csharpcode .lnum { color: #606060 } .csharpcode { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { margin: 0em } .csharpcode .rem { color: #008000 } .csharpcode .kwrd { color: #0000ff } .csharpcode .str { color: #006080 } .csharpcode .op { color: #0000c0 } .csharpcode .preproc { color: #cc6633 } .csharpcode .asp { background-color: #ffff00 } .csharpcode .html { color: #800000 } .csharpcode .attr { color: #ff0000 } .csharpcode .alt { background-color: #f4f4f4; margin: 0em; width: 100% } .csharpcode .lnum { color: #606060 } .csharpcode { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { margin: 0em } .csharpcode .rem { color: #008000 } .csharpcode .kwrd { color: #0000ff } .csharpcode .str { color: #006080 } .csharpcode .op { color: #0000c0 } .csharpcode .preproc { color: #cc6633 } .csharpcode .asp { background-color: #ffff00 } .csharpcode .html { color: #800000 } .csharpcode .attr { color: #ff0000 } .csharpcode .alt { background-color: #f4f4f4; margin: 0em; width: 100% } .csharpcode .lnum { color: #606060 }

    Read the article

  • Java collision detection and player movement: tips

    - by Loris
    I have read a short guide for game develompent (java, without external libraries). I'm facing with collision detection and player (and bullets) movements. Now i put the code. Most of it is taken from the guide (should i link this guide?). I'm just trying to expand and complete it. This is the class that take care of updates movements and firing mechanism (and collision detection): public class ArenaController { private Arena arena; /** selected cell for movement */ private float targetX, targetY; /** true if droid is moving */ private boolean moving = false; /** true if droid is shooting to enemy */ private boolean shooting = false; private DroidController droidController; public ArenaController(Arena arena) { this.arena = arena; this.droidController = new DroidController(arena); } public void update(float delta) { Droid droid = arena.getDroid(); //droid movements if (moving) { droidController.moveDroid(delta, targetX, targetY); //check if arrived if (droid.getX() == targetX && droid.getY() == targetY) moving = false; } //firing mechanism if(shooting) { //stop shot if there aren't bullets if(arena.getBullets().isEmpty()) { shooting = false; } for(int i = 0; i < arena.getBullets().size(); i++) { //current bullet Bullet bullet = arena.getBullets().get(i); System.out.println(bullet.getBounds()); //angle calculation double angle = Math.atan2(bullet.getEnemyY() - bullet.getY(), bullet.getEnemyX() - bullet.getX()); //increments x and y bullet.setX((float) (bullet.getX() + (Math.cos(angle) * bullet.getSpeed() * delta))); bullet.setY((float) (bullet.getY() + (Math.sin(angle) * bullet.getSpeed() * delta))); //collision with obstacles for(int j = 0; j < arena.getObstacles().size(); j++) { Obstacle obs = arena.getObstacles().get(j); if(bullet.getBounds().intersects(obs.getBounds())) { System.out.println("Collision detect!"); arena.removeBullet(bullet); } } //collisions with enemies for(int j = 0; j < arena.getEnemies().size(); j++) { Enemy ene = arena.getEnemies().get(j); if(bullet.getBounds().intersects(ene.getBounds())) { System.out.println("Collision detect!"); arena.removeBullet(bullet); } } } } } public boolean onClick(int x, int y) { //click on empty cell if(arena.getGrid()[(int)(y / Arena.TILE)][(int)(x / Arena.TILE)] == null) { //coordinates targetX = x / Arena.TILE; targetY = y / Arena.TILE; //enables movement moving = true; return true; } //click on enemy: fire if(arena.getGrid()[(int)(y / Arena.TILE)][(int)(x / Arena.TILE)] instanceof Enemy) { //coordinates float enemyX = x / Arena.TILE; float enemyY = y / Arena.TILE; //new bullet Bullet bullet = new Bullet(); //start coordinates bullet.setX(arena.getDroid().getX()); bullet.setY(arena.getDroid().getY()); //end coordinates (enemie) bullet.setEnemyX(enemyX); bullet.setEnemyY(enemyY); //adds bullet to arena arena.addBullet(bullet); //enables shooting shooting = true; return true; } return false; } As you can see for collision detection i'm trying to use Rectangle object. Droid example: import java.awt.geom.Rectangle2D; public class Droid { private float x; private float y; private float speed = 20f; private float rotation = 0f; private float damage = 2f; public static final int DIAMETER = 32; private Rectangle2D rectangle; public Droid() { rectangle = new Rectangle2D.Float(x, y, DIAMETER, DIAMETER); } public float getX() { return x; } public void setX(float x) { this.x = x; //rectangle update rectangle.setRect(x, y, DIAMETER, DIAMETER); } public float getY() { return y; } public void setY(float y) { this.y = y; //rectangle update rectangle.setRect(x, y, DIAMETER, DIAMETER); } public float getSpeed() { return speed; } public void setSpeed(float speed) { this.speed = speed; } public float getRotation() { return rotation; } public void setRotation(float rotation) { this.rotation = rotation; } public float getDamage() { return damage; } public void setDamage(float damage) { this.damage = damage; } public Rectangle2D getRectangle() { return rectangle; } } For now, if i start the application and i try to shot to an enemy, is immediately detected a collision and the bullet is removed! Can you help me with this? If the bullet hit an enemy or an obstacle in his way, it must disappear. Ps: i know that the movements of the bullets should be managed in another class. This code is temporary. update I realized what happens, but not why. With those for loops (which checks collisions) the movements of the bullets are instantaneous instead of gradual. In addition to this, if i add the collision detection to the Droid, the method intersects returns true ALWAYS while the droid is moving! public void moveDroid(float delta, float x, float y) { Droid droid = arena.getDroid(); int bearing = 1; if (droid.getX() > x) { bearing = -1; } if (droid.getX() != x) { droid.setX(droid.getX() + bearing * droid.getSpeed() * delta); //obstacles collision detection for(Obstacle obs : arena.getObstacles()) { if(obs.getRectangle().intersects(droid.getRectangle())) { System.out.println("Collision detected"); //ALWAYS HERE } } //controlla se è arrivato if ((droid.getX() < x && bearing == -1) || (droid.getX() > x && bearing == 1)) droid.setX(x); } bearing = 1; if (droid.getY() > y) { bearing = -1; } if (droid.getY() != y) { droid.setY(droid.getY() + bearing * droid.getSpeed() * delta); if ((droid.getY() < y && bearing == -1) || (droid.getY() > y && bearing == 1)) droid.setY(y); } }

    Read the article

  • The SSIS tuning tip that everyone misses

    - by Rob Farley
    I know that everyone misses this, because I’m yet to find someone who doesn’t have a bit of an epiphany when I describe this. When tuning Data Flows in SQL Server Integration Services, people see the Data Flow as moving from the Source to the Destination, passing through a number of transformations. What people don’t consider is the Source, getting the data out of a database. Remember, the source of data for your Data Flow is not your Source Component. It’s wherever the data is, within your database, probably on a disk somewhere. You need to tune your query to optimise it for SSIS, and this is what most people fail to do. I’m not suggesting that people don’t tune their queries – there’s plenty of information out there about making sure that your queries run as fast as possible. But for SSIS, it’s not about how fast your query runs. Let me say that again, but in bolder text: The speed of an SSIS Source is not about how fast your query runs. If your query is used in a Source component for SSIS, the thing that matters is how fast it starts returning data. In particular, those first 10,000 rows to populate that first buffer, ready to pass down the rest of the transformations on its way to the Destination. Let’s look at a very simple query as an example, using the AdventureWorks database: We’re picking the different Weight values out of the Product table, and it’s doing this by scanning the table and doing a Sort. It’s a Distinct Sort, which means that the duplicates are discarded. It'll be no surprise to see that the data produced is sorted. Obvious, I know, but I'm making a comparison to what I'll do later. Before I explain the problem here, let me jump back into the SSIS world... If you’ve investigated how to tune an SSIS flow, then you’ll know that some SSIS Data Flow Transformations are known to be Blocking, some are Partially Blocking, and some are simply Row transformations. Take the SSIS Sort transformation, for example. I’m using a larger data set for this, because my small list of Weights won’t demonstrate it well enough. Seven buffers of data came out of the source, but none of them could be pushed past the Sort operator, just in case the last buffer contained the data that would be sorted into the first buffer. This is a blocking operation. Back in the land of T-SQL, we consider our Distinct Sort operator. It’s also blocking. It won’t let data through until it’s seen all of it. If you weren’t okay with blocking operations in SSIS, why would you be happy with them in an execution plan? The source of your data is not your OLE DB Source. Remember this. The source of your data is the NCIX/CIX/Heap from which it’s being pulled. Picture it like this... the data flowing from the Clustered Index, through the Distinct Sort operator, into the SELECT operator, where a series of SSIS Buffers are populated, flowing (as they get full) down through the SSIS transformations. Alright, I know that I’m taking some liberties here, because the two queries aren’t the same, but consider the visual. The data is flowing from your disk and through your execution plan before it reaches SSIS, so you could easily find that a blocking operation in your plan is just as painful as a blocking operation in your SSIS Data Flow. Luckily, T-SQL gives us a brilliant query hint to help avoid this. OPTION (FAST 10000) This hint means that it will choose a query which will optimise for the first 10,000 rows – the default SSIS buffer size. And the effect can be quite significant. First let’s consider a simple example, then we’ll look at a larger one. Consider our weights. We don’t have 10,000, so I’m going to use OPTION (FAST 1) instead. You’ll notice that the query is more expensive, using a Flow Distinct operator instead of the Distinct Sort. This operator is consuming 84% of the query, instead of the 59% we saw from the Distinct Sort. But the first row could be returned quicker – a Flow Distinct operator is non-blocking. The data here isn’t sorted, of course. It’s in the same order that it came out of the index, just with duplicates removed. As soon as a Flow Distinct sees a value that it hasn’t come across before, it pushes it out to the operator on its left. It still has to maintain the list of what it’s seen so far, but by handling it one row at a time, it can push rows through quicker. Overall, it’s a lot more work than the Distinct Sort, but if the priority is the first few rows, then perhaps that’s exactly what we want. The Query Optimizer seems to do this by optimising the query as if there were only one row coming through: This 1 row estimation is caused by the Query Optimizer imagining the SELECT operation saying “Give me one row” first, and this message being passed all the way along. The request might not make it all the way back to the source, but in my simple example, it does. I hope this simple example has helped you understand the significance of the blocking operator. Now I’m going to show you an example on a much larger data set. This data was fetching about 780,000 rows, and these are the Estimated Plans. The data needed to be Sorted, to support further SSIS operations that needed that. First, without the hint. ...and now with OPTION (FAST 10000): A very different plan, I’m sure you’ll agree. In case you’re curious, those arrows in the top one are 780,000 rows in size. In the second, they’re estimated to be 10,000, although the Actual figures end up being 780,000. The top one definitely runs faster. It finished several times faster than the second one. With the amount of data being considered, these numbers were in minutes. Look at the second one – it’s doing Nested Loops, across 780,000 rows! That’s not generally recommended at all. That’s “Go and make yourself a coffee” time. In this case, it was about six or seven minutes. The faster one finished in about a minute. But in SSIS-land, things are different. The particular data flow that was consuming this data was significant. It was being pumped into a Script Component to process each row based on previous rows, creating about a dozen different flows. The data flow would take roughly ten minutes to run – ten minutes from when the data first appeared. The query that completes faster – chosen by the Query Optimizer with no hints, based on accurate statistics (rather than pretending the numbers are smaller) – would take a minute to start getting the data into SSIS, at which point the ten-minute flow would start, taking eleven minutes to complete. The query that took longer – chosen by the Query Optimizer pretending it only wanted the first 10,000 rows – would take only ten seconds to fill the first buffer. Despite the fact that it might have taken the database another six or seven minutes to get the data out, SSIS didn’t care. Every time it wanted the next buffer of data, it was already available, and the whole process finished in about ten minutes and ten seconds. When debugging SSIS, you run the package, and sit there waiting to see the Debug information start appearing. You look for the numbers on the data flow, and seeing operators going Yellow and Green. Without the hint, I’d sit there for a minute. With the hint, just ten seconds. You can imagine which one I preferred. By adding this hint, it felt like a magic wand had been waved across the query, to make it run several times faster. It wasn’t the case at all – but it felt like it to SSIS.

    Read the article

  • Grow Your Business with Security

    - by Darin Pendergraft
    Author: Kevin Moulton Kevin Moulton has been in the security space for more than 25 years, and with Oracle for 7 years. He manages the East EnterpriseSecurity Sales Consulting Team. He is also a Distinguished Toastmaster. Follow Kevin on Twitter at twitter.com/kevin_moulton, where he sometimes tweets about security, but might also tweet about running, beer, food, baseball, football, good books, or whatever else grabs his attention. Kevin will be a regular contributor to this blog so stay tuned for more posts from him. It happened again! There I was, reading something interesting online, and realizing that a friend might find it interesting too. I clicked on the little email link, thinking that I could easily forward this to my friend, but no! Instead, a new screen popped up where I was asked to create an account. I was expected to create a User ID and password, not to mention providing some personally identifiable information, just for the privilege of helping that website spread their word. Of course, I didn’t want to have to remember a new account and password, I didn’t want to provide the requisite information, and I didn’t want to waste my time. I gave up, closed the web page, and moved on to something else. I was left with a bad taste in my mouth, and my friend might never find her way to this interesting website. If you were this content provider, would this be the outcome you were looking for? A few days later, I had a similar experience, but this one went a little differently. I was surfing the web, when I happened upon some little chotcke that I just had to have. I added it to my cart. When I went to buy the item, I was again brought to a page to create account. Groan! But wait! On this page, I also had the option to sign in with my OpenID account, my Facebook account, my Yahoo account, or my Google Account. I have all of those! No new account to create, no new password to remember, and no personally identifiable information to be given to someone else (I’ve already given it all to those other guys, after all). In this case, the vendor was easy to deal with, and I happily completed the transaction. That pleasant experience will bring me back again. This is where security can grow your business. It’s a differentiator. You’ve got to have a presence on the web, and that presence has to take into account all the smart phones everyone’s carrying, and the tablets that took over cyber Monday this year. If you are a company that a customer can deal with securely, and do so easily, then you are a company customers will come back to again and again. I recently had a need to open a new bank account. Every bank has a web presence now, but they are certainly not all the same. I wanted one that I could deal with easily using my laptop, but I also wanted 2-factor authentication in case I had to login from a shared machine, and I wanted an app for my iPad. I found a bank with all three, and that’s who I am doing business with. Let’s say, for example, that I’m in a regular Texas Hold-em game on Friday nights, so I move a couple of hundred bucks from checking to savings on Friday afternoons. I move a similar amount each week and I do it from the same machine. The bank trusts me, and they trust my machine. Most importantly, they trust my behavior. This is adaptive authentication. There should be no reason for my bank to make this transaction difficult for me. Now let's say that I login from a Starbucks in Uzbekistan, and I transfer $2,500. What should my bank do now? Should they stop the transaction? Should they call my home number? (My former bank did exactly this once when I was taking money out of an ATM on a business trip, when I had provided my cell phone number as my primary contact. When I asked them why they called my home number rather than my cell, they told me that their “policy” is to call the home number. If I'm on the road, what exactly is the use of trying to reach me at home to verify my transaction?) But, back to Uzbekistan… Should my bank assume that I am happily at home in New Jersey, and someone is trying to hack into my account? Perhaps they think they are protecting me, but I wouldn’t be very happy if I happened to be traveling on business in Central Asia. What if my bank were to automatically analyze my behavior and calculate a risk score? Clearly, this scenario would be outside of my typical behavior, so my risk score would necessitate something more than a simple login and password. Perhaps, in this case, a one-time password to my cell phone would prove that this is not just some hacker half way around the world. But, what if you're not a bank? Do you need this level of security? If you want to be a business that is easy to deal with while also protecting your customers, then of course you do. You want your customers to trust you, but you also want them to enjoy doing business with you. Make it easy for them to do business with you, and they’ll come back, and perhaps even Tweet about it, or Like you, and then their friends will follow. How can Oracle help? Oracle has the technology and expertise to help you to grown your business with security. Oracle Adaptive Access Manager will help you to prevent fraud while making it easier for your customers to do business with you by providing the risk analysis I discussed above, step-up authentication, and much more. Oracle Mobile and Social Access Service will help you to secure mobile access to applications by expanding on your existing back-end identity management infrastructure, and allowing your customers to transact business with you using the social media accounts they already know. You also have device fingerprinting and metrics to help you to grow your business securely. Security is not just a cost anymore. It’s a way to set your business apart. With Oracle’s help, you can be the business that everyone’s tweeting about. Image courtesy of Flickr user shareski

    Read the article

  • SQL University: What and why of database testing

    - by Mladen Prajdic
    This is a post for a great idea called SQL University started by Jorge Segarra also famously known as SqlChicken on Twitter. It’s a collection of blog posts on different database related topics contributed by several smart people all over the world. So this week is mine and we’ll be talking about database testing and refactoring. In 3 posts we’ll cover: SQLU part 1 - What and why of database testing SQLU part 2 - What and why of database refactoring SQLU part 2 – Tools of the trade With that out of the way let us sharpen our pencils and get going. Why test a database The sad state of the industry today is that there is very little emphasis on testing in general. Test driven development is still a small niche of the programming world while refactoring is even smaller. The cause of this is the inability of developers to convince themselves and their managers that writing tests is beneficial. At the moment they are mostly viewed as waste of time. This is because the average person (let’s not fool ourselves, we’re all average) is unable to think about lower future costs in relation to little more current work. It’s orders of magnitude easier to know about the current costs in relation to current amount of work. That’s why programmers convince themselves testing is a waste of time. However we have to ask ourselves what tests are really about? Maybe finding bugs? No, not really. If we introduce bugs, we’re likely to write test around those bugs too. But yes we can find some bugs with tests. The main point of tests is to have reproducible repeatability in our systems. By having a code base largely covered by tests we can know with better certainty what a small code change can break in other parts of the system. By having repeatability we can make code changes with confidence, since we know we’ll see what breaks in other tests. And here comes the inability to estimate future costs. By spending just a few more hours writing those tests we’d know instantly what broke where. Imagine we fix a reported bug. We check-in the code, deploy it and the users are happy. Until we get a call 2 weeks later about a certain monthly process has stopped working. What we don’t know is that this process was developed by a long gone coworker and for some reason it relied on that same bug we’ve happily fixed. There’s no way we could’ve known that. We say OK and go in and fix the monthly process. But what we have no clue about is that there’s this ETL job that relied on data from that monthly process. Now that we’ve fixed the process it’s giving unexpected (yet correct since we fixed it) data to the ETL job. So we have to fix that too. But there’s this part of the app we coded that relies on data from that exact ETL job. And just like that we enter the “Loop of maintenance horror”. With the loop eventually comes blame. Here’s a nice tip for all developers and DBAs out there: If you make a mistake man up and admit to it. All of the above is valid for any kind of software development. Keeping this in mind the database is nothing other than just a part of the application. But a big part! One reason why testing a database is even more important than testing an application is that one database is usually accessed from multiple applications and processes. This makes it the central and vital part of the enterprise software infrastructure. Knowing all this can we really afford not to have tests? What to test in a database Now that we’ve decided we’ll dive into this testing thing we have to ask ourselves what needs to be tested? The short answer is: everything. The long answer is: read on! There are 2 main ways of doing tests: Black box and White box testing. Black box testing means we have no idea how the system internals are built and we only have access to it’s inputs and outputs. With it we test that the internal changes to the system haven’t caused the input/output behavior of the system to change. The most important thing to test here are the edge conditions. It’s where most programs break. Having good edge condition tests we can be more confident that the systems changes won’t break. White box testing has the full knowledge of the system internals. With it we test the internal system changes, different states of the application, etc… White and Black box tests should be complementary to each other as they are very much interconnected. Testing database routines includes testing stored procedures, views, user defined functions and anything you use to access the data with. Database routines are your input/output interface to the database system. They count as black box testing. We test then for 2 things: Data and schema. When testing schema we only care about the columns and the data types they’re returning. After all the schema is the contract to the out side systems. If it changes we usually have to change the applications accessing it. One helpful T-SQL command when doing schema tests is SET FMTONLY ON. It tells the SQL Server to return only empty results sets. This speeds up tests because it doesn’t return any data to the client. After we’ve validated the schema we have to test the returned data. There no other way to do this but to have expected data known before the tests executes and comparing that data to the database routine output. Testing Authentication and Authorization helps us validate who has access to the SQL Server box (Authentication) and who has access to certain database objects (Authorization). For desktop applications and windows authentication this works well. But the biggest problem here are web apps. They usually connect to the database as a single user. Please ensure that that user is not SA or an account with admin privileges. That is just bad. Load testing ensures us that our database can handle peak loads. One often overlooked tool for load testing is Microsoft’s OSTRESS tool. It’s part of RML utilities (x86, x64) for SQL Server and can help determine if our database server can handle loads like 100 simultaneous users each doing 10 requests per second. SQL Profiler can also help us here by looking at why certain queries are slow and what to do to fix them.   One particular problem to think about is how to begin testing existing databases. First thing we have to do is to get to know those databases. We can’t test something when we don’t know how it works. To do this we have to talk to the users of the applications accessing the database, run SQL Profiler to see what queries are being run, use existing documentation to decipher all the object relationships, etc… The way to approach this is to choose one part of the database (say a logical grouping of tables that go together) and filter our traces accordingly. Once we’ve done that we move on to the next grouping and so on until we’ve covered the whole database. Then we move on to the next one. Database Testing is a topic that we can spent many hours discussing but let this be a nice intro to the world of database testing. See you in the next post.

    Read the article

  • The challenge of communicating externally with IRM secured content

    - by Simon Thorpe
    I am often asked by customers about how they handle sending IRM secured documents to external parties. Their concern is that using IRM to secure sensitive information they need to share outside their business, is troubled with the inability for third parties to install the software which enables them to gain access to the information. It is a very legitimate question and one i've had to answer many times in the past 10 years whilst helping customers plan successful IRM deployments. The operating system does not provide the required level of content security The problem arises from what IRM delivers, persistent security to your sensitive information where ever it resides and whenever it is in use. Oracle IRM gives customers an array of features that help ensure sensitive information in an IRM document or email is always protected and only accessed by authorized users using legitimate applications. Examples of such functionality are; Control of the clipboard, either by disabling completely in the opened document or by allowing the cut and pasting of information between secured IRM documents but not into insecure applications. Protection against programmatic access to the document. Office documents and PDF documents have the ability to be accessed by other applications and scripts. With Oracle IRM we have to protect against this to ensure content cannot be leaked by someone writing a simple program. Securing of decrypted content in memory. At some point during the process of opening and presenting a sealed document to an end user, we must decrypt it and give it to the application (Adobe Reader, Microsoft Word, Excel etc). This process must be secure so that someone cannot simply get access to the decrypted information. The operating system alone just doesn't have the functionality to deliver these types of features. This is why for every IRM technology there must be some extra software installed and typically this software requires administrative rights to do so. The fact is that if you want to have very strong security and access control over a document you are going to send to someone who is beyond your network infrastructure, there must be some software to provide that functionality. Simple installation with Oracle IRM The software used to control access to Oracle IRM sealed content is called the Oracle IRM Desktop. It is a small, free piece of software roughly about 12mb in size. This software delivers functionality for everything a user needs to work with an Oracle IRM solution. It provides the functionality for all formats we support, the storage and transparent synchronization of user rights and unique to Oracle, the ability to search inside sealed files stored on the local computer. In Oracle we've made every technical effort to ensure that installing this software is a simple as possible. In situations where the user's computer is part of the enterprise, this software is typically deployed using existing technologies such as Systems Management Server from Microsoft or by using Active Directory Group Policies. However when sending sealed content externally, you cannot automatically install software on the end users machine. You need to rely on them to download and install themselves. Again we've made every effort for this manual install process to be as simple as we can. Starting with the small download size of the software itself to the simple installation process, most end users are able to install and access sealed content very quickly. You can see for yourself how easily this is done by walking through our free and easy self service demonstration of using sealed content. How to handle objections and ensure there is value However the fact still remains that end users may object to installing, or may simply be unable to install the software themselves due to lack of permissions. This is often a problem with any technology that requires specialized software to access a new type of document. In Oracle, over the past 10 years, we've learned many ways to get over this barrier of getting software deployed by external users. First and I would say of most importance, is the content MUST have some value to the person you are asking to install software. Without some type of value proposition you are going to find it very difficult to get past objections to installing the IRM Desktop. Imagine if you were going to secure the weekly campus restaurant menu and send this to contractors. Their initial response will be, "why on earth are you asking me to download some software just to access your menu!?". A valid objection... there is no value to the user in doing this. Now consider the scenario where you are sending one of your contractors their employment contract which contains their address, social security number and bank account details. Are they likely to take 5 minutes to install the IRM Desktop? You bet they are, because there is real value in doing so and they understand why you are doing it. They want their personal information to be securely handled and a quick download and install of some software is a small task in comparison to dealing with the loss of this information. Be clear in communicating this value So when sending sealed content to people externally, you must be clear in communicating why you are using an IRM technology and why they need to install some software to access the content. Do not try and avoid the issue, you must be clear and upfront about it. In doing so you will significantly reduce the "I didn't know I needed to do this..." responses and also gain respect for being straight forward. One customer I worked with, 6 months after the initial deployment of Oracle IRM, called me panicking that the partner they had started to share their engineering documents with refused to install any software to access this highly confidential intellectual property. I explained they had to communicate to the partner why they were doing this. I told them to go back with the statement that "the company takes protecting its intellectual property seriously and had decided to use IRM to control access to engineering documents." and if the partner didn't respect this decision, they would find another company that would. The result? A few days later the partner had made the Oracle IRM Desktop part of their approved list of software in the company. Companies are successful when sending sealed content to third parties We have many, many customers who send sensitive content to third parties. Some customers actually sell access to Oracle IRM protected content and therefore 99% of their users are external to their business, one in particular has sold content to hundreds of thousands of external users. Oracle themselves use the technology to secure M&A documents, payroll data and security assessments which go beyond the traditional enterprise security perimeter. Pretty much every company who deploys Oracle IRM will at some point be sending those documents to people outside of the company, these customers must be successful otherwise Oracle IRM wouldn't be successful. Because our software is used by a wide variety of companies, some who use it to sell content, i've often run into people i'm sharing a sealed document with and they already have the IRM Desktop installed due to accessing content from another company. The future In summary I would say that yes, this is a hurdle that many customers are concerned about but we see much evidence that in practice, people leap that hurdle with relative ease as long as they are good at communicating the value of using IRM and also take measures to ensure end users can easily go through the process of installation. We are constantly developing new ideas to reducing this hurdle and maybe one day the operating systems will give us enough rich security functionality to have no software installation. Until then, Oracle IRM is by far the easiest solution to balance security and usability for your business. If you would like to evaluate it for yourselves, please contact us.

    Read the article

  • Evaluating Solutions to Manage Product Compliance? Don't Wait Much Longer

    - by Kerrie Foy
    Depending on severity, product compliance issues can cause all sorts of problems from run-away budgets to business closures. But effective policies and safeguards can create a strong foundation for innovation, productivity, market penetration and competitive advantage. If you’ve been putting off a systematic approach to product compliance, it is time to reconsider that decision, or indecision. Why now?  No matter what industry, companies face a litany of worldwide and regional regulations that require proof of product compliance and environmental friendliness for market access.  For example, Restriction of Hazardous Substances (RoHS) is a regulation that restricts the use of six dangerous materials used in the manufacture of electronic and electrical equipment.  ROHS was originally adopted by the European Union in 2003 for implementation in 2006, and it has evolved over time through various regional versions for North America, China, Japan, Korea, Norway and Turkey.  In addition, the RoHS directive allowed for material exemptions used in Medical Devices, but that exemption ends in 2014.   Additional regulations worth watching are the Battery Directive, Waste Electrical and Electronic Equipment (WEEE), and Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) directives.  Additional evolving regulations are coming from governing bodies like the Food and Drug Administration (FDA) and the International Organization for Standardization (ISO). Corporate sustainability initiatives are also gaining urgency and influencing product design. In a survey of 405 corporations in the Global 500 by Carbon Disclosure Project, co-written by PwC (CDP Global 500 Climate Change Report 2012 entitled Business Resilience in an Uncertain, Resource-Constrained World), 48% of the respondents indicated they saw potential to create new products and business services as a response to climate change. Just 21% reported a dedicated budget for the research. However, the report goes on to explain that those few companies are winning over new customers and driving additional profits by exploiting their abilities to adapt to environmental needs. The article cites Dell as an example – Dell has invested in research to develop new products designed to reduce its customers’ emissions by more than 10 million metric tons of CO2e per year. This reduction in emissions should save Dell’s customers over $1billion per year as a result! Over time we expect to see many additional companies prove that eco-design provides marketplace benefits through differentiation and direct customer value. How do you meet compliance requirements and also successfully invest in eco-friendly designs? No doubt companies struggle to answer this question. After all, the journey to get there may involve transforming business models, go-to-market strategies, supply networks, quality assurance policies and compliance processes per the rapidly evolving global and regional directives. There may be limited executive focus on the initiative, inability to quantify noncompliance, or not enough resources to justify investment. To make things even more difficult to address, compliance responsibility can be a passionate topic within an organization, making the prospect of change on an enterprise scale problematic and time-consuming. Without a single source of truth for product data and without proper processes in place, ensuring product compliance burgeons into a crushing task that is cost-prohibitive and overwhelming to an organization. With all the overhead, certain markets or demographics become simply inaccessible. Therefore, the risk to consumer goodwill and satisfaction, revenue, business continuity, and market potential is too great not to solve the compliance challenge. Companies are beginning to adapt and even thrive in today’s highly regulated and transparent environment by implementing systematic approaches to product compliance that are more than functional bandages but revenue-generating engines. Consider partnering with Oracle to help you address your compliance needs. Many of the world’s most innovative leaders and pioneers are leveraging Oracle’s Agile Product Lifecycle Management (PLM) portfolio of enterprise applications to manage the product value chain, centralize product data, automate processes, and launch more eco-friendly products to market faster.   Particularly, the Agile Product Governance & Compliance (PG&C) solution provides out-of-the-box functionality to integrate actionable regulatory information into the enterprise product record from the ideation to the disposal/recycling phase. Agile PG&C makes it possible to efficiently manage compliance per corporate green initiatives as well as regional and global directives. Options are critical, but so is ease-of-use. Anyone who’s grappled with compliance policy knows legal interpretation plays a major role in determining how an organization responds to regulation. Agile PG&C gives you the freedom to configure product compliance per your needs, while maintaining rigorous control over the product record in an easy-to-use interface that facilitates adoption efforts. It allows you to assign regulations as specifications for a part or BOM roll-up. Each specification has a threshold value that alerts you to a non-compliance issue if the threshold value is exceeded. Set however many regulations as specifications you need to make sure a product can be sold in your target countries. Another option is to implement like one of our leading consumer electronics customers and define your own “catch-all” specification to ensure compliance in all markets. You can give your suppliers secure access to enter their component data or integrate a third party’s data. With Agile PG&C you are able to design compliance earlier into your products to reduce cost and improve quality downstream when stakes are higher. Agile PG&C is a comprehensive solution that makes product compliance more reliable and efficient. Throughout product lifecycles, use the solution to support full material disclosures, efficiently manage declarations with your suppliers, feed compliance data into a corrective action if a product must be changed, and swiftly satisfy audits by showing all due diligence tracked in one solution. Given the compounding regulation and consumer focus on urgent environmental issues, now is the time to act. Implementing an enterprise, systematic approach to product compliance is a competitive investment. From the start, Agile Product Governance & Compliance enables companies to confidently design for compliance and sustainability, reduce the cost of compliance, minimize the risk of business interruption, deliver responsible products, and inspire new innovation.  Don’t wait any longer! To find out more about Agile Product Governance & Compliance download the data sheet, contact your sales representative, or call Oracle at 1-800-633-0738. Many thanks to Shane Goodwin, Senior Manager, Oracle Agile PLM Product Management, for contributions to this article. 

    Read the article

  • Elegance, thy Name is jQuery

    - by SGWellens
    So, I'm browsing though some questions over on the Stack Overflow website and I found a good jQuery question just a few minutes old. Here is a link to it. It was a tough question; I knew that by answering it, I could learn new stuff and reinforce what I already knew: Reading is good, doing is better. Maybe I could help someone in the process too. I cut and pasted the HTML from the question into my Visual Studio IDE and went back to Stack Overflow to reread the question. Dang, someone had already answered it! And it was a great answer. I never even had a chance to start analyzing the issue. Now I know what a one-legged man feels like in an ass-kicking contest. Nevertheless, since the question and answer were so interesting, I decided to dissect them and learn as much as possible. The HTML consisted of some divs separated by h3 headings.  Note the elements are laid out sequentially with no programmatic grouping: <h3 class="heading">Heading 1</h3> <div>Content</div> <div>More content</div> <div>Even more content</div><h3 class="heading">Heading 2</h3> <div>some content</div> <div>some more content</div><h3 class="heading">Heading 3</h3> <div>other content</div></form></body>  The requirement was to wrap a div around each h3 heading and the subsequent divs grouping them into sections. Why? I don't know, I suppose if you screen-scrapped some HTML from another site, you might want to reformat it before displaying it on your own. Anyways… Here is the marvelously, succinct posted answer: $('.heading').each(function(){ $(this).nextUntil('.heading').andSelf().wrapAll('<div class="section">');}); I was familiar with all the parts except for nextUntil and andSelf. But, I'll analyze the whole answer for completeness. I'll do this by rewriting the posted answer in a different style and adding a boat-load of comments: function Test(){ // $Sections is a jQuery object and it will contain three elements var $Sections = $('.heading'); // use each to iterate over each of the three elements $Sections.each(function () { // $this is a jquery object containing the current element // being iterated var $this = $(this); // nextUntil gets the following sibling elements until it reaches // an element with the CSS class 'heading' // andSelf adds in the source element (this) to the collection $this = $this.nextUntil('.heading').andSelf(); // wrap the elements with a div $this.wrapAll('<div class="section" >'); });}  The code here doesn't look nearly as concise and elegant as the original answer. However, unless you and your staff are jQuery masters, during development it really helps to work through algorithms step by step. You can step through this code in the debugger and examine the jQuery objects to make sure one step is working before proceeding on to the next. It's much easier to debug and troubleshoot when each logical coding step is a separate line of code. Note: You may think the original code runs much faster than this version. However, the time difference is trivial: Not enough to worry about: Less than 1 millisecond (tested in IE and FF). Note: You may want to jam everything into one line because it results in less traffic being sent to the client. That is true. However, most Internet servers now compress HTML and JavaScript by stripping out comments and white space (go to Bing or Google and view the source). This feature should be enabled on your server: Let the server compress your code, you don't need to do it. Free Career Advice: Creating maintainable code is Job One—Maximum Priority—The Prime Directive. If you find yourself suddenly transferred to customer support, it may be that the code you are writing is not as readable as it could be and not as readable as it should be. Moving on… I created a CSS class to enhance the results: .section{ background-color: yellow; border: 2px solid black; margin: 5px;} Here is the rendered output before:   …and after the jQuery code runs.   Pretty Cool! But, while playing with this code, the logic of nextUntil began to bother me: What happens in the last section? What stops elements from being collected since there are no more elements with the .heading class? The answer is nothing.  In this case it stopped collecting elements because it was at the end of the page.  But what if there were additional HTML elements? I added an anchor tag and another div to the HTML: <h3 class="heading">Heading 1</h3> <div>Content</div> <div>More content</div> <div>Even more content</div><h3 class="heading">Heading 2</h3> <div>some content</div> <div>some more content</div><h3 class="heading">Heading 3</h3> <div>other content</div><a>this is a link</a><div>unrelated div</div> </form></body> The code as-is will include both the anchor and the unrelated div. This isn't what we want.   My first attempt to correct this used the filter parameter of the nextUntil function: nextUntil('.heading', 'div')  This will only collect div elements. But it merely skipped the anchor tag and it still collected the unrelated div:   The problem is we need a way to tell the nextUntil function when to stop. CSS selectors to the rescue! nextUntil('.heading, a')  This tells nextUntil to stop collecting elements when it gets to an element with a .heading class OR when it gets to an anchor tag. In this case it solved the problem. FYI: The comma operator in a CSS selector allows multiple criteria.   Bingo! One final note, we could have broken the code down even more: We could have replaced the andSelf function here: $this = $this.nextUntil('.heading, a').andSelf(); With this: // get all the following siblings and then add the current item$this = $this.nextUntil('.heading, a');$this.add(this);  But in this case, the andSelf function reads real nice. In my opinion. Here's a link to a jsFiddle if you want to play with it. I hope someone finds this useful Steve Wellens CodeProject

    Read the article

  • Design for complex ATG applications

    - by Glen Borkowski
    Overview Needless to say, some ATG applications are more complex than others.  Some ATG applications support a single site, single language, single catalog, single currency, have a single development staff, single business team, and a relatively simple business model.  The real complex applications have to support multiple sites, multiple languages, multiple catalogs, multiple currencies, a couple different development teams, multiple business teams, and a highly complex business model (and processes to go along with it).  While it's still important to implement a proper design for simple applications, it's absolutely critical to do this for the complex applications.  Why?  It's all about time and money.  If you are unable to manage your complex applications in an efficient manner, the cost of managing it will increase dramatically as will the time to get things done (time to market).  On the positive side, your competition is most likely in the same situation, so you just need to be more efficient than they are. This article is intended to discuss a number of key areas to think about when designing complex applications on ATG.  Some of this can get fairly technical, so it may help to get some background first.  You can get enough of the required background information from this post.  After reading that, come back here and follow along. Application Design Of all the various types of ATG applications out there, the most complex tend to be the ones in the telecommunications industry - especially the ones which operate in multiple countries.  To get started, let's assume that we are talking about an application like that.  One that has these properties: Operates in multiple countries - must support multiple sites, catalogs, languages, and currencies The organization is fairly loosely-coupled - single brand, but different businesses across different countries There is some common functionality across all sites in all countries There is some common functionality across different sites within the same country Sites within a single country may have some unique functionality - relative to other sites in the same country Complex product catalog (mostly in terms of bundles, eligibility, and compatibility) At this point, I'll assume you have read through the required reading and have a decent understanding of how ATG modules work... Code / configuration - assemble into modules When it comes to defining your modules for a complex application, there are a number of goals: Divide functionality between the modules in a way that maps to your business Group common functionality 'further down in the stack of modules' Provide a good balance between shared resources and autonomy for countries / sites Now I'll describe a high level approach to how you could accomplish those goals...  Let's start from the bottom and work our way up.  At the very bottom, you have the modules that ship with ATG - the 'out of the box' stuff.  You want to make sure that you are leveraging all the modules that make sense in order to get the most value from ATG as possible - and less stuff you'll have to write yourself.  On top of the ATG modules, you should create what we'll refer to as the Corporate Foundation Module described as follows: Sits directly on top of ATG modules Used by all applications across all countries and sites - this is the foundation for everyone Contains everything that is common across all countries / all sites Once established and settled, will change less frequently than other 'higher' modules Encapsulates as many enterprise-wide integrations as possible Will provide means of code sharing therefore less development / testing - faster time to market Contains a 'reference' web application (described below) The next layer up could be multiple modules for each country (you could replace this with region if that makes more sense).  We'll define those modules as follows: Sits on top of the corporate foundation module Contains what is unique to all sites in a given country Responsible for managing any resource bundles for this country (to handle multiple languages) Overrides / replaces corporate integration points with any country-specific ones Finally, we will define what should be a fairly 'thin' (in terms of functionality) set of modules for each site as follows: Sits on top of the country it resides in module Contains what is unique for a given site within a given country Will mostly contain configuration, but could also define some unique functionality as well Contains one or more web applications The graphic below should help to indicate how these modules fit together: Web applications As described in the previous section, there are many opportunities for sharing (minimizing costs) as it relates to the code and configuration aspects of ATG modules.  Web applications are also contained within ATG modules, however, sharing web applications can be a bit more difficult because this is what the end customer actually sees, and since each site may have some degree of unique look & feel, sharing becomes more challenging.  One approach that can help is to define a 'reference' web application at the corporate foundation layer to act as a solid starting point for each site.  Here's a description of the 'reference' web application: Contains minimal / sample reference styling as this will mostly be addressed at the site level web app Focus on functionality - ensure that core functionality is revealed via this web application Each individual site can use this as a starting point There may be multiple types of web apps (i.e. B2C, B2B, etc) There are some techniques to share web application assets - i.e. multiple web applications, defined in the web.xml, and it's worth investigating, but is out of scope here. Reference infrastructure In this complex environment, it is assumed that there is not a single infrastructure for all countries and all sites.  It's more likely that different countries (or regions) could have their own solution for infrastructure.  In this case, it will be advantageous to define a reference infrastructure which contains all the hardware and software that make up the core environment.  Specifications and diagrams should be created to outline what this reference infrastructure looks like, as well as it's baseline cost and the incremental cost to scale up with volume.  Having some consistency in terms of infrastructure will save time and money as new countries / sites come online.  Here are some properties of the reference infrastructure: Standardized approach to setup of hardware Type and number of servers Defines application server, operating system, database, etc... - including vendor and specific versions Consistent naming conventions Provides a consistent base of terminology and understanding across environments Defines which ATG services run on which servers Production Staging BCC / Preview Each site can change as required to meet scale requirements Governance / organization It should be no surprise that the complex application we're talking about is backed by an equally complex organization.  One of the more challenging aspects of efficiently managing a series of complex applications is to ensure the proper level of governance and organization.  Here are some ideas and goals to work towards: Establish a committee to make enterprise-wide decisions that affect all sites Representation should be evenly distributed Should have a clear communication procedure Focus on high level business goals Evaluation of feature / function gaps and how that relates to ATG release schedule / roadmap Determine when to upgrade & ensure value will be realized Determine how to manage various levels of modules Who is responsible for maintaining corporate / country / site layers Determine a procedure for controlling what goes in the corporate foundation module Standardize on source code control, database, hardware, OS versions, J2EE app servers, development procedures, etc only use tested / proven versions - this is something that should be centralized so that every country / site does not have to worry about compatibility between versions Create a innovation team Quickly develop new features, perform proof of concepts All teams can benefit from their findings Summary At this point, it should be clear why the topics above (design, governance, organization, etc) are critical to being able to efficiently manage a complex application.  To summarize, it's all about competitive advantage...  You will need to reduce costs and improve time to market with the goal of providing a better experience for your end customers.  You can reduce cost by reducing development time, time allocated to testing (don't have to test the corporate foundation module over and over again - do it once), and optimizing operations.  With an efficient design, you can improve your time to market and your business will be more flexible  and agile.  Over time, you'll find that you're becoming more focused on offering functionality that is new to the market (creativity) and this will be rewarded - you're now a leader. In addition to the above, you'll realize soft benefits as well.  Your staff will be operating in a culture based on sharing.  You'll want to reward efforts to improve and enhance the foundation as this will benefit everyone.  This culture will inspire innovation, which can only lend itself to your competitive advantage.

    Read the article

  • ASP.NET MVC 3 Hosting :: Error Handling and CustomErrors in ASP.NET MVC 3 Framework

    - by C. Miller
    So, what else is new in MVC 3? MVC 3 now has a GlobalFilterCollection that is automatically populated with a HandleErrorAttribute. This default FilterAttribute brings with it a new way of handling errors in your web applications. In short, you can now handle errors inside of the MVC pipeline. What does that mean? This gives you direct programmatic control over handling your 500 errors in the same way that ASP.NET and CustomErrors give you configurable control of handling your HTTP error codes. How does that work out? Think of it as a routing table specifically for your Exceptions, it's pretty sweet! Global Filters The new Global.asax file now has a RegisterGlobalFilters method that is used to add filters to the new GlobalFilterCollection, statically located at System.Web.Mvc.GlobalFilter.Filters. By default this method adds one filter, the HandleErrorAttribute. public class MvcApplication : System.Web.HttpApplication {     public static void RegisterGlobalFilters(GlobalFilterCollection filters)     {         filters.Add(new HandleErrorAttribute());     } HandleErrorAttributes The HandleErrorAttribute is pretty simple in concept: MVC has already adjusted us to using Filter attributes for our AcceptVerbs and RequiresAuthorization, now we are going to use them for (as the name implies) error handling, and we are going to do so on a (also as the name implies) global scale. The HandleErrorAttribute has properties for ExceptionType, View, and Master. The ExceptionType allows you to specify what exception that attribute should handle. The View allows you to specify which error view (page) you want it to redirect to. Last but not least, the Master allows you to control which master page (or as Razor refers to them, Layout) you want to render with, even if that means overriding the default layout specified in the view itself. public class MvcApplication : System.Web.HttpApplication {     public static void RegisterGlobalFilters(GlobalFilterCollection filters)     {         filters.Add(new HandleErrorAttribute         {             ExceptionType = typeof(DbException),             // DbError.cshtml is a view in the Shared folder.             View = "DbError",             Order = 2         });         filters.Add(new HandleErrorAttribute());     }Error Views All of your views still work like they did in the previous version of MVC (except of course that they can now use the Razor engine). However, a view that is used to render an error can not have a specified model! This is because they already have a model, and that is System.Web.Mvc.HandleErrorInfo @model System.Web.Mvc.HandleErrorInfo           @{     ViewBag.Title = "DbError"; } <h2>A Database Error Has Occurred</h2> @if (Model != null) {     <p>@Model.Exception.GetType().Name<br />     thrown in @Model.ControllerName @Model.ActionName</p> }Errors Outside of the MVC Pipeline The HandleErrorAttribute will only handle errors that happen inside of the MVC pipeline, better known as 500 errors. Errors outside of the MVC pipeline are still handled the way they have always been with ASP.NET. You turn on custom errors, specify error codes and paths to error pages, etc. It is important to remember that these will happen for anything and everything outside of what the HandleErrorAttribute handles. Also, these will happen whenever an error is not handled with the HandleErrorAttribute from inside of the pipeline. <system.web>  <customErrors mode="On" defaultRedirect="~/error">     <error statusCode="404" redirect="~/error/notfound"></error>  </customErrors>Sample Controllers public class ExampleController : Controller {     public ActionResult Exception()     {         throw new ArgumentNullException();     }     public ActionResult Db()     {         // Inherits from DbException         throw new MyDbException();     } } public class ErrorController : Controller {     public ActionResult Index()     {         return View();     }     public ActionResult NotFound()     {         return View();     } } Putting It All Together If we have all the code above included in our MVC 3 project, here is how the following scenario's will play out: 1.       A controller action throws an Exception. You will remain on the current page and the global HandleErrorAttributes will render the Error view. 2.       A controller action throws any type of DbException. You will remain on the current page and the global HandleErrorAttributes will render the DbError view. 3.       Go to a non-existent page. You will be redirect to the Error controller's NotFound action by the CustomErrors configuration for HTTP StatusCode 404. But don't take my word for it, download the sample project and try it yourself. Three Important Lessons Learned For the most part this is all pretty straight forward, but there are a few gotcha's that you should remember to watch out for: 1) Error views have models, but they must be of type HandleErrorInfo. It is confusing at first to think that you can't control the M in an MVC page, but it's for a good reason. Errors can come from any action in any controller, and no redirect is taking place, so the view engine is just going to render an error view with the only data it has: The HandleError Info model. Do not try to set the model on your error page or pass in a different object through a controller action, it will just blow up and cause a second exception after your first exception! 2) When the HandleErrorAttribute renders a page, it does not pass through a controller or an action. The standard web.config CustomErrors literally redirect a failed request to a new page. The HandleErrorAttribute is just rendering a view, so it is not going to pass through a controller action. But that's ok! Remember, a controller's job is to get the model for a view, but an error already has a model ready to give to the view, thus there is no need to pass through a controller. That being said, the normal ASP.NET custom errors still need to route through controllers. So if you want to share an error page between the HandleErrorAttribute and your web.config redirects, you will need to create a controller action and route for it. But then when you render that error view from your action, you can only use the HandlerErrorInfo model or ViewData dictionary to populate your page. 3) The HandleErrorAttribute obeys if CustomErrors are on or off, but does not use their redirects. If you turn CustomErrors off in your web.config, the HandleErrorAttributes will stop handling errors. However, that is the only configuration these two mechanisms share. The HandleErrorAttribute will not use your defaultRedirect property, or any other errors registered with customer errors. In Summary The HandleErrorAttribute is for displaying 500 errors that were caused by exceptions inside of the MVC pipeline. The custom errors are for redirecting from error pages caused by other HTTP codes.

    Read the article

< Previous Page | 336 337 338 339 340 341 342 343 344 345 346 347  | Next Page >