Search Results

Search found 9744 results on 390 pages for 'k means'.

Page 364/390 | < Previous Page | 360 361 362 363 364 365 366 367 368 369 370 371  | Next Page >

  • Orchestrating the Virtual Enterprise

    - by John Murphy
    During the American Industrial Revolution, the Ford Motor Company did it all. It turned raw materials into a showroom full of Model Ts. It owned a steel mill, a glass factory, and an automobile assembly line. The company was both self-sufficient and innovative and went on to become one of the largest and most profitable companies in the world. Nowadays, it's unusual for any business to follow this vertical integration model because its much harder to be best in class across such a wide a range of capabilities and services. Instead, businesses focus on their core competencies and outsource other business functions to specialized suppliers. They exchange vertical integration for collaboration. When done well, all parties benefit from this arrangement and the collaboration leads to the creation of an agile, lean and successful "virtual enterprise." Case in point: For Sun hardware, Oracle outsources most of its manufacturing and all of its logistics to third parties. These are vital activities, but ones where Oracle doesn't have a core competency, so we shift them to business partners who do. Within our enterprise, we always retain the core functions of product development, support, and most of the sales function, because that's what constitutes our core value to our customers. This is a perfect example of a virtual enterprise.  What are the implications of this? It means that we must exchange direct internal control for indirect external collaboration. This fundamentally changes the relative importance of different business processes, the boundaries of security and information sharing, and the relationship of the supply chain systems to the ERP. The challenge is that the systems required to support this virtual paradigm are still mired in "island enterprise" thinking. But help is at hand. Developments such as the Web, social networks, collaboration, and rules-based orchestration offer great potential to fundamentally re-architect supply chain systems to better support the virtual enterprise.  Supply Chain Management Systems in a Virtual Enterprise Historically enterprise software was constructed to automate the ERP - and then the supply chain systems extended the ERP. They were joined at the hip. In virtual enterprises, the supply chain system needs to be ERP agnostic, sitting above each of the ERPs that are distributed across the virtual enterprise - most of which are operating in other businesses. This is vital so that the supply chain system can manage the flow of material and the related information through the multiple enterprises. It has to have strong collaboration tools. It needs to be highly flexible. Users need to be able to see information that's coming from multiple sources and be able to react and respond to events across those sources.  Oracle Fusion Distributed Order Orchestration (DOO) is a perfect example of a supply chain system designed to operate in this virtual way. DOO embraces the idea that a company's fulfillment challenge is a distributed, multi-enterprise problem. It enables users to manage the process and the trading partners in a uniform way and deliver a consistent user experience while operating over a heterogeneous, virtual enterprise. This is a fundamental shift at the core of managing supply chains. It forces virtual enterprises to think architecturally about how best to construct their supply chain systems.  Case in point, almost everyone has ordered from Amazon.com at one time or another. Our orders are as likely to be fulfilled by third parties as they are by Amazon itself. To deliver the order promptly and efficiently, Amazon has to send it to the right fulfillment location and know the availability in that location. It needs to be able to track status of the fulfillment and deal with exceptions. As a virtual enterprise, Amazon's operations, using thousands of trading partners, requires a very different approach to fulfillment than the traditional 'take an order and ship it from your own warehouse' model. Amazon had no choice but to develop a complex, expensive and custom solution to tackle this problem as there used to be no product solution available. Now, other companies who want to follow similar models have a better off-the-shelf choice -- Oracle Distributed Order Orchestration (DOO).  Consider how another of our customers is using our distributed orchestration solution. This major airplane manufacturer has a highly complex business and interacts regularly with the U.S. Government and major airlines. It sits in the middle of an intricate supply chain and needed to improve visibility across its many different entities. Oracle Fusion DOO gives the company an orchestration mechanism so it could improve quality, speed, flexibility, and consistency without requiring an organ transplant of these highly complex legacy systems. Many retailers face the challenge of dealing with brick and mortar, Web, and reseller channels. They all need to be knitted together into a virtual enterprise experience that is consistent for their customers. When a large U.K. grocer with a strong brick and mortar retail operation added an online business, they turned to Oracle Fusion DOO to bring these entities together. Disturbing the Peace with Acquisitions Quite often a company's ERP system is disrupted when it acquires a new company. An acquisition can inject a new set of processes and systems -- or even introduce an entirely new business like Sun's hardware did at Oracle. This challenge has been a driver for some of our DOO customers. A large power management company is using Oracle Fusion DOO to provide the flexibility to rapidly integrate additional products and services into its central fulfillment operation. The Flip Side of Fulfillment Meanwhile, we haven't ignored similar challenges on the supply side of the equation. Specifically, how to manage complex supply in a flexible way when there are multiple trading parties involved? How to manage the supply to suppliers? How to manage critical components that need to merge in a tier two or tier three supply chain? By investing in supply orchestration solutions for the virtual enterprise, we plan to give users better visibility into their network of suppliers to help them drive down costs. We also think this technology and full orchestration process can be applied to the financial side of organizations. An example is transactions that flow through complex internal structures to minimize tax exposure. We can help companies manage those transactions effectively by thinking about the internal organization as a virtual enterprise and bringing the same solution set to this internal challenge.  The Clear Front Runner No other company is investing in solving the virtual enterprise supply chain issues like Oracle is. Oracle is in a unique position to become the gold standard in this market space. We have the infrastructure of Oracle technology. We already have an Oracle Fusion DOO application which embraces the best of what's required in this area. And we're absolutely committed to extending our Fusion solution to other use cases and delivering even more business value.

    Read the article

  • BizTalk: Internals: the Partner Direct Ports and the Orchestration Chains

    - by Leonid Ganeline
    Partner Direct Port is one of the BizTalk hidden gems. It opens simple ways to the several messaging patterns. This article based on the Kevin Lam’s blog article. The article is pretty detailed but it still leaves several unclear pieces. So I have created a sample and will show how it works from different perspectives. Requirements We should create an orchestration chain where the messages should be routed from the first stage to the second stage. The messages should not be modified. All messages has the same message type. Common artifacts Source code can be downloaded here. It is interesting but all orchestrations use only one port type. It is possible because all ports are one-way ports and use only one operation. I have added a B orchestration. It helps to test the sample, showing all test messages in channel. The Receive shape Filter is empty. A Receive Port (R_Shema1Direct) is a plain Direct Port. As you can see, a subscription expression of this direct port has only one part, the MessageType for our test schema: A Filer is empty but, as you know, a link from the Receive shape to the Port creates this MessageType expression. I use only one Physical Receive File port to send a message to all processes. Each orchestration outputs a Trace.WriteLine(“<Orchestration Name>”). Forward Binding This sample has three orchestrations: A_1, A_21 and A_22. A_1 is a sender, A_21 and A_22 are receivers. Here is a subscription of the A_1 orchestration: It has two parts A MessageType. The same was for the B orchestration. A ReceivePortID. There was no such parameter for the B orchestration. It was created because I have bound the orchestration port with Physical Receive File port. This binding means the PortID parameter is added to the subscription. How to set up the ports? All ports involved in the message exchange should be the same port type. It forces us to use the same operation and the same message type for the bound ports. This step as absolutely contra-intuitive. We have to choose a Partner Orchestration parameter for the sending orchestration, A_1. The first strange thing is it is not a partner orchestration we have to choose but an orchestration port. But the most strange thing is we have to choose exactly this orchestration and exactly this port.It is not a port from the partner, receive orchestrations, A_21 or A_22, but it is A_1 orchestration and S_SentFromA_1 port. Now we have to choose a Partner Orchestration parameter for the received orchestrations, A_21 and A_22. Nothing strange is here except a parameter name. We choose the port of the sender, A_1 orchestration and S_SentFromA_1 port. As you can see the Partner Orchestration parameter for the sender and receiver orchestrations is the same. Testing I dropped a test file in a file folder. There we go: A dropped file was received by B and by A_1 A_1 sent a message forward. A message was received by B, A_21, A_22 Let’s look at a context of a message sent by A_1 on the second step: A MessageType part. It is quite expected. A PartnerService, a ParnerPort, an Operation. All those parameters were set up in the Partner Orchestration parameter on both bound ports.     Now let’s see a subscription of the A_21 and A_22 orchestrations. Now it makes sense. That’s why we have chosen such a strange value for the Partner Orchestration parameter of the sending orchestration. Inverse Binding This sample has three orchestrations: A_11, A_12 and A_2. A_11 and A_12 are senders, A_2 is receiver. How to set up the ports? All ports involved in the message exchange should be the same port type. It forces us to use the same operation and the same message type for the bound ports. This step as absolutely contra-intuitive. We have to choose a Partner Orchestration parameter for a receiving orchestration, A_2. The first strange thing is it is not a partner orchestration we have to choose but an orchestration port. But the most strange thing is we have to choose exactly this orchestration and exactly this port.It is not a port from the partner, sent orchestrations, A_11 or A_12, but it is A_2 orchestration and R_SentToA_2 port. Now we have to choose a Partner Orchestration parameter for the sending orchestrations, A_11 and A_12. Nothing strange is here except a parameter name. We choose the port of the sender, A_2 orchestration and R_SentToA_2 port. Testing I dropped a test file in a file folder. There we go: A dropped file was received by B, A_11 and by A_12 A_11 and A_12 sent two messages forward. The messages were received by B, A_2 Let’s see what was a context of a message sent by A_1 on the second step: A MessageType part. It is quite expected. A PartnerService, a ParnerPort, an Operation. All those parameters were set up in the Partner Orchestration parameter on both bound ports. Here is a subscription of the A_2 orchestration. Models I had a hard time trying to explain the Partner Direct Ports in simple terms. I have finished with this model: Forward Binding Receivers know a Sender. Sender doesn’t know Receivers. Publishers know a Subscriber. Subscriber doesn’t know Publishers. 1 –> 1 1 –> M Inverse Binding Senders know a Receiver. Receiver doesn’t know Senders. Subscribers know a Publisher. Publisher doesn’t know Subscribers. 1 –> 1 M –> 1 Notes   Orchestration chain It’s worth to note, the Partner Direct Port Binding creates a chain opened from one side and closed from another. The Forward Binding: A new Receiver can be added at run-time. The Sender can not be changed without design-time changes in Receivers. The Inverse Binding: A new Sender can be added at run-time. The Receiver can not be changed without design-time changes in Senders.

    Read the article

  • Why Is Vertical Resolution Monitor Resolution so Often a Multiple of 360?

    - by Jason Fitzpatrick
    Stare at a list of monitor resolutions long enough and you might notice a pattern: many of the vertical resolutions, especially those of gaming or multimedia displays, are multiples of 360 (720, 1080, 1440, etc.) But why exactly is this the case? Is it arbitrary or is there something more at work? Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. The Question SuperUser reader Trojandestroy recently noticed something about his display interface and needs answers: YouTube recently added 1440p functionality, and for the first time I realized that all (most?) vertical resolutions are multiples of 360. Is this just because the smallest common resolution is 480×360, and it’s convenient to use multiples? (Not doubting that multiples are convenient.) And/or was that the first viewable/conveniently sized resolution, so hardware (TVs, monitors, etc) grew with 360 in mind? Taking it further, why not have a square resolution? Or something else unusual? (Assuming it’s usual enough that it’s viewable). Is it merely a pleasing-the-eye situation? So why have the display be a multiple of 360? The Answer SuperUser contributor User26129 offers us not just an answer as to why the numerical pattern exists but a history of screen design in the process: Alright, there are a couple of questions and a lot of factors here. Resolutions are a really interesting field of psychooptics meeting marketing. First of all, why are the vertical resolutions on youtube multiples of 360. This is of course just arbitrary, there is no real reason this is the case. The reason is that resolution here is not the limiting factor for Youtube videos – bandwidth is. Youtube has to re-encode every video that is uploaded a couple of times, and tries to use as little re-encoding formats/bitrates/resolutions as possible to cover all the different use cases. For low-res mobile devices they have 360×240, for higher res mobile there’s 480p, and for the computer crowd there is 360p for 2xISDN/multiuser landlines, 720p for DSL and 1080p for higher speed internet. For a while there were some other codecs than h.264, but these are slowly being phased out with h.264 having essentially ‘won’ the format war and all computers being outfitted with hardware codecs for this. Now, there is some interesting psychooptics going on as well. As I said: resolution isn’t everything. 720p with really strong compression can and will look worse than 240p at a very high bitrate. But on the other side of the spectrum: throwing more bits at a certain resolution doesn’t magically make it better beyond some point. There is an optimum here, which of course depends on both resolution and codec. In general: the optimal bitrate is actually proportional to the resolution. So the next question is: what kind of resolution steps make sense? Apparently, people need about a 2x increase in resolution to really see (and prefer) a marked difference. Anything less than that and many people will simply not bother with the higher bitrates, they’d rather use their bandwidth for other stuff. This has been researched quite a long time ago and is the big reason why we went from 720×576 (415kpix) to 1280×720 (922kpix), and then again from 1280×720 to 1920×1080 (2MP). Stuff in between is not a viable optimization target. And again, 1440P is about 3.7MP, another ~2x increase over HD. You will see a difference there. 4K is the next step after that. Next up is that magical number of 360 vertical pixels. Actually, the magic number is 120 or 128. All resolutions are some kind of multiple of 120 pixels nowadays, back in the day they used to be multiples of 128. This is something that just grew out of LCD panel industry. LCD panels use what are called line drivers, little chips that sit on the sides of your LCD screen that control how bright each subpixel is. Because historically, for reasons I don’t really know for sure, probably memory constraints, these multiple-of-128 or multiple-of-120 resolutions already existed, the industry standard line drivers became drivers with 360 line outputs (1 per subpixel). If you would tear down your 1920×1080 screen, I would be putting money on there being 16 line drivers on the top/bottom and 9 on one of the sides. Oh hey, that’s 16:9. Guess how obvious that resolution choice was back when 16:9 was ‘invented’. Then there’s the issue of aspect ratio. This is really a completely different field of psychology, but it boils down to: historically, people have believed and measured that we have a sort of wide-screen view of the world. Naturally, people believed that the most natural representation of data on a screen would be in a wide-screen view, and this is where the great anamorphic revolution of the ’60s came from when films were shot in ever wider aspect ratios. Since then, this kind of knowledge has been refined and mostly debunked. Yes, we do have a wide-angle view, but the area where we can actually see sharply – the center of our vision – is fairly round. Slightly elliptical and squashed, but not really more than about 4:3 or 3:2. So for detailed viewing, for instance for reading text on a screen, you can utilize most of your detail vision by employing an almost-square screen, a bit like the screens up to the mid-2000s. However, again this is not how marketing took it. Computers in ye olden days were used mostly for productivity and detailed work, but as they commoditized and as the computer as media consumption device evolved, people didn’t necessarily use their computer for work most of the time. They used it to watch media content: movies, television series and photos. And for that kind of viewing, you get the most ‘immersion factor’ if the screen fills as much of your vision (including your peripheral vision) as possible. Which means widescreen. But there’s more marketing still. When detail work was still an important factor, people cared about resolution. As many pixels as possible on the screen. SGI was selling almost-4K CRTs! The most optimal way to get the maximum amount of pixels out of a glass substrate is to cut it as square as possible. 1:1 or 4:3 screens have the most pixels per diagonal inch. But with displays becoming more consumery, inch-size became more important, not amount of pixels. And this is a completely different optimization target. To get the most diagonal inches out of a substrate, you want to make the screen as wide as possible. First we got 16:10, then 16:9 and there have been moderately successful panel manufacturers making 22:9 and 2:1 screens (like Philips). Even though pixel density and absolute resolution went down for a couple of years, inch-sizes went up and that’s what sold. Why buy a 19″ 1280×1024 when you can buy a 21″ 1366×768? Eh… I think that about covers all the major aspects here. There’s more of course; bandwidth limits of HDMI, DVI, DP and of course VGA played a role, and if you go back to the pre-2000s, graphics memory, in-computer bandwdith and simply the limits of commercially available RAMDACs played an important role. But for today’s considerations, this is about all you need to know. Have something to add to the explanation? Sound off in the the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.     

    Read the article

  • Conducting Effective Web Meetings

    - by BuckWoody
    There are several forms of corporate communication. From immediate, rich communications like phones and IM messaging to historical transactions like e-mail, there are a lot of ways to get information to one or more people. From time to time, it's even useful to have a meeting. (This is where a witty picture of a guy sleeping in a meeting goes. I won't bother actually putting one here; you're already envisioning it in your mind) Most meetings are pointless, and a complete waste of time. This is the fault, completely and solely, of the organizer. It's because he or she hasn't thought things through enough to think about alternate forms of information passing. Here's the criteria for a good meeting - whether in-person or over the web: 100% of the content of a meeting should require the participation of 100% of the attendees for 100% of the time It doesn't get any simpler than that. If it doesn't meet that criteria, then don't invite that person to that meeting. If you're just conveying information and no one has the need for immediate interaction with that information (like telling you something that modifies the message), then send an e-mail. If you're a manager, and you need to get status from lots of people, pick up the phone.If you need a quick answer, use IM. I once had a high-level manager that called frequent meetings. His real need was status updates on various processes, so 50 of us would sit in a room while he asked each one of us questions. He believed this larger meeting helped us "cross pollinate ideas". In fact, it was a complete waste of time for most everyone, except in the one or two moments that they interacted with him. So I wrote some code for a Palm Pilot (which was a kind of SmartPhone but with no phone and no real graphics, but this was in the days when we had just discovered fire and the wheel, although the order of those things is still in debate) that took an average of the salaries of the people in the room (I guessed at it) and ran a timer which multiplied the number of people against the salaries. I left that running in plain sight for him, and when he asked about it, I explained how much the meetings were really costing the company. We had far fewer meetings after. Meetings are now web-enabled. I believe that's largely a good thing, since it saves on travel time and allows more people to participate, but I think the rule above still holds. And in fact, there are some other rules that you should follow to have a great meeting - and fewer of them. Be Clear About the Goal This is important in any meeting, but all of us have probably gotten an invite with a web link and an ambiguous title. Then you get to the meeting, and it's a 500-level deep-dive on something everyone expects you to know. This is unfair to the "expert" and to the participants. I always tell people that invite me to a meeting that I will be as detailed as I can - but the more detail they can tell me about the questions, the more detailed I can be in my responses. Granted, there are times when you don't know what you don't know, but the more you can say about the topic the better. There's another point here - and it's that you should have a clearly defined "win" for the meeting. When the meeting is over, and everyone goes back to work, what were you expecting them to do with the information? Have that clearly defined in your head, and in the meeting invite. Understand the Technology There are several web-meeting clients out there. I use them all, since I meet with clients all over the world. They all work differently - so I take a few moments and read up on the different clients and find out how I can use the tools properly. I do this with the technology I use for everything else, and it's important to understand it if the meeting is to be a success. If you're running the meeting, know the tools. I don't care if you like the tools or not, learn them anyway. Don't waste everyone else's time just because you're too bitter/snarky/lazy to spend a few minutes reading. Check your phone or mic. Check your video size. Install (and learn to use)  ZoomIT (http://technet.microsoft.com/en-us/sysinternals/bb897434.aspx). Format your slides or screen or output correctly. Learn to use the voting features of the meeting software, and especially it's whiteboard features. Figure out how multiple monitors work. Try a quick meeting with someone to test all this. Do this *before* you invite lots of other people to your meeting.   Use a WebCam I'm not a pretty man. I have a face fit for radio. But after attending a meeting with clients where one Microsoft person used a webcam and another did not, I'm convinced that people pay more attention when a face is involved. There are tons of studies around this, or you can take my word for it, but toss a shirt on over those pajamas and turn the webcam on. Set Up Early Whether you're attending or leading the meeting, don't wait to sign on to the meeting at the time when it starts. I can almost plan that a 10:00 meeting will actually start at 10:10 because the participants/leader is just now installing the web client for the meeting at 10:00. Sign on early, go on mute, and then wait for everyone to arrive. Mute When Not Talking No one wants to hear your screaming offspring / yappy dog / other cubicle conversations / car wind noise (are you driving in a desert storm or something?) while the person leading the meeting is trying to talk. I use the Lync software from Microsoft for my meetings, and I mute everyone by default, and then tell them to un-mute to talk to the group. Share Collateral If you have a PowerPoint deck, mail it out in case you have a tech failure. If you have a document, share it as an attachment to the meeting. Don't make people ask you for the information - that's why you're there to begin with. Even better, send it out early. "But", you say, "then no one will come to the meeting if they have the deck first!" Uhm, then don't have a meeting. Send out the deck and a quick e-mail and let everyone get on with their productive day. Set Actions At the Meeting A meeting should have some sort of outcome (see point one). That means there are actions to take, a follow up, or some deliverable. Otherwise, it's an e-mail. At the meeting, decide who will do what, when things are needed, and so on. And avoid, if at all possible, setting up another meeting, unless absolutely necessary. So there you have it. Whether it's on-premises or on the web, meetings are a necessary evil, and should be treated that way. Like politicians, you should have as few of them as are necessary to keep the roads paved and public libraries open.

    Read the article

  • Exception Handling And Other Contentious Political Topics

    - by Justin Jones
    So about three years ago, around the time of my last blog post, I promised a friend I would write this post. Keeping promises is a good thing, and this is my first step towards easing back into regular blogging. I fully expect him to return from Pennsylvania to buy me a beer over this. However, it’s been an… ahem… eventful three years or so, and blogging, unfortunately, got pushed to the back burner on my priority list, along with a few other career minded activities. Now that the personal drama of the past three years is more or less resolved, it’s time to put a few things back on the front burner. What I consider to be proper exception handling practices is relatively well known these days. There are plenty of blog posts out there already on this topic which more or less echo my opinions on this topic. I’ll try to include a few links at the bottom of the post. Several years ago I had an argument with a co-worker who posited that exceptions should be caught at every level and logged. This might seem like sanity on the surface, but the resulting error log looked something like this: Error: System.SomeException Followed by small stack trace. Error: System.SomeException Followed by slightly bigger stack trace. Error: System.SomeException Followed by slightly bigger stack trace. Error: System.SomeException Followed by slightly bigger stack trace. Error: System.SomeException Followed by slightly bigger stack trace. Error: System.SomeException Followed by slightly bigger stack trace. Error: System.SomeException Followed by slightly bigger stack trace. Error: System.SomeException Followed by slightly bigger stack trace.   These were all the same exception. The problem with this approach is that the error log, if you run any kind of analytics on in, becomes skewed depending on how far up the stack trace your exception was thrown. To mitigate this problem, we came up with the concept of the “PreLoggedException”. Basically, we would log the exception at the very top level and subsequently throw the exception back up the stack encapsulated in this pre-logged type, which our logging system knew to ignore. Now the error log looked like this: Error: System.SomeException Followed by small stack trace. Much cleaner, right? Well, there’s still a problem. When your exception happens in production and you go about trying to figure out what happened, you’ve lost more or less all context for where and how this exception was thrown, because all you really know is what method it was thrown in, but really nothing about who was calling the method or why. What gives you this clue is the entire stack trace, which we’re losing here. I believe that was further mitigated by having the logging system pull a system stack trace and add it to the log entry, but what you’re actually getting is the stack for how you got to the logging code. You’re still losing context about the actual error. Not to mention you’re executing a whole slew of catch blocks which are sloooooooowwwww……… In other words, we started with a bad idea and kept band-aiding it until it didn’t suck quite so bad. When I argued for not catching exceptions at every level but rather catching them following a certain set of rules, my co-worker warned me “do yourself a favor, never express that view in any future interviews.” I suppose this is my ultimate dismissal of that advice, but I’m not too worried. My approach for exception handling follows three basic rules: Only catch an exception if 1. You can do something about it. 2. You can add useful information to it. 3. You’re at an application boundary. Here’s what that means: 1. Only catch an exception if you can do something about it. We’ll start with a trivial example of a login system that uses a file. Please, never actually do this in production code, it’s just concocted example. So if our code goes to open a file and the file isn’t there, we get a FileNotFound exception. If the calling code doesn’t know what to do with this, it should bubble up. However, if we know how to create the file from scratch we can create the file and continue on our merry way. When you run into situations like this though, What should really run through your head is “How can I avoid handling an exception at all?” In this case, it’s a trivial matter to simply check for the existence of the file before trying to open it. If we detect that the file isn’t there, we can accomplish the same thing without having to handle in in a catch block. 2. Only catch an exception if you can do something about it. Continuing with the poorly thought out file based login system we contrived in part 1, if the code calls a Login(…) method and the FileNotFound exception is thrown higher up the stack, the code that calls Login must account for a FileNotFound exception. This is kind of counterintuitive because the calling code should not need to know the internals of the Login method, and the data file is an implementation detail. What makes more sense, assuming that we didn’t implement any of the good advice from step 1, is for Login to catch the FileNotFound exception and wrap it in a new exception. For argument’s sake we’ll say LoginSystemFailureException. (Sorry, couldn’t think of anything better at the moment.) This gives us two stack traces, preserving the original stack trace in the inner exception, and also is much more informative to the calling code. 3. Only catch an exception if you’re at an application boundary. At some point we have to catch all the exceptions, even the ones we don’t know what to do with. WinForms, ASP.Net, and most other UI technologies have some kind of built in mechanism for catching unhandled exceptions without fatally terminating the application. It’s still a good idea to somehow gracefully exit the application in this case if possible though, because you can no longer be sure what state your application is in, but nothing annoys a user more than an application just exploding. These unhandled exceptions need to be logged, and this is a good place to catch them. Ideally you never want this option to be exercised, but code as though it will be. When you log these exceptions, give them a “Fatal” status (e.g. Log4Net) and make sure these bugs get handled in your next release. That’s it in a nutshell. If you do it right each exception will only get logged once and with the largest stack trace possible which will make those 2am emergency severity 1 debugging sessions much shorter and less frustrating. Here’s a few people who also have interesting things to say on this topic:  http://blogs.msdn.com/b/ericlippert/archive/2008/09/10/vexing-exceptions.aspx http://www.codeproject.com/Articles/9538/Exception-Handling-Best-Practices-in-NET I know there’s more but I can’t find them at the moment.

    Read the article

  • We've completed the first iteration

    - by CliveT
    There are a lot of features in C# that are implemented by the compiler and not by the underlying platform. One such feature is a lambda expression. Since local variables cannot be accessed once the current method activation finishes, the compiler has to go out of its way to generate a new class which acts as a home for any variable whose lifetime needs to be extended past the activation of the procedure. Take the following example:     Random generator = new Random();     Func func = () = generator.Next(10); In this case, the compiler generates a new class called c_DisplayClass1 which is marked with the CompilerGenerated attribute. [CompilerGenerated] private sealed class c__DisplayClass1 {     // Fields     public Random generator;     // Methods     public int b__0()     {         return this.generator.Next(10);     } } Two quick comments on this: (i)    A display was the means that compilers for languages like Algol recorded the various lexical contours of the nested procedure activations on the stack. I imagine that this is what has led to the name. (ii)    It is a shame that the same attribute is used to mark all compiler generated classes as it makes it hard to figure out what they are being used for. Indeed, you could imagine optimisations that the runtime could perform if it knew that classes corresponded to certain high level concepts. We can see that the local variable generator has been turned into a field in the class, and the body of the lambda expression has been turned into a method of the new class. The code that builds the Func object simply constructs an instance of this class and initialises the fields to their initial values.     c__DisplayClass1 class2 = new c__DisplayClass1();     class2.generator = new Random();     Func func = new Func(class2.b__0); Reflector already contains code to spot this pattern of code and reproduce the form containing the lambda expression, so this is example is correctly decompiled. The use of compiler generated code is even more spectacular in the case of iterators. C# introduced the idea of a method that could automatically store its state between calls, so that it can pick up where it left off. The code can express the logical flow with yield return and yield break denoting places where the method should return a particular value and be prepared to resume.         {             yield return 1;             yield return 2;             yield return 3;         } Of course, there was already a .NET pattern for expressing the idea of returning a sequence of values with the computation proceeding lazily (in the sense that the work for the next value is executed on demand). This is expressed by the IEnumerable interface with its Current property for fetching the current value and the MoveNext method for forcing the computation of the next value. The sequence is terminated when this method returns false. The C# compiler links these two ideas together so that an IEnumerator returning method using the yield keyword causes the compiler to produce the implementation of an Iterator. Take the following piece of code.         IEnumerable GetItems()         {             yield return 1;             yield return 2;             yield return 3;         } The compiler implements this by defining a new class that implements a state machine. This has an integer state that records which yield point we should go to if we are resumed. It also has a field that records the Current value of the enumerator and a field for recording the thread. This latter value is used for optimising the creation of iterator instances. [CompilerGenerated] private sealed class d__0 : IEnumerable, IEnumerable, IEnumerator, IEnumerator, IDisposable {     // Fields     private int 1__state;     private int 2__current;     public Program 4__this;     private int l__initialThreadId; The body gets converted into the code to construct and initialize this new class. private IEnumerable GetItems() {     d__0 d__ = new d__0(-2);     d__.4__this = this;     return d__; } When the class is constructed we set the state, which was passed through as -2 and the current thread. public d__0(int 1__state) {     this.1__state = 1__state;     this.l__initialThreadId = Thread.CurrentThread.ManagedThreadId; } The state needs to be set to 0 to represent a valid enumerator and this is done in the GetEnumerator method which optimises for the usual case where the returned enumerator is only used once. IEnumerator IEnumerable.GetEnumerator() {     if ((Thread.CurrentThread.ManagedThreadId == this.l__initialThreadId)               && (this.1__state == -2))     {         this.1__state = 0;         return this;     } The state machine itself is implemented inside the MoveNext method. private bool MoveNext() {     switch (this.1__state)     {         case 0:             this.1__state = -1;             this.2__current = 1;             this.1__state = 1;             return true;         case 1:             this.1__state = -1;             this.2__current = 2;             this.1__state = 2;             return true;         case 2:             this.1__state = -1;             this.2__current = 3;             this.1__state = 3;             return true;         case 3:             this.1__state = -1;             break;     }     return false; } At each stage, the current value of the state is used to determine how far we got, and then we generate the next value which we return after recording the next state. Finally we return false from the MoveNext to signify the end of the sequence. Of course, that example was really simple. The original method body didn't have any local variables. Any local variables need to live between the calls to MoveNext and so they need to be transformed into fields in much the same way that we did in the case of the lambda expression. More complicated MoveNext methods are required to deal with resources that need to be disposed when the iterator finishes, and sometimes the compiler uses a temporary variable to hold the return value. Why all of this explanation? We've implemented the de-compilation of iterators in the current EAP version of Reflector (7). This contrasts with previous version where all you could do was look at the MoveNext method and try to figure out the control flow. There's a fair amount of things we have to do. We have to spot the use of a CompilerGenerated class which implements the Enumerator pattern. We need to go to the class and figure out the fields corresponding to the local variables. We then need to go to the MoveNext method and try to break it into the various possible states and spot the state transitions. We can then take these pieces and put them back together into an object model that uses yield return to show the transition points. After that Reflector can carry on optimising using its usual optimisations. The pattern matching is currently a little too sensitive to changes in the code generation, and we only do a limited analysis of the MoveNext method to determine use of the compiler generated fields. In some ways, it is a pity that iterators are compiled away and there is no metadata that reflects the original intent. Without it, we are always going to dependent on our knowledge of the compiler's implementation. For example, we have noticed that the Async CTP changes the way that iterators are code generated, so we'll have to do some more work to support that. However, with that warning in place, we seem to do a reasonable job of decompiling the iterators that are built into the framework. Hopefully, the EAP will give us a chance to find examples where we don't spot the pattern correctly or regenerate the wrong code, and we can improve things. Please give it a go, and report any problems.

    Read the article

  • Master-slave vs. peer-to-peer archictecture: benefits and problems

    - by Ashok_Ora
    Normal 0 false false false EN-US X-NONE X-NONE Almost two decades ago, I was a member of a database development team that introduced adaptive locking. Locking, the most popular concurrency control technique in database systems, is pessimistic. Locking ensures that two or more conflicting operations on the same data item don’t “trample” on each other’s toes, resulting in data corruption. In a nutshell, here’s the issue we were trying to address. In everyday life, traffic lights serve the same purpose. They ensure that traffic flows smoothly and when everyone follows the rules, there are no accidents at intersections. As I mentioned earlier, the problem with typical locking protocols is that they are pessimistic. Regardless of whether there is another conflicting operation in the system or not, you have to hold a lock! Acquiring and releasing locks can be quite expensive, depending on how many objects the transaction touches. Every transaction has to pay this penalty. To use the earlier traffic light analogy, if you have ever waited at a red light in the middle of nowhere with no one on the road, wondering why you need to wait when there’s clearly no danger of a collision, you know what I mean. The adaptive locking scheme that we invented was able to minimize the number of locks that a transaction held, by detecting whether there were one or more transactions that needed conflicting eyou could get by without holding any lock at all. In many “well-behaved” workloads, there are few conflicts, so this optimization is a huge win. If, on the other hand, there are many concurrent, conflicting requests, the algorithm gracefully degrades to the “normal” behavior with minimal cost. We were able to reduce the number of lock requests per TPC-B transaction from 178 requests down to 2! Wow! This is a dramatic improvement in concurrency as well as transaction latency. The lesson from this exercise was that if you can identify the common scenario and optimize for that case so that only the uncommon scenarios are more expensive, you can make dramatic improvements in performance without sacrificing correctness. So how does this relate to the architecture and design of some of the modern NoSQL systems? NoSQL systems can be broadly classified as master-slave sharded, or peer-to-peer sharded systems. NoSQL systems with a peer-to-peer architecture have an interesting way of handling changes. Whenever an item is changed, the client (or an intermediary) propagates the changes synchronously or asynchronously to multiple copies (for availability) of the data. Since the change can be propagated asynchronously, during some interval in time, it will be the case that some copies have received the update, and others haven’t. What happens if someone tries to read the item during this interval? The client in a peer-to-peer system will fetch the same item from multiple copies and compare them to each other. If they’re all the same, then every copy that was queried has the same (and up-to-date) value of the data item, so all’s good. If not, then the system provides a mechanism to reconcile the discrepancy and to update stale copies. So what’s the problem with this? There are two major issues: First, IT’S HORRIBLY PESSIMISTIC because, in the common case, it is unlikely that the same data item will be updated and read from different locations at around the same time! For every read operation, you have to read from multiple copies. That’s a pretty expensive, especially if the data are stored in multiple geographically separate locations and network latencies are high. Second, if the copies are not all the same, the application has to reconcile the differences and propagate the correct value to the out-dated copies. This means that the application program has to handle discrepancies in the different versions of the data item and resolve the issue (which can further add to cost and operation latency). Resolving discrepancies is only one part of the problem. What if the same data item was updated independently on two different nodes (copies)? In that case, due to the asynchronous nature of change propagation, you might land up with different versions of the data item in different copies. In this case, the application program also has to resolve conflicts and then propagate the correct value to the copies that are out-dated or have incorrect versions. This can get really complicated. My hunch is that there are many peer-to-peer-based applications that don’t handle this correctly, and worse, don’t even know it. Imagine have 100s of millions of records in your database – how can you tell whether a particular data item is incorrect or out of date? And what price are you willing to pay for ensuring that the data can be trusted? Multiple network messages per read request? Discrepancy and conflict resolution logic in the application, and potentially, additional messages? All this overhead, when all you were trying to do was to read a data item. Wouldn’t it be simpler to avoid this problem in the first place? Master-slave architectures like the Oracle NoSQL Database handles this very elegantly. A change to a data item is always sent to the master copy. Consequently, the master copy always has the most current and authoritative version of the data item. The master is also responsible for propagating the change to the other copies (for availability and read scalability). Client drivers are aware of master copies and replicas, and client drivers are also aware of the “currency” of a replica. In other words, each NoSQL Database client knows how stale a replica is. This vastly simplifies the job of the application developer. If the application needs the most current version of the data item, the client driver will automatically route the request to the master copy. If the application is willing to tolerate some staleness of data (e.g. a version that is no more than 1 second out of date), the client can easily determine which replica (or set of replicas) can satisfy the request, and route the request to the most efficient copy. This results in a dramatic simplification in application logic and also minimizes network requests (the driver will only send the request to exactl the right replica, not many). So, back to my original point. A well designed and well architected system minimizes or eliminates unnecessary overhead and avoids pessimistic algorithms wherever possible in order to deliver a highly efficient and high performance system. If you’ve every programmed an Oracle NoSQL Database application, you’ll know the difference! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

    Read the article

  • PostSharp, Obfuscation, and IL

    - by simonc
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day! Cross posted from Simple Talk.

    Read the article

  • Building an OpenStack Cloud for Solaris Engineering, Part 1

    - by Dave Miner
    One of the signature features of the recently-released Solaris 11.2 is the OpenStack cloud computing platform.  Over on the Solaris OpenStack blog the development team is publishing lots of details about our version of OpenStack Havana as well as some tips on specific features, and I highly recommend reading those to get a feel for how we've leveraged Solaris's features to build a top-notch cloud platform.  In this and some subsequent posts I'm going to look at it from a different perspective, which is that of the enterprise administrator deploying an OpenStack cloud.  But this won't be just a theoretical perspective: I've spent the past several months putting together a deployment of OpenStack for use by the Solaris engineering organization, and now that it's in production we'll share how we built it and what we've learned so far.In the Solaris engineering organization we've long had dedicated lab systems dispersed among our various sites and a home-grown reservation tool for developers to reserve those systems; various teams also have private systems for specific testing purposes.  But as a developer, it can still be difficult to find systems you need, especially since most Solaris changes require testing on both SPARC and x86 systems before they can be integrated.  We've added virtual resources over the years as well in the form of LDOMs and zones (both traditional non-global zones and the new kernel zones).  Fundamentally, though, these were all still deployed in the same model: our overworked lab administrators set up pre-configured resources and we then reserve them.  Sounds like pretty much every traditional IT shop, right?  Which means that there's a lot of opportunity for efficiencies from greater use of virtualization and the self-service style of cloud computing.  As we were well into development of OpenStack on Solaris, I was recruited to figure out how we could deploy it to both provide more (and more efficient) development and test resources for the organization as well as a test environment for Solaris OpenStack.At this point, let's acknowledge one fact: deploying OpenStack is hard.  It's a very complex piece of software that makes use of sophisticated networking features and runs as a ton of service daemons with myriad configuration files.  The web UI, Horizon, doesn't often do a good job of providing detailed errors.  Even the command-line clients are not as transparent as you'd like, though at least you can turn on verbose and debug messaging and often get some clues as to what to look for, though it helps if you're good at reading JSON structure dumps.  I'd already learned all of this in doing a single-system Grizzly-on-Linux deployment for the development team to reference when they were getting started so I at least came to this job with some appreciation for what I was taking on.  The good news is that both we and the community have done a lot to make deployment much easier in the last year; probably the easiest approach is to download the OpenStack Unified Archive from OTN to get your hands on a single-system demonstration environment.  I highly recommend getting started with something like it to get some understanding of OpenStack before you embark on a more complex deployment.  For some situations, it may in fact be all you ever need.  If so, you don't need to read the rest of this series of posts!In the Solaris engineering case, we need a lot more horsepower than a single-system cloud can provide.  We need to support both SPARC and x86 VM's, and we have hundreds of developers so we want to be able to scale to support thousands of VM's, though we're going to build to that scale over time, not immediately.  We also want to be able to test both Solaris 11 updates and a release such as Solaris 12 that's under development so that we can work out any upgrade issues before release.  One thing we don't have is a requirement for extremely high availability, at least at this point.  We surely don't want a lot of down time, but we can tolerate scheduled outages and brief (as in an hour or so) unscheduled ones.  Thus I didn't need to spend effort on trying to get high availability everywhere.The diagram below shows our initial deployment design.  We're using six systems, most of which are x86 because we had more of those immediately available.  All of those systems reside on a management VLAN and are connected with a two-way link aggregation of 1 Gb links (we don't yet have 10 Gb switching infrastructure in place, but we'll get there).  A separate VLAN provides "public" (as in connected to the rest of Oracle's internal network) addresses, while we use VxLANs for the tenant networks. One system is more or less the control node, providing the MySQL database, RabbitMQ, Keystone, and the Nova API and scheduler as well as the Horizon console.  We're curious how this will perform and I anticipate eventually splitting at least the database off to another node to help simplify upgrades, but at our present scale this works.I had a couple of systems with lots of disk space, one of which was already configured as the Automated Installation server for the lab, so it's just providing the Glance image repository for OpenStack.  The other node with lots of disks provides Cinder block storage service; we also have a ZFS Storage Appliance that will help back-end Cinder in the near future, I just haven't had time to get it configured in yet.There's a separate system for Neutron, which is our Elastic Virtual Switch controller and handles the routing and NAT for the guests.  We don't have any need for firewalling in this deployment so we're not doing so.  We presently have only two tenants defined, one for the Solaris organization that's funding this cloud, and a separate tenant for other Oracle organizations that would like to try out OpenStack on Solaris.  Each tenant has one VxLAN defined initially, but we can of course add more.  Right now we have just a single /24 network for the floating IP's, once we get demand up to where we need more then we'll add them.Finally, we have started with just two compute nodes; one is an x86 system, the other is an LDOM on a SPARC T5-2.  We'll be adding more when demand reaches the level where we need them, but as we're still ramping up the user base it's less work to manage fewer nodes until then.My next post will delve into the details of building this OpenStack cloud's infrastructure, including how we're using various Solaris features such as Automated Installation, IPS packaging, SMF, and Puppet to deploy and manage the nodes.  After that we'll get into the specifics of configuring and running OpenStack itself.

    Read the article

  • Execution plan warnings–The final chapter

    - by Dave Ballantyne
    In my previous posts (here and here), I showed examples of some of the execution plan warnings that have been added to SQL Server 2012.  There is one other warning that is of interest to me : “Unmatched Indexes”. Firstly, how do I know this is the final one ?  The plan is an XML document, right ? So that means that it can have an accompanying XSD.  As an XSD is a schema definition, we can poke around inside it to find interesting things that *could* be in the final XML file. The showplan schema is stored in the folder Microsoft SQL Server\110\Tools\Binn\schemas\sqlserver\2004\07\showplan and by comparing schemas over releases you can get a really good idea of any new functionality that has been added. Here is the section of the Sql Server 2012 showplan schema that has been interesting me so far : <xsd:complexType name="AffectingConvertWarningType"> <xsd:annotation> <xsd:documentation>Warning information for plan-affecting type conversion</xsd:documentation> </xsd:annotation> <xsd:sequence> <!-- Additional information may go here when available --> </xsd:sequence> <xsd:attribute name="ConvertIssue" use="required"> <xsd:simpleType> <xsd:restriction base="xsd:string"> <xsd:enumeration value="Cardinality Estimate" /> <xsd:enumeration value="Seek Plan" /> <!-- to be extended here --> </xsd:restriction> </xsd:simpleType> </xsd:attribute> <xsd:attribute name="Expression" type ="xsd:string" use="required" /></xsd:complexType><xsd:complexType name="WarningsType"> <xsd:annotation> <xsd:documentation>List of all possible iterator or query specific warnings (e.g. hash spilling, no join predicate)</xsd:documentation> </xsd:annotation> <xsd:choice minOccurs="1" maxOccurs="unbounded"> <xsd:element name="ColumnsWithNoStatistics" type="shp:ColumnReferenceListType" minOccurs="0" maxOccurs="1" /> <xsd:element name="SpillToTempDb" type="shp:SpillToTempDbType" minOccurs="0" maxOccurs="unbounded" /> <xsd:element name="Wait" type="shp:WaitWarningType" minOccurs="0" maxOccurs="unbounded" /> <xsd:element name="PlanAffectingConvert" type="shp:AffectingConvertWarningType" minOccurs="0" maxOccurs="unbounded" /> </xsd:choice> <xsd:attribute name="NoJoinPredicate" type="xsd:boolean" use="optional" /> <xsd:attribute name="SpatialGuess" type="xsd:boolean" use="optional" /> <xsd:attribute name="UnmatchedIndexes" type="xsd:boolean" use="optional" /> <xsd:attribute name="FullUpdateForOnlineIndexBuild" type="xsd:boolean" use="optional" /></xsd:complexType> I especially like the “to be extended here” comment,  high hopes that we will see more of these in the future.   So “Unmatched Indexes” was a warning that I couldn’t get and many thanks must go to Fabiano Amorim (b|t) for showing me the way.   Filtered indexes were introduced in Sql Server 2008 and are really useful if you only need to index only a portion of the data within a table.  However,  if your SQL code uses a variable as a predicate on the filtered data that matches the filtered condition, then the filtered index cannot be used as, naturally,  the value in the variable may ( and probably will ) change and therefore will need to read data outside the index.  As an aside,  you could use option(recompile) here , in which case the optimizer will build a plan specific to the variable values and use the filtered index,  but that can bring about other problems.   To demonstrate this warning, we need to generate some test data :   DROP TABLE #TestTab1GOCREATE TABLE #TestTab1 (Col1 Int not null, Col2 Char(7500) not null, Quantity Int not null)GOINSERT INTO #TestTab1 VALUES (1,1,1),(1,2,5),(1,2,10),(1,3,20), (2,1,101),(2,2,105),(2,2,110),(2,3,120)GO and then add a filtered index CREATE INDEX ixFilter ON #TestTab1 (Col1)WHERE Quantity = 122 Now if we execute SELECT COUNT(*) FROM #TestTab1 WHERE Quantity = 122 We will see the filtered index being scanned But if we parameterize the query DECLARE @i INT = 122SELECT COUNT(*) FROM #TestTab1 WHERE Quantity = @i The plan is very different a table scan, as the value of the variable used in the predicate can change at run time, and also we see the familiar warning triangle. If we now look at the properties pane, we will see two pieces of information “Warnings” and “UnmatchedIndexes”. So, handily, we are being told which filtered index is not being used due to parameterization.

    Read the article

  • PASS Summit – looking back on my first time

    - by Fatherjack
      So I was lucky enough to get my first experience of PASS Summit this year and took some time beforehand to read some blogs and reference material to get an idea on what to do and how to get the best out of my visit. Having been to other conferences – technical and non-technical – I had a reasonable idea on the routine and what to expect in general. Here is a list of a few things that I have learned/remembered as the week has gone by. Wear comfortable shoes. This actually needs to be broadened to Take several pairs of comfortable shoes. You will be spending many many hours, for several days one after another. Having comfortable feet that can literally support you for the duration will make the week in general a whole lot better. Not only at the conference but getting to and from you could well be walking. In the evenings you will be walking around town and standing talking in various bars and clubs. Looking back, on some days I was on my feet for over 20 hours. Make friends. This is a given for the long term benefits it brings but there is also an immediate reward in being at a conference with a friend or two. Some events are bigger and more popular than others and some have the type of session that every single attendee will want to be in. This is great for those that get in but if you are in the bathroom or queuing for coffee and you miss out it sucks. Having a friend that can get in to a room and reserve you a seat is a great advantage to make sure you get the content that you want to see and still have the coffee that you need. Don’t go to every session you want to see This might sound counter intuitive and it relies on the sessions being recorded in some way to guarantee you don’t totally miss out. Both PASS Summit and SQL Bits sessions are recorded (summit is audio, SQLBits is video) and this means that if you get into a good conversation with someone over a coffee you don’t have to break it up to go to a session. Obviously there is a trade-off here and you need to decide on the tipping point for yourself but a conversation at a place like this could make a big difference to the next contract or employer you have or it might simply be great catching up with some friends you don’t see so often. Go to at least one session you don’t want to Again, this will seem to be contrary to normal logic but there is no reason why you shouldn’t learn about a part of SQL Server that isn’t part of your daily routine. Not only will you learn something new but you will also pick up on the feelings and attitudes of the people in the session. So, if you are a DBA, head off to a BI session and so on. You’ll hear BI speakers speaking to a BI audience and get to understand their point of view and reasoning for making the decisions they do. You will also appreciate the way that your decisions and instructions affect the way they have to work. This will help you a lot when you are on a project, working with multiple teams and make you all more productive. Socialise While you are at the conference venue, speak to people. Ask questions, be interested in whoever you are speaking to. You get chances to talk to new friends at breakfast, dinner and every break between sessions. The only people that might not talk to you would be speakers that are about to go and give a session, in most cases speakers like peace and quiet before going on stage. Other than that the people around you are just waiting for someone to talk to them so make the first move. There is a whole lot going on outside of the conference hours and you should make an effort to join in with some of this too. At karaoke evenings or just out for a quiet drink with a few of the people you meet at the conference. Either way, don’t be a recluse and hide in your room or be alone out in the town. Don’t talk to people Once again this sounds wrong but stay with me. I have spoken to a number of speakers since Summit 2013 finished and they have all mentioned the time it has taken them to move about the conference venue due to people stopping them for a chat or to ask a question. 45 minutes to walk from a session room to the speaker room in one case. Wow. While none of the speakers were upset about this sort of delay I think delegates should take the situation into account and possibly defer their question to an email or to a time when the person they want is clearly less in demand. Give them a chance to enjoy the conference in the same way that you are, they may actually want to go to a session or just have a rest after giving their session – talking for 75 minutes is hard work, taking an extra 45 minutes right after is unbelievable. I certainly hope that they get good feedback on their sessions and perhaps if you spoke to a speaker outside a session you can give them a mention in the ‘any other comments’ part of the feedback, just to convey your gratitude for them giving up their time and expertise for free. Say thank you I just mentioned giving the speakers a clear, visible ‘thank you’ in the feedback but there are plenty of people that help make any conference the success it is that would really appreciate hearing that their efforts are valued. People on the registration desk, volunteers giving schedule guidance and directions, people on the community zone are all volunteers giving their time to help you have the best experience possible. Send an email to PASS and convey your thoughts about the work that was done. Maybe you want to be a volunteer next time so you could enquire how you get into that position at the same time. This isn’t an exclusive list and you may agree or disagree with the points I have made, please add anything you think is good advice in the comments. I’d like to finish by saying a huge thank you to all the people involved in planning, facilitating and executing the PASS Summit 2013, it was an excellent event and I know many others think it was a totally worthwhile event to attend.

    Read the article

  • Alcatel-Lucent: Enterprise 2.0: The Top 5 Things I would Do Over

    - by Kellsey Ruppel
    Happy Monday! Does anyone else feel as if the weekend went entirely too quickly? At least for those of us in the United States, we have the 4th of July Holiday next week to look forward to This week on the blog, we are going to focus on "WebCenter by Example" and highlight best practices from customers and partners. I recently came across this article and I think this is a great example of how we can learn from one another when it comes to social collaboration adoption. Do you agree with Jem? What things or best practices have you learned in your organizations?  By Jem Janik, Enterprise community manager, Alcatel-Lucent  Not so long ago, Engage, the Alcatel-Lucent employee social network and collaboration platform, celebrated its third birthday. With more than 25,000 members actively interacting each month, Engage has been a big enough success that it’s been the subject of external articles, and often those of us who helped launch it will go out and speak about what aspects contributed to that success. Hindsight is still 20/20 and what it takes to successfully launch an enterprise 2.0 community is fairly well-known now.  Today I want to tell you what I suspect you really want to know about.  As the enterprise community manager for Engage, after three years in, what are the top 5 things I wish we (and I mostly mean me) could do over? #5 Define your analytics solution from the start There is so much to do when you launch a community and initially growing it without complete chaos is quite a task.  It doesn’t take too long to get to a point where you want to focus your continued efforts in growing company collaboration.  Do people truly talk across regional boundaries or have we shifted siloed conversations to a new platform.  Is there one organization that doesn’t interact with another? If you are lucky you’ll have someone in your community team well versed in the world of databases and SQL queries, but it takes time to figure out what backend analytics data actually means. Professional support can be expensive and it may be hard to justify later as it typically has the community manager as the only main customer.  Figure out what you think you’ll want to know and how to get it early on. The sooner the better even if it doesn’t seem that critical at the time. #4 Lobbies guide you to the right places One piece of feedback that comes up more and more as we keep growing Engage is it’s hard to find stuff, or new people are not sure where to start. Something we’re doing now is defining some general topic areas of interest to be like “lobbies” into the platform and some common hashtags to go with them. I liken this to walking into a large medical or professional building for the first time.  There are hundreds of offices, and you look to a sign in the lobby to get guided to the right place for you.  We’re building that sign for members now, but again we missed the boat as the majority of the company has had their initial Engage experience. #3 Clean up, clean up, clean up Knowledge work and folksonomies are messy! The day we opened the doors to Engage I would have said we should keep everything ever created in Engage with an argument that it was a window into our collective knowledge so nothing should go.  Well, 6000+ groups and 200,000+ pieces of content later, I’ve changed my mind.  As previously mentioned, with too much “stuff” the system can be overwhelming to new members and it makes it harder to get what you’re looking for.   Do we need that help document about a tool we no longer have? NO!  Do we need that group that had 1 document and 2 discussions in the last two years? NO! Should we only have one group about a given topic instead of 4?  YES! Last fall, Engage defined a cleanup process for groups not used for a long time.  We also formed a volunteer cleaning army who are extra eyes on the hunt for “stuff” that should be updated, merged, or deleted.  It’s better late than never, but in line with what’s becoming a theme I wish these efforts had started earlier. #2 Communications & local community management One of the most important aspects of my job is to make sure people who should be talking to each other are actually doing it.  Connecting people to the other people they should know, the groups they should join, a piece of content that shouldn’t be missed.   I have worked both inside and outside of communications teams, and they are the best informed people in your company.  They know when something big is coming, how it impacts employees, how it fits with strategy, who else knows more, etc.  Having communications professionals who are power users can help scale up community management because they are already so well connected.  They also need to have the platform skills to pay attention without suffering email overload, how to grab someone’s attention, etc.  I wish I’d had figured this out much earlier.  If I had I would have groomed more communications colleagues into advocates and power members right at the start. #1 Grooming advocates vs. natural advocates I’ve just alluded to this above already. The very best advocates are those who naturally embrace your platform and automatically start to see new ways to work within it.  Those advocates seem to come out of the woodwork naturally since some of them are early adopters.  Not surprisingly, our best advocates today are those same people who were willing to come kick the tires when the community was completely empty.  Unfortunately, we didn’t get a global spread of those natural advocates.  I did ask around when we first launched for other people who might be good candidates, but didn’t push too hard as there were so many other things to get ready.  That was a mistake.  If I could get a redo I would have formally asked for people to be assigned where there were gaps and groomed them into an advocate.  Today as we find new advocates to fill the gaps, people are hesitant as the initial set has three years of practice are ahead of the curve power members; it definitely would have been easier earlier on. As fairly early adopters to corporate scale enterprise collaboration, there hasn’t been a roadmap to follow as we’ve grown Engage, which is part of the fun! It’s clear a lot of issues are more easily tackled the earlier you identify and begin to correct them, and I’ve identified the main five I wish I could redo.  In the spirit of collaboration, I hope someone else learns from my mistakes! View the original article by Jem here. 

    Read the article

  • C#/.NET Little Wonders: Interlocked Read() and Exchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Last time we discussed the Interlocked class and its Add(), Increment(), and Decrement() methods which are all useful for updating a value atomically by adding (or subtracting).  However, this begs the question of how do we set and read those values atomically as well? Read() – Read a value atomically Let’s begin by examining the following code: 1: public class Incrementor 2: { 3: private long _value = 0; 4:  5: public long Value { get { return _value; } } 6:  7: public void Increment() 8: { 9: Interlocked.Increment(ref _value); 10: } 11: } 12:  It uses an interlocked increment, as we discuss in my previous post (here), so we know that the increment will be thread-safe.  But, to realize what’s potentially wrong we have to know a bit about how atomic reads are in 32 bit and 64 bit .NET environments. When you are dealing with an item smaller or equal to the system word size (such as an int on a 32 bit system or a long on a 64 bit system) then the read is generally atomic, because it can grab all of the bits needed at once.  However, when dealing with something larger than the system word size (reading a long on a 32 bit system for example), it cannot grab the whole value at once, which can lead to some problems since this read isn’t atomic. For example, this means that on a 32 bit system we may read one half of the long before another thread increments the value, and the other half of it after the increment.  To protect us from reading an invalid value in this manner, we can do an Interlocked.Read() to force the read to be atomic (of course, you’d want to make sure any writes or increments are atomic also): 1: public class Incrementor 2: { 3: private long _value = 0; 4:  5: public long Value 6: { 7: get { return Interlocked.Read(ref _value); } 8: } 9:  10: public void Increment() 11: { 12: Interlocked.Increment(ref _value); 13: } 14: } Now we are guaranteed that we will read the 64 bit value atomically on a 32 bit system, thus ensuring our thread safety (assuming all other reads, writes, increments, etc. are likewise protected).  Note that as stated before, and according to the MSDN (here), it isn’t strictly necessary to use Interlocked.Read() for reading 64 bit values on 64 bit systems, but for those still working in 32 bit environments, it comes in handy when dealing with long atomically. Exchange() – Exchanges two values atomically Exchange() lets us store a new value in the given location (the ref parameter) and return the old value as a result. So just as Read() allows us to read atomically, one use of Exchange() is to write values atomically.  For example, if we wanted to add a Reset() method to our Incrementor, we could do something like this: 1: public void Reset() 2: { 3: _value = 0; 4: } But the assignment wouldn’t be atomic on 32 bit systems, since the word size is 32 bits and the variable is a long (64 bits).  Thus our assignment could have only set half the value when a threaded read or increment happens, which would put us in a bad state. So instead, we could write Reset() like this: 1: public void Reset() 2: { 3: Interlocked.Exchange(ref _value, 0); 4: } And we’d be safe again on a 32 bit system. But this isn’t the only reason Exchange() is valuable.  The key comes in realizing that Exchange() doesn’t just set a new value, it returns the old as well in an atomic step.  Hence the name “exchange”: you are swapping the value to set with the stored value. So why would we want to do this?  Well, anytime you want to set a value and take action based on the previous value.  An example of this might be a scheme where you have several tasks, and during every so often, each of the tasks may nominate themselves to do some administrative chore.  Perhaps you don’t want to make this thread dedicated for whatever reason, but want to be robust enough to let any of the threads that isn’t currently occupied nominate itself for the job.  An easy and lightweight way to do this would be to have a long representing whether someone has acquired the “election” or not.  So a 0 would indicate no one has been elected and 1 would indicate someone has been elected. We could then base our nomination strategy as follows: every so often, a thread will attempt an Interlocked.Exchange() on the long and with a value of 1.  The first thread to do so will set it to a 1 and return back the old value of 0.  We can use this to show that they were the first to nominate and be chosen are thus “in charge”.  Anyone who nominates after that will attempt the same Exchange() but will get back a value of 1, which indicates that someone already had set it to a 1 before them, thus they are not elected. Then, the only other step we need take is to remember to release the election flag once the elected thread accomplishes its task, which we’d do by setting the value back to 0.  In this way, the next thread to nominate with Exchange() will get back the 0 letting them know they are the new elected nominee. Such code might look like this: 1: public class Nominator 2: { 3: private long _nomination = 0; 4: public bool Elect() 5: { 6: return Interlocked.Exchange(ref _nomination, 1) == 0; 7: } 8: public bool Release() 9: { 10: return Interlocked.Exchange(ref _nomination, 0) == 1; 11: } 12: } There’s many ways to do this, of course, but you get the idea.  Running 5 threads doing some “sleep” work might look like this: 1: var nominator = new Nominator(); 2: var random = new Random(); 3: Parallel.For(0, 5, i => 4: { 5:  6: for (int j = 0; j < _iterations; ++j) 7: { 8: if (nominator.Elect()) 9: { 10: // elected 11: Console.WriteLine("Elected nominee " + i); 12: Thread.Sleep(random.Next(100, 5000)); 13: nominator.Release(); 14: } 15: else 16: { 17: // not elected 18: Console.WriteLine("Did not elect nominee " + i); 19: } 20: // sleep before check again 21: Thread.Sleep(1000); 22: } 23: }); And would spit out results like: 1: Elected nominee 0 2: Did not elect nominee 2 3: Did not elect nominee 1 4: Did not elect nominee 4 5: Did not elect nominee 3 6: Did not elect nominee 3 7: Did not elect nominee 1 8: Did not elect nominee 2 9: Did not elect nominee 4 10: Elected nominee 3 11: Did not elect nominee 2 12: Did not elect nominee 1 13: Did not elect nominee 4 14: Elected nominee 0 15: Did not elect nominee 2 16: Did not elect nominee 4 17: ... Another nice thing about the Interlocked.Exchange() is it can be used to thread-safely set pretty much anything 64 bits or less in size including references, pointers (in unsafe mode), floats, doubles, etc.  Summary So, now we’ve seen two more things we can do with Interlocked: reading and exchanging a value atomically.  Read() and Exchange() are especially valuable for reading/writing 64 bit values atomically in a 32 bit system.  Exchange() has value even beyond simply atomic writes by using the Exchange() to your advantage, since it reads and set the value atomically, which allows you to do lightweight nomination systems. There’s still a few more goodies in the Interlocked class which we’ll explore next time! Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked

    Read the article

  • Simplifying Human Capital Management with Mobile Applications

    - by HCM-Oracle
    By Aaron Green If you're starting to think 'mobility' is a recurring theme in your reading, you'd be right. For those who haven't started to build organisational capabilities to leverage it, it's fair to say you're late to the party. The good news: better late than never. Research firm eMarketer says the worldwide smartphone audience will total 1.75 billion this year, while communications technology and services provider Ericsson suggests smartphones will triple to 5.6 billion globally by 2019. It should be no surprise, smart phone adoption is reaching the farthest corners of the globe; the subsequent impact of enterprise applications enabled by these devices is driving business performance improvement and will continue to do so. Companies using advanced workforce analytics can add significantly to the bottom line, while impacting customer satisfaction, quality and productivity. It's a statement that makes most business leaders sit forward in their chairs. Achieving these three standards is like sipping The Golden Elixir for the business world. No-one would argue their importance. So what are 'advanced workforce analytics?' Simply, they're unprecedented access to workforce trends and performance markers. Many are made possible by a mobile world and the enterprise applications that come with it on smart devices. Some refer to it as 'the consumerisation of IT'. As this phenomenon has matured and become more widely appreciated it has impacted the spectrum of functional units within an enterprise differently, but powerfully. Whether it's sales, HR, marketing, IT, or operations, all have benefited from a more mobile approach. It has been the catalyst for improvement in, and management of, the employee experience. The net result of which is happier customers. The obvious benefits but the lesser realised impact Most people understand that mobility allows for greater efficiency and productivity, collaboration and flexibility, but how that translates into business outcomes within the various functional groups is lesser known. In actuality mobility has helped galvanise partnerships between cross-functional groups within the enterprise. Where in some quarters it was once feared mobility could fragment a workforce, its rallying cry of support is coming from what you might describe as an unlikely source - HR. As the bedrock of an enterprise, it is conceivable HR might contemplate the possible negative impact of a mobile workforce that no-longer sits in an office, at the same desks every day. After all, who would know what they were doing or saying? How would they collaborate? It's reasonable to see why HR might have a legitimate claim to try and retain as much 'perceived control' as possible. The reality however is mobility has emancipated human capital and its management. Mobility and enterprise applications are expediting decision making. Google calls it Zero Moment of Truth, or ZMOT. It enables smoother operation and can contribute to faster growth. From a collaborative perspective, with the growing use of enterprise social media, which in many cases is being driven by HR, workforce planning and the tangible impact of change is much easier to map. This in turn provides a platform from which individuals and teams can thrive. With more agility and ability to anticipate, staff satisfaction and retention is higher, and real time feedback constant. The management team can save time, energy and costs with more accurate data, which is then intelligently applied across the workforce to truly engage with staff, customers and partners. From a human capital management (HCM) perspective, mobility can help you close the loop on true talent management. It can enhance what managers can offer and what employees can provide in return. It can create nested relationships and powerful partnerships. IT and HR - partners and stewards of mobility One effect of enterprise mobility is an evolution in the nature of the relationship between HR and IT from one of service provision to partnership. The reason for the dynamic shift is largely due to the 'bring your own device' (BYOD) movement, which is transitioning to a 'bring your own application' (BYOA) scenario. As enterprise technology has in some ways reverse-engineered its solutions to help manage this situation, the partnership between IT (the functional owner) and HR (the strategic enabler) is deeply entrenched. And it has to be. The CIO and the HR leader are faced with compliance and regulatory issues and concerns around information security and personal privacy on a daily basis, complicated by global reach and varied domestic legislation. There are tens of thousands of new mobile apps entering the market each month and, unlike many consumer applications which get downloaded but are often never opened again after initial perusal, enterprise applications are being relied upon by functional groups, not least by HR to enhance people management. It requires a systematic approach across all applications in use within the enterprise in order to ensure they're used to best effect. No turning back, and no desire to With real time analytics on performance and the ability for immediate feedback, there is no turning back for managers. In my experience with Oracle, our customers' operational efficiency is at record levels. It's clear as a result of the combination of individual KPIs and organisational goals, CIOs have been able to give HR leaders the ability to build predictive models that feed into an enterprise organisations' evolving strategy. It also helps them ensure regulatory compliance much more easily. Once an arduous task, with mobile enabled automation and quality data, compliance is simpler. Their world has changed for the better. For the CIO, mobility also assists them to optimise performance. While it doesn't come without challenges, mobile-enabled applications and the native experience users have with them means employees don't need high-level technical expertise to train users. It reduces the training and engagement required from the IT team so they can focus on other things that deliver value to the bottom line; all the while lowering the cost of assets and related maintenance work by simplifying processes. Rewards of a mobile enterprise outweigh risks With mobile tools allowing us to increasingly integrate our personal and professional lives, terms like "office hours" are becoming irrelevant, so work/life balance is a cultural must. Enterprises are expected to offer tools that enable workers to access information from anywhere, at any time, from any device. Employees want simplicity and convenience but it doesn't stop at private enterprise. This is a societal shift. Governments, which traditionally have been known to be slower to adopt newer technology, are also offering support for local businesses to go mobile. Several state government websites have advice on how to create mobile apps and more. And as recently as last week the Victorian Minister for Technology Gordon Rich-Phillips unveiled his State government's ICT roadmap for the next two years, which details an increased use of the public cloud, as well as mobile communications, and improved access to online data-sets. Tech giants are investing significantly in solutions designed to simplify mobile deployment and enablement. The mobility trend is creating a wave of change in the industry and driving transformation in the enterprise. If you're not on that wave, the business risk continues to rise as your competitiveness drops. Aaron is the Vice President of HCM Strategy at Oracle Corporation where he is responsible for researching and identifying emerging trends in the practice of Human Resources and works to deliver industry-leading technology solutions. Other responsibilities include, ownership of Oracle's innovative HCM solutions across JAPAC and enabling organisations to transform and modernise their workforce tools. Follow him on Twitter @aaronjgreen

    Read the article

  • OS8- AK8- The bad news...

    - by Steve Tunstall
    Ok I told you I would give you the bad news of AK8 to go along with all the cool new stuff, so here it is. It's not that bad, really, just things you need to be aware of. First, the 2013.1 code is being called OS8, AK8 and 2013.1 by different people. I mean different people INSIDE Oracle!! It was supposed to be easy, but it never is. So for the rest of this blog entry, I'm calling it AK8. AK8 is not compatible with the 7x10 series. Ever. The 7x10 series is not supported with AK8, and if you try to upgrade one, it will fail at the healthcheck. All 7x20 series, all of them regardless of age, are supported with AK8. Drive trays. Let's talk about drive trays and SAS cards. The older drive trays for the 7x20 series were called the "Riverwalk 2" or "DS2" trays. They were technically the "J4410" series JBODs that Sun used to sell a la carte before we stopped selling JBODs. Don't get me started on that, it still makes me mad. We used these for many years, and you can still buy them right now until December 15th, 2013, when they will no longer be sold. The DS2 tray only came as a 4u, 24 drive shelf. It held 3.5" drives, and you had a choice of 2TB, 3TB, 300GB or 600GB drives. The SAS HBA in the 7x20 series was called a "Thebe" card, with a part # of 7105394. The 7420, for example, came standard with two of these "Thebe" cards for connecting to the disk trays. Two Thebe cards could handle up to 12 trays, so one would add two more cards to go to 24 trays, or have up to six Thebe cards to handle 36 trays. This card was for external SAS only. It did not connect to the internal OS drives or the Readzillas, both of which used the internal SCSI controller of the server. These Riverwalk 2 trays ARE supported with AK8. You can upgrade your older 7420 or 7320, no problem, as-is. The much older Riverwalk 1 trays or J4400 trays are NOT supported by AK8. However, they were only used by the 7x10 series, and we already said that the 7x10 series was not supported. Here's where it gets tricky. Since last January, we have been selling the new style disk trays. We call them the "DE2-24P" and the "DE2-24C" trays. The "C" tray is for capacity drives, which are 3.5" 3TB or 4TB drives. The "P" trays are for performance drives, which are 2.5" 300GB and 900GB drives. These trays are NOT Riverwalk 2 trays, even though the "C" series may kind of look like it. Different manufacturer and different firmware. They are not new. Like I said, we've been selling them with the 7x20 series since last January. They are the only disk trays we will be selling going forward. Of course, AK8 supports them. So what's the problem? The problem is going to be for people who have to mix drive trays. Remember, your older 7x20 series has Thebe SAS2 HBAs. These have 2 SAS ports per card.  The new ZS3-2 and ZS3-4 systems, however, have the new "Thebe2" SAS2 HBAs. These Thebe2 cards have 4 ports per card. This is very cool, as we can now do more SAS channels with less cards. Instead of needing 4 SAS cards to grow to 24 trays like we did with the old Thebe cards, I can now do 24 trays with only 2 Thebe2 cards. This means more IO slots for fun things like Infiniband and 10G. So far, so good, right? These Thebe2 cards work with any disk tray. You can even mix older DS2 trays with the newer DE2 trays in the same system, as long as you have Thebe2 cards. Ah, there's your problem. You don't have Thebe2 cards in your old 7420, do you? Well, I told you the bad news wasn't that bad, right? We can take out your Thebe cards and replace them with Thebe2. You can then plug your older DS2 trays right back in, and also now get newer DE2 trays going forward. However, it's important that the trays are on different SAS channels. You can mix them in the same system, but not on the same channel. Ask your local SC if you need help with the new cable layout. By the way, the new ZS3-2 and ZS3-4 systems also include a new IO card called "Erie" cards. These are for INTERNAL SAS to the OS drives and the Readzillas. So those are now SAS2 instead of SATA like the older models. Yes, the Erie card uses an IO slot, but that's OK, because the Thebe2 cards allow us to use less SAS HBAs to grow the system, right? That's it. Not too much bad news and really not that bad. AK8 does not support the 7x10 series, and you may need new Thebe2 cards in your older systems if you want to add on newer DE2 trays. I think we can all agree that there are worse things out there. Like our Congress.   Next up.... More good news and cool AK8 tricks. Such as virtual NICS. 

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 4

    - by MarkPearl
    Learning Outcomes Explain the characteristics of memory systems Describe the memory hierarchy Discuss cache memory principles Discuss issues relevant to cache design Describe the cache organization of the Pentium Computer Memory Systems There are key characteristics of memory… Location – internal or external Capacity – expressed in terms of bytes Unit of Transfer – the number of bits read out of or written into memory at a time Access Method – sequential, direct, random or associative From a users perspective the two most important characteristics of memory are… Capacity Performance – access time, memory cycle time, transfer rate The trade off for memory happens along three axis… Faster access time, greater cost per bit Greater capacity, smaller cost per bit Greater capacity, slower access time This leads to people using a tiered approach in their use of memory   As one goes down the hierarchy, the following occurs… Decreasing cost per bit Increasing capacity Increasing access time Decreasing frequency of access of the memory by the processor The use of two levels of memory to reduce average access time works in principle, but only if conditions 1 to 4 apply. A variety of technologies exist that allow us to accomplish this. Thus it is possible to organize data across the hierarchy such that the percentage of accesses to each successively lower level is substantially less than that of the level above. A portion of main memory can be used as a buffer to hold data temporarily that is to be read out to disk. This is sometimes referred to as a disk cache and improves performance in two ways… Disk writes are clustered. Instead of many small transfers of data, we have a few large transfers of data. This improves disk performance and minimizes processor involvement. Some data designed for write-out may be referenced by a program before the next dump to disk. In that case the data is retrieved rapidly from the software cache rather than slowly from disk. Cache Memory Principles Cache memory is substantially faster than main memory. A caching system works as follows.. When a processor attempts to read a word of memory, a check is made to see if this in in cache memory… If it is, the data is supplied, If it is not in the cache, a block of main memory, consisting of a fixed number of words is loaded to the cache. Because of the phenomenon of locality of references, when a block of data is fetched into the cache, it is likely that there will be future references to that same memory location or to other words in the block. Elements of Cache Design While there are a large number of cache implementations, there are a few basic design elements that serve to classify and differentiate cache architectures… Cache Addresses Cache Size Mapping Function Replacement Algorithm Write Policy Line Size Number of Caches Cache Addresses Almost all non-embedded processors support virtual memory. Virtual memory in essence allows a program to address memory from a logical point of view without needing to worry about the amount of physical memory available. When virtual addresses are used the designer may choose to place the cache between the MMU (memory management unit) and the processor or between the MMU and main memory. The disadvantage of virtual memory is that most virtual memory systems supply each application with the same virtual memory address space (each application sees virtual memory starting at memory address 0), which means the cache memory must be completely flushed with each application context switch or extra bits must be added to each line of the cache to identify which virtual address space the address refers to. Cache Size We would like the size of the cache to be small enough so that the overall average cost per bit is close to that of main memory alone and large enough so that the overall average access time is close to that of the cache alone. Also, larger caches are slightly slower than smaller ones. Mapping Function Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping main memory blocks into cache lines. The choice of mapping function dictates how the cache is organized. Three techniques can be used… Direct – simplest technique, maps each block of main memory into only one possible cache line Associative – Each main memory block to be loaded into any line of the cache Set Associative – exhibits the strengths of both the direct and associative approaches while reducing their disadvantages For detailed explanations of each approach – read the text book (page 148 – 154) Replacement Algorithm For associative and set associating mapping a replacement algorithm is needed to determine which of the existing blocks in the cache must be replaced by a new block. There are four common approaches… LRU (Least recently used) FIFO (First in first out) LFU (Least frequently used) Random selection Write Policy When a block resident in the cache is to be replaced, there are two cases to consider If no writes to that block have happened in the cache – discard it If a write has occurred, a process needs to be initiated where the changes in the cache are propagated back to the main memory. There are several approaches to achieve this including… Write Through – all writes to the cache are done to the main memory as well at the point of the change Write Back – when a block is replaced, all dirty bits are written back to main memory The problem is complicated when we have multiple caches, there are techniques to accommodate for this but I have not summarized them. Line Size When a block of data is retrieved and placed in the cache, not only the desired word but also some number of adjacent words are retrieved. As the block size increases from very small to larger sizes, the hit ratio will at first increase because of the principle of locality, which states that the data in the vicinity of a referenced word are likely to be referenced in the near future. As the block size increases, more useful data are brought into cache. The hit ratio will begin to decrease as the block becomes even bigger and the probability of using the newly fetched information becomes less than the probability of using the newly fetched information that has to be replaced. Two specific effects come into play… Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch overwrites older cache contents, a small number of blocks results in data being overwritten shortly after they are fetched. As a block becomes larger, each additional word is farther from the requested word and therefore less likely to be needed in the near future. The relationship between block size and hit ratio is complex, and no set approach is judged to be the best in all circumstances.   Pentium 4 and ARM cache organizations The processor core consists of four major components: Fetch/decode unit – fetches program instruction in order from the L2 cache, decodes these into a series of micro-operations, and stores the results in the L2 instruction cache Out-of-order execution logic – Schedules execution of the micro-operations subject to data dependencies and resource availability – thus micro-operations may be scheduled for execution in a different order than they were fetched from the instruction stream. As time permits, this unit schedules speculative execution of micro-operations that may be required in the future Execution units – These units execute micro-operations, fetching the required data from the L1 data cache and temporarily storing results in registers Memory subsystem – This unit includes the L2 and L3 caches and the system bus, which is used to access main memory when the L1 and L2 caches have a cache miss and to access the system I/O resources

    Read the article

  • Annotation Processor for Superclass Sensitive Actions

    - by Geertjan
    Someone creating superclass sensitive actions should need to specify only the following things: The condition under which the popup menu item should be available, i.e., the condition under which the action is relevant. And, for superclass sensitive actions, the condition is the name of a superclass. I.e., if I'm creating an action that should only be invokable if the class implements "org.openide.windows.TopComponent",  then that fully qualified name is the condition. The position in the list of Java class popup menus where the new menu item should be found, relative to the existing menu items. The display name. The path to the action folder where the new action is registered in the Central Registry. The code that should be executed when the action is invoked. In other words, the code for the enablement (which, in this case, means the visibility of the popup menu item when you right-click on the Java class) should be handled generically, under the hood, and not every time all over again in each action that needs this special kind of enablement. So, here's the usage of my newly created @SuperclassBasedActionAnnotation, where you should note that the DataObject must be in the Lookup, since the action will only be available to be invoked when you right-click on a Java source file (i.e., text/x-java) in an explorer view: import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import org.netbeans.sbas.annotations.SuperclassBasedActionAnnotation; import org.openide.awt.StatusDisplayer; import org.openide.loaders.DataObject; import org.openide.util.NbBundle; import org.openide.util.Utilities; @SuperclassBasedActionAnnotation( position=30, displayName="#CTL_BrandTopComponentAction", path="File", type="org.openide.windows.TopComponent") @NbBundle.Messages("CTL_BrandTopComponentAction=Brand") public class BrandTopComponentAction implements ActionListener { private final DataObject context; public BrandTopComponentAction() { context = Utilities.actionsGlobalContext().lookup(DataObject.class); } @Override public void actionPerformed(ActionEvent ev) { String message = context.getPrimaryFile().getPath(); StatusDisplayer.getDefault().setStatusText(message); } } That implies I've created (in a separate module to where it is used) a new annotation. Here's the definition: package org.netbeans.sbas.annotations; import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; @Retention(RetentionPolicy.SOURCE) @Target(ElementType.TYPE) public @interface SuperclassBasedActionAnnotation { String type(); String path(); int position(); String displayName(); } And here's the processor: package org.netbeans.sbas.annotations; import java.util.Set; import javax.annotation.processing.Processor; import javax.annotation.processing.RoundEnvironment; import javax.annotation.processing.SupportedAnnotationTypes; import javax.annotation.processing.SupportedSourceVersion; import javax.lang.model.SourceVersion; import javax.lang.model.element.Element; import javax.lang.model.element.TypeElement; import javax.lang.model.util.Elements; import org.openide.filesystems.annotations.LayerBuilder.File; import org.openide.filesystems.annotations.LayerGeneratingProcessor; import org.openide.filesystems.annotations.LayerGenerationException; import org.openide.util.lookup.ServiceProvider; @ServiceProvider(service = Processor.class) @SupportedAnnotationTypes("org.netbeans.sbas.annotations.SuperclassBasedActionAnnotation") @SupportedSourceVersion(SourceVersion.RELEASE_6) public class SuperclassBasedActionProcessor extends LayerGeneratingProcessor { @Override protected boolean handleProcess(Set annotations, RoundEnvironment roundEnv) throws LayerGenerationException { Elements elements = processingEnv.getElementUtils(); for (Element e : roundEnv.getElementsAnnotatedWith(SuperclassBasedActionAnnotation.class)) { TypeElement clazz = (TypeElement) e; SuperclassBasedActionAnnotation mpm = clazz.getAnnotation(SuperclassBasedActionAnnotation.class); String teName = elements.getBinaryName(clazz).toString(); String originalFile = "Actions/" + mpm.path() + "/" + teName.replace('.', '-') + ".instance"; File actionFile = layer(e).file( originalFile). bundlevalue("displayName", mpm.displayName()). methodvalue("instanceCreate", "org.netbeans.sbas.annotations.SuperclassSensitiveAction", "create"). stringvalue("type", mpm.type()). newvalue("delegate", teName); actionFile.write(); File javaPopupFile = layer(e).file( "Loaders/text/x-java/Actions/" + teName.replace('.', '-') + ".shadow"). stringvalue("originalFile", originalFile). intvalue("position", mpm.position()); javaPopupFile.write(); } return true; } } The "SuperclassSensitiveAction" referred to in the code above is unchanged from how I had it in yesterday's blog entry. When I build the module containing two action listeners that use my new annotation, the generated layer file looks as follows, which is identical to the layer file entries I hard coded yesterday: <folder name="Actions"> <folder name="File"> <file name="org-netbeans-sbas-impl-ActionListenerSensitiveAction.instance"> <attr name="displayName" stringvalue="Process Action Listener"/> <attr methodvalue="org.netbeans.sbas.annotations.SuperclassSensitiveAction.create" name="instanceCreate"/> <attr name="type" stringvalue="java.awt.event.ActionListener"/> <attr name="delegate" newvalue="org.netbeans.sbas.impl.ActionListenerSensitiveAction"/> </file> <file name="org-netbeans-sbas-impl-BrandTopComponentAction.instance"> <attr bundlevalue="org.netbeans.sbas.impl.Bundle#CTL_BrandTopComponentAction" name="displayName"/> <attr methodvalue="org.netbeans.sbas.annotations.SuperclassSensitiveAction.create" name="instanceCreate"/> <attr name="type" stringvalue="org.openide.windows.TopComponent"/> <attr name="delegate" newvalue="org.netbeans.sbas.impl.BrandTopComponentAction"/> </file> </folder> </folder> <folder name="Loaders"> <folder name="text"> <folder name="x-java"> <folder name="Actions"> <file name="org-netbeans-sbas-impl-ActionListenerSensitiveAction.shadow"> <attr name="originalFile" stringvalue="Actions/File/org-netbeans-sbas-impl-ActionListenerSensitiveAction.instance"/> <attr intvalue="10" name="position"/> </file> <file name="org-netbeans-sbas-impl-BrandTopComponentAction.shadow"> <attr name="originalFile" stringvalue="Actions/File/org-netbeans-sbas-impl-BrandTopComponentAction.instance"/> <attr intvalue="30" name="position"/> </file> </folder> </folder> </folder> </folder>

    Read the article

  • At times, you need to hire a professional.

    - by Phil Factor
    After months of increasingly demanding toil, the development team I belonged to was told that the project was to be canned and the whole team would be fired.  I’d been brought into the team as an expert in the data implications of a business re-engineering of a major financial institution. Nowadays, you’d call me a data architect, I suppose.  I’d spent a happy year being paid consultancy fees solving a succession of interesting problems until the point when the company lost is nerve, and closed the entire initiative. The IT industry was in one of its characteristic mood-swings downwards.  After the announcement, we met in the canteen. A few developers had scented the smell of death around the project already hand had been applying unsuccessfully for jobs. There was a sense of doom in the mass of dishevelled and bleary-eyed developers. After giving vent to anger and despair, talk turned to getting new employment. It was then that I perked up. I’m not an obvious choice to give advice on getting, or passing,  IT interviews. I reckon I’ve failed most of the job interviews I’ve ever attended. I once even failed an interview for a job I’d already been doing perfectly well for a year. The jobs I’ve got have mostly been from personal recommendation. Paradoxically though, from years as a manager trying to recruit good staff, I know a lot about what IT managers are looking for.  I gave an impassioned speech outlining the important factors in getting to an interview.  The most important thing, certainly in my time at work is the quality of the résumé or CV. I can’t even guess the huge number of CVs (résumés) I’ve read through, scanning for candidates worth interviewing.  Many IT Developers find it impossible to describe their  career succinctly on two sides of paper.  They leave chunks of their life out (were they in prison?), get immersed in detail, put in irrelevancies, describe what was going on at work rather than what they themselves did, exaggerate their importance, criticize their previous employers, aren’t  aware of the important aspects of a role to a potential employer, suffer from shyness and modesty,  and lack any sort of organized perspective of their work. There are many ways of failing to write a decent CV. Many developers suffer from the delusion that their worth can be recognized purely from the code that they write, and shy away from anything that seems like self-aggrandizement. No.  A resume must make a good impression, which means presenting the facts about yourself in a clear and positive way. You can’t do it yourself. Why not have your resume professionally written? A good professional CV Writer will know the qualities being looked for in a CV and interrogate you to winkle them out. Their job is to make order and sense out of a confused career, to summarize in one page a mass of detail that presents to any recruiter the information that’s wanted. To stand back and describe an accurate summary of your skills, and work-experiences dispassionately, without rancor, pity or modesty. You are no more capable of producing an objective documentation of your career than you are of taking your own appendix out.  My next recommendation was more controversial. This is to have a professional image overhaul, or makeover, followed by a professionally-taken photo portrait. I discovered this by accident. It is normal for IT professionals to face impossible deadlines and long working hours by looking more and more like something that had recently blocked a sink. Whilst working in IT, and in a state of personal dishevelment, I’d been offered the role in a high-powered amateur production of an old ex- Broadway show, purely for my singing voice. I was supposed to be the presentable star. When the production team saw me, the air was thick with tension and despair. I was dragged kicking and protesting through a succession of desperate grooming, scrubbing, dressing, dieting. I emerged feeling like “That jewelled mass of millinery, That oiled and curled Assyrian bull, Smelling of musk and of insolence.” (Tennyson Maud; A Monodrama (1855) Section v1 stanza 6) I was then photographed by a professional stage photographer.  When the photographs were delivered, I was amazed. It wasn’t me, but it looked somehow respectable, confident, trustworthy.   A while later, when the show had ended, I took the photos, and used them for work. They went with the CV to job applications. It did the trick better than I could ever imagine.  My views went down big with the developers. Old rivalries were put immediately to one side. We voted, with a show of hands, to devote our energies for the entire notice period to getting employable. We had a team sourcing the CV Writer,  a team organising the make-overs and photographer, and a third team arranging  mock interviews. A fourth team determined the best websites and agencies for recruitment, with the help of friends in the trade.  Because there were around thirty developers, we were in a good negotiating position.  Of the three CV Writers we found who lived locally, one proved exceptional. She was an ex-journalist with an eye to detail, and years of experience in manipulating language. We tried her skills out on a developer who seemed a hopeless case, and he was called to interview within a week.  I was surprised, too, how many companies were experts at image makeovers. Within the month, we all looked like those weird slick  people in the ‘Office-tagged’ stock photographs who stare keenly and interestedly at PowerPoint slides in sleek chromium-plated high-rise offices. The portraits we used still adorn the entries of many of my ex-colleagues in LinkedIn. After a months’ worth of mock interviews, and technical Q&A, our stutters, hesitations, evasions and periphrastic circumlocutions were all gone.  There is little more to relate. With the résumés or CVs, mugshots, and schooling in how to pass interviews, we’d all got new and better-paid jobs well  before our month’s notice was ended. Whilst normally, an IT team under the axe is a sad and depressed place to belong to, this wonderful group of people had proved the power of organized group action in turning the experience to advantage. It left us feeling slightly guilty that we were somehow cheating, but I guess we were merely leveling the playing-field.

    Read the article

  • SharePoint logging to a list

    - by Norgean
    I recently worked in an environment with several servers. Locating the correct SharePoint log file for error messages, or development trace calls, is cumbersome. And once the solution hit the cloud, it got even worse, as we had no access to the log files at all. Obviously we are not the only ones with this problem, and the current trend seems to be to log to a list. This had become an off-hour project, so rather than do the sensible thing and find a ready-made solution, I decided to do it the hard way. So! Fire up Visual Studio, create yet another empty SharePoint solution, and start to think of some requirements. Easy on/offI want to be able to turn list-logging on and off.Easy loggingFor me, this means being able to use string.Format.Easy filteringLet's have the possibility to add some filtering columns; category and severity, where severity can be "verbose", "warning" or "error". Easy on/off Well, that's easy. Create a new web feature. Add an event receiver, and create the list on activation of the feature. Tear the list down on de-activation. I chose not to create a new content type; I did not feel that it would give me anything extra. I based the list on the generic list - I think a better choice would have been the announcement type. Approximately: public void CreateLog(SPWeb web)         {             var list = web.Lists.TryGetList(LogListName);             if (list == null)             {                 var listGuid = web.Lists.Add(LogListName, "Logging for the masses", SPListTemplateType.GenericList);                 list = web.Lists[listGuid];                 list.Title = LogListTitle;                 list.Update();                 list.Fields.Add(Category, SPFieldType.Text, false);                 var stringColl = new StringCollection();                 stringColl.AddRange(new[]{Error, Information, Verbose});                 list.Fields.Add(Severity, SPFieldType.Choice, true, false, stringColl);                 ModifyDefaultView(list);             }         }Should be self explanatory, but: only create the list if it does not already exist (d'oh). Best practice: create it with a Url-friendly name, and, if necessary, give it a better title. ...because otherwise you'll have to look for a list with a name like "Simple_x0020_Log". I've added a couple of fields; a field for category, and a 'severity'. Both to make it easier to find relevant log messages. Notice that I don't have to call list.Update() after adding the fields - this would cause a nasty error (something along the lines of "List locked by another user"). The function for deleting the log is exactly as onerous as you'd expect:         public void DeleteLog(SPWeb web)         {             var list = web.Lists.TryGetList(LogListTitle);             if (list != null)             {                 list.Delete();             }         } So! "All" that remains is to log. Also known as adding items to a list. Lots of different methods with different signatures end up calling the same function. For example, LogVerbose(web, message) calls LogVerbose(web, null, message) which again calls another method which calls: private static void Log(SPWeb web, string category, string severity, string textformat, params object[] texts)         {             if (web != null)             {                 var list = web.Lists.TryGetList(LogListTitle);                 if (list != null)                 {                     var item = list.AddItem(); // NOTE! NOT list.Items.Add… just don't, mkay?                     var text = string.Format(textformat, texts);                     if (text.Length > 255) // because the title field only holds so many chars. Sigh.                         text = text.Substring(0, 254);                     item[SPBuiltInFieldId.Title] = text;                     item[Degree] = severity;                     item[Category] = category;                     item.Update();                 }             } // omitted: Also log to SharePoint log.         } By adding a params parameter I can call it as if I was doing a Console.WriteLine: LogVerbose(web, "demo", "{0} {1}{2}", "hello", "world", '!'); Ok, that was a silly example, a better one might be: LogError(web, LogCategory, "Exception caught when updating {0}. exception: {1}", listItem.Title, ex); For performance reasons I use list.AddItem rather than list.Items.Add. For completeness' sake, let us include the "ModifyDefaultView" function that I deliberately skipped earlier.         private void ModifyDefaultView(SPList list)         {             // Add fields to default view             var defaultView = list.DefaultView;             var exists = defaultView.ViewFields.Cast<string>().Any(field => String.CompareOrdinal(field, Severity) == 0);               if (!exists)             {                 var field = list.Fields.GetFieldByInternalName(Severity);                 if (field != null)                     defaultView.ViewFields.Add(field);                 field = list.Fields.GetFieldByInternalName(Category);                 if (field != null)                     defaultView.ViewFields.Add(field);                 defaultView.Update();                   var sortDoc = new XmlDocument();                 sortDoc.LoadXml(string.Format("<Query>{0}</Query>", defaultView.Query));                 var orderBy = (XmlElement) sortDoc.SelectSingleNode("//OrderBy");                 if (orderBy != null && sortDoc.DocumentElement != null)                     sortDoc.DocumentElement.RemoveChild(orderBy);                 orderBy = sortDoc.CreateElement("OrderBy");                 sortDoc.DocumentElement.AppendChild(orderBy);                 field = list.Fields[SPBuiltInFieldId.Modified];                 var fieldRef = sortDoc.CreateElement("FieldRef");                 fieldRef.SetAttribute("Name", field.InternalName);                 fieldRef.SetAttribute("Ascending", "FALSE");                 orderBy.AppendChild(fieldRef);                   fieldRef = sortDoc.CreateElement("FieldRef");                 field = list.Fields[SPBuiltInFieldId.ID];                 fieldRef.SetAttribute("Name", field.InternalName);                 fieldRef.SetAttribute("Ascending", "FALSE");                 orderBy.AppendChild(fieldRef);                 defaultView.Query = sortDoc.DocumentElement.InnerXml;                 //defaultView.Query = "<OrderBy><FieldRef Name='Modified' Ascending='FALSE' /><FieldRef Name='ID' Ascending='FALSE' /></OrderBy>";                 defaultView.Update();             }         } First two lines are easy - see if the default view includes the "Severity" column. If it does - quit; our job here is done.Adding "severity" and "Category" to the view is not exactly rocket science. But then? Then we build the sort order query. Through XML. The lines are numerous, but boring. All to achieve the CAML query which is commented out. The major benefit of using the dom to build XML, is that you may get compile time errors for spelling mistakes. I say 'may', because although the compiler will not let you forget to close a tag, it will cheerfully let you spell "Name" as "Naem". Whichever you prefer, at the end of the day the view will sort by modified date and ID, both descending. I added the ID as there may be several items with the same time stamp. So! Simple logging to a list, with sensible a view, and with normal functionality for creating your own filterings. I should probably have added some more views in code, ready filtered for "only errors", "errors and warnings" etc. And it would be nice to block verbose logging completely, but I'm not happy with the alternatives. (yetanotherfeature or an admin page seem like overkill - perhaps just removing it as one of the choices, and not log if it isn't there?) Before you comment - yes, try-catches have been removed for clarity. There is nothing worse than having a logging function that breaks your site!

    Read the article

  • Entity Framework 6: Alpha2 Now Available

    - by ScottGu
    The Entity Framework team recently announced the 2nd alpha release of EF6.   The alpha 2 package is available for download from NuGet. Since this is a pre-release package make sure to select “Include Prereleases” in the NuGet package manager, or execute the following from the package manager console to install it: PM> Install-Package EntityFramework -Pre This week’s alpha release includes a bunch of great improvements in the following areas: Async language support is now available for queries and updates when running on .NET 4.5. Custom conventions now provide the ability to override the default conventions that Code First uses for mapping types, properties, etc. to your database. Multi-tenant migrations allow the same database to be used by multiple contexts with full Code First Migrations support for independently evolving the model backing each context. Using Enumerable.Contains in a LINQ query is now handled much more efficiently by EF and the SQL Server provider resulting greatly improved performance. All features of EF6 (except async) are available on both .NET 4 and .NET 4.5. This includes support for enums and spatial types and the performance improvements that were previously only available when using .NET 4.5. Start-up time for many large models has been dramatically improved thanks to improved view generation performance. Below are some additional details about a few of the improvements above: Async Support .NET 4.5 introduced the Task-Based Asynchronous Pattern that uses the async and await keywords to help make writing asynchronous code easier. EF 6 now supports this pattern. This is great for ASP.NET applications as database calls made through EF can now be processed asynchronously – avoiding any blocking of worker threads. This can increase scalability on the server by allowing more requests to be processed while waiting for the database to respond. The following code shows an MVC controller that is querying a database for a list of location entities:     public class HomeController : Controller     {         LocationContext db = new LocationContext();           public async Task<ActionResult> Index()         {             var locations = await db.Locations.ToListAsync();               return View(locations);         }     } Notice above the call to the new ToListAsync method with the await keyword. When the web server reaches this code it initiates the database request, but rather than blocking while waiting for the results to come back, the thread that is processing the request returns to the thread pool, allowing ASP.NET to process another incoming request with the same thread. In other words, a thread is only consumed when there is actual processing work to do, allowing the web server to handle more concurrent requests with the same resources. A more detailed walkthrough covering async in EF is available with additional information and examples. Also a walkthrough is available showing how to use async in an ASP.NET MVC application. Custom Conventions When working with EF Code First, the default behavior is to map .NET classes to tables using a set of conventions baked into EF. For example, Code First will detect properties that end with “ID” and configure them automatically as primary keys. However, sometimes you cannot or do not want to follow those conventions and would rather provide your own. For example, maybe your primary key properties all end in “Key” instead of “Id”. Custom conventions allow the default conventions to be overridden or new conventions to be added so that Code First can map by convention using whatever rules make sense for your project. The following code demonstrates using custom conventions to set the precision of all decimals to 5. As with other Code First configuration, this code is placed in the OnModelCreating method which is overridden on your derived DbContext class:         protected override void OnModelCreating(DbModelBuilder modelBuilder)         {             modelBuilder.Properties<decimal>()                 .Configure(x => x.HasPrecision(5));           } But what if there are a couple of places where a decimal property should have a different precision? Just as with all the existing Code First conventions, this new convention can be overridden for a particular property simply by explicitly configuring that property using either the fluent API or a data annotation. A more detailed description of custom code first conventions is available here. Community Involvement I blogged a while ago about EF being released under an open source license.  Since then a number of community members have made contributions and these are included in EF6 alpha 2. Two examples of community contributions are: AlirezaHaghshenas contributed a change that increases the startup performance of EF for larger models by improving the performance of view generation. The change means that it is less often necessary to use of pre-generated views. UnaiZorrilla contributed the first community feature to EF: the ability to load all Code First configuration classes in an assembly with a single method call like the following: protected override void OnModelCreating(DbModelBuilder modelBuilder) {        modelBuilder.Configurations            .AddFromAssembly(typeof(LocationContext).Assembly); } This code will find and load all the classes that inherit from EntityTypeConfiguration<T> or ComplexTypeConfiguration<T> in the assembly where LocationContext is defined. This reduces the amount of coupling between the context and Code First configuration classes, and is also a very convenient shortcut for large models. Other upcoming features coming in EF 6 Lots of information about the development of EF6 can be found on the EF CodePlex site, including a roadmap showing the other features that are planned for EF6. One of of the nice upcoming features is connection resiliency, which will automate the process of retying database operations on transient failures common in cloud environments and with databases such as the Windows Azure SQL Database. Another often requested feature that will be included in EF6 is the ability to map stored procedures to query and update operations on entities when using Code First. Summary EF6 is the first open source release of Entity Framework being developed in CodePlex. The alpha 2 preview release of EF6 is now available on NuGet, and contains some really great features for you to try. The EF team are always looking for feedback from developers - especially on the new features such as custom Code First conventions and async support. To provide feedback you can post a comment on the EF6 alpha 2 announcement post, start a discussion or file a bug on the CodePlex site. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • SOA Implementation Challenges

    Why do companies think that if they put up a web service that they are doing Service-Oriented Architecture (SOA)? Unfortunately, the IT and business world love to run on the latest hype or buzz words of which very few even understand the meaning. One of the largest issues companies have today as they consider going down the path of SOA, is the lack of knowledge regarding the architectural style and the over usage of the term SOA. So how do we solve this issue?I am sure most of you are thinking by now that you know what SOA is because you developed a few web services.  Isn’t that SOA, right? No, that is not SOA, but instead Just Another Web Service (JAWS). For us to better understand what SOA is let’s look at a few definitions.Douglas K. Bary defines service-oriented architecture as a collection of services. These services are enabled to communicate with each other in order to pass data or coordinating some activity with other services.If you look at this definition closely you will notice that Bary states that services communicate with each other. Let us compare this statement with my first statement regarding companies that claim to be doing SOA when they have just a collection of web services. In order for these web services to for an SOA application they need to be interdependent on one another forming some sort of architectural hierarchy. Just because a company has a few web services does not mean that they are all interconnected.SearchSOA from TechTarget.com states that SOA defines how two computing entities work collectively to enable one entity to perform a unit of work on behalf of another. Once again, just because a company has a few web services does not guarantee that they are even working together let alone if they are performing work for each other.SearchSOA also points out service interactions should be self-contained and loosely-coupled so that all interactions operate independent of each other.Of all the definitions regarding SOA Thomas Erl’s seems to shed the most light on this concept. He states that “SOA establishes an architectural model that aims to enhance the efficiency, agility, and productivity of an enterprise by positioning services as the primary means through which solution logic is represented in support of the realization of the strategic goals associated with service-oriented computing.” (Erl, 2011) Once again this definition proves that a collection of web services does not mean that a company is doing SOA. However, it does mean that a company has a collection of web services, and that is it.In order for a company to start to go down the path of SOA, they must take  a hard look at their existing business process while abstracting away any technology so that they can define what is they really want to accomplish. Once a company has done this, they can begin to factor out common sub business process like credit card process, user authentication or system notifications in to small components that can be built independent of each other and then reassembled to form new and dynamic services that are loosely coupled and agile in that they can change as a business grows.Another key pitfall of companies doing SOA is the fact that they let vendors drive their architecture. Why do companies do this? Vendors’ do not hold your company’s success as their top priority; in fact they hold their own success as their top priority by selling you as much stuff as you are willing to buy. In my experience companies tend to strive for the maximum amount of benefits with a minimal amount of cost. Does anyone else see any conflicts between this and the driving force behind vendors.Mike Kavis recommends in an article written in CIO.com that companies need to figure out what they need before they talk to a vendor or at least have some idea of what they need. It is important to thoroughly evaluate each vendor and watch them perform a live demo of their system so that you as the company fully understand what kind of product or service the vendor is actually offering. In addition, do research on each vendor that you are considering, check out blog posts, online reviews, and any information you can find on the vendor through various search engines.Finally he recommends companies to verify any recommendations supplied by a vendor. From personal experience this is very important. I can remember when the company I worked for purchased a $200,000 add-on to their phone system that never actually worked as it was intended. In fact, just after my departure from the company started the process of attempting to get their money back from the vendor. This potentially could have been avoided if the company had done the research before selecting this vendor to ensure that their product and vendor would live up to their claims. I know that some SOA vendor offer free training regarding SOA because they know that there are a lot of misconceptions about the topic. Superficially this is a great thing for companies to take part in especially if the company is starting to implement SOA architecture and are still unsure about some topics or are looking for some guidance regarding the topic. However beware that some companies will focus on their product line only regarding the training. As an example, InfoWorld.com claims that companies providing deep seminars disguised as training, focusing more about ESBs and SOA governance technology, and less on how to approach and solve the architectural issues of the attendees.In short, it is important to remember that we as software professionals are responsible for guiding a business’s technology sections should be well informed and fully understand any new concepts that may be considered for implementation. As I have demonstrated already a company that has a few web services does not mean that they are doing SOA.  Additionally, we must not let the new buzz word of the day drive our technology, but instead our technology decisions should be driven from research and proven experience. Finally, it is important to rely on vendors when necessary, however, always take what they say with a grain of salt while cross checking any claims that they may make because we have to live with the aftermath of a system after the vendors are gone.   References: Barry, D. K. (2011). Service-oriented architecture (SOA) definition. Retrieved 12 12, 2011, from Service-Architecture.com: http://www.service-architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html Connell, B. (2003, 9). service-oriented architecture (SOA). Retrieved 12 12, 2011, from SearchSOA: http://searchsoa.techtarget.com/definition/service-oriented-architecture Erl, T. (2011, 12 12). Service-Oriented Architecture. Retrieved 12 12, 2011, from WhatIsSOA: http://www.whatissoa.com/p10.php InfoWorld. (2008, 6 1). Should you get your SOA knowledge from SOA vendors? . Retrieved 12 12, 2011, from InfoWorld.com: http://www.infoworld.com/d/architecture/should-you-get-your-soa-knowledge-soa-vendors-453 Kavis, M. (2008, 6 18). Top 10 Reasons Why People are Making SOA Fail. Retrieved 12 13, 2011, from CIO.com: http://www.cio.com/article/438413/Top_10_Reasons_Why_People_are_Making_SOA_Fail?page=5&taxonomyId=3016  

    Read the article

  • Right-Time Retail Part 1

    - by David Dorf
    This is the first in a three-part series. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Right-Time Revolution Technology enables some amazing feats in retail. I can order flowers for my wife while flying 30,000 feet in the air. I can order my groceries in the subway and have them delivered later that day. I can even see how clothes look on me without setting foot in a store. Who knew that a TV, diamond necklace, or even a car would someday be as easy to purchase as a candy bar? Can technology make a mattress an impulse item? Wake-up and your back is hurting, so you rollover and grab your iPad, then a new mattress is delivered the next day. Behind the scenes the many processes are being choreographed to make the sale happen. This includes moving data between systems with the least amount for friction, which in some cases is near real-time. But real-time isn’t appropriate for all the integrations. Think about what a completely real-time retailer would look like. A consumer grabs toothpaste off the shelf, and all systems are immediately notified so that the backroom clerk comes running out and pushes the consumer aside so he can replace the toothpaste on the shelf. Such a system is not only cost prohibitive, but it’s also very inefficient and ineffectual. Retailers must balance the realities of people, processes, and systems to find the right speed of execution. That’ what “right-time retail” means. Retailers used to sell during the day and count the money and restock at night, but global expansion and the Web have complicated that simplistic viewpoint. Our 24hr society demands not only access but also speed, which constantly pushes the boundaries of our IT systems. In the last twenty years, there have been three major technology advancements that have moved us closer to real-time systems. Networking is the first technology that drove the real-time trend. As systems became connected, it became easier to move data between them. In retail we no longer had to mail the daily business report back to corporate each day as the dial-up modem could transfer the data. That was soon replaced with trickle-polling, when sale transactions were occasionally sent from stores to corporate throughout the day, often through VSAT. Then we got terrestrial networks like DSL and Ethernet that allowed the constant stream of data between stores and corporate. When corporate could see the sales transactions coming from stores, it could better plan for replenishment and promotions. That drove the need for speed into the supply chain and merchandising, but for many years those systems were stymied by the huge volumes of data. Nordstrom has 150 million SKU/Store combinations when planning (RPAS); The Gap generates 110 million price changes during end-of-season (RPM); Argos does 1.78 billion calculations executed each day for replenishment planning (AIP). These areas are now being alleviated by the second technology, storage. The typical laptop disk drive runs at 5,400rpm with PCs stepping up to 7,200rpm and servers hitting 15,000rpm. But the platters can only spin so fast, so to squeeze more performance we’ve had to rely on things like disk striping. Then solid state drives (SSDs) were introduced and prices continue to drop. (Augmenting your harddrive with a SSD is the single best PC upgrade these days.) RAM continues to be expensive, but compressing data in memory has allowed more efficient use. So a few years back, Oracle decided to build a box that incorporated all these advancements to move us closer to real-time. This family of products, often categorized as engineered systems, combines the hardware and software so that they work together to provide better performance. How much better? If Exadata powered a 747, you’d go from New York to Paris in 42 minutes, and it would carry 5,000 passengers. If Exadata powered baseball, games would last only 18 minutes and Boston’s Fenway would hold 370,000 fans. The Exa-family enables processing more data in less time. So with faster networks and storage, that brings us to the third and final ingredient. If we continue to process data in traditional ways, we won’t be able to take advantage of the faster networks and storage. Enter what Harvard calls “The Sexiest Job of the 21st Century” – the data scientist. New technologies like the Hadoop-powered Oracle Big Data Appliance, Oracle Advanced Analytics, and Oracle Endeca Information Discovery change the way in which we organize data. These technologies allow us to extract actionable information from raw data at incredible speeds, often ad-hoc. So the foundation to support the real-time enterprise exists, but how does a retailer begin to take advantage? The most visible way is through real-time marketing, but I’ll save that for part 3 and instead begin with improved integrations for the assets you already have in part 2.

    Read the article

  • What's new in EJB 3.2 ? - Java EE 7 chugging along!

    - by arungupta
    EJB 3.1 added a whole ton of features for simplicity and ease-of-use such as @Singleton, @Asynchronous, @Schedule, Portable JNDI name, EJBContainer.createEJBContainer, EJB 3.1 Lite, and many others. As part of Java EE 7, EJB 3.2 (JSR 345) is making progress and this blog will provide highlights from the work done so far. This release has been particularly kept small but include several minor improvements and tweaks for usability. More features in EJB.Lite Asynchronous session bean Non-persistent EJB Timer service This also means these features can be used in embeddable EJB container and there by improving testability of your application. Pruning - The following features were made Proposed Optional in Java EE 6 and are now made optional. EJB 2.1 and earlier Entity Bean Component Contract for CMP and BMP Client View of an EJB 2.1 and earlier Entity Bean EJB QL: Query Language for CMP Query Methods JAX-RPC-based Web Service Endpoints and Client View The optional features are moved to a separate document and as a result EJB specification is now split into Core and Optional documents. This allows the specification to be more readable and better organized. Updates and Improvements Transactional lifecycle callbacks in Stateful Session Beans, only for CMT. In EJB 3.1, the transaction context for lifecyle callback methods (@PostConstruct, @PreDestroy, @PostActivate, @PrePassivate) are defined as shown. @PostConstruct @PreDestroy @PrePassivate @PostActivate Stateless Unspecified Unspecified N/A N/A Stateful Unspecified Unspecified Unspecified Unspecified Singleton Bean's transaction management type Bean's transaction management type N/A N/A In EJB 3.2, stateful session bean lifecycle callback methods can opt-in to be transactional. These methods are then executed in a transaction context as shown. @PostConstruct @PreDestroy @PrePassivate @PostActivate Stateless Unspecified Unspecified N/A N/A Stateful Bean's transaction management type Bean's transaction management type Bean's transaction management type Bean's transaction management type Singleton Bean's transaction management type Bean's transaction management type N/A N/A For example, the following stateful session bean require a new transaction to be started for @PostConstruct and @PreDestroy lifecycle callback methods. @Statefulpublic class HelloBean {   @PersistenceContext(type=PersistenceContextType.EXTENDED)   private EntityManager em;    @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)   @PostConstruct   public void init() {        myEntity = em.find(...);   }   @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)    @PostConstruct    public void destroy() {        em.flush();    }} Notice, by default the lifecycle callback methods are not transactional for backwards compatibility. They need to be explicitly opt-in to be made transactional. Opt-out of passivation for stateful session bean - If your stateful session bean needs to stick around or it has non-serializable field then the bean can be opt-out of passivation as shown. @Stateful(passivationCapable=false)public class HelloBean {    private NonSerializableType ref = ... . . .} Simplified the rules to define all local/remote views of the bean. For example, if the bean is defined as: @Statelesspublic class Bean implements Foo, Bar {    . . .} where Foo and Bar have no annotations of their own, then Foo and Bar are exposed as local views of the bean. The bean may be explicitly marked @Local as @Local@Statelesspublic class Bean implements Foo, Bar {    . . .} then this is the same behavior as explained above, i.e. Foo and Bar are local views. If the bean is marked @Remote as: @Remote@Statelesspublic class Bean implements Foo, Bar {    . . .} then Foo and Bar are remote views. If an interface is marked @Local or @Remote then each interface need to be explicitly marked explicitly to be exposed as a view. For example: @Remotepublic interface Foo { . . . }@Statelesspublic class Bean implements Foo, Bar {    . . .} only exposes one remote interface Foo. Section 4.9.7 from the specification provide more details about this feature. TimerService.getAllTimers is a newly added convenience API that returns all timers in the same bean. This is only for displaying the list of timers as the timer can only be canceled by its owner. Removed restriction to obtain the current class loader, and allow to use java.io package. This is handy if you want to do file access within your beans. JMS 2.0 alignment - A standard list of activation-config properties is now defined destinationLookup connectionFactoryLookup clientId subscriptionName shareSubscriptions Tons of other clarifications through out the spec. Appendix A provide a comprehensive list of changes since EJB 3.1. ThreadContext in Singleton is guaranteed to be thread-safe. Embeddable container implement Autocloseable. A complete replay of Enterprise JavaBeans Today and Tomorrow from JavaOne 2012 can be seen here (click on CON4654_mp4_4654_001 in Media). The specification is still evolving so the actual property or method names or their actual behavior may be different from the currently proposed ones. Are there any improvements that you'd like to see in EJB 3.2 ? The EJB 3.2 Expert Group would love to hear your feedback. An Early Draft of the specification is available. The latest version of the specification can always be downloaded from here. Java EE 7 Specification Status EJB Specification Project JIRA of EJB Specification JSR Expert Group Discussion Archive These features will start showing up in GlassFish 4 Promoted Builds soon.

    Read the article

  • Java EE 7 Survey Results!

    - by reza_rahman
    On November 8th, the Java EE EG posted a survey to gather broad community feedback on a number of critical open issues. For reference, you can find the original survey here. We kept the survey open for about three weeks until November 30th. To our delight, over 1100 developers took time out of their busy lives to let their voices be heard! The results of the survey were sent to the EG on December 12th. The subsequent EG discussion is available here. The exact summary sent to the EG is available here. We would like to take this opportunity to thank each and every one the individuals who took the survey. It is very appreciated, encouraging and worth it's weight in gold. In particular, I tried to capture just some of the high-quality, intelligent, thoughtful and professional comments in the summary to the EG. I highly encourage you to continue to stay involved, perhaps through the Adopt-a-JSR program. We would also like to sincerely thank java.net, JavaLobby, TSS and InfoQ for helping spread the word about the survey. Below is a brief summary of the results... APIs to Add to Java EE 7 Full/Web Profile The first question asked which of the four new candidate APIs (WebSocket, JSON-P, JBatch and JCache) should be added to the Java EE 7 Full and Web profile respectively. As the following graph shows, there was significant support for adding all the new APIs to the full profile: Support is relatively the weakest for Batch 1.0, but still good. A lot of folks saw WebSocket 1.0 as a critical technology with comments such as this one: "A modern web application needs Web Sockets as first class citizens" While it is clearly seen as being important, a number of commenters expressed dissatisfaction with the lack of a higher-level JSON data binding API as illustrated by this comment: "How come we don't have a Data Binding API for JSON" JCache was also seen as being very important as expressed with comments like: "JCache should really be that foundational technology on which other specs have no fear to depend on" The results for the Web Profile is not surprising. While there is strong support for adding WebSocket 1.0 and JSON-P 1.0 to the Web Profile, support for adding JCache 1.0 and Batch 1.0 is relatively weak. There was actually significant opposition to adding Batch 1. 0 (with 51.8% casting a 'No' vote). Enabling CDI by Default The second question asked was whether CDI should be enabled in Java EE environments by default. A significant majority of 73.3% developers supported enabling CDI, only 13.8% opposed. Comments such as these two reflect a strong general support for CDI as well as a desire for better Java EE alignment with CDI: "CDI makes Java EE quite valuable!" "Would prefer to unify EJB, CDI and JSF lifecycles" There is, however, a palpable concern around the performance impact of enabling CDI by default as exemplified by this comment: "Java EE projects in most cases use CDI, hence it is sensible to enable CDI by default when creating a Java EE application. However, there are several issues if CDI is enabled by default: scanning can be slow - not all libs use CDI (hence, scanning is not needed)" Another significant concern appears to be around backwards compatibility and conflict with other JSR 330 implementations like Spring: "I am leaning towards yes, however can easily imagine situations where errors would be caused by automatically activating CDI, especially in cases of backward compatibility where another DI engine (such as Spring and the like) happens to use the same mechanics to inject dependencies and in that case there would be an overlap in injections and probably an uncertain outcome" Some commenters such as this one attempt to suggest solutions to these potential issues: "If you have Spring in use and use javax.inject.Inject then you might get some unexpected behavior that could be equally confusing. I guess there will be a way to switch CDI off. I'm tempted to say yes but am cautious for this reason" Consistent Usage of @Inject The third question was around using CDI/JSR 330 @Inject consistently vs. allowing JSRs to create their own injection annotations. A slight majority of 53.3% developers supported using @Inject consistently across JSRs. 28.8% said using custom injection annotations is OK, while 18.0% were not sure. The vast majority of commenters were strongly supportive of CDI and general Java EE alignment with CDI as illistrated by these comments: "Dependency Injection should be standard from now on in EE. It should use CDI as that is the DI mechanism in EE and is quite powerful. Having a new JSR specific DI mechanism to deal with just means more reflection, more proxies. JSRs should also be constructed to allow some of their objects Injectable. @Inject @TransactionalCache or @Inject @JMXBean etc...they should define the annotations and stereotypes to make their code less procedural. Dog food it. If there is a shortcoming in CDI for a JSR fix it and we will all be grateful" "We're trying to make this a comprehensive platform, right? Injection should be a fundamental part of the platform; everything else should build on the same common infrastructure. Each-having-their-own is just a recipe for chaos and having to learn the same thing 10 different ways" Expanding the Use of @Stereotype The fourth question was about expanding CDI @Stereotype to cover annotations across Java EE beyond just CDI. A significant majority of 62.3% developers supported expanding the use of @Stereotype, only 13.3% opposed. A majority of commenters supported the idea as well as the theme of general CDI/Java EE alignment as expressed in these examples: "Just like defining new types for (compositions of) existing classes, stereotypes can help make software development easier" "This is especially important if many EJB services are decoupled from the EJB component model and can be applied via individual annotations to Java EE components. @Stateless is a nicely compact annotation. Code will not improve if that will have to be applied in the future as @Transactional, @Pooled, @Secured, @Singlethreaded, @...." Some, however, expressed concerns around increased complexity such as this commenter: "Could be very convenient, but I'm afraid if it wouldn't make some important class annotations less visible" Expanding Interceptor Use The final set of questions was about expanding interceptors further across Java EE... A very solid 96.3% of developers wanted to expand interceptor use to all Java EE components. 35.7% even wanted to expand interceptors to other Java EE managed classes. Most developers (54.9%) were not sure if there is any place that injection is supported that should not support interceptors. 32.8% thought any place that supports injection should also support interceptors. Only 12.2% were certain that there are places where injection should be supported but not interceptors. The comments reflected the diversity of opinions, generally supportive of interceptors: "I think interceptors are as fundamental as injection and should be available anywhere in the platform" "The whole usage of interceptors still needs to take hold in Java programming, but it is a powerful technology that needs some time in the Sun. Basically it should become part of Java SE, maybe the next step after lambas?" A distinct chain of thought separated interceptors from filters and listeners: "I think that the Servlet API already provides a rich set of possibilities to hook yourself into different Servlet container events. I don't find a need to 'pollute' the Servlet model with the Interceptors API"

    Read the article

  • Data Source Connection Pool Sizing

    - by Steve Felts
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} One of the most time-consuming procedures of a database application is establishing a connection. The connection pooling of the data source can be used to minimize this overhead.  That argues for using the data source instead of accessing the database driver directly. Configuring the size of the pool in the data source is somewhere between an art and science – this article will try to move it closer to science.  From the beginning, WLS data source has had an initial capacity and a maximum capacity configuration values.  When the system starts up and when it shrinks, initial capacity is used.  The pool can grow to maximum capacity.  Customers found that they might want to set the initial capacity to 0 (more on that later) but didn’t want the pool to shrink to 0.  In WLS 10.3.6, we added minimum capacity to specify the lower limit to which a pool will shrink.  If minimum capacity is not set, it defaults to the initial capacity for upward compatibility.   We also did some work on the shrinking in release 10.3.4 to reduce thrashing; the algorithm that used to shrink to the maximum of the currently used connections or the initial capacity (basically the unused connections were all released) was changed to shrink by half of the unused connections. The simple approach to sizing the pool is to set the initial/minimum capacity to the maximum capacity.  Doing this creates all connections at startup, avoiding creating connections on demand and the pool is stable.  However, there are a number of reasons not to take this simple approach. When WLS is booted, the deployment of the data source includes synchronously creating the connections.  The more connections that are configured in initial capacity, the longer the boot time for WLS (there have been several projects for parallel boot in WLS but none that are available).  Related to creating a lot of connections at boot time is the problem of logon storms (the database gets too much work at one time).   WLS has a solution for that by setting the login delay seconds on the pool but that also increases the boot time. There are a number of cases where it is desirable to set the initial capacity to 0.  By doing that, the overhead of creating connections is deferred out of the boot and the database doesn’t need to be available.  An application may not want WLS to automatically connect to the database until it is actually needed, such as for some code/warm failover configurations. There are a number of cases where minimum capacity should be less than maximum capacity.  Connections are generally expensive to keep around.  They cause state to be kept on both the client and the server, and the state on the backend may be heavy (for example, a process).  Depending on the vendor, connection usage may cost money.  If work load is not constant, then database connections can be freed up by shrinking the pool when connections are not in use.  When using Active GridLink, connections can be created as needed according to runtime load balancing (RLB) percentages instead of by connection load balancing (CLB) during data source deployment. Shrinking is an effective technique for clearing the pool when connections are not in use.  In addition to the obvious reason that there times where the workload is lighter,  there are some configurations where the database and/or firewall conspire to make long-unused or too-old connections no longer viable.  There are also some data source features where the connection has state and cannot be used again unless the state matches the request.  Examples of this are identity based pooling where the connection has a particular owner and XA affinity where the connection is associated with a particular RAC node.  At this point, WLS does not re-purpose (discard/replace) connections and shrinking is a way to get rid of the unused existing connection and get a new one with the correct state when needed. So far, the discussion has focused on the relationship of initial, minimum, and maximum capacity.  Computing the maximum size requires some knowledge about the application and the current number of simultaneously active users, web sessions, batch programs, or whatever access patterns are common.  The applications should be written to only reserve and close connections as needed but multiple statements, if needed, should be done in one reservation (don’t get/close more often than necessary).  This means that the size of the pool is likely to be significantly smaller then the number of users.   If possible, you can pick a size and see how it performs under simulated or real load.  There is a high-water mark statistic (ActiveConnectionsHighCount) that tracks the maximum connections concurrently used.  In general, you want the size to be big enough so that you never run out of connections but no bigger.   It will need to deal with spikes in usage, which is where shrinking after the spike is important.  Of course, the database capacity also has a big influence on the decision since it’s important not to overload the database machine.  Planning also needs to happen if you are running in a Multi-Data Source or Active GridLink configuration and expect that the remaining nodes will take over the connections when one of the nodes in the cluster goes down.  For XA affinity, additional headroom is also recommended.  In summary, setting initial and maximum capacity to be the same may be simple but there are many other factors that may be important in making the decision about sizing.

    Read the article

< Previous Page | 360 361 362 363 364 365 366 367 368 369 370 371  | Next Page >