Search Results

Search found 9271 results on 371 pages for 'whole foods'.

Page 365/371 | < Previous Page | 361 362 363 364 365 366 367 368 369 370 371  | Next Page >

  • What Every Developer Should Know About MSI Components

    - by Alois Kraus
    Hopefully nothing. But if you have to do more than simple XCopy deployment and you need to support updates, upgrades and perhaps side by side scenarios there is no way around MSI. You can create Msi files with a Visual Studio Setup project which is severely limited or you can use the Windows Installer Toolset. I cannot talk about WIX with my German colleagues because WIX has a very special meaning. It is funny to always use the long name when I talk about deployment possibilities. Alternatively you can buy commercial tools which help you to author Msi files but I am not sure how good they are. Given enough pain with existing solutions you can also learn the MSI Apis and create your own packaging solution. If I were you I would use either a commercial visual tool when you do easy deployments or use the free Windows Installer Toolset. Once you know the WIX schema you can create well formed wix xml files easily with any editor. Then you can “compile” from the wxs files your Msi package. Recently I had the “pleasure” to get my hands dirty with C++ (again) and the MSI technology. Installation is a complex topic but after several month of digging into arcane MSI issues I can safely say that there should exist an easier way to install and update files as today. I am not alone with this statement as John Robbins (creator of the cool tool Paraffin) states: “.. It's a brittle and scary API in Windows …”. To help other people struggling with installation issues I present you the advice I (and others) found useful and what will happen if you ignore this advice. What is a MSI file? A MSI file is basically a database with tables which reference each other to control how your un/installation should work. The basic idea is that you declare via these tables what you want to install and MSI controls the how to get your stuff onto or off your machine. Your “stuff” consists usually of files, registry keys, shortcuts and environment variables. Therefore the most important tables are File, Registry, Environment and Shortcut table which define what will be un/installed. The key to master MSI is that every resource (file, registry key ,…) is associated with a MSI component. The actual payload consists of compressed files in the CAB format which can either be embedded into the MSI file or reside beside the MSI file or in a subdirectory below it. To examine MSI files you need Orca a free MSI editor provided by MS. There is also another free editor called Super Orca which does support diffs between MSI and it does not lock the MSI files. But since Orca comes with a shell extension I tend to use only Orca because it is so easy to right click on a MSI file and open it with this tool. How Do I Install It? Double click it. This does work for fresh installations as well as major upgrades. Updates need to be installed via the command line via msiexec /i <msi> REINSTALL=ALL REINSTALLMODE=vomus   This tells the installer to reinstall all already installed features (new features will NOT be installed). The reinstallmode letters do force an overwrite of the old cached package in the %WINDIR%\Installer folder. All files, shortcuts and registry keys are redeployed if they are missing or need to be replaced with a newer version. When things did go really wrong and you want to overwrite everything unconditionally use REINSTALLMODE=vamus. How To Enable MSI Logs? You can download a MSI from Microsoft which installs some registry keys to enable full MSI logging. The log files can be found in your %TEMP% folder and are called MSIxxxx.log. Alternatively you can add to your msiexec command line the option msiexec …. /l*vx <LogFileName> Personally I find it rather strange that * does not mean full logging. To really get all logs I need to add v and x which is documented in the msiexec help but I still find this behavior unintuitive. What are MSI components? The whole MSI logic is bound to the concept of MSI components. Nearly every msi table has a Component column which binds an installable resource to a component. Below are the screenshots of the FeatureComponents and Component table of an example MSI. The Feature table defines basically the feature hierarchy.  To find out what belongs to a feature you need to look at the FeatureComponents table where for each feature the components are listed which will be installed when a feature is installed. The MSI components are defined in the  Component table. This table has as first column the component name and as second column the component id which is a GUID. All resources you want to install belong to a MSI component. Therefore nearly all MSI tables have a Component_ column which contains the component name. If you look e.g. a the File table you see that every file belongs to a component which is true for all other tables which install resources. The component table is the glue between all other tables which contain the resources you want to install. So far so easy. Why is MSI then so complex? Most MSI problems arise from the fact that you did violate a MSI component rule in one or the other way. When you install a feature the reference count for all components belonging to this feature will increase by one. If your component is installed by more than one feature it will get a higher refcount. When you uninstall a feature its refcount will drop by one. Interesting things happen if the component reference count reaches zero: Then all associated resources will be deleted. That looks like a reasonable thing and it is. What it makes complex are the strange component rules you have to follow. Below are some important component rules from the Tao of the Windows Installer … Rule 16: Follow Component Rules Components are a very important part of the Installer technology. They are the means whereby the Installer manages the resources that make up your application. The SDK provides the following guidelines for creating components in your package: Never create two components that install a resource under the same name and target location. If a resource must be duplicated in multiple components, change its name or target location in each component. This rule should be applied across applications, products, product versions, and companies. Two components must not have the same key path file. This is a consequence of the previous rule. The key path value points to a particular file or folder belonging to the component that the installer uses to detect the component. If two components had the same key path file, the installer would be unable to distinguish which component is installed. Two components however may share a key path folder. Do not create a version of a component that is incompatible with all previous versions of the component. This rule should be applied across applications, products, product versions, and companies. Do not create components containing resources that will need to be installed into more than one directory on the user’s system. The installer installs all of the resources in a component into the same directory. It is not possible to install some resources into subdirectories. Do not include more than one COM server per component. If a component contains a COM server, this must be the key path for the component. Do not specify more than one file per component as a target for the Start menu or a Desktop shortcut. … And these rules do not even talk about component ids, update packages and upgrades which you need to understand as well. Lets suppose you install two MSIs (MSI1 and MSI2) which have the same ComponentId but different component names. Both do install the same file. What will happen when you uninstall MSI2?   Hm the file should stay there. But the component names are different. Yes and yes. But MSI uses not use the component name as key for the refcount. Instead the ComponentId column of the Component table which contains a GUID is used as identifier under which the refcount is stored. The components Comp1 and Comp2 are identical from the MSI perspective. After the installation of both MSIs the Component with the Id {100000….} has a refcount of two. After uninstallation of one MSI there is still a refcount of one which drops to zero just as expected when we uninstall the last msi. Then the file which was the same for both MSIs is deleted. You should remember that MSI keeps a refcount across MSIs for components with the same component id. MSI does manage components not the resources you did install. The resources associated with a component are then and only then deleted when the refcount of the component reaches zero.   The dependencies between features, components and resources can be described as relations. m,k are numbers >= 1, n can be 0. Inside a MSI the following relations are valid Feature    1  –> n Components Component    1 –> m Features Component      1  –>  k Resources These relations express that one feature can install several components and features can share components between them. Every (meaningful) component will install at least one resource which means that its name (primary key to stay in database speak) does occur in some other table in the Component column as value which installs some resource. Lets make it clear with an example. We want to install with the feature MainFeature some files a registry key and a shortcut. We can then create components Comp1..3 which are referenced by the resources defined in the corresponding tables.   Feature Component Registry File Shortcuts MainFeature Comp1 RegistryKey1     MainFeature Comp2   File.txt   MainFeature Comp3   File2.txt Shortcut to File2.txt   It is illegal that the same resource is part of more than one component since this would break the refcount mechanism. Lets illustrate this:            Feature ComponentId Resource Reference Count Feature1 {1000-…} File1.txt 1 Feature2 {2000-….} File1.txt 1 The installation part works well but what happens when you uninstall Feature2? Component {20000…} gets a refcount of zero where MSI deletes all resources belonging to this component. In this case File1.txt will be deleted. But Feature1 still has another component {10000…} with a refcount of one which means that the file was deleted too early. You just have ruined your installation. To fix it you then need to click on the Repair button under Add/Remove Programs to let MSI reinstall any missing registry keys, files or shortcuts. The vigilant reader might has noticed that there is more in the Component table. Beside its name and GUID it has also an installation directory, attributes and a KeyPath. The KeyPath is a reference to a file or registry key which is used to detect if the component is already installed. This becomes important when you repair or uninstall a component. To find out if the component is already installed MSI checks if the registry key or file referenced by the KeyPath property does exist. When it does not exist it assumes that it was either already uninstalled (can lead to problems during uninstall) or that it is already installed and all is fine. Why is this detail so important? Lets put all files into one component. The KeyPath should be then one of the files of your component to check if it was installed or not. When your installation becomes corrupt because a file was deleted you cannot repair it with the Repair button under Add/Remove Programs because MSI checks the component integrity via the Resource referenced by its KeyPath. As long as you did not delete the KeyPath file MSI thinks all resources with your component are installed and never executes any repair action. You get even more trouble when you try to remove files during an upgrade (you cannot remove files during an update) from your super component which contains all files. The only way out and therefore best practice is to assign for every resource you want to install an extra component. This ensures painless updatability and repairs and you have much less effort to remove specific files during an upgrade. In effect you get this best practice relation Feature 1  –> n Components Component   1  –>  1 Resources MSI Component Rules Rule 1 – One component per resource Every resource you want to install (file, registry key, value, environment value, shortcut, directory, …) must get its own component which does never change between versions as long as the install location is the same. Penalty If you add more than one resources to a component you will break the repair capability of MSI because the KeyPath is used to check if the component needs repair. MSI ComponentId Files MSI 1.0 {1000} File1-5 MSI 2.0 {2000} File2-5 You want to remove File1 in version 2.0 of your MSI. Since you want to keep the other files you create a new component and add them there. MSI will delete all files if the component refcount of {1000} drops to zero. The files you want to keep are added to the new component {2000}. Ok that does work if your upgrade does uninstall the old MSI first. This will cause the refcount of all previously installed components to reach zero which means that all files present in version 1.0 are deleted. But there is a faster way to perform your upgrade by first installing your new MSI and then remove the old one.  If you choose this upgrade path then you will loose File1-5 after your upgrade and not only File1 as intended by your new component design.   Rule 2 – Only add, never remove resources from a component If you did follow rule 1 you will not need Rule 2. You can add in a patch more resources to one component. That is ok. But you can never remove anything from it. There are tricky ways around that but I do not want to encourage bad component design. Penalty Lets assume you have 2 MSI files which install under the same component one file   MSI1 MSI2 {1000} - ComponentId {1000} – ComponentId File1.txt File2.txt   When you install and uninstall both MSIs you will end up with an installation where either File1 or File2 will be left. Why? It seems that MSI does not store the resources associated with each component in its internal database. Instead Windows will simply query the MSI that is currently uninstalled for all resources belonging to this component. Since it will find only one file and not two it will only uninstall one file. That is the main reason why you never can remove resources from a component!   Rule 3 Never Remove A Component From an Update MSI. This is the same as if you change the GUID of a component by accident for your new update package. The resulting update package will not contain all components from the previously installed package. Penalty When you remove a component from a feature MSI will set the feature state during update to Advertised and log a warning message into its log file when you did enable MSI logging. SELMGR: ComponentId '{2DCEA1BA-3E27-E222-484C-D0D66AEA4F62}' is registered to feature 'xxxxxxx, but is not present in the Component table.  Removal of components from a feature is not supported! MSI (c) (24:44) [07:53:13:436]: SELMGR: Removal of a component from a feature is not supported Advertised means that MSI treats all components of this feature as not installed. As a consequence during uninstall nothing will be removed since it is not installed! This is not only bad because uninstall does no longer work but this feature will also not get the required patches. All other features which have followed component versioning rules for update packages will be updated but the one faulty feature will not. This results in very hard to find bugs why an update was only partially successful. Things got better with Windows Installer 4.5 but you cannot rely on that nobody will use an older installer. It is a good idea to add to your update msiexec call MSIENFORCEUPGRADECOMPONENTRULES=1 which will abort the installation if you did violate this rule.

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • When is a SQL function not a function?

    - by Rob Farley
    Should SQL Server even have functions? (Oh yeah – this is a T-SQL Tuesday post, hosted this month by Brad Schulz) Functions serve an important part of programming, in almost any language. A function is a piece of code that is designed to return something, as opposed to a piece of code which isn’t designed to return anything (which is known as a procedure). SQL Server is no different. You can call stored procedures, even from within other stored procedures, and you can call functions and use these in other queries. Stored procedures might query something, and therefore ‘return data’, but a function in SQL is considered to have the type of the thing returned, and can be used accordingly in queries. Consider the internal GETDATE() function. SELECT GETDATE(), SomeDatetimeColumn FROM dbo.SomeTable; There’s no logical difference between the field that is being returned by the function and the field that’s being returned by the table column. Both are the datetime field – if you didn’t have inside knowledge, you wouldn’t necessarily be able to tell which was which. And so as developers, we find ourselves wanting to create functions that return all kinds of things – functions which look up values based on codes, functions which do string manipulation, and so on. But it’s rubbish. Ok, it’s not all rubbish, but it mostly is. And this isn’t even considering the SARGability impact. It’s far more significant than that. (When I say the SARGability aspect, I mean “because you’re unlikely to have an index on the result of some function that’s applied to a column, so try to invert the function and query the column in an unchanged manner”) I’m going to consider the three main types of user-defined functions in SQL Server: Scalar Inline Table-Valued Multi-statement Table-Valued I could also look at user-defined CLR functions, including aggregate functions, but not today. I figure that most people don’t tend to get around to doing CLR functions, and I’m going to focus on the T-SQL-based user-defined functions. Most people split these types of function up into two types. So do I. Except that most people pick them based on ‘scalar or table-valued’. I’d rather go with ‘inline or not’. If it’s not inline, it’s rubbish. It really is. Let’s start by considering the two kinds of table-valued function, and compare them. These functions are going to return the sales for a particular salesperson in a particular year, from the AdventureWorks database. CREATE FUNCTION dbo.FetchSales_inline(@salespersonid int, @orderyear int) RETURNS TABLE AS  RETURN (     SELECT e.LoginID as EmployeeLogin, o.OrderDate, o.SalesOrderID     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101') ) ; GO CREATE FUNCTION dbo.FetchSales_multi(@salespersonid int, @orderyear int) RETURNS @results TABLE (     EmployeeLogin nvarchar(512),     OrderDate datetime,     SalesOrderID int     ) AS BEGIN     INSERT @results (EmployeeLogin, OrderDate, SalesOrderID)     SELECT e.LoginID, o.OrderDate, o.SalesOrderID     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101')     ;     RETURN END ; GO You’ll notice that I’m being nice and responsible with the use of the DATEADD function, so that I have SARGability on the OrderDate filter. Regular readers will be hoping I’ll show what’s going on in the execution plans here. Here I’ve run two SELECT * queries with the “Show Actual Execution Plan” option turned on. Notice that the ‘Query cost’ of the multi-statement version is just 2% of the ‘Batch cost’. But also notice there’s trickery going on. And it’s nothing to do with that extra index that I have on the OrderDate column. Trickery. Look at it – clearly, the first plan is showing us what’s going on inside the function, but the second one isn’t. The second one is blindly running the function, and then scanning the results. There’s a Sequence operator which is calling the TVF operator, and then calling a Table Scan to get the results of that function for the SELECT operator. But surely it still has to do all the work that the first one is doing... To see what’s actually going on, let’s look at the Estimated plan. Now, we see the same plans (almost) that we saw in the Actuals, but we have an extra one – the one that was used for the TVF. Here’s where we see the inner workings of it. You’ll probably recognise the right-hand side of the TVF’s plan as looking very similar to the first plan – but it’s now being called by a stack of other operators, including an INSERT statement to be able to populate the table variable that the multi-statement TVF requires. And the cost of the TVF is 57% of the batch! But it gets worse. Let’s consider what happens if we don’t need all the columns. We’ll leave out the EmployeeLogin column. Here, we see that the inline function call has been simplified down. It doesn’t need the Employee table. The join is redundant and has been eliminated from the plan, making it even cheaper. But the multi-statement plan runs the whole thing as before, only removing the extra column when the Table Scan is performed. A multi-statement function is a lot more powerful than an inline one. An inline function can only be the result of a single sub-query. It’s essentially the same as a parameterised view, because views demonstrate this same behaviour of extracting the definition of the view and using it in the outer query. A multi-statement function is clearly more powerful because it can contain far more complex logic. But a multi-statement function isn’t really a function at all. It’s a stored procedure. It’s wrapped up like a function, but behaves like a stored procedure. It would be completely unreasonable to expect that a stored procedure could be simplified down to recognise that not all the columns might be needed, but yet this is part of the pain associated with this procedural function situation. The biggest clue that a multi-statement function is more like a stored procedure than a function is the “BEGIN” and “END” statements that surround the code. If you try to create a multi-statement function without these statements, you’ll get an error – they are very much required. When I used to present on this kind of thing, I even used to call it “The Dangers of BEGIN and END”, and yes, I’ve written about this type of thing before in a similarly-named post over at my old blog. Now how about scalar functions... Suppose we wanted a scalar function to return the count of these. CREATE FUNCTION dbo.FetchSales_scalar(@salespersonid int, @orderyear int) RETURNS int AS BEGIN     RETURN (         SELECT COUNT(*)         FROM Sales.SalesOrderHeader AS o         LEFT JOIN HumanResources.Employee AS e         ON e.EmployeeID = o.SalesPersonID         WHERE o.SalesPersonID = @salespersonid         AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')         AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101')     ); END ; GO Notice the evil words? They’re required. Try to remove them, you just get an error. That’s right – any scalar function is procedural, despite the fact that you wrap up a sub-query inside that RETURN statement. It’s as ugly as anything. Hopefully this will change in future versions. Let’s have a look at how this is reflected in an execution plan. Here’s a query, its Actual plan, and its Estimated plan: SELECT e.LoginID, y.year, dbo.FetchSales_scalar(p.SalesPersonID, y.year) AS NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID; We see here that the cost of the scalar function is about twice that of the outer query. Nicely, the query optimizer has worked out that it doesn’t need the Employee table, but that’s a bit of a red herring here. There’s actually something way more significant going on. If I look at the properties of that UDF operator, it tells me that the Estimated Subtree Cost is 0.337999. If I just run the query SELECT dbo.FetchSales_scalar(281,2003); we see that the UDF cost is still unchanged. You see, this 0.0337999 is the cost of running the scalar function ONCE. But when we ran that query with the CROSS JOIN in it, we returned quite a few rows. 68 in fact. Could’ve been a lot more, if we’d had more salespeople or more years. And so we come to the biggest problem. This procedure (I don’t want to call it a function) is getting called 68 times – each one between twice as expensive as the outer query. And because it’s calling it in a separate context, there is even more overhead that I haven’t considered here. The cheek of it, to say that the Compute Scalar operator here costs 0%! I know a number of IT projects that could’ve used that kind of costing method, but that’s another story that I’m not going to go into here. Let’s look at a better way. Suppose our scalar function had been implemented as an inline one. Then it could have been expanded out like a sub-query. It could’ve run something like this: SELECT e.LoginID, y.year, (SELECT COUNT(*)     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = p.SalesPersonID     AND o.OrderDate >= DATEADD(year,y.year-2000,'20000101')     AND o.OrderDate < DATEADD(year,y.year-2000+1,'20000101')     ) AS NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID; Don’t worry too much about the Scan of the SalesOrderHeader underneath a Nested Loop. If you remember from plenty of other posts on the matter, execution plans don’t push the data through. That Scan only runs once. The Index Spool sucks the data out of it and populates a structure that is used to feed the Stream Aggregate. The Index Spool operator gets called 68 times, but the Scan only once (the Number of Executions property demonstrates this). Here, the Query Optimizer has a full picture of what’s being asked, and can make the appropriate decision about how it accesses the data. It can simplify it down properly. To get this kind of behaviour from a function, we need it to be inline. But without inline scalar functions, we need to make our function be table-valued. Luckily, that’s ok. CREATE FUNCTION dbo.FetchSales_inline2(@salespersonid int, @orderyear int) RETURNS table AS RETURN (SELECT COUNT(*) as NumSales     FROM Sales.SalesOrderHeader AS o     LEFT JOIN HumanResources.Employee AS e     ON e.EmployeeID = o.SalesPersonID     WHERE o.SalesPersonID = @salespersonid     AND o.OrderDate >= DATEADD(year,@orderyear-2000,'20000101')     AND o.OrderDate < DATEADD(year,@orderyear-2000+1,'20000101') ); GO But we can’t use this as a scalar. Instead, we need to use it with the APPLY operator. SELECT e.LoginID, y.year, n.NumSales FROM (VALUES (2001),(2002),(2003),(2004)) AS y (year) CROSS JOIN Sales.SalesPerson AS p LEFT JOIN HumanResources.Employee AS e ON e.EmployeeID = p.SalesPersonID OUTER APPLY dbo.FetchSales_inline2(p.SalesPersonID, y.year) AS n; And now, we get the plan that we want for this query. All we’ve done is tell the function that it’s returning a table instead of a single value, and removed the BEGIN and END statements. We’ve had to name the column being returned, but what we’ve gained is an actual inline simplifiable function. And if we wanted it to return multiple columns, it could do that too. I really consider this function to be superior to the scalar function in every way. It does need to be handled differently in the outer query, but in many ways it’s a more elegant method there too. The function calls can be put amongst the FROM clause, where they can then be used in the WHERE or GROUP BY clauses without fear of calling the function multiple times (another horrible side effect of functions). So please. If you see BEGIN and END in a function, remember it’s not really a function, it’s a procedure. And then fix it. @rob_farley

    Read the article

  • CLSF & CLK 2013 Trip Report by Jeff Liu

    - by jamesmorris
    This is a contributed post from Jeff Liu, lead XFS developer for the Oracle mainline Linux kernel team. Recently, I attended both the China Linux Storage and Filesystem workshop (CLSF), and the China Linux Kernel conference (CLK), which were held in Shanghai. Here are the highlights for both events. CLSF - 17th October XFS update (led by Jeff Liu) XFS keeps rapid progress with a lot of changes, especially focused on the infrastructure/performance improvements as well as  new feature development.  This can be reflected with a sample statistics among XFS/Ext4+JBD2/Btrfs via: # git diff --stat --minimal -C -M v3.7..v3.12-rc4 -- fs/xfs|fs/ext4+fs/jbd2|fs/btrfs XFS: 141 files changed, 27598 insertions(+), 19113 deletions(-) Ext4+JBD2: 39 files changed, 10487 insertions(+), 5454 deletions(-) Btrfs: 70 files changed, 19875 insertions(+), 8130 deletions(-) What made up those changes in XFS? Self-describing metadata(CRC32c). This is a new feature and it contributed about 70% code changes, it can be enabled via `mkfs.xfs -m crc=1 /dev/xxx` for v5 superblock. Transaction log space reservation improvements. With this change, we can calculate the log space reservation at mount time rather than runtime to reduce the the CPU overhead. User namespace support. So both XFS and USERNS can be enabled on kernel configuration begin from Linux 3.10. Thanks Dwight Engen's efforts for this thing. Split project/group quota inodes. Originally, project quota can not be enabled with group quota at the same time because they were share the same quota file inode, now it works but only for v5 super block. i.e, CRC enabled. CONFIG_XFS_WARN, an new lightweight runtime debugger which can be deployed in production environment. Readahead log object recovery, this change can speed up the log replay progress significantly. Speculative preallocation inode tracking, clearing and throttling. The main purpose is to deal with inodes with post-EOF space due to speculative preallocation, support improved quota management to free up a significant amount of unwritten space when at or near EDQUOT. It support backgroup scanning which occurs on a longish interval(5 mins by default, tunable), and on-demand scanning/trimming via ioctl(2). Bitter arguments ensued from this session, especially for the comparison between Ext4 and Btrfs in different areas, I have to spent a whole morning of the 1st day answering those questions. We basically agreed on XFS is the best choice in Linux nowadays because: Stable, XFS has a good record in stability in the past 10 years. Fengguang Wu who lead the 0-day kernel test project also said that he has observed less error than other filesystems in the past 1+ years, I own it to the XFS upstream code reviewer, they always performing serious code review as well as testing. Good performance for large/small files, XFS does not works very well for small files has already been an old story for years. Best choice (maybe) for distributed PB filesystems. e.g, Ceph recommends delopy OSD daemon on XFS because Ext4 has limited xattr size. Best choice for large storage (>16TB). Ext4 does not support a single file more than around 15.95TB. Scalability, any objection to XFS is best in this point? :) XFS is better to deal with transaction concurrency than Ext4, why? The maximum size of the log in XFS is 2038MB compare to 128MB in Ext4. Misc. Ext4 is widely used and it has been proved fast/stable in various loads and scenarios, XFS just need more customers, and Btrfs is still on the road to be a manhood. Ceph Introduction (Led by Li Wang) This a hot topic.  Li gave us a nice introduction about the design as well as their current works. Actually, Ceph client has been included in Linux kernel since 2.6.34 and supported by Openstack since Folsom but it seems that it has not yet been widely deployment in production environment. Their major work is focus on the inline data support to separate the metadata and data storage, reduce the file access time, i.e, a file access need communication twice, fetch the metadata from MDS and then get data from OSD, and also, the small file access is limited by the network latency. The solution is, for the small files they would like to store the data at metadata so that when accessing a small file, the metadata server can push both metadata and data to the client at the same time. In this way, they can reduce the overhead of calculating the data offset and save the communication to OSD. For this feature, they have only run some small scale testing but really saw noticeable improvements. Test environment: Intel 2 CPU 12 Core, 64GB RAM, Ubuntu 12.04, Ceph 0.56.6 with 200GB SATA disk, 15 OSD, 1 MDS, 1 MON. The sequence read performance for 1K size files improved about 50%. I have asked Li and Zheng Yan (the core developer of Ceph, who also worked on Btrfs) whether Ceph is really stable and can be deployed at production environment for large scale PB level storage, but they can not give a positive answer, looks Ceph even does not spread over Dreamhost (subject to confirmation). From Li, they only deployed Ceph for a small scale storage(32 nodes) although they'd like to try 6000 nodes in the future. Improve Linux swap for Flash storage (led by Shaohua Li) Because of high density, low power and low price, flash storage (SSD) is a good candidate to partially replace DRAM. A quick answer for this is using SSD as swap. But Linux swap is designed for slow hard disk storage, so there are a lot of challenges to efficiently use SSD for swap. SWAPOUT swap_map scan swap_map is the in-memory data structure to track swap disk usage, but it is a slow linear scan. It will become a bottleneck while finding many adjacent pages in the use of SSD. Shaohua Li have changed it to a cluster(128K) list, resulting in O(1) algorithm. However, this apporoach needs restrictive cluster alignment and only enabled for SSD. IO pattern In most cases, the swap io is in interleaved pattern because of mutiple reclaimers or a free cluster is shared by all reclaimers. Even though block layer can merge interleaved IO to some extent, but we cannot count on it completely. Hence the per-cpu cluster is added base on the previous change, it can help reclaimer do sequential IO and the block layer will be easier to merge IO. TLB flush: If we're reclaiming one active page, we should first move the page from active lru list to inactive lru list, and then reclaim the page from inactive lru to swap it out. During the process, we need to clear PTE twice: first is 'A'(ACCESS) bit, second is 'P'(PRESENT) bit. Processors need to send lots of ipi which make the TLB flush really expensive. Some works have been done to improve this, including rework smp_call_functiom_many() or remove the first TLB flush in x86, but there still have some arguments here and only parts of works have been pushed to mainline. SWAPIN: Page fault does iodepth=1 sync io, but it's a little waste if only issue a page size's IO. The obvious solution is doing swap readahead. But the current in-kernel swap readahead is arbitary(always 8 pages), and it always doesn't perform well for both random and sequential access workload. Shaohua introduced a new flag for madvise(MADV_WILLNEED) to do swap prefetch, so the changes happen in userspace API and leave the in-kernel readahead unchanged(but I think some improvement can also be done here). SWAP discard As we know, discard is important for SSD write throughout, but the current swap discard implementation is synchronous. He changed it to async discard which allow discard and write run in the same time. Meanwhile, the unit of discard is also optimized to cluster. Misc: lock contention For many concurrent swapout and swapin , the lock contention such as anon_vma or swap_lock is high, so he changed the swap_lock to a per-swap lock. But there still have some lock contention in very high speed SSD because of swapcache address_space lock. Zproject (led by Bob Liu) Bob gave us a very nice introduction about the current memory compression status. Now there are 3 projects(zswap/zram/zcache) which all aim at smooth swap IO storm and promote performance, but they all have their own pros and cons. ZSWAP It is implemented based on frontswap API and it uses a dynamic allocater named Zbud to allocate free pages. Zbud means pairs of zpages are "buddied" and it can only store at most two compressed pages in one page frame, so the max compress ratio is 50%. Each page frame is lru-linked and can do shink in memory pressure. If the compressed memory pool reach its limitation, shink or reclaim happens. It decompress the page frame into two new allocated pages and then write them to real swap device, but it can fail when allocating the two pages. ZRAM Acts as a compressed ramdisk and used as swap device, and it use zsmalloc as its allocator which has high density but may have fragmentation issues. Besides, page reclaim is hard since it will need more pages to uncompress and free just one page. ZRAM is preferred by embedded system which may not have any real swap device. Now both ZRAM and ZSWAP are in driver/staging tree, and in the mm community there are some disscussions of merging ZRAM into ZSWAP or viceversa, but no agreement yet. ZCACHE Handles file page compression but it is removed out of staging recently. From industry (led by Tang Jie, LSI) An LSI engineer introduced several new produces to us. The first is raid5/6 cards that it use full stripe writes to improve performance. The 2nd one he introduced is SandForce flash controller, who can understand data file types (data entropy) to reduce write amplification (WA) for nearly all writes. It's called DuraWrite and typical WA is 0.5. What's more, if enable its Dynamic Logical Capacity function module, the controller can do data compression which is transparent to upper layer. LSI testing shows that with this virtual capacity enables 1x TB drive can support up to 2x TB capacity, but the application must monitor free flash space to maintain optimal performance and to guard against free flash space exhaustion. He said the most useful application is for datebase. Another thing I think it's worth to mention is that a NV-DRAM memory in NMR/Raptor which is directly exposed to host system. Applications can directly access the NV-DRAM via a memory address - using standard system call mmap(). He said that it is very useful for database logging now. This kind of NVM produces are beginning to appear in recent years, and it is said that Samsung is building a research center in China for related produces. IMHO, NVM will bring an effect to current os layer especially on file system, e.g. its journaling may need to redesign to fully utilize these nonvolatile memory. OCFS2 (led by Canquan Shen) Without a doubt, HuaWei is the biggest contributor to OCFS2 in the past two years. They have posted 46 upstream patches and 39 patches have been merged. Their current project is based on 32/64 nodes cluster, but they also tried 128 nodes at the experimental stage. The major work they are working is to support ATS (atomic test and set), it can be works with DLM at the same time. Looks this idea is inspired by the vmware VMFS locking, i.e, http://blogs.vmware.com/vsphere/2012/05/vmfs-locking-uncovered.html CLK - 18th October 2013 Improving Linux Development with Better Tools (Andi Kleen) This talk focused on how to find/solve bugs along with the Linux complexity growing. Generally, we can do this with the following kind of tools: Static code checkers tools. e.g, sparse, smatch, coccinelle, clang checker, checkpatch, gcc -W/LTO, stanse. This can help check a lot of things, simple mistakes, complex problems, but the challenges are: some are very slow, false positives, may need a concentrated effort to get false positives down. Especially, no static checker I found can follow indirect calls (“OO in C”, common in kernel): struct foo_ops { int (*do_foo)(struct foo *obj); } foo->do_foo(foo); Dynamic runtime checkers, e.g, thread checkers, kmemcheck, lockdep. Ideally all kernel code would come with a test suite, then someone could run all the dynamic checkers. Fuzzers/test suites. e.g, Trinity is a great tool, it finds many bugs, but needs manual model for each syscall. Modern fuzzers around using automatic feedback, but notfor kernel yet: http://taviso.decsystem.org/making_software_dumber.pdf Debuggers/Tracers to understand code, e.g, ftrace, can dump on events/oops/custom triggers, but still too much overhead in many cases to run always during debug. Tools to read/understand source, e.g, grep/cscope work great for many cases, but do not understand indirect pointers (OO in C model used in kernel), give us all “do_foo” instances: struct foo_ops { int (*do_foo)(struct foo *obj); } = { .do_foo = my_foo }; foo>do_foo(foo); That would be great to have a cscope like tool that understands this based on types/initializers XFS: The High Performance Enterprise File System (Jeff Liu) [slides] I gave a talk for introducing the disk layout, unique features, as well as the recent changes.   The slides include some charts to reflect the performances between XFS/Btrfs/Ext4 for small files. About a dozen users raised their hands when I asking who has experienced with XFS. I remembered that when I asked the same question in LinuxCon/Japan, only 3 people raised their hands, but they are Chris Mason, Ric Wheeler, and another attendee. The attendee questions were mainly focused on stability, and comparison with other file systems. Linux Containers (Feng Gao) The speaker introduced us that the purpose for those kind of namespaces, include mount/UTS/IPC/Network/Pid/User, as well as the system API/ABI. For the userspace tools, He mainly focus on the Libvirt LXC rather than us(LXC). Libvirt LXC is another userspace container management tool, implemented as one type of libvirt driver, it can manage containers, create namespace, create private filesystem layout for container, Create devices for container and setup resources controller via cgroup. In this talk, Feng also mentioned another two possible new namespaces in the future, the 1st is the audit, but not sure if it should be assigned to user namespace or not. Another is about syslog, but the question is do we really need it? In-memory Compression (Bob Liu) Same as CLSF, a nice introduction that I have already mentioned above. Misc There were some other talks related to ACPI based memory hotplug, smart wake-affinity in scheduler etc., but my head is not big enough to record all those things. -- Jeff Liu

    Read the article

  • eBooks on iPad vs. Kindle: More Debate than Smackdown

    - by andrewbrust
    When the iPad was presented at its San Francisco launch event on January 28th, Steve Jobs spent a significant amount of time explaining how well the device would serve as an eBook reader. He showed the iBooks reader application and iBookstore and laid down the gauntlet before Amazon and its beloved Kindle device. Almost immediately afterwards, criticism came rushing forth that the iPad could never beat the Kindle for book reading. The curious part of that criticism is that virtually no one offering it had actually used the iPad yet. A few weeks later, on April 3rd, the iPad was released for sale in the United States. I bought one on that day and in the few additional weeks that have elapsed, I’ve given quite a workout to most of its capabilities, including its eBook features. I’ve also spent some time with the Kindle, albeit a first-generation model, to see how it actually compares to the iPad. I had some expectations going in, but I came away with conclusions about each device that were more scenario-based than absolute. I present my findings to you here.   Vital Statistics Let’s start with an inventory of each device’s underlying technology. The iPad has a color, backlit LCD screen and an on-screen keyboard. It has a battery which, on a full charge, lasts anywhere from 6-10 hours. The Kindle offers a monochrome, reflective E Ink display, a physical keyboard and a battery that on my first gen loaner unit can go up to a week between charges (Amazon claims the battery on the Kindle 2 can last up to 2 weeks on a single charge). The Kindle connects to Amazon’s Kindle Store using a 3G modem (the technology and network vary depending on the model) that incurs no airtime service charges whatsoever. The iPad units that are on-sale today work over WiFi only. 3G-equipped models will be on sale shortly and will command a $130 premium over their WiFi-only counterparts. 3G service on the iPad, in the U.S. from AT&T, will be fee-based, with a 250MB plan at $14.99 per month and an unlimited plan at $29.99. No contract is required for 3G service. All these tech specs aside, I think a more useful observation is that the iPad is a multi-purpose Internet-connected entertainment device, while the Kindle is a dedicated reading device. The question is whether those differences in design and intended use create a clear-cut winner for reading electronic publications. Let’s take a look at each device, in isolation, now.   Kindle To me, what’s most innovative about the Kindle is its E Ink display. E Ink really looks like ink on a sheet of paper. It requires no backlight, it’s fully visible in direct sunlight and it causes almost none of the eyestrain that LCD-based computer display technology (like that used on the iPad) does. It’s really versatile in an all-around way. Forgive me if this sounds precious, but reading on it is really a joy. In fact, it’s a genuinely relaxing experience. Through the Kindle Store, Amazon allows users to download books (including audio books), magazines, newspapers and blog feeds. Books and magazines can be purchased either on a single-issue basis or as an annual subscription. Books, of course, are purchased singly. Oddly, blogs are not free, but instead carry a monthly subscription fee, typically $1.99. To me this is ludicrous, but I suppose the free 3G service is partially to blame. Books and magazine issues download quickly. Magazine and blog subscriptions cause new issues or posts to be pushed to your device on an automated basis. Available blogs include 9000-odd feeds that Amazon offers on the Kindle Store; unless I missed something, arbitrary RSS feeds are not supported (though there are third party workarounds to this limitation). The shopping experience is integrated well, has an huge selection, and offers certain graphical perks. For example, magazine and newspaper logos are displayed in menus, and book cover thumbnails appear as well. A simple search mechanism is provided and text entry through the physical keyboard is relatively painless. It’s very easy and straightforward to enter the store, find something you like and start reading it quickly. If you know what you’re looking for, it’s even faster. Given Kindle’s high portability, very reliable battery, instant-on capability and highly integrated content acquisition, it makes reading on whim, and in random spurts of downtime, very attractive. The Kindle’s home screen lists all of your publications, and easily lets you select one, then start reading it. Once opened, publications display in crisp, attractive text that is adjustable in size. “Turning” pages is achieved through buttons dedicated to the task. Notes can be recorded, bookmarks can be saved and pages can be saved as clippings. I am not an avid book reader, and yet I found the Kindle made it really fun, convenient and soothing to read. There’s something about the easy access to the material and the simplicity of the display that makes the Kindle seduce you into chilling out and reading page after page. On the other hand, the Kindle has an awkward navigation interface. While menus are displayed clearly on the screen, the method of selecting menu items is tricky: alongside the right-hand edge of the main display is a thin column that acts as a second display. It has a white background, and a scrollable silver cursor that is moved up or down through the use of the device’s scrollwheel. Picking a menu item on the main display involves scrolling the silver cursor to a position parallel to that menu item and pushing the scrollwheel in. This navigation technique creates a disconnect, literally. You don’t really click on a selection so much as you gesture toward it. I got used to this technique quickly, but I didn’t love it. It definitely created a kind of anxiety in me, making me feel the need to speed through menus and get to my destination document quickly. Once there, I could calm down and relax. Books are great on the Kindle. Magazines and newspapers much less so. I found the rendering of photographs, and even illustrations, to be unacceptably crude. For this reason, I expect that reading textbooks on the Kindle may leave students wanting. I found that the original flow and layout of any publication was sacrificed on the Kindle. In effect, browsing a magazine or newspaper was almost impossible. Reading the text of individual articles was enjoyable, but having to read this way made the whole experience much more “a la carte” than cohesive and thematic between articles. I imagine that for academic journals this is ideal, but for consumer publications it imposes a stripped-down, low-fidelity experience that evokes a sense of deprivation. In general, the Kindle is great for reading text. For just about anything else, especially activity that involves exploratory browsing, meandering and short-attention-span reading, it presents a real barrier to entry and adoption. Avid book readers will enjoy the Kindle (if they’re not already). It’s a great device for losing oneself in a book over long sittings. Multitaskers who are more interested in periodicals, be they online or off, will like it much less, as they will find compromise, and even sacrifice, to be palpable.   iPad The iPad is a very different device from the Kindle. While the Kindle is oriented to pages of text, the iPad orbits around applications and their interfaces. Be it the pinch and zoom experience in the browser, the rich media features that augment content on news and weather sites, or the ability to interact with social networking services like Twitter, the iPad is versatile. While it shares a slate-like form factor with the Kindle, it’s effectively an elegant personal computer. One of its many features is the iBook application and integration of the iBookstore. But it’s a multi-purpose device. That turns out to be good and bad, depending on what you’re reading. The iBookstore is great for browsing. It’s color, rich animation-laden user interface make it possible to shop for books, rather than merely search and acquire them. Unfortunately, its selection is rather sparse at the moment. If you’re looking for a New York Times bestseller, or other popular titles, you should be OK. If you want to read something more specialized, it’s much harder. Unlike the awkward navigation interface of the Kindle, the iPad offers a nearly flawless touch-screen interface that seduces the user into tinkering and kibitzing every bit as much as the Kindle lulls you into a deep, concentrated read. It’s a dynamic and interactive device, whereas the Kindle is static and passive. The iBook reader is slick and fun. Use the iPad in landscape mode and you can read the book in 2-up (left/right 2-page) display; use it in portrait mode and you can read one page at a time. Rather than clicking a hardware button to turn pages, you simply drag and wipe from right-to-left to flip the single or right-hand page. The page actually travels through an animated path as it would in a physical book. The intuitiveness of the interface is uncanny. The reader also accommodates saving of bookmarks, searching of the text, and the ability to highlight a word and look it up in a dictionary. Pages display brightly and clearly. They’re easy to read. But the backlight and the glare made me less comfortable than I was with the Kindle. The knowledge that completely different applications (including the Web and email and Twitter) were just a few taps away made me antsy and very tempted to task-switch. The knowledge that battery life is an issue created subtle discomfort. If the Kindle makes you feel like you’re in a library reading room, then the iPad makes you feel, at best, like you’re under fluorescent lights at a Barnes and Noble or Borders store. If you’re lucky, you’d be on a couch or at a reading table in the store, but you might also be standing up, in the aisles. Clearly, I didn’t find this conducive to focused and sustained reading. But that may have more to do with my own tendency to read periodicals far more than books, and my neurotic . And, truth be known, the book reading experience, when not explicitly compared to Kindle’s, was still pleasant. It is also important to point out that Kindle Store-sourced books can be read on the iPad through a Kindle reader application, from Amazon, specific to the device. This offered a less rich experience than the iBooks reader, but it was completely adequate. Despite the Kindle brand of the reader, however, it offered little in terms of simulating the reading experience on its namesake device. When it comes to periodicals, the iPad wins hands down. Magazines, even if merely scanned images of their print editions, read on the iPad in a way that felt similar to reading hard copy. The full color display, touch navigation and even the ability to render advertisements in their full glory makes the iPad a great way to read through any piece of work that is measured in pages, rather than chapters. There are many ways to get magazines and newspapers onto the iPad, including the Zinio reader, and publication-specific applications like the Wall Street Journal’s and Popular Science’s. The New York Times’ free Editors’ Choice application offers a Times Reader-like interface to a subset of the Gray Lady’s daily content. The completely Web-based but iPad-optimized Times Skimmer site (at www.nytimes.com/timesskimmer) works well too. Even conventional Web sites themselves can be read much like magazines, given the iPad’s ability to zoom in on the text and crop out advertisements on the margins. While the Kindle does have an experimental Web browser, it reminded me a lot of early mobile phone browsers, only in a larger size. For text-heavy sites with simple layout, it works fine. For just about anything else, it becomes more trouble than it’s worth. And given the way magazine articles make me think of things I want to look up online, I think that’s a real liability for the Kindle.   Summing Up What I came to realize is that the Kindle isn’t so much a computer or even an Internet device as it is a printer. While it doesn’t use physical paper, it still renders its content a page at a time, just like a laser printer does, and its output appears strikingly similar. You can read the rendered text, but you can’t interact with it in any way. That’s why the navigation requires a separate cursor display area. And because of the page-oriented rendering behavior, turning pages causes a flash on the display and requires a sometimes long pause before the next page is rendered. The good side of this is that once the page is generated, no battery power is required to display it. That makes for great battery life, optimal viewing under most lighting conditions (as long as there is some light) and low-eyestrain text-centric display of content. The Kindle is highly portable, has an excellent selection in its store and is refreshingly distraction-free. All of this is ideal for reading books. And iPad doesn’t offer any of it. What iPad does offer is versatility, variety, richness and luxury. It’s flush with accoutrements even if it’s low on focused, sustained text display. That makes it inferior to the Kindle for book reading. But that also makes it better than the Kindle for almost everything else. As such, and given that its book reading experience is still decent (even if not superior), I think the iPad will give Kindle a run for its money. True book lovers, and people on a budget, will want the Kindle. People with a robust amount of discretionary income may want both devices. Everyone else who is interested in a slate form factor e-reading device, especially if they also wish to have leisure-friendly Internet access, will likely choose the iPad exclusively. One thing is for sure: iPad has reduced Kindle’s market, and may have shifted its mass market potential to a mere niche play. If Amazon is smart, it will improve its iPad-based Kindle reader app significantly. It can then leverage the iPad channel as a significant market for the Kindle Store. After all, selling the eBooks themselves is what Amazon should care most about.

    Read the article

  • Windows Azure Evolution &ndash; Caching (Preview)

    - by Shaun
    Caching is a popular topic when we are building a high performance and high scalable system not only on top of the cloud platform but the on-premise environment as well. On March 2011 the Windows Azure AppFabric Caching had been production launched. It provides an in-memory, distributed caching service over the cloud. And now, in this June 2012 update, the cache team announce a grand new caching solution on Windows Azure, which is called Windows Azure Caching (Preview). And the original Windows Azure AppFabric Caching was renamed to Windows Azure Shared Caching.   What’s Caching (Preview) If you had been using the Shared Caching you should know that it is constructed by a bunch of cache servers. And when you want to use you should firstly create a cache account from the developer portal and specify the size you want to use, which means how much memory you can use to store your data that wanted to be cached. Then you can add, get and remove them through your code through the cache URL. The Shared Caching is a multi-tenancy system which host all cached items across all users. So you don’t know which server your data was located. This caching mode works well and can take most of the cases. But it has some problems. The first one is the performance. Since the Shared Caching is a multi-tenancy system, which means all cache operations should go through the Shared Caching gateway and then routed to the server which have the data your are looking for. Even though there are some caches in the Shared Caching system it also takes time from your cloud services to the cache service. Secondary, the Shared Caching service works as a block box to the developer. The only thing we know is my cache endpoint, and that’s all. Someone may satisfied since they don’t want to care about anything underlying. But if you need to know more and want more control that’s impossible in the Shared Caching. The last problem would be the price and cost-efficiency. You pay the bill based on how much cache you requested per month. But when we host a web role or worker role, it seldom consumes all of the memory and CPU in the virtual machine (service instance). If using Shared Caching we have to pay for the cache service while waste of some of our memory and CPU locally. Since the issues above Microsoft offered a new caching mode over to us, which is the Caching (Preview). Instead of having a separated cache service, the Caching (Preview) leverage the memory and CPU in our cloud services (web role and worker role) as the cache clusters. Hence the Caching (Preview) runs on the virtual machines which hosted or near our cloud applications. Without any gateway and routing, since it located in the same data center and same racks, it provides really high performance than the Shared Caching. The Caching (Preview) works side-by-side to our application, initialized and worked as a Windows Service running in the virtual machines invoked by the startup tasks from our roles, we could get more information and control to them. And since the Caching (Preview) utilizes the memory and CPU from our existing cloud services, so it’s free. What we need to pay is the original computing price. And the resource on each machines could be used more efficiently.   Enable Caching (Preview) It’s very simple to enable the Caching (Preview) in a cloud service. Let’s create a new windows azure cloud project from Visual Studio and added an ASP.NET Web Role. Then open the role setting and select the Caching page. This is where we enable and configure the Caching (Preview) on a role. To enable the Caching (Preview) just open the “Enable Caching (Preview Release)” check box. And then we need to specify which mode of the caching clusters we want to use. There are two kinds of caching mode, co-located and dedicate. The co-located mode means we use the memory in the instances we run our cloud services (web role or worker role). By using this mode we must specify how many percentage of the memory will be used as the cache. The default value is 30%. So make sure it will not affect the role business execution. The dedicate mode will use all memory in the virtual machine as the cache. In fact it will reserve some for operation system, azure hosting etc.. But it will try to use as much as the available memory to be the cache. As you can see, the Caching (Preview) was defined based on roles, which means all instances of this role will apply the same setting and play as a whole cache pool, and you can consume it by specifying the name of the role, which I will demonstrate later. And in a windows azure project we can have more than one role have the Caching (Preview) enabled. Then we will have more caches. For example, let’s say I have a web role and worker role. The web role I specified 30% co-located caching and the worker role I specified dedicated caching. If I have 3 instances of my web role and 2 instances of my worker role, then I will have two caches. As the figure above, cache 1 was contributed by three web role instances while cache 2 was contributed by 2 worker role instances. Then we can add items into cache 1 and retrieve it from web role code and worker role code. But the items stored in cache 1 cannot be retrieved from cache 2 since they are isolated. Back to our Visual Studio we specify 30% of co-located cache and use the local storage emulator to store the cache cluster runtime status. Then at the bottom we can specify the named caches. Now we just use the default one. Now we had enabled the Caching (Preview) in our web role settings. Next, let’s have a look on how to consume our cache.   Consume Caching (Preview) The Caching (Preview) can only be consumed by the roles in the same cloud services. As I mentioned earlier, a cache contributed by web role can be connected from a worker role if they are in the same cloud service. But you cannot consume a Caching (Preview) from other cloud services. This is different from the Shared Caching. The Shared Caching is opened to all services if it has the connection URL and authentication token. To consume the Caching (Preview) we need to add some references into our project as well as some configuration in the Web.config. NuGet makes our life easy. Right click on our web role project and select “Manage NuGet packages”, and then search the package named “WindowsAzure.Caching”. In the package list install the “Windows Azure Caching Preview”. It will download all necessary references from the NuGet repository and update our Web.config as well. Open the Web.config of our web role and find the “dataCacheClients” node. Under this node we can specify the cache clients we are going to use. For each cache client it will use the role name to identity and find the cache. Since we only have this web role with the Caching (Preview) enabled so I pasted the current role name in the configuration. Then, in the default page I will add some code to show how to use the cache. I will have a textbox on the page where user can input his or her name, then press a button to generate the email address for him/her. And in backend code I will check if this name had been added in cache. If yes I will return the email back immediately. Otherwise, I will sleep the tread for 2 seconds to simulate the latency, then add it into cache and return back to the page. 1: protected void btnGenerate_Click(object sender, EventArgs e) 2: { 3: // check if name is specified 4: var name = txtName.Text; 5: if (string.IsNullOrWhiteSpace(name)) 6: { 7: lblResult.Text = "Error. Please specify name."; 8: return; 9: } 10:  11: bool cached; 12: var sw = new Stopwatch(); 13: sw.Start(); 14:  15: // create the cache factory and cache 16: var factory = new DataCacheFactory(); 17: var cache = factory.GetDefaultCache(); 18:  19: // check if the name specified is in cache 20: var email = cache.Get(name) as string; 21: if (email != null) 22: { 23: cached = true; 24: sw.Stop(); 25: } 26: else 27: { 28: cached = false; 29: // simulate the letancy 30: Thread.Sleep(2000); 31: email = string.Format("{0}@igt.com", name); 32: // add to cache 33: cache.Add(name, email); 34: } 35:  36: sw.Stop(); 37: lblResult.Text = string.Format( 38: "Cached = {0}. Duration: {1}s. {2} => {3}", 39: cached, sw.Elapsed.TotalSeconds.ToString("0.00"), name, email); 40: } The Caching (Preview) can be used on the local emulator so we just F5. The first time I entered my name it will take about 2 seconds to get the email back to me since it was not in the cache. But if we re-enter my name it will be back at once from the cache. Since the Caching (Preview) is distributed across all instances of the role, so we can scaling-out it by scaling-out our web role. Just use 2 instances and tweak some code to show the current instance ID in the page, and have another try. Then we can see the cache can be retrieved even though it was added by another instance.   Consume Caching (Preview) Across Roles As I mentioned, the Caching (Preview) can be consumed by all other roles within the same cloud service. For example, let’s add another web role in our cloud solution and add the same code in its default page. In the Web.config we add the cache client to one enabled in the last role, by specifying its role name here. Then we start the solution locally and go to web role 1, specify the name and let it generate the email to us. Since there’s no cache for this name so it will take about 2 seconds but will save the email into cache. And then we go to web role 2 and specify the same name. Then you can see it retrieve the email saved by the web role 1 and returned back very quickly. Finally then we can upload our application to Windows Azure and test again. Make sure you had changed the cache cluster status storage account to the real azure account.   More Awesome Features As a in-memory distributed caching solution, the Caching (Preview) has some fancy features I would like to highlight here. The first one is the high availability support. This is the first time I have heard that a distributed cache support high availability. In the distributed cache world if a cache cluster was failed, the data it stored will be lost. This behavior was introduced by Memcached and is followed by almost all distributed cache productions. But Caching (Preview) provides high availability, which means you can specify if the named cache will be backup automatically. If yes then the data belongs to this named cache will be replicated on another role instance of this role. Then if one of the instance was failed the data can be retrieved from its backup instance. To enable the backup just open the Caching page in Visual Studio. In the named cache you want to enable backup, change the Backup Copies value from 0 to 1. The value of Backup Copies only for 0 and 1. “0” means no backup and no high availability while “1” means enabled high availability with backup the data into another instance. But by using the high availability feature there are something we need to make sure. Firstly the high availability does NOT means the data in cache will never be lost for any kind of failure. For example, if we have a role with cache enabled that has 10 instances, and 9 of them was failed, then most of the cached data will be lost since the primary and backup instance may failed together. But normally is will not be happened since MS guarantees that it will use the instance in the different fault domain for backup cache. Another one is that, enabling the backup means you store two copies of your data. For example if you think 100MB memory is OK for cache, but you need at least 200MB if you enabled backup. Besides the high availability, the Caching (Preview) support more features introduced in Windows Server AppFabric Caching than the Windows Azure Shared Caching. It supports local cache with notification. It also support absolute and slide window expiration types as well. And the Caching (Preview) also support the Memcached protocol as well. This means if you have an application based on Memcached, you can use Caching (Preview) without any code changes. What you need to do is to change the configuration of how you connect to the cache. Similar as the Windows Azure Shared Caching, MS also offers the out-of-box ASP.NET session provider and output cache provide on top of the Caching (Preview).   Summary Caching is very important component when we building a cloud-based application. In the June 2012 update MS provides a new cache solution named Caching (Preview). Different from the existing Windows Azure Shared Caching, Caching (Preview) runs the cache cluster within the role instances we have deployed to the cloud. It gives more control, more performance and more cost-effect. So now we have two caching solutions in Windows Azure, the Shared Caching and Caching (Preview). If you need a central cache service which can be used by many cloud services and web sites, then you have to use the Shared Caching. But if you only need a fast, near distributed cache, then you’d better use Caching (Preview).   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Cisco 881 losing NAT NVI translation config after reload

    - by MasterRoot24
    This is a weird one, so I'll try to explain in as much detail as I can so I'm giving the whole picture. As I've mentioned in my other questions, I'm in the process of setting up a new Cisco 881 as my WAN router and NAT firewall. I'm facing an issue where NAT NVI rules that I have configured are not enabled after a reload of the router, regardless of the fact that they are present in the startup-config. In order to clarify this a little, here's the relevant section of my current running-config: Router1#show running-config | include nat source ip nat source list 1 interface FastEthernet4 overload ip nat source list 2 interface FastEthernet4 overload ip nat source static tcp 192.168.1.x 1723 interface FastEthernet4 1723 ip nat source static tcp 192.168.1.x 80 interface FastEthernet4 80 ip nat source static tcp 192.168.1.x 443 interface FastEthernet4 443 ip nat source static tcp 192.168.1.x 25 interface FastEthernet4 25 ip nat source static tcp 192.168.1.x 587 interface FastEthernet4 587 ip nat source static tcp 192.168.1.x 143 interface FastEthernet4 143 ip nat source static tcp 192.168.1.x 993 interface FastEthernet4 993 ...and here's the mappings 'in action': Router1#show ip nat nvi translations | include --- tcp <WAN IP>:25 192.168.1.x:25 --- --- tcp <WAN IP>:80 192.168.1.x:80 --- --- tcp <WAN IP>:143 192.168.1.x:143 --- --- tcp <WAN IP>:443 192.168.1.x:443 --- --- tcp <WAN IP>:587 192.168.1.x:587 --- --- tcp <WAN IP>:993 192.168.1.x:993 --- --- tcp <WAN IP>:1723 192.168.1.x:1723 --- --- ...and here's proof that the mappings are saved to startup-config: Router1#show startup-config | include nat source ip nat source list 1 interface FastEthernet4 overload ip nat source list 2 interface FastEthernet4 overload ip nat source static tcp 192.168.1.x 1723 interface FastEthernet4 1723 ip nat source static tcp 192.168.1.x 80 interface FastEthernet4 80 ip nat source static tcp 192.168.1.x 443 interface FastEthernet4 443 ip nat source static tcp 192.168.1.x 25 interface FastEthernet4 25 ip nat source static tcp 192.168.1.x 587 interface FastEthernet4 587 ip nat source static tcp 192.168.1.x 143 interface FastEthernet4 143 ip nat source static tcp 192.168.1.x 993 interface FastEthernet4 993 However, look what happens after a reload of the router: Router1#reload Proceed with reload? [confirm]Connection to router closed by remote host. Connection to router closed. $ ssh joe@router Password: Authorized Access only Router1>en Password: Router1#show ip nat nvi translations | include --- Router1# Router1#show ip nat translations | include --- tcp 188.222.181.173:25 192.168.1.2:25 --- --- tcp 188.222.181.173:80 192.168.1.2:80 --- --- tcp 188.222.181.173:143 192.168.1.2:143 --- --- tcp 188.222.181.173:443 192.168.1.2:443 --- --- tcp 188.222.181.173:587 192.168.1.2:587 --- --- tcp 188.222.181.173:993 192.168.1.2:993 --- --- tcp 188.222.181.173:1723 192.168.1.2:1723 --- --- Router1# Here's proof that the running config should have the mappings setup as NVI: Router1#show running-config | include nat source ip nat source list 1 interface FastEthernet4 overload ip nat source list 2 interface FastEthernet4 overload ip nat source static tcp 192.168.1.2 1723 interface FastEthernet4 1723 ip nat source static tcp 192.168.1.2 80 interface FastEthernet4 80 ip nat source static tcp 192.168.1.2 443 interface FastEthernet4 443 ip nat source static tcp 192.168.1.2 25 interface FastEthernet4 25 ip nat source static tcp 192.168.1.2 587 interface FastEthernet4 587 ip nat source static tcp 192.168.1.2 143 interface FastEthernet4 143 ip nat source static tcp 192.168.1.2 993 interface FastEthernet4 993 At this point, the mappings are not working (inbound connections from WAN on the HTTP/IMAP fail). I presume that this is because my interfaces are using ip nat enable for use with NVI mappings, instead of ip nat inside/outside. So, I re-apply the mappings: Router1#configure ter Router1#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router1(config)#ip nat source static tcp 192.168.1.2 1723 interface FastEthernet4 1723 Router1(config)#ip nat source static tcp 192.168.1.2 80 interface FastEthernet4 80 Router1(config)#ip nat source static tcp 192.168.1.2 443 interface FastEthernet4 443 Router1(config)#ip nat source static tcp 192.168.1.2 25 interface FastEthernet4 25 Router1(config)#ip nat source static tcp 192.168.1.2 587 interface FastEthernet4 587 Router1(config)#ip nat source static tcp 192.168.1.2 143 interface FastEthernet4 143 Router1(config)#ip nat source static tcp 192.168.1.2 993 interface FastEthernet4 993 Router1(config)#end ... then they show up correctly: Router1#show ip nat nvi translations | include --- tcp 188.222.181.173:25 192.168.1.2:25 --- --- tcp 188.222.181.173:80 192.168.1.2:80 --- --- tcp 188.222.181.173:143 192.168.1.2:143 --- --- tcp 188.222.181.173:443 192.168.1.2:443 --- --- tcp 188.222.181.173:587 192.168.1.2:587 --- --- tcp 188.222.181.173:993 192.168.1.2:993 --- --- tcp 188.222.181.173:1723 192.168.1.2:1723 --- --- Router1# Router1#show ip nat translations | include --- Router1# ... furthermore, now from both WAN and LAN, the services mapped above now work until the next reload. All of the above is required every time I have to reload the router (which is all too often at the moment :-( ). Here's my full current config: ! ! Last configuration change at 20:20:15 UTC Tue Dec 11 2012 by xxx version 15.2 no service pad service timestamps debug datetime msec service timestamps log datetime msec service password-encryption ! hostname xxx ! boot-start-marker boot-end-marker ! ! enable secret 4 xxxx ! aaa new-model ! ! aaa authentication login local_auth local ! ! ! ! ! aaa session-id common ! memory-size iomem 10 ! crypto pki trustpoint TP-self-signed-xxx enrollment selfsigned subject-name cn=IOS-Self-Signed-Certificate-xxx revocation-check none rsakeypair TP-self-signed-xxx ! ! crypto pki certificate chain TP-self-signed-xxx certificate self-signed 01 xxx quit ip gratuitous-arps ip auth-proxy max-login-attempts 5 ip admission max-login-attempts 5 ! ! ! ! ! ip domain list dmz.xxx.local ip domain list xxx.local ip domain name dmz.xxx.local ip name-server 192.168.1.x ip cef login block-for 3 attempts 3 within 3 no ipv6 cef ! ! multilink bundle-name authenticated license udi pid CISCO881-SEC-K9 sn xxx ! ! username admin privilege 15 secret 4 xxx username joe secret 4 xxx ! ! ! ! ! ip ssh time-out 60 ! ! ! ! ! ! ! ! ! interface FastEthernet0 no ip address ! interface FastEthernet1 no ip address ! interface FastEthernet2 no ip address ! interface FastEthernet3 switchport access vlan 2 no ip address ! interface FastEthernet4 ip address dhcp ip access-group 101 in ip nat enable duplex auto speed auto ! interface Vlan1 ip address 192.168.1.x 255.255.255.0 no ip redirects no ip unreachables no ip proxy-arp ip nat enable ! interface Vlan2 ip address 192.168.0.x 255.255.255.0 ! ip forward-protocol nd ip http server ip http access-class 1 ip http authentication local ip http secure-server ! ! ip nat source list 1 interface FastEthernet4 overload ip nat source list 2 interface FastEthernet4 overload ip nat source static tcp 192.168.1.x 1723 interface FastEthernet4 1723 ! ! access-list 1 permit 192.168.0.0 0.0.0.255 access-list 2 permit 192.168.1.0 0.0.0.255 access-list 101 permit udp 193.x.x.0 0.0.0.255 any eq 5060 access-list 101 deny udp any any eq 5060 access-list 101 permit ip any any ! ! ! ! control-plane ! ! banner motd Authorized Access only ! line con 0 exec-timeout 15 0 login authentication local_auth line aux 0 exec-timeout 15 0 login authentication local_auth line vty 0 4 access-class 2 in login authentication local_auth length 0 transport input all ! ! end I'd appreciate it greatly if anyone can help me find out why these mappings are not setup correctly using the saved config after a reload.

    Read the article

  • Oracle BI Server Modeling, Part 1- Designing a Query Factory

    - by bob.ertl(at)oracle.com
      Welcome to Oracle BI Development's BI Foundation blog, focused on helping you get the most value from your Oracle Business Intelligence Enterprise Edition (BI EE) platform deployments.  In my first series of posts, I plan to show developers the concepts and best practices for modeling in the Common Enterprise Information Model (CEIM), the semantic layer of Oracle BI EE.  In this segment, I will lay the groundwork for the modeling concepts.  First, I will cover the big picture of how the BI Server fits into the system, and how the CEIM controls the query processing. Oracle BI EE Query Cycle The purpose of the Oracle BI Server is to bridge the gap between the presentation services and the data sources.  There are typically a variety of data sources in a variety of technologies: relational, normalized transaction systems; relational star-schema data warehouses and marts; multidimensional analytic cubes and financial applications; flat files, Excel files, XML files, and so on. Business datasets can reside in a single type of source, or, most of the time, are spread across various types of sources. Presentation services users are generally business people who need to be able to query that set of sources without any knowledge of technologies, schemas, or how sources are organized in their company. They think of business analysis in terms of measures with specific calculations, hierarchical dimensions for breaking those measures down, and detailed reports of the business transactions themselves.  Most of them create queries without knowing it, by picking a dashboard page and some filters.  Others create their own analysis by selecting metrics and dimensional attributes, and possibly creating additional calculations. The BI Server bridges that gap from simple business terms to technical physical queries by exposing just the business focused measures and dimensional attributes that business people can use in their analyses and dashboards.   After they make their selections and start the analysis, the BI Server plans the best way to query the data sources, writes the optimized sequence of physical queries to those sources, post-processes the results, and presents them to the client as a single result set suitable for tables, pivots and charts. The CEIM is a model that controls the processing of the BI Server.  It provides the subject areas that presentation services exposes for business users to select simplified metrics and dimensional attributes for their analysis.  It models the mappings to the physical data access, the calculations and logical transformations, and the data access security rules.  The CEIM consists of metadata stored in the repository, authored by developers using the Administration Tool client.     Presentation services and other query clients create their queries in BI EE's SQL-92 language, called Logical SQL or LSQL.  The API simply uses ODBC or JDBC to pass the query to the BI Server.  Presentation services writes the LSQL query in terms of the simplified objects presented to the users.  The BI Server creates a query plan, and rewrites the LSQL into fully-detailed SQL or other languages suitable for querying the physical sources.  For example, the LSQL on the left below was rewritten into the physical SQL for an Oracle 11g database on the right. Logical SQL   Physical SQL SELECT "D0 Time"."T02 Per Name Month" saw_0, "D4 Product"."P01  Product" saw_1, "F2 Units"."2-01  Billed Qty  (Sum All)" saw_2 FROM "Sample Sales" ORDER BY saw_0, saw_1       WITH SAWITH0 AS ( select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,      sum(T835.Units) as c3, T879.Prod_Key as c4 from      Product T879 /* A05 Product */ ,      Time_Mth T986 /* A08 Time Mth */ ,      FactsRev T835 /* A11 Revenue (Billed Time Join) */ where ( T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid) group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month ) select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3 from SAWITH0 order by c1, c2   Probably everybody reading this blog can write SQL or MDX.  However, the trick in designing the CEIM is that you are modeling a query-generation factory.  Rather than hand-crafting individual queries, you model behavior and relationships, thus configuring the BI Server machinery to manufacture millions of different queries in response to random user requests.  This mass production requires a different mindset and approach than when you are designing individual SQL statements in tools such as Oracle SQL Developer, Oracle Hyperion Interactive Reporting (formerly Brio), or Oracle BI Publisher.   The Structure of the Common Enterprise Information Model (CEIM) The CEIM has a unique structure specifically for modeling the relationships and behaviors that fill the gap from logical user requests to physical data source queries and back to the result.  The model divides the functionality into three specialized layers, called Presentation, Business Model and Mapping, and Physical, as shown below. Presentation services clients can generally only see the presentation layer, and the objects in the presentation layer are normally the only ones used in the LSQL request.  When a request comes into the BI Server from presentation services or another client, the relationships and objects in the model allow the BI Server to select the appropriate data sources, create a query plan, and generate the physical queries.  That's the left to right flow in the diagram below.  When the results come back from the data source queries, the right to left relationships in the model show how to transform the results and perform any final calculations and functions that could not be pushed down to the databases.   Business Model Think of the business model as the heart of the CEIM you are designing.  This is where you define the analytic behavior seen by the users, and the superset library of metric and dimension objects available to the user community as a whole.  It also provides the baseline business-friendly names and user-readable dictionary.  For these reasons, it is often called the "logical" model--it is a virtual database schema that persists no data, but can be queried as if it is a database. The business model always has a dimensional shape (more on this in future posts), and its simple shape and terminology hides the complexity of the source data models. Besides hiding complexity and normalizing terminology, this layer adds most of the analytic value, as well.  This is where you define the rich, dimensional behavior of the metrics and complex business calculations, as well as the conformed dimensions and hierarchies.  It contributes to the ease of use for business users, since the dimensional metric definitions apply in any context of filters and drill-downs, and the conformed dimensions enable dashboard-wide filters and guided analysis links that bring context along from one page to the next.  The conformed dimensions also provide a key to hiding the complexity of many sources, including federation of different databases, behind the simple business model. Note that the expression language in this layer is LSQL, so that any expression can be rewritten into any data source's query language at run time.  This is important for federation, where a given logical object can map to several different physical objects in different databases.  It is also important to portability of the CEIM to different database brands, which is a key requirement for Oracle's BI Applications products. Your requirements process with your user community will mostly affect the business model.  This is where you will define most of the things they specifically ask for, such as metric definitions.  For this reason, many of the best-practice methodologies of our consulting partners start with the high-level definition of this layer. Physical Model The physical model connects the business model that meets your users' requirements to the reality of the data sources you have available. In the query factory analogy, think of the physical layer as the bill of materials for generating physical queries.  Every schema, table, column, join, cube, hierarchy, etc., that will appear in any physical query manufactured at run time must be modeled here at design time. Each physical data source will have its own physical model, or "database" object in the CEIM.  The shape of each physical model matches the shape of its physical source.  In other words, if the source is normalized relational, the physical model will mimic that normalized shape.  If it is a hypercube, the physical model will have a hypercube shape.  If it is a flat file, it will have a denormalized tabular shape. To aid in query optimization, the physical layer also tracks the specifics of the database brand and release.  This allows the BI Server to make the most of each physical source's distinct capabilities, writing queries in its syntax, and using its specific functions. This allows the BI Server to push processing work as deep as possible into the physical source, which minimizes data movement and takes full advantage of the database's own optimizer.  For most data sources, native APIs are used to further optimize performance and functionality. The value of having a distinct separation between the logical (business) and physical models is encapsulation of the physical characteristics.  This encapsulation is another enabler of packaged BI applications and federation.  It is also key to hiding the complex shapes and relationships in the physical sources from the end users.  Consider a routine drill-down in the business model: physically, it can require a drill-through where the first query is MDX to a multidimensional cube, followed by the drill-down query in SQL to a normalized relational database.  The only difference from the user's point of view is that the 2nd query added a more detailed dimension level column - everything else was the same. Mappings Within the Business Model and Mapping Layer, the mappings provide the binding from each logical column and join in the dimensional business model, to each of the objects that can provide its data in the physical layer.  When there is more than one option for a physical source, rules in the mappings are applied to the query context to determine which of the data sources should be hit, and how to combine their results if more than one is used.  These rules specify aggregate navigation, vertical partitioning (fragmentation), and horizontal partitioning, any of which can be federated across multiple, heterogeneous sources.  These mappings are usually the most sophisticated part of the CEIM. Presentation You might think of the presentation layer as a set of very simple relational-like views into the business model.  Over ODBC/JDBC, they present a relational catalog consisting of databases, tables and columns.  For business users, presentation services interprets these as subject areas, folders and columns, respectively.  (Note that in 10g, subject areas were called presentation catalogs in the CEIM.  In this blog, I will stick to 11g terminology.)  Generally speaking, presentation services and other clients can query only these objects (there are exceptions for certain clients such as BI Publisher and Essbase Studio). The purpose of the presentation layer is to specialize the business model for different categories of users.  Based on a user's role, they will be restricted to specific subject areas, tables and columns for security.  The breakdown of the model into multiple subject areas organizes the content for users, and subjects superfluous to a particular business role can be hidden from that set of users.  Customized names and descriptions can be used to override the business model names for a specific audience.  Variables in the object names can be used for localization. For these reasons, you are better off thinking of the tables in the presentation layer as folders than as strict relational tables.  The real semantics of tables and how they function is in the business model, and any grouping of columns can be included in any table in the presentation layer.  In 11g, an LSQL query can also span multiple presentation subject areas, as long as they map to the same business model. Other Model Objects There are some objects that apply to multiple layers.  These include security-related objects, such as application roles, users, data filters, and query limits (governors).  There are also variables you can use in parameters and expressions, and initialization blocks for loading their initial values on a static or user session basis.  Finally, there are Multi-User Development (MUD) projects for developers to check out units of work, and objects for the marketing feature used by our packaged customer relationship management (CRM) software.   The Query Factory At this point, you should have a grasp on the query factory concept.  When developing the CEIM model, you are configuring the BI Server to automatically manufacture millions of queries in response to random user requests. You do this by defining the analytic behavior in the business model, mapping that to the physical data sources, and exposing it through the presentation layer's role-based subject areas. While configuring mass production requires a different mindset than when you hand-craft individual SQL or MDX statements, it builds on the modeling and query concepts you already understand. The following posts in this series will walk through the CEIM modeling concepts and best practices in detail.  We will initially review dimensional concepts so you can understand the business model, and then present a pattern-based approach to learning the mappings from a variety of physical schema shapes and deployments to the dimensional model.  Along the way, we will also present the dimensional calculation template, and learn how to configure the many additivity patterns.

    Read the article

  • CodePlex Daily Summary for Friday, December 31, 2010

    CodePlex Daily Summary for Friday, December 31, 2010Popular ReleasesFree Silverlight & WPF Chart Control - Visifire: Visifire SL and WPF Charts v3.6.6 Released: Hi, Today we are releasing final version of Visifire, v3.6.6 with the following new feature: * TextDecorations property is implemented in Title for Chart. * TitleTextDecorations property is implemented in Axis. * MinPointHeight property is now applicable for Column and Bar Charts. Also this release includes few bug fixes: * ToolTipText property of DataSeries was not getting applied from Style. * Chart threw exception if IndicatorEnabled property was set to true and Too...Windows Weibo all in one for Sina Sohu and QQ: WeiBee V0.1: WeiBee is an all in one Twitter tool, which can update Wei Bo at the same time for websites. It intends to support t.sohu.com, t.sina.com.cn and t.qq.com.cn. If you have WeiBo at SOHU, SINA and QQ, you can try this tool to help you save time to open all the webpages to update your status. For any business opportunity, such as put advertise on China Twitter market, and to build a custom WeiBo tool, please reach my email box qq1800@gmail.com My official WeiBo is http://mediaroom.t.sohu.comStyleCop Compliant Visual Studio Code Snippets: Visual Studio Code Snippets - January 2011: StyleCop Compliant Visual Studio Code Snippets Visual Studio 2010 provides C# developers with 38 code snippets, enhancing developer productivty and increasing the consistency of the code. Within this project the original code snippets have been refactored to provide StyleCop compliant versions of the original code snippets while also adding many new code snippets. Within the January 2011 release you'll find 82 code snippets to make you more productive and the code you write more consistent!...WPF Application Framework (WAF): WPF Application Framework (WAF) 2.0.0.2: Version: 2.0.0.2 (Milestone 2): This release contains the source code of the WPF Application Framework (WAF) and the sample applications. Requirements .NET Framework 4.0 (The package contains a solution file for Visual Studio 2010) The unit test projects require Visual Studio 2010 Professional Remark The sample applications are using Microsoft’s IoC container MEF. However, the WPF Application Framework (WAF) doesn’t force you to use the same IoC container in your application. You can use ...eCompany: eCompany v0.2.0 Build 63: Version 0.2.0 Build 63: Added Splash screen & about box Added downloading of currencies when eCompany launched for the first time (must close any bug caused by no currency rate existing) Added corp creation when eCompany launched for the first time (for now, you didn't need to edit the company.xml file manually) You just need to decompress file "eCompany v0.2.0.63.zip" into your current eCompany install directory.SQL Monitor - tracking sql server activities: SQL Monitor 3.0 alpha 8: 1. added truncate table/defrag index/check db functions 2. improved alert 3. fixed problem with alert causing config file corrupted(hopefully)Analysis Services Stored Procedure Project: 1.3.5 Release: This release includes the following fixes and new functionality: Updates to GetCubeLastProcessedDate to work with perspectives Fixes to reports that call Discover functions improving drillthrough functions against perspectives improving ExecuteDrillthroughAndFixColumns logic fixing situation where MDX query calling certain ASSP sprocs which opened external connections caused deadlock to SSAS processing small fix to Partition code when DbColumnName property doesn't exist changes...DocX: DocX v1.0.0.11: Building Examples projectTo build the Examples project, download DocX.dll and add it as a reference to the project. OverviewThis version of DocX contains many bug fixes, it is a serious step towards a stable release. Added1) Unit testing project, 2) Examples project, 3) To many bug fixes to list here, see the source code change list history.Cosmos (C# Open Source Managed Operating System): 71406: This is the second release supporting the full line of Visual Studio 2010 editions. Changes since release 71246 include: Debug info is now stored in a single .cpdb file (which is a Firebird database) Keyboard input works now (using Console.ReadLine) Console colors work (using Console.ForegroundColor and .BackgroundColor)AutoLoL: AutoLoL v1.5.0: Added the all new Masteries Browser which replaces the Quick Open combobox AutoLoL will now attemt to create file associations for mastery (*.lolm) files Each Mastery Build can now contain keywords that the Masteries Browser will use for filtering Changed the way AutoLoL detects if another instance is already running Changed the format of the mastery files to allow more information stored in* Dialogs will now focus the Ok or Cancel button which allows the user to press Return to clo...Paint.NET PSD Plugin: 1.6.0: Handling of layer masks has been greatly improved. Improved reliability. Many PSD files that previously loaded in as garbage will now load in correctly. Parallelized loading. PSD files containing layer masks will load in a bit quicker thanks to the removal of the sequential bottleneck. Hidden layers are no longer made visible on save. Many thanks to the users who helped expose the layer masks problem: Rob Horowitz, M_Lyons10. Please keep sending in those bug reports and PSD repro files!Facebook C# SDK: 4.1.1: From 4.1.1 Release: Authentication bug fix caused by facebook change (error with redirects in Safari) Authenticator fix, always returning true From 4.1.0 Release Lots of bug fixes Removed Dynamic Runtime Language dependencies from non-dynamic platforms. Samples included in release for ASP.NET, MVC, Silverlight, Windows Phone 7, WPF, WinForms, and one Visual Basic Sample Changed internal serialization to use Json.net BREAKING CHANGE: Canvas Session is no longer supported. Use Signed...Catel - WPF and Silverlight MVVM library: 1.0.0: And there it is, the final release of Catel, and it is no longer a beta version!EnhSim: EnhSim 2.2.7 ALPHA: 2.2.7 ALPHAThis release supports WoW patch 4.03a at level 85 To use this release, you must have the Microsoft Visual C++ 2010 Redistributable Package installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=A7B7A05E-6DE6-4D3A-A423-37BF0912DB84 To use the GUI you must have the .NET 4.0 Framework installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9cfb2d51-5ff4-4491-b0e5-b386f32c0992 - Mongoose has bee...Euro for Windows XP: ChangeRegionalSettings 1..0: *Rocket Framework (.Net 4.0): Rocket Framework for Windows V 1.0.0: Architecture is reviewed and adjusted in a way so that I can introduce the Web version and WPF version of this framework next. - Rocket.Core is introduced - Controller button functions revisited and updated - DB is renewed to suite the implemented features - Create New button functionality is changed - Add Question Handling featuresFlickr Wallpaper Rotator (for Windows desktop): Wallpaper Flickr 1.1: Some minor bugfixes (mostly covering when network connection is flakey, so I discovered them all while at my parents' house for Christmas).NoSimplerAccounting: NoSimplerAccounting 6.0: -Fixed a bug in expense category report.NHibernate Mapping Generator: NHibernate Mapping Generator 2.0: Added support for Postgres (Thanks to Angelo)NewLife XCode: XCode v6.5.2010.1223 ????(????v3.5??): XCode v6.5.2010.1223 ????,??: NewLife.Core ??? NewLife.Net ??? XControl ??? XTemplate ????,??C#?????? XAgent ???? NewLife.CommonEnitty ??????(???,XCode??????) XCode?? ?????????,??????????????????,?????95% XCode v3.5.2009.0714 ??,?v3.5?v6.0???????????????,?????????。v3.5???????????,??????????????。 XCoder ??XTemplate?????????,????????XCode??? XCoder_Src ???????(????XTemplate????),??????????????????New Projects1i2m3i4s5e6r7p: 1i2m3i4s5e6r7pA3 Fashion Web: A complete e-commerce siteAfonsoft Blog - Blog de teste: Blog para teste de desenvolvimento em MySQL ou SQLServer com ASP.NET 3.5AnyGrid for ASP.NET MVC: Which grid component should you use for your ASP.NET MVC project? How about all of them? AnyGrid makes it easy to switch between grid implementations, allowing a single action to, e.g., use two different grids for desktop and mobile views. It also supports DataAnnnotations.BizTalk Map Test Framework: The Map Test Framework makes it easier for BizTalk developers to test their maps. You'll no longer have to maintain a whole bunch of XML files for your tests. The use of template files and xpath queries to perform tests will increase your productivity tremendously.BlogResult.NET: A simple Blogging starter kit using S#harp Architecture. This project was originally course material sample code for an MVC class, but we decided to open source it and make it available to the community.Caro: Code demo caro game.Ecozany Skin for DotNetNuke: This Ecozany package contains three sample skins and a collection of containers for use in your DotNetNuke web sites.Enhanced lookup field: Enhanced lookup field makes it easier for end users to create filters. You'll no longer have to use a custom field or javascript to have a parent child lookup for example. It's developed in C#. - Parent/multiple child lookups - Advanced filters options - Easy to usejobglance: This is job siteMaxLeafWeb_K3: MaxLeafWeb_K3Miage Kart: Projet java M1msystem: MVC. Net web systemNetController: Controle sem teclas de direção, usando acelerômentro e .NET micro Framework.Pencils - A Blog Site framework: Another Blog site frameworkPICTShell: PICT is an efficient way to design test cases and test configurations for software systems. PICT Shell is the GUI for PICT.Portal de Solicitação de Serviços: O Portal de Solicitação de Serviços é uma solução que atende diversas empresas prestadores de serviços. Inicialmente desenvolvido para atender empresa de informática, mas o objetivo é que com a publicação do fonte, ele seja extendido à diversos tipos de prestadoras.Runery: Runery RSPSsCut4s: sCut4sSumacê Jogava Caxangá?: sumace makes it easier for gamers to play. You'll no longer have to play. It's developed in XNA.Supply_Chain_FInance: Supply Chain Finance thrives these years all over the world. In exploring the inner working mechanism ,we can sought to have a way to embed an information system in it. We develop the system to suit the domesticated supply chain finace .TestAmir: ??? ????? ??? ???The Cosmos: School project on a SOA based system (Loan system)Time zone: A c# library for manage time changes for any time zone in the world. Based on olson database.Validate: Validate is a collection of extension methods that let you add validations to any object and display validations in a user/developer friendly format. Its an extremely light weight validation framework with a zero learning curve.Windows Phone 7 Silverlight ListBox with CheckBox Control: A Windows Phone 7 ListBox control, providing CheckBoxes for item selection when in "Choose State" and no CheckBoxes in "Normal State", like the built-in Email app, with nice transition. To switch between states, set the "IsInChooseState" property. The control inherits ListBox.XQSOFT.WF.Designer: this is workflow designerzhanghai: my test project

    Read the article

  • AngularJs ng-cloak Problems on large Pages

    - by Rick Strahl
    I’ve been working on a rather complex and large Angular page. Unlike a typical AngularJs SPA style ‘application’ this particular page is just that: a single page with a large amount of data on it that has to be visible all at once. The problem is that when this large page loads it flickers and displays template markup briefly before kicking into its actual content rendering. This is is what the Angular ng-cloak is supposed to address, but in this case I had no luck getting it to work properly. This application is a shop floor app where workers need to see all related information in one big screen view, so some of the benefits of Angular’s routing and view swapping features couldn’t be applied. Instead, we decided to have one very big view but lots of ng-controllers and directives to break out the logic for code separation. For code separation this works great – there are a number of small controllers that deal with their own individual and isolated application concerns. For HTML separation we used partial ASP.NET MVC Razor Views which made breaking out the HTML into manageable pieces super easy and made migration of this page from a previous server side Razor page much easier. We were also able to leverage most of our server side localization without a lot of  changes as a bonus. But as a result of this choice the initial HTML document that loads is rather large – even without any data loaded into it, resulting in a fairly large DOM tree that Angular must manage. Large Page and Angular Startup The problem on this particular page is that there’s quite a bit of markup – 35k’s worth of markup without any data loaded, in fact. It’s a large HTML page with a complex DOM tree. There are quite a lot of Angular {{ }} markup expressions in the document. Angular provides the ng-cloak directive to try and hide the element it cloaks so that you don’t see the flash of these markup expressions when the page initially loads before Angular has a chance to render the data into the markup expressions.<div id="mainContainer" class="mainContainer boxshadow" ng-app="app" ng-cloak> Note the ng-cloak attribute on this element, which here is an outer wrapper element of the most of this large page’s content. ng-cloak is supposed to prevent displaying the content below it, until Angular has taken control and is ready to render the data into the templates. Alas, with this large page the end result unfortunately is a brief flicker of un-rendered markup which looks like this: It’s brief, but plenty ugly – right?  And depending on the speed of the machine this flash gets more noticeable with slow machines that take longer to process the initial HTML DOM. ng-cloak Styles ng-cloak works by temporarily hiding the marked up element and it does this by essentially applying a style that does this:[ng\:cloak], [ng-cloak], [data-ng-cloak], [x-ng-cloak], .ng-cloak, .x-ng-cloak { display: none !important; } This style is inlined as part of AngularJs itself. If you looking at the angular.js source file you’ll find this at the very end of the file:!angular.$$csp() && angular.element(document) .find('head') .prepend('<style type="text/css">@charset "UTF-8";[ng\\:cloak],[ng-cloak],' + '[data-ng-cloak],[x-ng-cloak],.ng-cloak,.x-ng-cloak,' + '.ng-hide{display:none !important;}ng\\:form{display:block;}' '.ng-animate-block-transitions{transition:0s all!important;-webkit-transition:0s all!important;}' + '</style>'); This is is meant to initially hide any elements that contain the ng-cloak attribute or one of the other Angular directive permutation markup. Unfortunately on this particular web page ng-cloak had no effect – I still see the flicker. Why doesn’t ng-cloak work? The problem is of course – timing. The problem is that Angular actually needs to get control of the page before it ever starts doing anything like process even the ng-cloak attribute (or style etc). Because this page is rather large (about 35k of non-data HTML) it takes a while for the DOM to actually plow through the HTML. With the Angular <script> tag defined at the bottom of the page after the HTML DOM content there’s a slight delay which causes the flicker. For smaller pages the initial DOM load/parse cycle is so fast that the markup never shows, but with larger content pages it may show and become an annoying problem. Workarounds There a number of simple ways around this issue and some of them are hinted on in the Angular documentation. Load Angular Sooner One obvious thing that would help with this is to load Angular at the top of the page  BEFORE the DOM loads and that would give it much earlier control. The old ng-cloak documentation actually recommended putting the Angular.js script into the header of the page (apparently this was recently removed), but generally it’s not a good practice to load scripts in the header for page load performance. This is especially true if you load other libraries like jQuery which should be loaded prior to loading Angular so it can use jQuery rather than its own jqLite subset. This is not something I normally would like to do and also something that I’d likely forget in the future and end up right back here :-). Use ng-include for Child Content Angular supports nesting of child templates via the ng-include directive which essentially delay loads HTML content. This helps by removing a lot of the template content out of the main page and so getting control to Angular a lot sooner in order to hide the markup template content. In the application in question, I realize that in hindsight it might have been smarter to break this page out with client side ng-include directives instead of MVC Razor partial views we used to break up the page sections. Razor partial views give that nice separation as well, but in the end Razor puts humpty dumpty (ie. the HTML) back together into a whole single and rather large HTML document. Razor provides the logical separation, but still results in a large physical result document. But Razor also ended up being helpful to have a few security related blocks handled via server side template logic that simply excludes certain parts of the UI the user is not allowed to see – something that you can’t really do with client side exclusion like ng-hide/ng-show – client side content is always there whereas on the server side you can simply not send it to the client. Another reason I’m not a huge fan of ng-include is that it adds another HTTP hit to a request as templates are loaded from the server dynamically as needed. Given that this page was already heavy with resources adding another 10 separate ng-include directives wouldn’t be beneficial :-) ng-include is a valid option if you start from scratch and partition your logic. Of course if you don’t have complex pages, having completely separate views that are swapped in as they are accessed are even better, but we didn’t have this option due to the information having to be on screen all at once. Avoid using {{ }}  Expressions The biggest issue that ng-cloak attempts to address isn’t so much displaying the original content – it’s displaying empty {{ }} markup expression tags that get embedded into content. It gives you the dreaded “now you see it, now you don’t” effect where you sometimes see three separate rendering states: Markup junk, empty views, then views filled with data. If we can remove {{ }} expressions from the page you remove most of the perceived double draw effect as you would effectively start with a blank form and go straight to a filled form. To do this you can forego {{ }}  expressions and replace them with ng-bind directives on DOM elements. For example you can turn:<div class="list-item-name listViewOrderNo"> <a href='#'>{{lineItem.MpsOrderNo}}</a> </div>into:<div class="list-item-name listViewOrderNo"> <a href="#" ng-bind="lineItem.MpsOrderNo"></a> </div> to get identical results but because the {{ }}  expression has been removed there’s no double draw effect for this element. Again, not a great solution. The {{ }} syntax sure reads cleaner and is more fluent to type IMHO. In some cases you may also not have an outer element to attach ng-bind to which then requires you to artificially inject DOM elements into the page. This is especially painful if you have several consecutive values like {{Firstname}} {{Lastname}} for example. It’s an option though especially if you think of this issue up front and you don’t have a ton of expressions to deal with. Add the ng-cloak Styles manually You can also explicitly define the .css styles that Angular injects via code manually in your application’s style sheet. By doing so the styles become immediately available and so are applied right when the page loads – no flicker. I use the minimal:[ng-cloak] { display: none !important; } which works for:<div id="mainContainer" class="mainContainer dialog boxshadow" ng-app="app" ng-cloak> If you use one of the other combinations add the other CSS selectors as well or use the full style shown earlier. Angular will still load its version of the ng-cloak styling but it overrides those settings later, but this will do the trick of hiding the content before that CSS is injected into the page. Adding the CSS in your own style sheet works well, and is IMHO by far the best option. The nuclear option: Hiding the Content manually Using the explicit CSS is the best choice, so the following shouldn’t ever be necessary. But I’ll mention it here as it gives some insight how you can hide/show content manually on load for other frameworks or in your own markup based templates. Before I figured out that I could explicitly embed the CSS style into the page, I had tried to figure out why ng-cloak wasn’t doing its job. After wasting an hour getting nowhere I finally decided to just manually hide and show the container. The idea is simple – initially hide the container, then show it once Angular has done its initial processing and removal of the template markup from the page. You can manually hide the content and make it visible after Angular has gotten control. To do this I used:<div id="mainContainer" class="mainContainer boxshadow" ng-app="app" style="display:none"> Notice the display: none style that explicitly hides the element initially on the page. Then once Angular has run its initialization and effectively processed the template markup on the page you can show the content. For Angular this ‘ready’ event is the app.run() function:app.run( function ($rootScope, $location, cellService) { $("#mainContainer").show(); … }); This effectively removes the display:none style and the content displays. By the time app.run() fires the DOM is ready to displayed with filled data or at least empty data – Angular has gotten control. Edge Case Clearly this is an edge case. In general the initial HTML pages tend to be reasonably sized and the load time for the HTML and Angular are fast enough that there’s no flicker between the rendering times. This only becomes an issue as the initial pages get rather large. Regardless – if you have an Angular application it’s probably a good idea to add the CSS style into your application’s CSS (or a common shared one) just to make sure that content is always hidden. You never know how slow of a browser somebody might be running and while your super fast dev machine might not show any flicker, grandma’s old XP box very well might…© Rick Strahl, West Wind Technologies, 2005-2014Posted in Angular  JavaScript  CSS  HTML   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • UAT Testing for SOA 10G Clusters

    - by [email protected]
    A lot of customers ask how to verify their SOA clusters and make them production ready. Here is a list that I recommend using for 10G SOA Clusters. v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-CA X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; mso-bidi-font-size:12.0pt; font-family:"Calibri","sans-serif"; mso-fareast-language:EN-US;} Test cases for each component - Oracle Application Server 10G General Application Server test cases This section is going to cover very General test cases to make sure that the Application Server cluster has been set up correctly and if you can start and stop all the components in the server via opmnct and AS Console. Test Case 1 Check if you can see AS instances in the console Implementation 1. Log on to the AS Console --> check to see if you can see all the nodes in your AS cluster. You should be able to see all the Oracle AS instances that are part of the cluster. This means that the OPMN clustering worked and the AS instances successfully joined the AS cluster. Result You should be able to see if all the instances in the AS cluster are listed in the EM console. If the instances are not listed here are the files to check to see if OPMN joined the cluster properly: $ORACLE_HOME\opmn\logs{*}opmn.log*$ORACLE_HOME\opmn\logs{*}opmn.dbg* If OPMN did not join the cluster properly, please check the opmn.xml file to make sure the discovery multicast address and port are correct (see this link  for opmn documentation). Restart the whole instance using opmnctl stopall followed by opmnctl startall. Log on to AS console to see if instance is listed as part of the cluster. Test Case 2 Check to see if you can start/stop each component Implementation Check each OC4J component on each AS instanceStart each and every component through the AS console to see if they will start and stop.Do that for each and every instance. Result Each component should start and stop through the AS console. You can also verify if the component started by checking opmnctl status by logging onto each box associated with the cluster Test Case 3 Add/modify a datasource entry through AS console on a remote AS instance (not on the instance where EM is physically running) Implementation Pick an OC4J instanceCreate a new data-source through the AS consoleModify an existing data-source or connection pool (optional) Result Open $ORACLE_HOME\j2ee\<oc4j_name>\config\data-sources.xml to see if the new (and or the modified) connection details and data-source exist. If they do then the AS console has successfully updated a remote file and MBeans are communicating correctly. Test Case 4 Start and stop AS instances using opmnctl @cluster command Implementation 1. Go to $ORACLE_HOME\opmn\bin and use the opmnctl @cluster to start and stop the AS instances Result Use opmnctl @cluster status to check for start and stop statuses.  HTTP server test cases This section will deal with use cases to test HTTP server failover scenarios. In these examples the HTTP server will be talking to the BPEL console (or any other web application that the client wants), so the URL will be _http://hostname:port\BPELConsole Test Case 1  Shut down one of the HTTP servers while accessing the BPEL console and see the requested routed to the second HTTP server in the cluster Implementation Access the BPELConsoleCheck $ORACLE_HOME\Apache\Apache\logs\access_log --> check for the timestamp and the URL that was accessed by the user. Timestamp and URL would look like this 1xx.2x.2xx.xxx [24/Mar/2009:16:04:38 -0500] "GET /BPELConsole=System HTTP/1.1" 200 15 After you have figured out which HTTP server this is running on, shut down this HTTP server by using opmnctl stopproc --> this is a graceful shutdown.Access the BPELConsole again (please note that you should have a LoadBalancer in front of the HTTP server and configured the Apache Virtual Host, see EDG for steps)Check $ORACLE_HOME\Apache\Apache\logs\access_log --> check for the timestamp and the URL that was accessed by the user. Timestamp and URL would look like above Result Even though you are shutting down the HTTP server the request is routed to the surviving HTTP server, which is then able to route the request to the BPEL Console and you are able to access the console. By checking the access log file you can confirm that the request is being picked up by the surviving node. Test Case 2 Repeat the same test as above but instead of calling opmnctl stopproc, pull the network cord of one of the HTTP servers, so that the LBR routes the request to the surviving HTTP node --> this is simulating a network failure. Test Case 3 In test case 1 we have simulated a graceful shutdown, in this case we will simulate an Apache crash Implementation Use opmnctl status -l to get the PID of the HTTP server that you would like forcefully bring downOn Linux use kill -9 <PID> to kill the HTTP serverAccess the BPEL console Result As you shut down the HTTP server, OPMN will restart the HTTP server. The restart may be so quick that the LBR may still route the request to the same server. One way to check if the HTTP server restared is to check the new PID and the timestamp in the access log for the BPEL console. BPEL test cases This section is going to cover scenarios dealing with BPEL clustering using jGroups, BPEL deployment and testing related to BPEL failover. Test Case 1 Verify that jGroups has initialized correctly. There is no real testing in this use case just a visual verification by looking at log files that jGroups has initialized correctly. Check the opmn log for the BPEL container for all nodes at $ORACLE_HOME/opmn/logs/<group name><container name><group name>~1.log. This logfile will contain jGroups related information during startup and steady-state operation. Soon after startup you should find log entries for UDP or TCP.Example jGroups Log Entries for UDPApr 3, 2008 6:30:37 PM org.collaxa.thirdparty.jgroups.protocols.UDP createSockets ·         INFO: sockets will use interface 144.25.142.172·          ·         Apr 3, 2008 6:30:37 PM org.collaxa.thirdparty.jgroups.protocols.UDP createSockets·          ·         INFO: socket information:·          ·         local_addr=144.25.142.172:1127, mcast_addr=228.8.15.75:45788, bind_addr=/144.25.142.172, ttl=32·         sock: bound to 144.25.142.172:1127, receive buffer size=64000, send buffer size=32000·         mcast_recv_sock: bound to 144.25.142.172:45788, send buffer size=32000, receive buffer size=64000·         mcast_send_sock: bound to 144.25.142.172:1128, send buffer size=32000, receive buffer size=64000·         Apr 3, 2008 6:30:37 PM org.collaxa.thirdparty.jgroups.protocols.TP$DiagnosticsHandler bindToInterfaces·          ·         -------------------------------------------------------·          ·         GMS: address is 144.25.142.172:1127·          ------------------------------------------------------- Example jGroups Log Entries for TCPApr 3, 2008 6:23:39 PM org.collaxa.thirdparty.jgroups.blocks.ConnectionTable start ·         INFO: server socket created on 144.25.142.172:7900·          ·         Apr 3, 2008 6:23:39 PM org.collaxa.thirdparty.jgroups.protocols.TP$DiagnosticsHandler bindToInterfaces·          ·         -------------------------------------------------------·         GMS: address is 144.25.142.172:7900------------------------------------------------------- In the log below the "socket created on" indicates that the TCP socket is established on the own node at that IP address and port the "created socket to" shows that the second node has connected to the first node, matching the logfile above with the IP address and port.Apr 3, 2008 6:25:40 PM org.collaxa.thirdparty.jgroups.blocks.ConnectionTable start ·         INFO: server socket created on 144.25.142.173:7901·          ·         Apr 3, 2008 6:25:40 PM org.collaxa.thirdparty.jgroups.protocols.TP$DiagnosticsHandler bindToInterfaces·          ·         ------------------------------------------------------·         GMS: address is 144.25.142.173:7901·         -------------------------------------------------------·         Apr 3, 2008 6:25:41 PM org.collaxa.thirdparty.jgroups.blocks.ConnectionTable getConnectionINFO: created socket to 144.25.142.172:7900  Result By reviewing the log files, you can confirm if BPEL clustering at the jGroups level is working and that the jGroup channel is communicating. Test Case 2  Test connectivity between BPEL Nodes Implementation Test connections between different cluster nodes using ping, telnet, and traceroute. The presence of firewalls and number of hops between cluster nodes can affect performance as they have a tendency to take down connections after some time or simply block them.Also reference Metalink Note 413783.1: "How to Test Whether Multicast is Enabled on the Network." Result Using the above tools you can confirm if Multicast is working  and whether BPEL nodes are commnunicating. Test Case3 Test deployment of BPEL suitcase to one BPEL node.  Implementation Deploy a HelloWorrld BPEL suitcase (or any other client specific BPEL suitcase) to only one BPEL instance using ant, or JDeveloper or via the BPEL consoleLog on to the second BPEL console to check if the BPEL suitcase has been deployed Result If jGroups has been configured and communicating correctly, BPEL clustering will allow you to deploy a suitcase to a single node, and jGroups will notify the second instance of the deployment. The second BPEL instance will go to the DB and pick up the new deployment after receiving notification. The result is that the new deployment will be "deployed" to each node, by only deploying to a single BPEL instance in the BPEL cluster. Test Case 4  Test to see if the BPEL server failsover and if all asynch processes are picked up by the secondary BPEL instance Implementation Deploy a 2 Asynch process: A ParentAsynch Process which calls a ChildAsynchProcess with a variable telling it how many times to loop or how many seconds to sleepA ChildAsynchProcess that loops or sleeps or has an onAlarmMake sure that the processes are deployed to both serversShut down one BPEL serverOn the active BPEL server call ParentAsynch a few times (use the load generation page)When you have enough ParentAsynch instances shut down this BPEL instance and start the other one. Please wait till this BPEL instance shuts down fully before starting up the second one.Log on to the BPEL console and see that the instance were picked up by the second BPEL node and completed Result The BPEL instance will failover to the secondary node and complete the flow ESB test cases This section covers the use cases involved with testing an ESB cluster. For this section please Normal 0 false false false EN-CA X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; mso-bidi-font-size:12.0pt; font-family:"Calibri","sans-serif"; mso-fareast-language:EN-US;} follow Metalink Note 470267.1 which covers the basic tests to verify your ESB cluster.

    Read the article

  • The Incremental Architect&acute;s Napkin &ndash; #3 &ndash; Make Evolvability inevitable

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/04/the-incremental-architectacutes-napkin-ndash-3-ndash-make-evolvability-inevitable.aspxThe easier something to measure the more likely it will be produced. Deviations between what is and what should be can be readily detected. That´s what automated acceptance tests are for. That´s what sprint reviews in Scrum are for. It´s no small wonder our software looks like it looks. It has all the traits whose conformance with requirements can easily be measured. And it´s lacking traits which cannot easily be measured. Evolvability (or Changeability) is such a trait. If an operation is correct, if an operation if fast enough, that can be checked very easily. But whether Evolvability is high or low, that cannot be checked by taking a measure or two. Evolvability might correlate with certain traits, e.g. number of lines of code (LOC) per function or Cyclomatic Complexity or test coverage. But there is no threshold value signalling “evolvability too low”; also Evolvability is hardly tangible for the customer. Nevertheless Evolvability is of great importance - at least in the long run. You can get away without much of it for a short time. Eventually, though, it´s needed like any other requirement. Or even more. Because without Evolvability no other requirement can be implemented. Evolvability is the foundation on which all else is build. Such fundamental importance is in stark contrast with its immeasurability. To compensate this, Evolvability must be put at the very center of software development. It must become the hub around everything else revolves. Since we cannot measure Evolvability, though, we cannot start watching it more. Instead we need to establish practices to keep it high (enough) at all times. Chefs have known that for long. That´s why everybody in a restaurant kitchen is constantly seeing after cleanliness. Hygiene is important as is to have clean tools at standardized locations. Only then the health of the patrons can be guaranteed and production efficiency is constantly high. Still a kitchen´s level of cleanliness is easier to measure than software Evolvability. That´s why important practices like reviews, pair programming, or TDD are not enough, I guess. What we need to keep Evolvability in focus and high is… to continually evolve. Change must not be something to avoid but too embrace. To me that means the whole change cycle from requirement analysis to delivery needs to be gone through more often. Scrum´s sprints of 4, 2 even 1 week are too long. Kanban´s flow of user stories across is too unreliable; it takes as long as it takes. Instead we should fix the cycle time at 2 days max. I call that Spinning. No increment must take longer than from this morning until tomorrow evening to finish. Then it should be acceptance checked by the customer (or his/her representative, e.g. a Product Owner). For me there are several resasons for such a fixed and short cycle time for each increment: Clear expectations Absolute estimates (“This will take X days to complete.”) are near impossible in software development as explained previously. Too much unplanned research and engineering work lurk in every feature. And then pervasive interruptions of work by peers and management. However, the smaller the scope the better our absolute estimates become. That´s because we understand better what really are the requirements and what the solution should look like. But maybe more importantly the shorter the timespan the more we can control how we use our time. So much can happen over the course of a week and longer timespans. But if push comes to shove I can block out all distractions and interruptions for a day or possibly two. That´s why I believe we can give rough absolute estimates on 3 levels: Noon Tonight Tomorrow Think of a meeting with a Product Owner at 8:30 in the morning. If she asks you, how long it will take you to implement a user story or bug fix, you can say, “It´ll be fixed by noon.”, or you can say, “I can manage to implement it until tonight before I leave.”, or you can say, “You´ll get it by tomorrow night at latest.” Yes, I believe all else would be naive. If you´re not confident to get something done by tomorrow night (some 34h from now) you just cannot reliably commit to any timeframe. That means you should not promise anything, you should not even start working on the issue. So when estimating use these four categories: Noon, Tonight, Tomorrow, NoClue - with NoClue meaning the requirement needs to be broken down further so each aspect can be assigned to one of the first three categories. If you like absolute estimates, here you go. But don´t do deep estimates. Don´t estimate dozens of issues; don´t think ahead (“Issue A is a Tonight, then B will be a Tomorrow, after that it´s C as a Noon, finally D is a Tonight - that´s what I´ll do this week.”). Just estimate so Work-in-Progress (WIP) is 1 for everybody - plus a small number of buffer issues. To be blunt: Yes, this makes promises impossible as to what a team will deliver in terms of scope at a certain date in the future. But it will give a Product Owner a clear picture of what to pull for acceptance feedback tonight and tomorrow. Trust through reliability Our trade is lacking trust. Customers don´t trust software companies/departments much. Managers don´t trust developers much. I find that perfectly understandable in the light of what we´re trying to accomplish: delivering software in the face of uncertainty by means of material good production. Customers as well as managers still expect software development to be close to production of houses or cars. But that´s a fundamental misunderstanding. Software development ist development. It´s basically research. As software developers we´re constantly executing experiments to find out what really provides value to users. We don´t know what they need, we just have mediated hypothesises. That´s why we cannot reliably deliver on preposterous demands. So trust is out of the window in no time. If we switch to delivering in short cycles, though, we can regain trust. Because estimates - explicit or implicit - up to 32 hours at most can be satisfied. I´d say: reliability over scope. It´s more important to reliably deliver what was promised then to cover a lot of requirement area. So when in doubt promise less - but deliver without delay. Deliver on scope (Functionality and Quality); but also deliver on Evolvability, i.e. on inner quality according to accepted principles. Always. Trust will be the reward. Less complexity of communication will follow. More goodwill buffer will follow. So don´t wait for some Kanban board to show you, that flow can be improved by scheduling smaller stories. You don´t need to learn that the hard way. Just start with small batch sizes of three different sizes. Fast feedback What has been finished can be checked for acceptance. Why wait for a sprint of several weeks to end? Why let the mental model of the issue and its solution dissipate? If you get final feedback after one or two weeks, you hardly remember what you did and why you did it. Resoning becomes hard. But more importantly youo probably are not in the mood anymore to go back to something you deemed done a long time ago. It´s boring, it´s frustrating to open up that mental box again. Learning is harder the longer it takes from event to feedback. Effort can be wasted between event (finishing an issue) and feedback, because other work might go in the wrong direction based on false premises. Checking finished issues for acceptance is the most important task of a Product Owner. It´s even more important than planning new issues. Because as long as work started is not released (accepted) it´s potential waste. So before starting new work better make sure work already done has value. By putting the emphasis on acceptance rather than planning true pull is established. As long as planning and starting work is more important, it´s a push process. Accept a Noon issue on the same day before leaving. Accept a Tonight issue before leaving today or first thing tomorrow morning. Accept a Tomorrow issue tomorrow night before leaving or early the day after tomorrow. After acceptance the developer(s) can start working on the next issue. Flexibility As if reliability/trust and fast feedback for less waste weren´t enough economic incentive, there is flexibility. After each issue the Product Owner can change course. If on Monday morning feature slices A, B, C, D, E were important and A, B, C were scheduled for acceptance by Monday evening and Tuesday evening, the Product Owner can change her mind at any time. Maybe after A got accepted she asks for continuation with D. But maybe, just maybe, she has gotten a completely different idea by then. Maybe she wants work to continue on F. And after B it´s neither D nor E, but G. And after G it´s D. With Spinning every 32 hours at latest priorities can be changed. And nothing is lost. Because what got accepted is of value. It provides an incremental value to the customer/user. Or it provides internal value to the Product Owner as increased knowledge/decreased uncertainty. I find such reactivity over commitment economically very benefical. Why commit a team to some workload for several weeks? It´s unnecessary at beast, and inflexible and wasteful at worst. If we cannot promise delivery of a certain scope on a certain date - which is what customers/management usually want -, we can at least provide them with unpredecented flexibility in the face of high uncertainty. Where the path is not clear, cannot be clear, make small steps so you´re able to change your course at any time. Premature completion Customers/management are used to premeditating budgets. They want to know exactly how much to pay for a certain amount of requirements. That´s understandable. But it does not match with the nature of software development. We should know that by now. Maybe there´s somewhere in the world some team who can consistently deliver on scope, quality, and time, and budget. Great! Congratulations! I, however, haven´t seen such a team yet. Which does not mean it´s impossible, but I think it´s nothing I can recommend to strive for. Rather I´d say: Don´t try this at home. It might hurt you one way or the other. However, what we can do, is allow customers/management stop work on features at any moment. With spinning every 32 hours a feature can be declared as finished - even though it might not be completed according to initial definition. I think, progress over completion is an important offer software development can make. Why think in terms of completion beyond a promise for the next 32 hours? Isn´t it more important to constantly move forward? Step by step. We´re not running sprints, we´re not running marathons, not even ultra-marathons. We´re in the sport of running forever. That makes it futile to stare at the finishing line. The very concept of a burn-down chart is misleading (in most cases). Whoever can only think in terms of completed requirements shuts out the chance for saving money. The requirements for a features mostly are uncertain. So how does a Product Owner know in the first place, how much is needed. Maybe more than specified is needed - which gets uncovered step by step with each finished increment. Maybe less than specified is needed. After each 4–32 hour increment the Product Owner can do an experient (or invite users to an experiment) if a particular trait of the software system is already good enough. And if so, she can switch the attention to a different aspect. In the end, requirements A, B, C then could be finished just 70%, 80%, and 50%. What the heck? It´s good enough - for now. 33% money saved. Wouldn´t that be splendid? Isn´t that a stunning argument for any budget-sensitive customer? You can save money and still get what you need? Pull on practices So far, in addition to more trust, more flexibility, less money spent, Spinning led to “doing less” which also means less code which of course means higher Evolvability per se. Last but not least, though, I think Spinning´s short acceptance cycles have one more effect. They excert pull-power on all sorts of practices known for increasing Evolvability. If, for example, you believe high automated test coverage helps Evolvability by lowering the fear of inadverted damage to a code base, why isn´t 90% of the developer community practicing automated tests consistently? I think, the answer is simple: Because they can do without. Somehow they manage to do enough manual checks before their rare releases/acceptance checks to ensure good enough correctness - at least in the short term. The same goes for other practices like component orientation, continuous build/integration, code reviews etc. None of that is compelling, urgent, imperative. Something else always seems more important. So Evolvability principles and practices fall through the cracks most of the time - until a project hits a wall. Then everybody becomes desperate; but by then (re)gaining Evolvability has become as very, very difficult and tedious undertaking. Sometimes up to the point where the existence of a project/company is in danger. With Spinning that´s different. If you´re practicing Spinning you cannot avoid all those practices. With Spinning you very quickly realize you cannot deliver reliably even on your 32 hour promises. Spinning thus is pulling on developers to adopt principles and practices for Evolvability. They will start actively looking for ways to keep their delivery rate high. And if not, management will soon tell them to do that. Because first the Product Owner then management will notice an increasing difficulty to deliver value within 32 hours. There, finally there emerges a way to measure Evolvability: The more frequent developers tell the Product Owner there is no way to deliver anything worth of feedback until tomorrow night, the poorer Evolvability is. Don´t count the “WTF!”, count the “No way!” utterances. In closing For sustainable software development we need to put Evolvability first. Functionality and Quality must not rule software development but be implemented within a framework ensuring (enough) Evolvability. Since Evolvability cannot be measured easily, I think we need to put software development “under pressure”. Software needs to be changed more often, in smaller increments. Each increment being relevant to the customer/user in some way. That does not mean each increment is worthy of shipment. It´s sufficient to gain further insight from it. Increments primarily serve the reduction of uncertainty, not sales. Sales even needs to be decoupled from this incremental progress. No more promises to sales. No more delivery au point. Rather sales should look at a stream of accepted increments (or incremental releases) and scoup from that whatever they find valuable. Sales and marketing need to realize they should work on what´s there, not what might be possible in the future. But I digress… In my view a Spinning cycle - which is not easy to reach, which requires practice - is the core practice to compensate the immeasurability of Evolvability. From start to finish of each issue in 32 hours max - that´s the challenge we need to accept if we´re serious increasing Evolvability. Fortunately higher Evolvability is not the only outcome of Spinning. Customer/management will like the increased flexibility and “getting more bang for the buck”.

    Read the article

  • CodePlex Daily Summary for Tuesday, March 27, 2012

    CodePlex Daily Summary for Tuesday, March 27, 2012Popular ReleasesHarness: Harness 2.0.2: change to .NET Framework Client Profile bug fix the download dialog auto answer. bug fix setFocus command. add "SendKeys" command. remove "closeAll" command. minor bugs fixed.BugNET Issue Tracker: BugNET 0.9.161: Below is a list of fixes in this release. Bug BGN-2092 - Link in Email "visit your profile" not functional BGN-2083 - Manager of bugnet can not edit project when it is not public BGN-2080 - clicking on a link in the project summary causes error (0.9.152.0) BGN-2070 - Missing Functionality On Feed.aspx BGN-2069 - Calendar View does not work BGN-2068 - Time tracking totals not ok BGN-2067 - Issues List Page Size Bug: Index was out of range. Must be non-negative and less than the si...YAF.NET (aka Yet Another Forum.NET): v1.9.6.1 RTW: v1.9.6.1 FINAL is .NET v4.0 ONLY v1.9.6.1 has: Performance Improvements .NET v4.0 improvements Improved FaceBook Integration More complete change list and discussion here: http://forum.yetanotherforum.net/yaf_postst14201_v1-9-6-1-RTW-Dated--3-26-2012.aspxQuick Performance Monitor: Version 1.8.1: Added option to set main window to be 'Always On Top'. Use context (right-click) menu on graph to toggle.Asp.NET Url Router: v1.0: build for .net 2.0 and .net 4.0SQLinq - use LINQ to generate Ad-Hoc Sql Queries: SQLinq v1.1: Nuget Package:http://nuget.org/packages/sqlinq Install SQLinq via Nuget Change Log:Fixed "SELECT *" bug when no selector is specified Added ".Take(int)" and ".Skip(int)" methods to support paging Added ability to specify "ORDER BY"DbViewSharp: Sql Compact Edition plugins: The SQL CE plugins are new assemblies written to allow DbViewSharp to work with SQL Compact Edition databases. Some features available for Sql Server databases are unavailable because of restrictions in the Compact Edition engine. However there are plans to add different new features as compensation for this. See the Sql CE Plugin page for more details.TileSet Map Editor: Map Creator: can add maps/ layers can use only 1 tileset for now Have Save/Load Logics... added Fill Copy and Paste working towards better code and more optionsBagammon pc player: Baggamon pc player v.1.3: This a source code of a project "tool-game" Bagammon pc player. It has bug. Please do not fix them. Thank you. For your information : "If you want to use it buy it. Send an email."openSourceC.Daylife: Release v1.0a: This is a minor bug fix release with some minor internal refactoring as well. The Documentation page has some code samples that show how to use the library. If you discover any issues with this release, please check the existing Discussions and Issues to see if the issue has already been reported, and if not, create a new discussion with the details of the issue.menu4web: menu4web 0.0.3: menu4web 0.0.3Windawesome: Windawesome v1.4.0 x86: Added a SeparatorWidget. Implemented some xmonad-like functionality for multiple-monitors - see SwapCurrentWorkspaceWith, SwitchToNextMonitor and SwitchToPreviousMonitor. Thanks to mkocubinski for the idea and some of the implementation. Implemented AddBarToWorkspace and RemoveBarFromWorkspace. Small performance improvements. Any issues/recommendations/requests for future versions? This is the 32-bit version of the release. If you use a 32-bit Windows, this is the release you should u...Navigation for ASP.NET Web Forms: Navigation 1.4: Navigation for ASP.NET Web Forms manages movement and data passing between ASPX pages in a unit-testable manner. There is no client-side logic, so it works in all browsers, and no server-side cache, so it works with the browser back button. Comprehensive documentation and sample code can be found under the Documentation tab (Make sure to unblock all zip files prior to extraction) New - Added default State NavigationData. Supports strongly typed values and routing defaults New - Added mobi...Afrihost Usage Monitoring Gadget: Afrihost Gadget 1.2.0: This is the stable current download: Changes: Added support for Uncapped accounts. Added support for IS Uncapped Accounts.ArcGIS Editor for OpenStreetMap: ArcGIS Editor for OSM 2.0 Final: This release installs both the ArcGIS Editor for OSM Server Component and/or ArcGIS Editor for OSM Desktop components. The Desktop tools allow you to download data from the OpenStreetMap servers and store it locally in a geodatabase. You can then use the familiar editing environment of ArcGIS Desktop to create, modify, or delete data. Once you are done editing, you can post back the edit changes to OSM to make them available to all OSM users. The Server Component allows you to quickly create...Craig's Utility Library: Craig's Utility Library 3.1: This update adds about 60 new extension methods, a couple of new classes, and a number of fixes including: Additions Added DateSpan class Added GenericDelimited class Random additions Added static thread friendly version of Random.Next called ThreadSafeNext. AOP Manager additions Added Destroy function to AOPManager (clears out all data so system can be recreated. Really only useful for testing...) ORM additions Added PagedCommand and PageCount functions to ObjectBaseClass (same as M...DotSpatial: DotSpatial 1.1: This is a Minor Release. See the changes in the issue tracker. Minimal -- includes DotSpatial core and essential extensions Extended -- includes debugging symbols and additional extensions Just want to run the software? End user (non-programmer) version available branded as MapWindow Want to add your own feature? Develop a plugin, using the template and contribute to the extension feed (you can also write extensions that you distribute in other ways). Components are available as NuGet pa...Microsoft All-In-One Code Framework - a centralized code sample library: C++, .NET Coding Guideline: Microsoft All-In-One Code Framework Coding Guideline This document describes the coding style guideline for native C++ and .NET (C# and VB.NET) programming used by the Microsoft All-In-One Code Framework project team.WebDAV for WHS: Version 1.0.67: - Added: Check whether the Remote Web Access is turned on or not; - Added: Check for Add-In updates;Phalanger - The PHP Language Compiler for the .NET Framework: 3.0 (March 2012) for .NET 4.0: March release of Phalanger 3.0 significantly enhances performance, adds new features and fixes many issues. See following for the list of main improvements: New features: Phalanger Tools installable for Visual Studio 2011 Beta "filter" extension with several most used filters implemented DomDocument HTML parser, loadHTML() method mail() PHP compatible function PHP 5.4 T_CALLABLE token PHP 5.4 "callable" type hint PCRE: UTF32 characters in range support configuration supports <c...New Projects(MVC4) Character Creation: A simple web site to manage your Avalon CharactersAmfSample: Sample projectBismillah Quran Reader for Wp7: Bismillah Quran Reader is an application for reading Quran translations in WP7. Translations can be read in various languages. Also recitations can be listened to.BlogEngine Mvc: This is an MVC version of BlogEngine.net. Project Description Our plan is to convert the whole BlogEngine.NET into an MVC application by the end of June 2012. It's developed in C# ASP.NET MVC3.Db7: Db7EF4.3 Code First and Migration Sample: EF4.3 Code First and Migration Sampleemoji for windows phone: This project is a windows phone 7 enmoji libary.Excel Document Merger: Excel Document Merger is a utility for combining multiple Excel workbooks and worksheets into a single workbook.exceladdin: exceladdinfastBinaryJSON: Binary JSON serializer based on fastJSONFontographer: A metro style WPF app to demonstrate the capabilites of the fonts on the users systemGonte Web Desktop: Another web desktop using ExtJs javascript frameworkIndoor Cricket Stats: Indoor Cricket StatsKernel32 C# wrapper: Kernel32.dll C# wrapper. Mostly done for threading, pipes, mutexes and other stuff. Not all methods implemented.Live for Desktop: A simple app that lets you browse you Live accout from a webbrowser integrated in the software. Future version will also include a custom interface and a Metro style look.LogoScriptIDE: IDE for LogoScript, A logo and C like scripting languageMcCloud Service Framework: Monte Carlo Cloud Service Framework (McCloud) provides a generic service implementation of Monte Carlo method, based on Microsoft Windows Azure, to solve a wide range of scientific and engineering problems.NetView Control for Microsoft Access: A native control for Microsoft Access forms to display and interact with non-hierarchical data.Polygon: Polygon is a UI composition framework for ASP.NET Web Forms. It can be used for third-party plugin extensibility of ASP.NET Web Forms applications. Though it's developed in C#, plugins can also done in VB as well.Programmeerproject-LambdaOffice: Architectural project. Takes input from the user and prints it to various fileformats such as .docx and .pdfQuick Job Seeker: Final project of computer scienceSchool Education Management: Project Description School Management System helps schools in managing student's data. It is targeted for colleges in the Philippines. It is developed in ASp.Net MVC3 and uses SQL Server as the database. The system is divided into several modules: 1. Registrar Module - used by the Registrar. 2. Scheduling Module - used by Deans for creating course offerings schedule 3. Cashiering Module - used by the Accounting Department 4. Grading Entry Module - used by teachers for encoding grade...Sharepoint Carousel: Sharepoint Carousel\Slider is a webpart that allows you to have a carousel that contains an image with a link below it. it is fully customisable from styles to the actual javascript that generates the slider data it has currently only been tested with sharepoint 2010 This is carousel\slider for sharepoint is built of the JCarousel http://sorgalla.com/jcarousel/.Sieena Dashboard: Metro UI DashboardSimple Redirect Module for DotNetNuke: This module allows content editors in DotNetNuke to have a simple and easy way to properly redirect incoming URLs that are incorrectly indexed by search engines.software de entrenador 2.0: software de entrenador es un Programa diseñado para entrenadores de musculacion y personas cuyo proposito es mejorar en sus entrenamientos y desean llevar un control del mismo a modo de diario.Sqlite Loader: Tool to Import/Export data to an Sqlite database using CSV, XML with a GUI written in C#TestProject_Mercurial: Test Project with MercuriaTestProject_TFS: the test project with tfsThinkPHP-??、???PHP????: ??WEB??????,?????WEB?????? Twesh Ajax: TweshAjax is clientside javascript library for making asynchronous calls to server.UserProfilePropertiesSync: This utility allows to synchronize User Profile properties between different SharePoint 2010 environments.VRacer: Vektor Car racing on windows phone.Workflow Foundation State Machine Service: This is a sample project for workflow foundation 4 state machine exposed as a WCF serviceWPZilla: Bugzilla client for Windows Phone 7.1 and up.XNA GPU Particles Tool: This is a tool to help create particle effects based on the sample shaders provided in the XNA education catalogue. View the changes to the parameters in real time.Y.Music: Y.Music - ??? ?????? ??? ??????? ??????.?????? ???????? ??????. ?? ????????? ?? ??????? ???-??????? ????????? ??????????. ? ???? ?? ?? ?????????? ??????? ?????? ?????????? ?????? ? ????????????? ??????? ? ????????? ? ?????????. ????????? ?????????? ?? WPF/?#/.NET. ????? ? ??? ???????????? ?????????? NAudio ? Fluent Ribbon.

    Read the article

  • SQL Server &ndash; Undelete a Table and Restore a Single Table from Backup

    - by Mladen Prajdic
    This post is part of the monthly community event called T-SQL Tuesday started by Adam Machanic (blog|twitter) and hosted by someone else each month. This month the host is Sankar Reddy (blog|twitter) and the topic is Misconceptions in SQL Server. You can follow posts for this theme on Twitter by looking at #TSQL2sDay hashtag. Let me start by saying: This code is a crazy hack that is to never be used unless you really, really have to. Really! And I don’t think there’s a time when you would really have to use it for real. Because it’s a hack there are number of things that can go wrong so play with it knowing that. I’ve managed to totally corrupt one database. :) Oh… and for those saying: yeah yeah.. you have a single table in a file group and you’re restoring that, I say “nay nay” to you. As we all know SQL Server can’t do single table restores from backup. This is kind of a obvious thing due to different relational integrity (RI) concerns. Since we have to maintain that we have to restore all tables represented in a RI graph. For this exercise i say BAH! to those concerns. Note that this method “works” only for simple tables that don’t have LOB and off rows data. The code can be expanded to include those but I’ve tried to leave things “simple”. Note that for this to work our table needs to be relatively static data-wise. This doesn’t work for OLTP table. Products are a perfect example of static data. They don’t change much between backups, pretty much everything depends on them and their table is one of those tables that are relatively easy to accidentally delete everything from. This only works if the database is in Full or Bulk-Logged recovery mode for tables where the contents have been deleted or truncated but NOT when a table was dropped. Everything we’ll talk about has to be done before the data pages are reused for other purposes. After deletion or truncation the pages are marked as reusable so you have to act fast. The best thing probably is to put the database into single user mode ASAP while you’re performing this procedure and return it to multi user after you’re done. How do we do it? We will be using an undocumented but known DBCC commands: DBCC PAGE, an undocumented function sys.fn_dblog and a little known DATABASE RESTORE PAGE option. All tests will be on a copy of Production.Product table in AdventureWorks database called Production.Product1 because the original table has FK constraints that prevent us from truncating it for testing. -- create a duplicate table. This doesn't preserve indexes!SELECT *INTO AdventureWorks.Production.Product1FROM AdventureWorks.Production.Product   After we run this code take a full back to perform further testing.   First let’s see what the difference between DELETE and TRUNCATE is when it comes to logging. With DELETE every row deletion is logged in the transaction log. With TRUNCATE only whole data page deallocations are logged in the transaction log. Getting deleted data pages is simple. All we have to look for is row delete entry in the sys.fn_dblog output. But getting data pages that were truncated from the transaction log presents a bit of an interesting problem. I will not go into depths of IAM(Index Allocation Map) and PFS (Page Free Space) pages but suffice to say that every IAM page has intervals that tell us which data pages are allocated for a table and which aren’t. If we deep dive into the sys.fn_dblog output we can see that once you truncate a table all the pages in all the intervals are deallocated and this is shown in the PFS page transaction log entry as deallocation of pages. For every 8 pages in the same extent there is one PFS page row in the transaction log. This row holds information about all 8 pages in CSV format which means we can get to this data with some parsing. A great help for parsing this stuff is Peter Debetta’s handy function dbo.HexStrToVarBin that converts hexadecimal string into a varbinary value that can be easily converted to integer tus giving us a readable page number. The shortened (columns removed) sys.fn_dblog output for a PFS page with CSV data for 1 extent (8 data pages) looks like this: -- [Page ID] is displayed in hex format. -- To convert it to readable int we'll use dbo.HexStrToVarBin function found at -- http://sqlblog.com/blogs/peter_debetta/archive/2007/03/09/t-sql-convert-hex-string-to-varbinary.aspx -- This function must be installed in the master databaseSELECT Context, AllocUnitName, [Page ID], DescriptionFROM sys.fn_dblog(NULL, NULL)WHERE [Current LSN] = '00000031:00000a46:007d' The pages at the end marked with 0x00—> are pages that are allocated in the extent but are not part of a table. We can inspect the raw content of each data page with a DBCC PAGE command: -- we need this trace flag to redirect output to the query window.DBCC TRACEON (3604); -- WITH TABLERESULTS gives us data in table format instead of message format-- we use format option 3 because it's the easiest to read and manipulate further onDBCC PAGE (AdventureWorks, 1, 613, 3) WITH TABLERESULTS   Since the DBACC PAGE output can be quite extensive I won’t put it here. You can see an example of it in the link at the beginning of this section. Getting deleted data back When we run a delete statement every row to be deleted is marked as a ghost record. A background process periodically cleans up those rows. A huge misconception is that the data is actually removed. It’s not. Only the pointers to the rows are removed while the data itself is still on the data page. We just can’t access it with normal means. To get those pointers back we need to restore every deleted page using the RESTORE PAGE option mentioned above. This restore must be done from a full backup, followed by any differential and log backups that you may have. This is necessary to bring the pages up to the same point in time as the rest of the data.  However the restore doesn’t magically connect the restored page back to the original table. It simply replaces the current page with the one from the backup. After the restore we use the DBCC PAGE to read data directly from all data pages and insert that data into a temporary table. To finish the RESTORE PAGE  procedure we finally have to take a tail log backup (simple backup of the transaction log) and restore it back. We can now insert data from the temporary table to our original table by hand. Getting truncated data back When we run a truncate the truncated data pages aren’t touched at all. Even the pointers to rows stay unchanged. Because of this getting data back from truncated table is simple. we just have to find out which pages belonged to our table and use DBCC PAGE to read data off of them. No restore is necessary. Turns out that the problems we had with finding the data pages is alleviated by not having to do a RESTORE PAGE procedure. Stop stalling… show me The Code! This is the code for getting back deleted and truncated data back. It’s commented in all the right places so don’t be afraid to take a closer look. Make sure you have a full backup before trying this out. Also I suggest that the last step of backing and restoring the tail log is performed by hand. USE masterGOIF OBJECT_ID('dbo.HexStrToVarBin') IS NULL RAISERROR ('No dbo.HexStrToVarBin installed. Go to http://sqlblog.com/blogs/peter_debetta/archive/2007/03/09/t-sql-convert-hex-string-to-varbinary.aspx and install it in master database' , 18, 1) SET NOCOUNT ONBEGIN TRY DECLARE @dbName VARCHAR(1000), @schemaName VARCHAR(1000), @tableName VARCHAR(1000), @fullBackupName VARCHAR(1000), @undeletedTableName VARCHAR(1000), @sql VARCHAR(MAX), @tableWasTruncated bit; /* THE FIRST LINE ARE OUR INPUT PARAMETERS In this case we're trying to recover Production.Product1 table in AdventureWorks database. My full backup of AdventureWorks database is at e:\AW.bak */ SELECT @dbName = 'AdventureWorks', @schemaName = 'Production', @tableName = 'Product1', @fullBackupName = 'e:\AW.bak', @undeletedTableName = '##' + @tableName + '_Undeleted', @tableWasTruncated = 0, -- copy the structure from original table to a temp table that we'll fill with restored data @sql = 'IF OBJECT_ID(''tempdb..' + @undeletedTableName + ''') IS NOT NULL DROP TABLE ' + @undeletedTableName + ' SELECT *' + ' INTO ' + @undeletedTableName + ' FROM [' + @dbName + '].[' + @schemaName + '].[' + @tableName + ']' + ' WHERE 1 = 0' EXEC (@sql) IF OBJECT_ID('tempdb..#PagesToRestore') IS NOT NULL DROP TABLE #PagesToRestore /* FIND DATA PAGES WE NEED TO RESTORE*/ CREATE TABLE #PagesToRestore ([ID] INT IDENTITY(1,1), [FileID] INT, [PageID] INT, [SQLtoExec] VARCHAR(1000)) -- DBCC PACE statement to run later RAISERROR ('Looking for deleted pages...', 10, 1) -- use T-LOG direct read to get deleted data pages INSERT INTO #PagesToRestore([FileID], [PageID], [SQLtoExec]) EXEC('USE [' + @dbName + '];SELECT FileID, PageID, ''DBCC TRACEON (3604); DBCC PAGE ([' + @dbName + '], '' + FileID + '', '' + PageID + '', 3) WITH TABLERESULTS'' as SQLToExecFROM (SELECT DISTINCT LEFT([Page ID], 4) AS FileID, CONVERT(VARCHAR(100), ' + 'CONVERT(INT, master.dbo.HexStrToVarBin(SUBSTRING([Page ID], 6, 20)))) AS PageIDFROM sys.fn_dblog(NULL, NULL)WHERE AllocUnitName LIKE ''%' + @schemaName + '.' + @tableName + '%'' ' + 'AND Context IN (''LCX_MARK_AS_GHOST'', ''LCX_HEAP'') AND Operation in (''LOP_DELETE_ROWS''))t');SELECT *FROM #PagesToRestore -- if upper EXEC returns 0 rows it means the table was truncated so find truncated pages IF (SELECT COUNT(*) FROM #PagesToRestore) = 0 BEGIN RAISERROR ('No deleted pages found. Looking for truncated pages...', 10, 1) -- use T-LOG read to get truncated data pages INSERT INTO #PagesToRestore([FileID], [PageID], [SQLtoExec]) -- dark magic happens here -- because truncation simply deallocates pages we have to find out which pages were deallocated. -- we can find this out by looking at the PFS page row's Description column. -- for every deallocated extent the Description has a CSV of 8 pages in that extent. -- then it's just a matter of parsing it. -- we also remove the pages in the extent that weren't allocated to the table itself -- marked with '0x00-->00' EXEC ('USE [' + @dbName + '];DECLARE @truncatedPages TABLE(DeallocatedPages VARCHAR(8000), IsMultipleDeallocs BIT);INSERT INTO @truncatedPagesSELECT REPLACE(REPLACE(Description, ''Deallocated '', ''Y''), ''0x00-->00 '', ''N'') + '';'' AS DeallocatedPages, CHARINDEX('';'', Description) AS IsMultipleDeallocsFROM (SELECT DISTINCT LEFT([Page ID], 4) AS FileID, CONVERT(VARCHAR(100), CONVERT(INT, master.dbo.HexStrToVarBin(SUBSTRING([Page ID], 6, 20)))) AS PageID, DescriptionFROM sys.fn_dblog(NULL, NULL)WHERE Context IN (''LCX_PFS'') AND Description LIKE ''Deallocated%'' AND AllocUnitName LIKE ''%' + @schemaName + '.' + @tableName + '%'') t;SELECT FileID, PageID , ''DBCC TRACEON (3604); DBCC PAGE ([' + @dbName + '], '' + FileID + '', '' + PageID + '', 3) WITH TABLERESULTS'' as SQLToExecFROM (SELECT LEFT(PageAndFile, 1) as WasPageAllocatedToTable , SUBSTRING(PageAndFile, 2, CHARINDEX('':'', PageAndFile) - 2 ) as FileID , CONVERT(VARCHAR(100), CONVERT(INT, master.dbo.HexStrToVarBin(SUBSTRING(PageAndFile, CHARINDEX('':'', PageAndFile) + 1, LEN(PageAndFile))))) as PageIDFROM ( SELECT SUBSTRING(DeallocatedPages, delimPosStart, delimPosEnd - delimPosStart) as PageAndFile, IsMultipleDeallocs FROM ( SELECT *, CHARINDEX('';'', DeallocatedPages)*(N-1) + 1 AS delimPosStart, CHARINDEX('';'', DeallocatedPages)*N AS delimPosEnd FROM @truncatedPages t1 CROSS APPLY (SELECT TOP (case when t1.IsMultipleDeallocs = 1 then 8 else 1 end) ROW_NUMBER() OVER(ORDER BY number) as N FROM master..spt_values) t2 )t)t)tWHERE WasPageAllocatedToTable = ''Y''') SELECT @tableWasTruncated = 1 END DECLARE @lastID INT, @pagesCount INT SELECT @lastID = 1, @pagesCount = COUNT(*) FROM #PagesToRestore SELECT @sql = 'Number of pages to restore: ' + CONVERT(VARCHAR(10), @pagesCount) IF @pagesCount = 0 RAISERROR ('No data pages to restore.', 18, 1) ELSE RAISERROR (@sql, 10, 1) -- If the table was truncated we'll read the data directly from data pages without restoring from backup IF @tableWasTruncated = 0 BEGIN -- RESTORE DATA PAGES FROM FULL BACKUP IN BATCHES OF 200 WHILE @lastID <= @pagesCount BEGIN -- create CSV string of pages to restore SELECT @sql = STUFF((SELECT ',' + CONVERT(VARCHAR(100), FileID) + ':' + CONVERT(VARCHAR(100), PageID) FROM #PagesToRestore WHERE ID BETWEEN @lastID AND @lastID + 200 ORDER BY ID FOR XML PATH('')), 1, 1, '') SELECT @sql = 'RESTORE DATABASE [' + @dbName + '] PAGE = ''' + @sql + ''' FROM DISK = ''' + @fullBackupName + '''' RAISERROR ('Starting RESTORE command:' , 10, 1) WITH NOWAIT; RAISERROR (@sql , 10, 1) WITH NOWAIT; EXEC(@sql); RAISERROR ('Restore DONE' , 10, 1) WITH NOWAIT; SELECT @lastID = @lastID + 200 END /* If you have any differential or transaction log backups you should restore them here to bring the previously restored data pages up to date */ END DECLARE @dbccSinglePage TABLE ( [ParentObject] NVARCHAR(500), [Object] NVARCHAR(500), [Field] NVARCHAR(500), [VALUE] NVARCHAR(MAX) ) DECLARE @cols NVARCHAR(MAX), @paramDefinition NVARCHAR(500), @SQLtoExec VARCHAR(1000), @FileID VARCHAR(100), @PageID VARCHAR(100), @i INT = 1 -- Get deleted table columns from information_schema view -- Need sp_executeSQL because database name can't be passed in as variable SELECT @cols = 'select @cols = STUFF((SELECT '', ['' + COLUMN_NAME + '']''FROM ' + @dbName + '.INFORMATION_SCHEMA.COLUMNSWHERE TABLE_NAME = ''' + @tableName + ''' AND TABLE_SCHEMA = ''' + @schemaName + '''ORDER BY ORDINAL_POSITIONFOR XML PATH('''')), 1, 2, '''')', @paramDefinition = N'@cols nvarchar(max) OUTPUT' EXECUTE sp_executesql @cols, @paramDefinition, @cols = @cols OUTPUT -- Loop through all the restored data pages, -- read data from them and insert them into temp table -- which you can then insert into the orignial deleted table DECLARE dbccPageCursor CURSOR GLOBAL FORWARD_ONLY FOR SELECT [FileID], [PageID], [SQLtoExec] FROM #PagesToRestore ORDER BY [FileID], [PageID] OPEN dbccPageCursor; FETCH NEXT FROM dbccPageCursor INTO @FileID, @PageID, @SQLtoExec; WHILE @@FETCH_STATUS = 0 BEGIN RAISERROR ('---------------------------------------------', 10, 1) WITH NOWAIT; SELECT @sql = 'Loop iteration: ' + CONVERT(VARCHAR(10), @i); RAISERROR (@sql, 10, 1) WITH NOWAIT; SELECT @sql = 'Running: ' + @SQLtoExec RAISERROR (@sql, 10, 1) WITH NOWAIT; -- if something goes wrong with DBCC execution or data gathering, skip it but print error BEGIN TRY INSERT INTO @dbccSinglePage EXEC (@SQLtoExec) -- make the data insert magic happen here IF (SELECT CONVERT(BIGINT, [VALUE]) FROM @dbccSinglePage WHERE [Field] LIKE '%Metadata: ObjectId%') = OBJECT_ID('['+@dbName+'].['+@schemaName +'].['+@tableName+']') BEGIN DELETE @dbccSinglePage WHERE NOT ([ParentObject] LIKE 'Slot % Offset %' AND [Object] LIKE 'Slot % Column %') SELECT @sql = 'USE tempdb; ' + 'IF (OBJECTPROPERTY(object_id(''' + @undeletedTableName + '''), ''TableHasIdentity'') = 1) ' + 'SET IDENTITY_INSERT ' + @undeletedTableName + ' ON; ' + 'INSERT INTO ' + @undeletedTableName + '(' + @cols + ') ' + STUFF((SELECT ' UNION ALL SELECT ' + STUFF((SELECT ', ' + CASE WHEN VALUE = '[NULL]' THEN 'NULL' ELSE '''' + [VALUE] + '''' END FROM ( -- the unicorn help here to correctly set ordinal numbers of columns in a data page -- it's turning STRING order into INT order (1,10,11,2,21 into 1,2,..10,11...21) SELECT [ParentObject], [Object], Field, VALUE, RIGHT('00000' + O1, 6) AS ParentObjectOrder, RIGHT('00000' + REVERSE(LEFT(O2, CHARINDEX(' ', O2)-1)), 6) AS ObjectOrder FROM ( SELECT [ParentObject], [Object], Field, VALUE, REPLACE(LEFT([ParentObject], CHARINDEX('Offset', [ParentObject])-1), 'Slot ', '') AS O1, REVERSE(LEFT([Object], CHARINDEX('Offset ', [Object])-2)) AS O2 FROM @dbccSinglePage WHERE t.ParentObject = ParentObject )t)t ORDER BY ParentObjectOrder, ObjectOrder FOR XML PATH('')), 1, 2, '') FROM @dbccSinglePage t GROUP BY ParentObject FOR XML PATH('') ), 1, 11, '') + ';' RAISERROR (@sql, 10, 1) WITH NOWAIT; EXEC (@sql) END END TRY BEGIN CATCH SELECT @sql = 'ERROR!!!' + CHAR(10) + CHAR(13) + 'ErrorNumber: ' + ERROR_NUMBER() + '; ErrorMessage' + ERROR_MESSAGE() + CHAR(10) + CHAR(13) + 'FileID: ' + @FileID + '; PageID: ' + @PageID RAISERROR (@sql, 10, 1) WITH NOWAIT; END CATCH DELETE @dbccSinglePage SELECT @sql = 'Pages left to process: ' + CONVERT(VARCHAR(10), @pagesCount - @i) + CHAR(10) + CHAR(13) + CHAR(10) + CHAR(13) + CHAR(10) + CHAR(13), @i = @i+1 RAISERROR (@sql, 10, 1) WITH NOWAIT; FETCH NEXT FROM dbccPageCursor INTO @FileID, @PageID, @SQLtoExec; END CLOSE dbccPageCursor; DEALLOCATE dbccPageCursor; EXEC ('SELECT ''' + @undeletedTableName + ''' as TableName; SELECT * FROM ' + @undeletedTableName)END TRYBEGIN CATCH SELECT ERROR_NUMBER() AS ErrorNumber, ERROR_MESSAGE() AS ErrorMessage IF CURSOR_STATUS ('global', 'dbccPageCursor') >= 0 BEGIN CLOSE dbccPageCursor; DEALLOCATE dbccPageCursor; ENDEND CATCH-- if the table was deleted we need to finish the restore page sequenceIF @tableWasTruncated = 0BEGIN -- take a log tail backup and then restore it to complete page restore process DECLARE @currentDate VARCHAR(30) SELECT @currentDate = CONVERT(VARCHAR(30), GETDATE(), 112) RAISERROR ('Starting Log Tail backup to c:\Temp ...', 10, 1) WITH NOWAIT; PRINT ('BACKUP LOG [' + @dbName + '] TO DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') EXEC ('BACKUP LOG [' + @dbName + '] TO DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') RAISERROR ('Log Tail backup done.', 10, 1) WITH NOWAIT; RAISERROR ('Starting Log Tail restore from c:\Temp ...', 10, 1) WITH NOWAIT; PRINT ('RESTORE LOG [' + @dbName + '] FROM DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') EXEC ('RESTORE LOG [' + @dbName + '] FROM DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') RAISERROR ('Log Tail restore done.', 10, 1) WITH NOWAIT;END-- The last step is manual. Insert data from our temporary table to the original deleted table The misconception here is that you can do a single table restore properly in SQL Server. You can't. But with little experimentation you can get pretty close to it. One way to possible remove a dependency on a backup to retrieve deleted pages is to quickly run a similar script to the upper one that gets data directly from data pages while the rows are still marked as ghost records. It could be done if we could beat the ghost record cleanup task.

    Read the article

  • qemu-kvm virtual machine virtio network freeze under load

    - by Rick Koshi
    I'm having a problem with my virtual machines, where the network will freeze under heavy load. I'm using CentOS 6.2 as both host and guest, not using libvirt, just running qemu-kvm directly as follows: /usr/libexec/qemu-kvm \ -drive file=/data2/vm/rb-dev2-www1-vm.img,index=0,media=disk,cache=none,if=virtio \ -boot order=c \ -m 2G \ -smp cores=1,threads=2 \ -vga std \ -name rb-dev2-www1-vm \ -vnc :84,password \ -net nic,vlan=0,macaddr=52:54:20:00:00:54,model=virtio \ -net tap,vlan=0,ifname=tap84,script=/etc/qemu-ifup \ -monitor unix:/var/run/vm/rb-dev2-www1-vm.mon,server,nowait \ -rtc base=utc \ -device piix3-usb-uhci \ -device usb-tablet /etc/qemu-ifup (used by the above command) is a very simple script, containing the following: #!/bin/sh sudo /sbin/ifconfig $1 0.0.0.0 promisc up sudo /usr/sbin/brctl addif br0 $1 sleep 2 And here's the info on br0 and other interfaces: avl-host3 14# brctl show bridge name bridge id STP enabled interfaces br0 8000.180373f5521a no bond0 tap84 virbr0 8000.525400858961 yes virbr0-nic avl-host3 15# ip addr show 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: em1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0 state UP qlen 1000 link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff 3: em2: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0 state UP qlen 1000 link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff 4: em3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 link/ether 18:03:73:f5:52:1e brd ff:ff:ff:ff:ff:ff 5: em4: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 link/ether 18:03:73:f5:52:20 brd ff:ff:ff:ff:ff:ff 6: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff inet6 fe80::1a03:73ff:fef5:521a/64 scope link valid_lft forever preferred_lft forever 7: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff inet 172.16.1.46/24 brd 172.16.1.255 scope global br0 inet6 fe80::1a03:73ff:fef5:521a/64 scope link valid_lft forever preferred_lft forever 8: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 52:54:00:85:89:61 brd ff:ff:ff:ff:ff:ff inet 192.168.122.1/24 brd 192.168.122.255 scope global virbr0 9: virbr0-nic: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 500 link/ether 52:54:00:85:89:61 brd ff:ff:ff:ff:ff:ff 12: tap84: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 500 link/ether ba:e8:9b:2a:ff:48 brd ff:ff:ff:ff:ff:ff inet6 fe80::b8e8:9bff:fe2a:ff48/64 scope link valid_lft forever preferred_lft forever bond0 is a bond of em1 and em2. virbr0 and virbr0-nic are vestigial interfaces left over from CentOS's default installation. They are unused (as far as I know). The guest runs perfectly until I run a large 'rsync', when the network will freeze after some seemingly-random time (usually under a minute). When it freezes, there is no network activity in or out of the guest. I can still connect to the guest's console via vnc, but it is unable to speak out its network interface. Any attempt to 'ping' from the guest gives a "Destination Host Unreachable" error for 3/4 packets and no reply for every fourth packet. Sometimes (perhaps two thirds of the time), I can bring the interface back to life by doing a "service network restart" from the guest's console. If this works (and if I do it before the rsync times out), the rsync will resume. Usually it will freeze again within a minute or two. If I repeat, the rsync will eventually finish, and I presume the machine goes back to waiting for another period of heavy load. Throughout the whole process, there are no console errors or relevant (that I can see) syslog messages on either guest or host machine. If the "service network restart" doesn't work the first time, trying again (and again and again) never seems to work. The command completes normally, with normal output, but the interface stays frozen. However, a soft reboot of the guest machine (without restarting qemu-kvm) always seems to bring it back. I am aware of the "lowest mac address" assignment problem, where the bridge takes on the mac address of the slave interface with the lowest mac address. This causes temporary network freezes, but is definitely not what's happening for me. My freezes are permanent until manual intervention, and you can see from the 'ip addr show' output above that the mac address being used by br0 is that of the physical ethernet. There are no other virtual machines running on the host. I've verified that each virtual machine on the subnet has its own unique mac address. I have rebuilt the guest machine several times, and I have tried this on three different host machines (identical hardware, built identically). Oddly, I do have one virtual host (the second of this series) which never seemed to have a problem. It never had its network freeze when it was running the same rsync during its build. It's particularly odd because it was the second build. The first, on a different host, did have the freezing problem, but the second did not. I assumed at the time that I had done something wrong with the first build, and that the problem was resolved. Unfortunately, the problem reappeared when I built the third VM. Also unfortunately, I can't do many tests with the working VM, as it's now in production use, and I'm hoping I can find the cause of this issue before that machine starts having problems. It's possible that I just got really lucky while running the rsync on the working machine, and that one time it didn't freeze. Of course it's possible that I somehow changed the build scripts without realizing it and re-broke something, but I can't find any such thing. In any case, I'm hoping someone has some idea what could cause this. Addendum: Preliminary tests suggest that I don't have the problem if I substitute e1000 for virtio in the first -net flag to qemu-kvm. I don't consider this a solution, but it is suitable for a stopgap. Has anyone else had (or better yet, solved) this problem with the virtio network driver?

    Read the article

  • CodePlex Daily Summary for Wednesday, February 09, 2011

    CodePlex Daily Summary for Wednesday, February 09, 2011Popular ReleasesWatchersNET.TagCloud: WatchersNET.TagCloud 01.09.03: Whats NewAdded New Skin TagTastic http://www.watchersnet.de/Portals/0/screenshots/dnn/TagCloud-TagTastic-Skin.jpg Added New Skin RoundedButton http://www.watchersnet.de/Portals/0/screenshots/dnn/TagCloud-RoundedButton-Skin.jpg changes Tag Count fixed on Tag Source Referrals Fixed Tag Count when multiple Tag Sources are usedFolder Space Quota: com_folderspacequotaV1.1: Correct Language String settingWinXound: WinXound 3.4.x (Windows - OsX - Linux): Release Notes (3.4.x) for all platforms: New: Added an internal audio player (it is automatically called when rendering to an audio file or called by the user with Ctrl+P); New: Reimplemented the orc/sco file editor (and of course also the ability to convert them to the csd format) - The default open action can be changed in the settings; New: The new untitled or imported files are now automatically saved into a temporary directory (no more need to save them before to compile); New: Add...ExtremeML: ExtremeML v1.0 Beta 3: VS solution source code updated for compatibility with VS2010 (accommodates VS2010 breaking changes in T4 template support).People's Note: People's Note 0.23: Sorry for the long pause between updates — I had my hands full. Version 0.23 makes fairly significant improvements: A bug with local note deletion has been fixed. Synchronization has been improved. A single failed note no longer stops the whole process. Unsynchronized notes are now highlighted. Added an option to display notebook title; thanks to Vovansky for the idea. Text colour has been fixed for people whose default is not black; thanks to JZerr for pointing this out. Incorrect ...Finestra Virtual Desktops: 1.1: This release adds a few more performance and graphical enhancements to 1.0. Switching desktops is now about as fast as you can blink. Desktop switching optimizations New welcome wizard for Vista/7 Fixed a few minor bugs Added a few more options to the options dialog (including ability to disable the taskbar switching)youtubeFisher: youtubeFisher 3.0 [beta]: What's new: Supports YouTube's new layout Complete internal refactoringNearforums - ASP.NET MVC forum engine: Nearforums v5.0: Version 5.0 of the ASP.NET MVC Forum Engine, containing the following improvements: .NET 4.0 as target framework using ASP.NET MVC 3. All views migrated to Razor for cleaner markup. Alternate template (Layout file) for mobile devices 4 Bug Fixes since Version 4.1 Visit the project Roadmap for more details.fuv: 1.0 release, codename Chopper Joe: features: search/replace :o to open file :s to save file :q to quitASP.NET MVC Project Awesome, jQuery Ajax helpers (controls): 1.7: A rich set of helpers (controls) that you can use to build highly responsive and interactive Ajax-enabled Web applications. These helpers include Autocomplete, AjaxDropdown, Lookup, Confirm Dialog, Popup Form, Popup and Pager html generation optimized new features for the lookup (add additional search data ) live demo went aeroEnhSim: EnhSim 2.3.6 BETA: 2.3.6 BETAThis release supports WoW patch 4.06 at level 85 To use this release, you must have the Microsoft Visual C++ 2010 Redistributable Package installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=A7B7A05E-6DE6-4D3A-A423-37BF0912DB84 To use the GUI you must have the .NET 4.0 Framework installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9cfb2d51-5ff4-4491-b0e5-b386f32c0992 Changes since 2.3.0 ...TestApi - a library of Test APIs: TestApi v0.6: TestApi v0.6 comes with the following changes: TestApi code development has been moved to Codeplex: Moved TestApi soluton to VS 2010; Moved all source code to Codeplex. All development work is done there now. Fault Injection API: Integrated the unmanaged FaultInjectionEngine.dll COM component in the build; Cleaned up FaultInjectionEngine.dll to build at warning level 4; Implemented “FaultScope” which allows for in-process fault injection; Added automation scripts & sample program; ...AutoLoL: AutoLoL v1.5.5: AutoChat now allows up to 6 items. Items with nr. 7-0 will be removed! News page url's are now opened in the default browser Added a context menu to the system tray icon (thanks to Alex Banagos) AutoChat now allows configuring the Chat Keys and the Modifier Key The recent files list now supports compact and full mode Fix: Swapped mouse buttons are now properly detected Fix: Sometimes the Play button was pressed while still greyed out Champion: Karma Note: You can also run the u...mojoPortal: 2.3.6.2: see release notes on mojoportal.com http://www.mojoportal.com/mojoportal-2362-released.aspx Note that we have separate deployment packages for .NET 3.5 and .NET 4.0 The deployment package downloads on this page are pre-compiled and ready for production deployment, they contain no C# source code. To download the source code see the Source Code Tab I recommend getting the latest source code using TortoiseHG, you can get the source code corresponding to this release here.Rawr: Rawr 4.0.19 Beta: Rawr is now web-based. The link to use Rawr4 is: http://elitistjerks.com/rawr.phpThis is the Cataclysm Beta Release. More details can be found at the following link http://rawr.codeplex.com/Thread/View.aspx?ThreadId=237262 As of the 4.0.16 release, you can now also begin using the new Downloadable WPF version of Rawr!This is a pre-alpha release of the WPF version, there are likely to be a lot of issues. If you have a problem, please follow the Posting Guidelines and put it into the Issue Trac...IronRuby: 1.1.2: IronRuby 1.1.2 is a servicing release that keeps on improving compatibility with Ruby 1.9.2 and includes IronRuby integration to Visual Studio 2010. We decided to drop 1.8.6 compatibility mode in all post-1.0 releases. We recommend using IronRuby 1.0 if you need 1.8.6 compatibility. In this release we fixed several major issues: - problems that blocked Gem installation in certain cases - regex syntax: the parser was replaced with a new one that is much more compatible with Ruby 1.9.2 - cras...MVVM Light Toolkit: MVVM Light Toolkit V3 SP1 (4): There was a small issue with the previous release that caused errors when installing the templates in VS10 Express. This release corrects the error. Only use this if you encountered issues when installing the previous release. No changes in the binaries.Facebook C# SDK: 5.0.2 (BETA): PLEASE TAKE A FEW MINUTES TO GIVE US SOME FEEDBACK: Facebook C# SDK Survey This is third BETA release of the version 5 branch of the Facebook C# SDK. Remember this is a BETA build. Some things may change or not work exactly as planned. We are absolutely looking for feedback on this release to help us improve the final 5.X.X release. This release contains some breaking changes. Particularly with authentication. After spending time reviewing the trouble areas that people are having using th...ASP.NET MVC SiteMap provider: MvcSiteMapProvider 3.0.0 for MVC3: Using NuGet?MvcSiteMapProvider is also listed in the NuGet feed. Learn more... Like the project? Consider a donation!Donate via PayPal via PayPal. ChangelogTargeting ASP.NET MVC 3 and .NET 4.0 Additional UpdatePriority options for generating XML sitemaps Allow to specify target on SiteMapTitleAttribute One action with multiple routes and breadcrumbs Medium Trust optimizations Create SiteMapTitleAttribute for setting parent title IntelliSense for your sitemap with MvcSiteMapSchem...patterns & practices SharePoint Guidance: SharePoint Guidance 2010 Hands On Lab: SharePoint Guidance 2010 Hands On Lab consists of six labs: one for logging, one for service location, and four for application setting manager. Each lab takes about 20 minutes to walk through. Each lab consists of a PDF document. You can go through the steps in the doc to create solution and then build/deploy the solution and run the lab. For those of you who wants to save the time, we included the final solution so you can just build/deploy the solution and run the lab.New Projects.NET Proxy (netProxy): ASP.NET and Javascript proxies for accessing external content. The ASPX file can be used for returning external content over the current channel (HTTP/SSL). Used with the ASPX, the JS file can provide remote server access (no "same origin policy") with XMLHttpRequest syntax.CalCheck: CalCheck is a Calendar Checking Tool for Outlook. It opens the default Calendar and checks the items in the calendar for known problems, and for certain logic problems, etc.CBM11: CBM11 makes use of the Cosmos C# operating system project, and 6502 CPU emulation code, to provide an bootable 6502 CPU environment, complete with simulated RAM, and a built-in ML monitor.Ela, functional language: Ela is a modern functional programming language that runs on CLR and Mono. It's developed in C#.Framework for Image Processing: This is small framework of image processing tools.fuv: fuv is a programmer's editor that is an excellent replacement for vim. *All* editing is done by searching and replacing over the existing text, using regular expressions.HD44780-compatible Character LCD class: LCD class for .NET Micro Framework provides everything needed to work with HD44780-compatible Character LCD.Home Budget Planner: Home Budget PlannerMath training program: The math training program. Great for kids who started to learn addition and multiplication tables. Easy interface, friendly design. Features timer. Number of equations and a math sign are set up by user. It's developed in C#.Mefisto.NET CMS: Mefisto.NET CMS is a project of CMS, developped in ASP.NET MVC3, coupled with MEF and ENTITY FRAMEWORK. This project is respectful of good practice: - accessible - based on jquery - using css - expandable with mef Now you're interested, contact me !MongoMapper: A .NET Object Mapper for MongoDB over MongoDB C# DriverMoshpit: A companion WP7 app for Microsoft Student Partners and students interested in everything Microsoft has to offer in the Academic space.myproject_0023: test firstNonHealthServicePageSample: NonHealthServicePageSample shows how to create a HealthVault Online application without deriving from HealthServicePage. This is developed in C#.Pokemon Battle System: A battle system for a roleplaying forums. Putting Data in Cold Storage with Windows Azure Table: Historical records and blobs are two examples of data that aren't necessarily kept in relational storage forever. Use Windows Azure Table to put "completed" records into cold storage. See a detailed explanation of this C# project at: http://tinyurl.com/4ocy2aj.Python library to read/write ooxml document files: Python library to read/write ooxml document filesRemoteLogMonitor: A tool which can monitor logs in remote computer realtimeRetete: Aplicatia gestioneaza stocul unui restaurant pe baza de retete. Materia prima este introdusa in sistem prin receptii si inventar, iar la vanzare este consumata in functie de retetele configurate. Vanzarile pot fi inregistrate pe o casa de marcat folosind driver-ul DocPrint. SilverDiagram Extensions: Tutorials, utilities and samples for Silver Diagram, a fast and extendable client framework for diagrams.SoPrism: SoPrism is a Solution Visual Studio Template using best practices to build a Silverlight composite application. This template generate a full Silverlight application based on a solid architecture including the Model-View-ViewModel (MVVM) pattern and PRISM framework.TempProject: Temp project hostingWCF Data Services Toolkit: The WCF Data Services Toolkit is a set of extensions to WCF Data Services (the .NET implementation of OData) that attempt to make it easier to create OData services on top of arbitrary data stores without having deep knowledge of LINQ.Web Browser BOT.NET: To automate to manipulate form using .NET codeZombie Blogger: Zombie Blog Engine

    Read the article

  • Flow-Design Cheat Sheet &ndash; Part I, Notation

    - by Ralf Westphal
    You want to avoid the pitfalls of object oriented design? Then this is the right place to start. Use Flow-Oriented Analysis (FOA) and –Design (FOD or just FD for Flow-Design) to understand a problem domain and design a software solution. Flow-Orientation as described here is related to Flow-Based Programming, Event-Based Programming, Business Process Modelling, and even Event-Driven Architectures. But even though “thinking in flows” is not new, I found it helpful to deviate from those precursors for several reasons. Some aim at too big systems for the average programmer, some are concerned with only asynchronous processing, some are even not very much concerned with programming at all. What I was looking for was a design method to help in software projects of any size, be they large or tiny, involing synchronous or asynchronous processing, being local or distributed, running on the web or on the desktop or on a smartphone. That´s why I took ideas from all of the above sources and some additional and came up with Event-Based Components which later got repositioned and renamed to Flow-Design. In the meantime this has generated some discussion (in the German developer community) and several teams have started to work with Flow-Design. Also I´ve conducted quite some trainings using Flow-Orientation for design. The results are very promising. Developers find it much easier to design software using Flow-Orientation than OOAD-based object orientation. Since Flow-Orientation is moving fast and is not covered completely by a single source like a book, demand has increased for at least an overview of the current state of its notation. This page is trying to answer this demand by briefly introducing/describing every notational element as well as their translation into C# source code. Take this as a cheat sheet to put next to your whiteboard when designing software. However, please do not expect any explanation as to the reasons behind Flow-Design elements. Details on why Flow-Design at all and why in this specific way you´ll find in the literature covering the topic. Here´s a resource page on Flow-Design/Event-Based Components, if you´re able to read German. Notation Connected Functional Units The basic element of any FOD are functional units (FU): Think of FUs as some kind of software code block processing data. For the moment forget about classes, methods, “components”, assemblies or whatever. See a FU as an abstract piece of code. Software then consists of just collaborating FUs. I´m using circles/ellipses to draw FUs. But if you like, use rectangles. Whatever suites your whiteboard needs best.   The purpose of FUs is to process input and produce output. FUs are transformational. However, FUs are not called and do not call other FUs. There is no dependency between FUs. Data just flows into a FU (input) and out of it (output). From where and where to is of no concern to a FU.   This way FUs can be concatenated in arbitrary ways:   Each FU can accept input from many sources and produce output for many sinks:   Flows Connected FUs form a flow with a start and an end. Data is entering a flow at a source, and it´s leaving it through a sink. Think of sources and sinks as special FUs which conntect wires to the environment of a network of FUs.   Wiring Details Data is flowing into/out of FUs through wires. This is to allude to electrical engineering which since long has been working with composable parts. Wires are attached to FUs usings pins. They are the entry/exit points for the data flowing along the wires. Input-/output pins currently need not be drawn explicitly. This is to keep designing on a whiteboard simple and quick.   Data flowing is of some type, so wires have a type attached to them. And pins have names. If there is only one input pin and output pin on a FU, though, you don´t need to mention them. The default is Process for a single input pin, and Result for a single output pin. But you´re free to give even single pins different names.   There is a shortcut in use to address a certain pin on a destination FU:   The type of the wire is put in parantheses for two reasons. 1. This way a “no-type” wire can be easily denoted, 2. this is a natural way to describe tuples of data.   To describe how much data is flowing, a star can be put next to the wire type:   Nesting – Boards and Parts If more than 5 to 10 FUs need to be put in a flow a FD starts to become hard to understand. To keep diagrams clutter free they can be nested. You can turn any FU into a flow: This leads to Flow-Designs with different levels of abstraction. A in the above illustration is a high level functional unit, A.1 and A.2 are lower level functional units. One of the purposes of Flow-Design is to be able to describe systems on different levels of abstraction and thus make it easier to understand them. Humans use abstraction/decomposition to get a grip on complexity. Flow-Design strives to support this and make levels of abstraction first class citizens for programming. You can read the above illustration like this: Functional units A.1 and A.2 detail what A is supposed to do. The whole of A´s responsibility is decomposed into smaller responsibilities A.1 and A.2. FU A thus does not do anything itself anymore! All A is responsible for is actually accomplished by the collaboration between A.1 and A.2. Since A now is not doing anything anymore except containing A.1 and A.2 functional units are devided into two categories: boards and parts. Boards are just containing other functional units; their sole responsibility is to wire them up. A is a board. Boards thus depend on the functional units nested within them. This dependency is not of a functional nature, though. Boards are not dependent on services provided by nested functional units. They are just concerned with their interface to be able to plug them together. Parts are the workhorses of flows. They contain the real domain logic. They actually transform input into output. However, they do not depend on other functional units. Please note the usage of source and sink in boards. They correspond to input-pins and output-pins of the board.   Implicit Dependencies Nesting functional units leads to a dependency tree. Boards depend on nested functional units, they are the inner nodes of the tree. Parts are independent, they are the leafs: Even though dependencies are the bane of software development, Flow-Design does not usually draw these dependencies. They are implicitly created by visually nesting functional units. And they are harmless. Boards are so simple in their functionality, they are little affected by changes in functional units they are depending on. But functional units are implicitly dependent on more than nested functional units. They are also dependent on the data types of the wires attached to them: This is also natural and thus does not need to be made explicit. And it pertains mainly to parts being dependent. Since boards don´t do anything with regard to a problem domain, they don´t care much about data types. Their infrastructural purpose just needs types of input/output-pins to match.   Explicit Dependencies You could say, Flow-Orientation is about tackling complexity at its root cause: that´s dependencies. “Natural” dependencies are depicted naturally, i.e. implicitly. And whereever possible dependencies are not even created. Functional units don´t know their collaborators within a flow. This is core to Flow-Orientation. That makes for high composability of functional units. A part is as independent of other functional units as a motor is from the rest of the car. And a board is as dependend on nested functional units as a motor is on a spark plug or a crank shaft. With Flow-Design software development moves closer to how hardware is constructed. Implicit dependencies are not enough, though. Sometimes explicit dependencies make designs easier – as counterintuitive this might sound. So FD notation needs a ways to denote explicit dependencies: Data flows along wires. But data does not flow along dependency relations. Instead dependency relations represent service calls. Functional unit C is depending on/calling services on functional unit S. If you want to be more specific, name the services next to the dependency relation: Although you should try to stay clear of explicit dependencies, they are fundamentally ok. See them as a way to add another dimension to a flow. Usually the functionality of the independent FU (“Customer repository” above) is orthogonal to the domain of the flow it is referenced by. If you like emphasize this by using different shapes for dependent and independent FUs like above. Such dependencies can be used to link in resources like databases or shared in-memory state. FUs can not only produce output but also can have side effects. A common pattern for using such explizit dependencies is to hook a GUI into a flow as the source and/or the sink of data: Which can be shortened to: Treat FUs others depend on as boards (with a special non-FD API the dependent part is connected to), but do not embed them in a flow in the diagram they are depended upon.   Attributes of Functional Units Creation and usage of functional units can be modified with attributes. So far the following have shown to be helpful: Singleton: FUs are by default multitons. FUs in the same of different flows with the same name refer to the same functionality, but to different instances. Think of functional units as objects that get instanciated anew whereever they appear in a design. Sometimes though it´s helpful to reuse the same instance of a functional unit; this is always due to valuable state it holds. Signify this by annotating the FU with a “(S)”. Multiton: FUs on which others depend are singletons by default. This is, because they usually are introduced where shared state comes into play. If you want to change them to be a singletons mark them with a “(M)”. Configurable: Some parts need to be configured before the can do they work in a flow. Annotate them with a “(C)” to have them initialized before any data items to be processed by them arrive. Do not assume any order in which FUs are configured. How such configuration is happening is an implementation detail. Entry point: In each design there needs to be a single part where “it all starts”. That´s the entry point for all processing. It´s like Program.Main() in C# programs. Mark the entry point part with an “(E)”. Quite often this will be the GUI part. How the entry point is started is an implementation detail. Just consider it the first FU to start do its job.   Patterns / Standard Parts If more than a single wire is attached to an output-pin that´s called a split (or fork). The same data is flowing on all of the wires. Remember: Flow-Designs are synchronous by default. So a split does not mean data is processed in parallel afterwards. Processing still happens synchronously and thus one branch after another. Do not assume any specific order of the processing on the different branches after the split.   It is common to do a split and let only parts of the original data flow on through the branches. This effectively means a map is needed after a split. This map can be implicit or explicit.   Although FUs can have multiple input-pins it is preferrable in most cases to combine input data from different branches using an explicit join: The default output of a join is a tuple of its input values. The default behavior of a join is to output a value whenever a new input is received. However, to produce its first output a join needs an input for all its input-pins. Other join behaviors can be: reset all inputs after an output only produce output if data arrives on certain input-pins

    Read the article

  • C#/.NET Little Wonders: ConcurrentBag and BlockingCollection

    - by James Michael Hare
    In the first week of concurrent collections, began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  The last post discussed the ConcurrentDictionary<T> .  Finally this week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see C#/.NET Little Wonders: A Redux. Recap As you'll recall from the previous posts, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  With .NET 4.0, a new breed of collections was born in the System.Collections.Concurrent namespace.  Of these, the final concurrent collection we will examine is the ConcurrentBag and a very useful wrapper class called the BlockingCollection. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this informative whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentBag<T> – Thread-safe unordered collection. Unlike the other concurrent collections, the ConcurrentBag<T> has no non-concurrent counterpart in the .NET collections libraries.  Items can be added and removed from a bag just like any other collection, but unlike the other collections, the items are not maintained in any order.  This makes the bag handy for those cases when all you care about is that the data be consumed eventually, without regard for order of consumption or even fairness – that is, it’s possible new items could be consumed before older items given the right circumstances for a period of time. So why would you ever want a container that can be unfair?  Well, to look at it another way, you can use a ConcurrentQueue and get the fairness, but it comes at a cost in that the ordering rules and synchronization required to maintain that ordering can affect scalability a bit.  Thus sometimes the bag is great when you want the fastest way to get the next item to process, and don’t care what item it is or how long its been waiting. The way that the ConcurrentBag works is to take advantage of the new ThreadLocal<T> type (new in System.Threading for .NET 4.0) so that each thread using the bag has a list local to just that thread.  This means that adding or removing to a thread-local list requires very low synchronization.  The problem comes in where a thread goes to consume an item but it’s local list is empty.  In this case the bag performs “work-stealing” where it will rob an item from another thread that has items in its list.  This requires a higher level of synchronization which adds a bit of overhead to the take operation. So, as you can imagine, this makes the ConcurrentBag good for situations where each thread both produces and consumes items from the bag, but it would be less-than-idea in situations where some threads are dedicated producers and the other threads are dedicated consumers because the work-stealing synchronization would outweigh the thread-local optimization for a thread taking its own items. Like the other concurrent collections, there are some curiosities to keep in mind: IsEmpty(), Count, ToArray(), and GetEnumerator() lock collection Each of these needs to take a snapshot of whole bag to determine if empty, thus they tend to be more expensive and cause Add() and Take() operations to block. ToArray() and GetEnumerator() are static snapshots Because it is based on a snapshot, will not show subsequent updates after snapshot. Add() is lightweight Since adding to the thread-local list, there is very little overhead on Add. TryTake() is lightweight if items in thread-local list As long as items are in the thread-local list, TryTake() is very lightweight, much more so than ConcurrentStack() and ConcurrentQueue(), however if the local thread list is empty, it must steal work from another thread, which is more expensive. Remember, a bag is not ideal for all situations, it is mainly ideal for situations where a process consumes an item and either decomposes it into more items to be processed, or handles the item partially and places it back to be processed again until some point when it will complete.  The main point is that the bag works best when each thread both takes and adds items. For example, we could create a totally contrived example where perhaps we want to see the largest power of a number before it crosses a certain threshold.  Yes, obviously we could easily do this with a log function, but bare with me while I use this contrived example for simplicity. So let’s say we have a work function that will take a Tuple out of a bag, this Tuple will contain two ints.  The first int is the original number, and the second int is the last multiple of that number.  So we could load our bag with the initial values (let’s say we want to know the last multiple of each of 2, 3, 5, and 7 under 100. 1: var bag = new ConcurrentBag<Tuple<int, int>> 2: { 3: Tuple.Create(2, 1), 4: Tuple.Create(3, 1), 5: Tuple.Create(5, 1), 6: Tuple.Create(7, 1) 7: }; Then we can create a method that given the bag, will take out an item, apply the multiplier again, 1: public static void FindHighestPowerUnder(ConcurrentBag<Tuple<int,int>> bag, int threshold) 2: { 3: Tuple<int,int> pair; 4:  5: // while there are items to take, this will prefer local first, then steal if no local 6: while (bag.TryTake(out pair)) 7: { 8: // look at next power 9: var result = Math.Pow(pair.Item1, pair.Item2 + 1); 10:  11: if (result < threshold) 12: { 13: // if smaller than threshold bump power by 1 14: bag.Add(Tuple.Create(pair.Item1, pair.Item2 + 1)); 15: } 16: else 17: { 18: // otherwise, we're done 19: Console.WriteLine("Highest power of {0} under {3} is {0}^{1} = {2}.", 20: pair.Item1, pair.Item2, Math.Pow(pair.Item1, pair.Item2), threshold); 21: } 22: } 23: } Now that we have this, we can load up this method as an Action into our Tasks and run it: 1: // create array of tasks, start all, wait for all 2: var tasks = new[] 3: { 4: new Task(() => FindHighestPowerUnder(bag, 100)), 5: new Task(() => FindHighestPowerUnder(bag, 100)), 6: }; 7:  8: Array.ForEach(tasks, t => t.Start()); 9:  10: Task.WaitAll(tasks); Totally contrived, I know, but keep in mind the main point!  When you have a thread or task that operates on an item, and then puts it back for further consumption – or decomposes an item into further sub-items to be processed – you should consider a ConcurrentBag as the thread-local lists will allow for quick processing.  However, if you need ordering or if your processes are dedicated producers or consumers, this collection is not ideal.  As with anything, you should performance test as your mileage will vary depending on your situation! BlockingCollection<T> – A producers & consumers pattern collection The BlockingCollection<T> can be treated like a collection in its own right, but in reality it adds a producers and consumers paradigm to any collection that implements the interface IProducerConsumerCollection<T>.  If you don’t specify one at the time of construction, it will use a ConcurrentQueue<T> as its underlying store. If you don’t want to use the ConcurrentQueue, the ConcurrentStack and ConcurrentBag also implement the interface (though ConcurrentDictionary does not).  In addition, you are of course free to create your own implementation of the interface. So, for those who don’t remember the producers and consumers classical computer-science problem, the gist of it is that you have one (or more) processes that are creating items (producers) and one (or more) processes that are consuming these items (consumers).  Now, the crux of the problem is that there is a bin (queue) where the produced items are placed, and typically that bin has a limited size.  Thus if a producer creates an item, but there is no space to store it, it must wait until an item is consumed.  Also if a consumer goes to consume an item and none exists, it must wait until an item is produced. The BlockingCollection makes it trivial to implement any standard producers/consumers process set by providing that “bin” where the items can be produced into and consumed from with the appropriate blocking operations.  In addition, you can specify whether the bin should have a limited size or can be (theoretically) unbounded, and you can specify timeouts on the blocking operations. As far as your choice of “bin”, for the most part the ConcurrentQueue is the right choice because it is fairly light and maximizes fairness by ordering items so that they are consumed in the same order they are produced.  You can use the concurrent bag or stack, of course, but your ordering would be random-ish in the case of the former and LIFO in the case of the latter. So let’s look at some of the methods of note in BlockingCollection: BoundedCapacity returns capacity of the “bin” If the bin is unbounded, the capacity is int.MaxValue. Count returns an internally-kept count of items This makes it O(1), but if you modify underlying collection directly (not recommended) it is unreliable. CompleteAdding() is used to cut off further adds. This sets IsAddingCompleted and begins to wind down consumers once empty. IsAddingCompleted is true when producers are “done”. Once you are done producing, should complete the add process to alert consumers. IsCompleted is true when producers are “done” and “bin” is empty. Once you mark the producers done, and all items removed, this will be true. Add() is a blocking add to collection. If bin is full, will wait till space frees up Take() is a blocking remove from collection. If bin is empty, will wait until item is produced or adding is completed. GetConsumingEnumerable() is used to iterate and consume items. Unlike the standard enumerator, this one consumes the items instead of iteration. TryAdd() attempts add but does not block completely If adding would block, returns false instead, can specify TimeSpan to wait before stopping. TryTake() attempts to take but does not block completely Like TryAdd(), if taking would block, returns false instead, can specify TimeSpan to wait. Note the use of CompleteAdding() to signal the BlockingCollection that nothing else should be added.  This means that any attempts to TryAdd() or Add() after marked completed will throw an InvalidOperationException.  In addition, once adding is complete you can still continue to TryTake() and Take() until the bin is empty, and then Take() will throw the InvalidOperationException and TryTake() will return false. So let’s create a simple program to try this out.  Let’s say that you have one process that will be producing items, but a slower consumer process that handles them.  This gives us a chance to peek inside what happens when the bin is bounded (by default, the bin is NOT bounded). 1: var bin = new BlockingCollection<int>(5); Now, we create a method to produce items: 1: public static void ProduceItems(BlockingCollection<int> bin, int numToProduce) 2: { 3: for (int i = 0; i < numToProduce; i++) 4: { 5: // try for 10 ms to add an item 6: while (!bin.TryAdd(i, TimeSpan.FromMilliseconds(10))) 7: { 8: Console.WriteLine("Bin is full, retrying..."); 9: } 10: } 11:  12: // once done producing, call CompleteAdding() 13: Console.WriteLine("Adding is completed."); 14: bin.CompleteAdding(); 15: } And one to consume them: 1: public static void ConsumeItems(BlockingCollection<int> bin) 2: { 3: // This will only be true if CompleteAdding() was called AND the bin is empty. 4: while (!bin.IsCompleted) 5: { 6: int item; 7:  8: if (!bin.TryTake(out item, TimeSpan.FromMilliseconds(10))) 9: { 10: Console.WriteLine("Bin is empty, retrying..."); 11: } 12: else 13: { 14: Console.WriteLine("Consuming item {0}.", item); 15: Thread.Sleep(TimeSpan.FromMilliseconds(20)); 16: } 17: } 18: } Then we can fire them off: 1: // create one producer and two consumers 2: var tasks = new[] 3: { 4: new Task(() => ProduceItems(bin, 20)), 5: new Task(() => ConsumeItems(bin)), 6: new Task(() => ConsumeItems(bin)), 7: }; 8:  9: Array.ForEach(tasks, t => t.Start()); 10:  11: Task.WaitAll(tasks); Notice that the producer is faster than the consumer, thus it should be hitting a full bin often and displaying the message after it times out on TryAdd(). 1: Consuming item 0. 2: Consuming item 1. 3: Bin is full, retrying... 4: Bin is full, retrying... 5: Consuming item 3. 6: Consuming item 2. 7: Bin is full, retrying... 8: Consuming item 4. 9: Consuming item 5. 10: Bin is full, retrying... 11: Consuming item 6. 12: Consuming item 7. 13: Bin is full, retrying... 14: Consuming item 8. 15: Consuming item 9. 16: Bin is full, retrying... 17: Consuming item 10. 18: Consuming item 11. 19: Bin is full, retrying... 20: Consuming item 12. 21: Consuming item 13. 22: Bin is full, retrying... 23: Bin is full, retrying... 24: Consuming item 14. 25: Adding is completed. 26: Consuming item 15. 27: Consuming item 16. 28: Consuming item 17. 29: Consuming item 19. 30: Consuming item 18. Also notice that once CompleteAdding() is called and the bin is empty, the IsCompleted property returns true, and the consumers will exit. Summary The ConcurrentBag is an interesting collection that can be used to optimize concurrency scenarios where tasks or threads both produce and consume items.  In this way, it will choose to consume its own work if available, and then steal if not.  However, in situations where you want fair consumption or ordering, or in situations where the producers and consumers are distinct processes, the bag is not optimal. The BlockingCollection is a great wrapper around all of the concurrent queue, stack, and bag that allows you to add producer and consumer semantics easily including waiting when the bin is full or empty. That’s the end of my dive into the concurrent collections.  I’d also strongly recommend, once again, you read this excellent Microsoft white paper that goes into much greater detail on the efficiencies you can gain using these collections judiciously (here). Tweet Technorati Tags: C#,.NET,Concurrent Collections,Little Wonders

    Read the article

  • CodePlex Daily Summary for Friday, November 08, 2013

    CodePlex Daily Summary for Friday, November 08, 2013Popular ReleasesDynamics AX 2012 R2 Kitting: AX 2012 R2 CU7 release of Kitting: Here is the AX 2012 R2 CU7 release of kitting. Released both as a XPO and a model.PantheR's GraphX for .NET: GraphX for .NET RELEASE v1.0.1: PLEASE RATE THIS RELEASE IF YOU LIKED IT! THANKS! :) RELEASE 1.0.1 + Changed ExportToImage() parameters: added useZoomControlSurface param that enables zoom control parent visual space to be used for export instead whole GraphArea panel. Using this technique it is possible to export graphs with negative vertices coordinates. + Added common interface IZoomControl for all included Zoom controls + Added new method GraphArea.GenerateGraph() that accepts only optional parameters and will use in...ConEmu - Windows console with tabs: ConEmu 131107 [Alpha]: ConEmu - developer build x86 and x64 versions. Written in C++, no additional packages required. Run "ConEmu.exe" or "ConEmu64.exe". Some useful information you may found: http://superuser.com/questions/tagged/conemu http://code.google.com/p/conemu-maximus5/wiki/ConEmuFAQ http://code.google.com/p/conemu-maximus5/wiki/TableOfContents If you want to use ConEmu in portable mode, just create empty "ConEmu.xml" file near to "ConEmu.exe"Team Foundation Server Upgrade Guide: v3 - TFS 2013 Upgrade Guide: Welcome to the Team Foundation Server Upgrade Guide Quality-Bar Details Documentation has been reviewed by Visual Studio ALM Rangers Documentation has not been through an independent technical review Known issues NoneUpgrading SharePoint section is not included yet. Independent technical review is pending.Epi Info™ - Community Edition: Epi Info 7 (build 7.1.3.0): ResourcesFor the latest stable downloads and all up-to-date help and training material, please visit the official Epi Info 7 website: http://www.cdc.gov/epiinfo/7 To watch training and overview videos, visit the Epi Info YouTube channel: http://www.youtube.com/user/EpiInfoVideosVidCoder: 1.5.12 Beta: Added an option to preserve Created and Last Modified times when converting files. In Options -> Advanced. Added an option to mark an automatically selected subtitle track as "Default". Updated HandBrake core to SVN 5878. Fixed auto passthrough not applying just after switching to it. Fixed bug where preset/profile/tune could disappear when reverting a preset.Compare .NET Objects: Version 1.7.4.0: Manual merge of patch 15325 from Farris to fix issues 9075 and 9076 relating to defects with Ignoring the Collection Order Applied patch 15263 from MariuszWojcik to support LINQ enumerators.Toolbox for Dynamics CRM 2011/2013: XrmToolBox (v1.2013.9.25): XrmToolbox improvement Correct changing connection from the status dropdown Tools improvement Updated tool Audit Center (v1.2013.9.10) -> Publish entities Iconator (v1.2013.9.27) -> Optimized asynchronous loading of images and entities MetadataDocumentGenerator (v1.2013.11.6) -> Correct system entities reading with incorrect attribute type Script Manager (v1.2013.9.27) -> Retrieve only custom events SiteMapEditor (v1.2013.11.7) -> Reset of CRM 2013 SiteMap ViewLayoutReplicator (v1.201...Microsoft SQL Server Product Samples: Database: SQL Server 2014 CTP2 In-Memory OLTP Sample, based: This sample showcases the new In-Memory OLTP feature, which is part of SQL Server 2014 CTP2. It shows the new memory-optimized tables and natively-compiled stored procedures, and can be used to show the performance benefit of in-memory OLTP. Installation instructions for the sample are included in the file ‘awinmemsample.doc’, which is part of the download. You can ask a question about this sample at the SQL Server Samples Forum Composite C1 CMS - Open Source on .NET: Composite C1 4.1: Composite C1 4.1 (4.1.5058.34326) Write a review for this release - help us improve, recommend us. Getting started If you are new to Composite C1 and want to install it: http://docs.composite.net/Getting-started What's new in Composite C1 4.1 The following are highlights of major changes since Composite C1 4.0: General user features: Drag-and-drop images and files like PDF and Word directly from own your desktop and folders into page content Allow you to install Composite Form Builder ...CS-Script for Notepad++ (C# intellisense and code execution): Release v1.0.9.0: Implemented Recent Scripts list Added checking for plugin updates from AboutBox Multiple formatting improvements/fixes Implemented selection of the CLR version when preparing distribution package Added project panel button for showing plugin shortcuts list Added 'What's New?' panel Fixed auto-formatting scrolling artifact Implemented navigation to "logical" file (vs. auto-generated) file from output panel To avoid the DLLs getting locked by OS use MSI file for the installation.Home Access Plus+: v9.7: Updated: JSON.net Fixed: Issue with the Windows 8 App Added: Windows 8.1 App Added: Win: Self Signed HAP+ Install Support Added: Win: Delete File Support Added: Timeout for the Logon Tracker Removed: Error Dialogs on the User Card Fixed: Green line showing over the booking form Note: a web.config file update is requiredWPF Extended DataGrid: WPF Extended DataGrid 2.0.0.10 binaries: Now row summaries are updated whenever autofilter value sis modified.Social Network Importer for NodeXL: SocialNetImporter(v.1.9.1): This new version includes: - Include me option is back - Fixed the login bug reported latelyVeraCrypt: VeraCrypt version 1.0c: Changes between 1.0b and 1.0c (11 November 2013) : Set correctly the minimum required version in volumes header (this value must always follow the program version after any major changes). This also solves also the hidden volume issueCaptcha MVC: Captcha MVC 2.5: v 2.5: Added support for MVC 5. The DefaultCaptchaManager is no longer throws an error if the captcha values was entered incorrectly. Minor changes. v 2.4.1: Fixed issues with deleting incorrect values of the captcha token in the SessionStorageProvider. This could lead to a situation when the captcha was not working with the SessionStorageProvider. Minor changes. v 2.4: Changed the IIntelligencePolicy interface, added ICaptchaManager as parameter for all methods. Improved font size ...Duplica: duplica 0.2.498: this is first stable releaseDNN Blog: 06.00.01: 06.00.01 ReleaseThis is the first bugfix release of the new v6 blog module. These are the changes: Added some robustness in v5-v6 scripts to cater for some rare upgrade scenarios Changed the name of the module definition to avoid clash with Evoq Social Addition of sitemap providerVG-Ripper & PG-Ripper: VG-Ripper 2.9.50: changes NEW: Added Support for "ImageHostHQ.com" links NEW: Added Support for "ImgMoney.net" links NEW: Added Support for "ImgSavy.com" links NEW: Added Support for "PixTreat.com" links Bug fixesWsus Package Publisher: Release v1.3.1311.02: Add three new Actions in Custom Updates : Work with Files (Copy, Delete, Rename), Work with Folders (Add, Delete, Rename) and Work with Registry Keys (Add, Delete, Rename). Fix a bug, where after resigning an update, the display is not refresh. Modify the way WPP sort rows in 'Updates Detail Viewer' and 'Computer List Viewer' so that dates are correctly sorted. Add a Tab in the settings form to set Proxy settings when WPP needs to go on Internet. Fix a bug where 'Manage Catalogs Subsc...New ProjectsBDTramite: El presente proyecto sera realizado por los alumnos: - Oliver Becerra Briones - Eduardo Tello Cruzado - Gustavo Huaripata Sanchez - Williams Infante PradoCONDIMAR: SISTEMA DE VENTAS CONDIMARCurso20480B201311: course project new horizonsDeck Builder 5000: This application is a very simple tool used to make deck building in your favorite card battling game a breeze! doinikTara: doinik taraDovizHesap: Özel Dvz Gelistirme ProjesiEventSys: Sistema de EventosItems Filter (WPF DataGrid column Filter).: WPF quick filter controls - all where you need it. This is the easiest way to enrich you DataGrid width quick filter in header like in Excell, but not only thatJade: ????????? kolhoz: ??????? ??? ????????? ?????????? ????LINQ2DynamoDB: A type-safe data context for AWS DynamoDB with LINQ and in-memory caching support. Allows to combine DynamoDB's durability with cache speed and read consistencyM5NDFD: MVC5 NorthWind DataFirst Microsoft Forefront 2010 R2 Powershell Extension: Powershell extensions for Microsoft Forefront 2010 R2 to enable usage of powershell from both Portal as Workflow Activity and Synchronization Engine as XMAMulti Database Migrator: Miltiple database migratorMy Bacon Recipe (Prototype): MyBaconRecipe is a VB.NET prototype website for bacon recipes. Users can add, seach & sort recipes. Developed by Justin Mifsud as part of Assignment2 (7COM0152)MYPROJECT-sareddy: Just Sample ProjectObjectStore - An easy to use ObjectRelational-Mapper: An easy to use OR-Mapper which supports Code only(no Designer) and existing Database(no Sync or Codegeneration) by implementing abstract Classes at runtime.Open Electronic Integrated Disease Surveillance System (EIDSS™): SummaryPegion: A LAN Messenger projectPetshop2013_MyM: LolololoppeSmokeTest110713: awdawdPraxis: Esta es la primera prueba.Praxis2: PraxisProject Dionysus: Local Movie App being built undergroundProject JDT: About management system.PROJECT SITI KULIM: project siti punyaProject Taiping: Project TaipingPublic_Library: ???SHRFrameWork: This Framework use EF6 , Repository, Unit of Work and othre patternsteamtesting: teamtestingTheProject: The project for Samara team !Travel Website: Travel Website is a website that contains several hotels. Users can browse these hotels, view detailed info, comment and rate them.?ng d?ng chuy?n và nh?n s? ki?n trên windows: de an xay dung ung dung chuyen va nhan su kien tren windowsVehicle Statistics Analysis: Build a generic framework for extracting second hand vehicle retail pricing. Virtual joystick control (Silverlight, WP): Simple on-screen "virtual" joystick control for SilverlightVisual Studio Coverage file to Emma converter: Visual Studio Coverage file to Emma converter. Simple solution, can apply only one tool to five Visual Studio versions. Fast multicore processing.WebForms DataSourceControl for EntityFramework CodeFirst: A ASP.NET WebForms DataSourceControl for use with DbContext & CodeFirst.WPF Study: wpf study project ???????: ???????,???? Session ??????????.

    Read the article

  • How to Visualize your Audit Data with BI Publisher?

    - by kanichiro.nishida
      Do you know how many reports on your BI Publisher server are accessed yesterday ? Or, how many users accessed to the reports yesterday, or what are the average number of the users accessed to the reports during the week vs. weekend or morning vs. afternoon ? With BI Publisher 11G, now you can audit your user’s reports access and understand the state of the reporting environment at your server, each user, or each report level. At the previous post I’ve talked about what the BI Publisher’s auditing functionality and how to enable it so that BI Publisher can start collecting such data. (How to Audit and Monitor BI Publisher Reports Access?)Now, how can you visualize such auditing data to have a better understanding and gain more insights? With Fusion Middleware Audit Framework you have an option to store the auditing data into a database instead of a log file, which is the default option. Once you enable the database storage option, that means you have your auditing data (or, user report access data) in your database tables, now no brainer, you can start visualize the data, create reports, analyze, and share with BI Publisher. So, first, let’s take a look on how to enable the database storage option for the auditing data. How to Feed the Auditing Data into Database First you need to create a database schema for Fusion Middleware Audit Framework with RCU (Repository Creation Utility). If you have already installed BI Publisher 11G you should be familiar with this RCU. It creates any database schema necessary to run any Fusion Middleware products including BI stuff. And you can use the same RCU that you used for your BI or BI Publisher installation to create this Audit schema. Create Audit Schema with RCU Here are the steps: Go to $RCU_HOME/bin and execute the ‘rcu’ command Choose Create at the starting screen and click Next. Enter your database details and click Next. Choose the option to create a new prefix, for example ‘BIP’, ‘KAN’, etc. Select 'Audit Services' from the list of schemas. Click Next and accept the tablespace creation. Click Finish to start the process. After this, there should be following three Audit related schema created in your database. <prefix>_IAU (e.g. KAN_IAU) <prefix>_IAU_APPEND (e.g. KAN_IAU_APPEND) <prefix>_IAU_VIEWER (e.g. KAN_IAU_VIEWER) Setup Datasource at WebLogic After you create a database schema for your auditing data, now you need to create a JDBC connection on your WebLogic Server so the Audit Framework can access to the database schema that was created with the RCU with the previous step. Connect to the Oracle WebLogic Server administration console: http://hostname:port/console (e.g. http://report.oracle.com:7001/console) Under Services, click the Data Sources link. Click ‘Lock & Edit’ so that you can make changes Click New –> ‘Generic Datasource’ to create a new data source. Enter the following details for the new data source:  Name: Enter a name such as Audit Data Source-0.  JNDI Name: jdbc/AuditDB  Database Type: Oracle  Click Next and select ‘Oracle's Driver (Thin XA) Versions: 9.0.1 or later’ as Database Driver (if you’re using Oracle database), and click Next. The Connection Properties page appears. Enter the following information: Database Name: Enter the name of the database (SID) to which you will connect. Host Name: Enter the hostname of the database.  Port: Enter the database port.  Database User Name: This is the name of the audit schema that you created in RCU. The suffix is always IAU for the audit schema. For example, if you gave the prefix as ‘BIP’, then the schema name would be ‘KAN_IAU’.  Password: This is the password for the audit schema that you created in RCU.   Click Next. Accept the defaults, and click Test Configuration to verify the connection. Click Next Check listed servers where you want to make this JDBC connection available. Click ‘Finish’ ! After that, make sure you click ‘Activate Changes’ at the left hand side top to take the new JDBC connection in effect. Register your Audit Data Storing Database to your Domain Finally, you can register the JNDI/JDBC datasource as your Auditing data storage with Fusion Middleware Control (EM). Here are the steps: 1. Login to Fusion Middleware Control 2. Navigate to Weblogic Domain, right click on ‘bifoundation…..’, select Security, then Audit Store. 3. Click the searchlight icon next to the Datasource JNDI Name field. 4.Select the Audit JNDI/JDBC datasource you created in the previous step in the pop-up window and click OK. 5. Click Apply to continue. 6. Restart the whole WebLogic Servers in the domain. After this, now the BI Publisher should start feeding all the auditing data into the database table called ‘IAU_BASE’. Try login to BI Publisher and open a couple of reports, you should see the activity audited in the ‘IAU_BASE’ table. If not working, you might want to check the log file, which is located at $BI_HOME/user_projects/domains/bifoundation_domain/servers/AdminServer/logs/AdminServer-diagnostic.log to see if there is any error. Once you have the data in the database table, now, it’s time to visualize with BI Publisher reports! Create a First BI Publisher Auditing Report Register Auditing Datasource as JNDI datasource First thing you need to do is to register the audit datasource (JNDI/JDBC connection) you created in the previous step as JNDI data source at BI Publisher. It is a JDBC connection registered as JNDI, that means you don’t need to create a new JDBC connection by typing the connection URL, username/password, etc. You can just register it using the JNDI name. (e.g. jdbc/AuditDB) Login to BI Publisher as Administrator (e.g. weblogic) Go to Administration Page Click ‘JNDI Connection’ under Data Sources and Click ‘New’ Type Data Source Name and JNDI Name. The JNDI Name is the one you created in the WebLogic Console as the auditing datasource. (e.g. jdbc/AuditDB) Click ‘Test Connection’ to make sure the datasource connection works. Provide appropriate roles so that the report developers or viewers can share this data source to view reports. Click ‘Apply’ to save. Create Data Model Select Data Model from the tool bar menu ‘New’ Set ‘Default Data Source’ to the audit JNDI data source you have created in the previous step. Select ‘SQL Query’ for your data set Use Query Builder to build a query or just type a sql query. Either way, the table you want to report against is ‘IAU_BASE’. This IAU_BASE table contains all the auditing data for other products running on the WebLogic Server such as JPS, OID, etc. So, if you care only specific to BI Publisher then you want to filter by using  ‘IAU_COMPONENTTYPE’ column which contains the product name (e.g. ’xmlpserver’ for BI Publisher). Here is my sample sql query. select     "IAU_BASE"."IAU_COMPONENTTYPE" as "IAU_COMPONENTTYPE",      "IAU_BASE"."IAU_EVENTTYPE" as "IAU_EVENTTYPE",      "IAU_BASE"."IAU_EVENTCATEGORY" as "IAU_EVENTCATEGORY",      "IAU_BASE"."IAU_TSTZORIGINATING" as "IAU_TSTZORIGINATING",    to_char("IAU_TSTZORIGINATING", 'YYYY-MM-DD') IAU_DATE,    to_char("IAU_TSTZORIGINATING", 'DAY') as IAU_DAY,    to_char("IAU_TSTZORIGINATING", 'HH24') as IAU_HH24,    to_char("IAU_TSTZORIGINATING", 'WW') as IAU_WEEK_OF_YEAR,      "IAU_BASE"."IAU_INITIATOR" as "IAU_INITIATOR",      "IAU_BASE"."IAU_RESOURCE" as "IAU_RESOURCE",      "IAU_BASE"."IAU_TARGET" as "IAU_TARGET",      "IAU_BASE"."IAU_MESSAGETEXT" as "IAU_MESSAGETEXT",      "IAU_BASE"."IAU_FAILURECODE" as "IAU_FAILURECODE",      "IAU_BASE"."IAU_REMOTEIP" as "IAU_REMOTEIP" from    "KAN3_IAU"."IAU_BASE" "IAU_BASE" where "IAU_BASE"."IAU_COMPONENTTYPE" = 'xmlpserver' Once you saved a sample XML for this data model, now you can create a report with this data model. Create Report Now you can use one of the BI Publisher’s layout options to design the report layout and visualize the auditing data. I’m a big fan of Online Layout Editor, it’s just so easy and simple to create reports, and on top of that, all the reports created with Online Layout Editor has the Interactive View with automatic data linking and filtering feature without any setting or coding. If you haven’t checked the Interactive View or Online Layout Editor you might want to check these previous blog posts. (Interactive Reporting with BI Publisher 11G, Interactive Master Detail Report Just A Few Clicks Away!) But of course, you can use other layout design option such as RTF template. Here are some sample screenshots of my report design with Online Layout Editor.     Visualize and Gain More Insights about your Customers (Users) ! Now you can visualize your auditing data to have better understanding and gain more insights about your reporting environment you manage. It’s been actually helping me personally to answer the  questios like below.  How many reports are accessed or opened yesterday, today, last week ? Who is accessing which report at what time ? What are the time windows when the most of the reports access happening ? What are the most viewed reports ? Who are the active users ? What are the # of reports access or user access trend for the last month, last 6 months, last 12 months, etc ? I was talking with one of the best concierge in the world at this hotel the other day, and he was telling me that the best concierge knows about their customers inside-out therefore they can provide a very private service that is customized to each customer to meet each customer’s specific needs. Well, this is true when it comes to how to administrate and manage your reporting environment, right ? The best way to serve your customers (report users, including both viewers and developers) is to understand how they use, what they use, when they use. Auditing is not just about compliance, but it’s the way to improve the customer service. The BI Publisher 11G Auditing feature enables just that to help you understand your customers better. Happy customer service, be the best reporting concierge! p.s. please share with us on what other information would be helpful for you for the auditing! Always, any feedback is a great value and inspiration for us!  

    Read the article

  • Sharing Bandwidth and Prioritizing Realtime Traffic via HTB, Which Scenario Works Better?

    - by Mecki
    I would like to add some kind of traffic management to our Internet line. After reading a lot of documentation, I think HFSC is too complicated for me (I don't understand all the curves stuff, I'm afraid I will never get it right), CBQ is not recommend, and basically HTB is the way to go for most people. Our internal network has three "segments" and I'd like to share bandwidth more or less equally between those (at least in the beginning). Further I must prioritize traffic according to at least three kinds of traffic (realtime traffic, standard traffic, and bulk traffic). The bandwidth sharing is not as important as the fact that realtime traffic should always be treated as premium traffic whenever possible, but of course no other traffic class may starve either. The question is, what makes more sense and also guarantees better realtime throughput: Creating one class per segment, each having the same rate (priority doesn't matter for classes that are no leaves according to HTB developer) and each of these classes has three sub-classes (leaves) for the 3 priority levels (with different priorities and different rates). Having one class per priority level on top, each having a different rate (again priority won't matter) and each having 3 sub-classes, one per segment, whereas all 3 in the realtime class have highest prio, lowest prio in the bulk class, and so on. I'll try to make this more clear with the following ASCII art image: Case 1: root --+--> Segment A | +--> High Prio | +--> Normal Prio | +--> Low Prio | +--> Segment B | +--> High Prio | +--> Normal Prio | +--> Low Prio | +--> Segment C +--> High Prio +--> Normal Prio +--> Low Prio Case 2: root --+--> High Prio | +--> Segment A | +--> Segment B | +--> Segment C | +--> Normal Prio | +--> Segment A | +--> Segment B | +--> Segment C | +--> Low Prio +--> Segment A +--> Segment B +--> Segment C Case 1 Seems like the way most people would do it, but unless I don't read the HTB implementation details correctly, Case 2 may offer better prioritizing. The HTB manual says, that if a class has hit its rate, it may borrow from its parent and when borrowing, classes with higher priority always get bandwidth offered first. However, it also says that classes having bandwidth available on a lower tree-level are always preferred to those on a higher tree level, regardless of priority. Let's assume the following situation: Segment C is not sending any traffic. Segment A is only sending realtime traffic, as fast as it can (enough to saturate the link alone) and Segment B is only sending bulk traffic, as fast as it can (again, enough to saturate the full link alone). What will happen? Case 1: Segment A-High Prio and Segment B-Low Prio both have packets to send, since A-High Prio has the higher priority, it will always be scheduled first, till it hits its rate. Now it tries to borrow from Segment A, but since Segment A is on a higher level and Segment B-Low Prio has not yet hit its rate, this class is now served first, till it also hits the rate and wants to borrow from Segment B. Once both have hit their rates, both are on the same level again and now Segment A-High Prio is going to win again, until it hits the rate of Segment A. Now it tries to borrow from root (which has plenty of traffic spare, as Segment C is not using any of its guaranteed traffic), but again, it has to wait for Segment B-Low Prio to also reach the root level. Once that happens, priority is taken into account again and this time Segment A-High Prio will get all the bandwidth left over from Segment C. Case 2: High Prio-Segment A and Low Prio-Segment B both have packets to send, again High Prio-Segment A is going to win as it has the higher priority. Once it hits its rate, it tries to borrow from High Prio, which has bandwidth spare, but being on a higher level, it has to wait for Low Prio-Segment B again to also hit its rate. Once both have hit their rate and both have to borrow, High Prio-Segment A will win again until it hits the rate of the High Prio class. Once that happens, it tries to borrow from root, which has again plenty of bandwidth left (all bandwidth of Normal Prio is unused at the moment), but it has to wait again until Low Prio-Segment B hits the rate limit of the Low Prio class and also tries to borrow from root. Finally both classes try to borrow from root, priority is taken into account, and High Prio-Segment A gets all bandwidth root has left over. Both cases seem sub-optimal, as either way realtime traffic sometimes has to wait for bulk traffic, even though there is plenty of bandwidth left it could borrow. However, in case 2 it seems like the realtime traffic has to wait less than in case 1, since it only has to wait till the bulk traffic rate is hit, which is most likely less than the rate of a whole segment (and in case 1 that is the rate it has to wait for). Or am I totally wrong here? I thought about even simpler setups, using a priority qdisc. But priority queues have the big problem that they cause starvation if they are not somehow limited. Starvation is not acceptable. Of course one can put a TBF (Token Bucket Filter) into each priority class to limit the rate and thus avoid starvation, but when doing so, a single priority class cannot saturate the link on its own any longer, even if all other priority classes are empty, the TBF will prevent that from happening. And this is also sub-optimal, since why wouldn't a class get 100% of the line's bandwidth if no other class needs any of it at the moment? Any comments or ideas regarding this setup? It seems so hard to do using standard tc qdiscs. As a programmer it was such an easy task if I could simply write my own scheduler (which I'm not allowed to do).

    Read the article

  • The Incremental Architect&acute;s Napkin - #2 - Balancing the forces

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/02/the-incremental-architectacutes-napkin---2---balancing-the-forces.aspxCategorizing requirements is the prerequisite for ecconomic architectural decisions. Not all requirements are created equal. However, to truely understand and describe the requirement forces pulling on software development, I think further examination of the requirements aspects is varranted. Aspects of Functionality There are two sides to Functionality requirements. It´s about what a software should do. I call that the Operations it implements. Operations are defined by expressions and control structures or calls to frameworks of some sort, i.e. (business) logic statements. Operations calculate, transform, aggregate, validate, send, receive, load, store etc. Operations are about behavior; they take input and produce output by considering state. I´m not using the term “function” here, because functions - or methods or sub-programs - are not necessary to implement Operations. Functions belong to a different sub-aspect of requirements (see below). Operations alone are not enough, though, to make a customer happy with regard to his/her Functionality requirements. Only correctly implemented Operations provide full value. This should make clear, why testing is so important. And not just manual tests during development of some operational feature, but automated tests. Because only automated tests scale when over time the number of operations increases. Without automated tests there is no guarantee formerly correct operations are still correct after more got added. To retest all previous operations manually is infeasible. So whoever relies just on manual tests is not really balancing the two forces Operations and Correctness. With manual tests more weight is put on the side of the scale of Operations. That might be ok for a short period of time - but in the long run it will bite you. You need to plan for Correctness in the long run from the first day of your project on. Aspects of Quality As important as Functionality is, it´s not the driver for software development. No software has ever been written to just implement some operation in code. We don´t need computers just to do something. All computers can do with software we can do without them. Well, at least given enough time and resources. We could calculate the most complex formulas without computers. We could do auctions with millions of people without computers. The only reason we want computers to help us with this and a million other Operations is… We don´t want to wait for the results very long. Or we want less errors. Or we want easier accessability to complicated solutions. So the main reason for customers to buy/order software is some Quality. They want some Functionality with a higher Quality (e.g. performance, scalability, usability, security…) than without the software. But Qualities come in at least two flavors: Most important are Primary Qualities. That´s the Qualities software truely is written for. Take an online auction website for example. Its Primary Qualities are performance, scalability, and usability, I´d say. Auctions should come within reach of millions of people; setting up an auction should be very easy; finding a suitable auction and bidding on it should be as fast as possible. Only if those Qualities have been implemented does security become relevant. A secure auction website is important - but not as important as a fast auction website. Nobody would want to use the most secure auction website if it was unbearably slow. But there would be people willing to use the fastest auction website even it was lacking security. That´s why security - with regard to online auction software - is not a Primary Quality, but just a Secondary Quality. It´s a supporting quality, so to speak. It does not deliver value by itself. With a password manager software this might be different. There security might be a Primary Quality. Please get me right: I don´t want to denigrate any Quality. There´s a long list of non-functional requirements at Wikipedia. They are all created equal - but that does not mean they are equally important for all software projects. When confronted with Quality requirements check with the customer which are primary and which are secondary. That will help to make good economical decisions when in a crunch. Resources are always limited - but requirements are a bottomless ocean. Aspects of Security of Investment Functionality and Quality are traditionally the requirement aspects cared for most - by customers and developers alike. Even today, when pressure rises in a project, tunnel vision will focus on them. Any measures to create and hold up Security of Investment (SoI) will be out of the window pretty quickly. Resistance to customers and/or management is futile. As long as SoI is not placed on equal footing with Functionality and Quality it´s bound to suffer under pressure. To look closer at what SoI means will help to become more conscious about it and make customers and management aware of the risks of neglecting it. SoI to me has two facets: Production Efficiency (PE) is about speed of delivering value. Customers like short response times. Short response times mean less money spent. So whatever makes software development faster supports this requirement. This must not lead to duct tape programming and banging out features by the dozen, though. Because customers don´t just want Operations and Quality, but also Correctness. So if Correctness gets compromised by focussing too much on Production Efficiency it will fire back. Customers want PE not just today, but over the whole course of a software´s lifecycle. That means, it´s not just about coding speed, but equally about code quality. If code quality leads to rework the PE is on an unsatisfactory level. Also if code production leads to waste it´s unsatisfactory. Because the effort which went into waste could have been used to produce value. Rework and waste cost money. Rework and waste abound, however, as long as PE is not addressed explicitly with management and customers. Thanks to the Agile and Lean movements that´s increasingly the case. Nevertheless more could and should be done in many teams. Each and every developer should keep in mind that Production Efficiency is as important to the customer as Functionality and Quality - whether he/she states it or not. Making software development more efficient is important - but still sooner or later even agile projects are going to hit a glas ceiling. At least as long as they neglect the second SoI facet: Evolvability. Delivering correct high quality functionality in short cycles today is good. But not just any software structure will allow this to happen for an indefinite amount of time.[1] The less explicitly software was designed the sooner it´s going to get stuck. Big ball of mud, monolith, brownfield, legacy code, technical debt… there are many names for software structures that have lost the ability to evolve, to be easily changed to accomodate new requirements. An evolvable code base is the opposite of a brownfield. It´s code which can be easily understood (by developers with sufficient domain expertise) and then easily changed to accomodate new requirements. Ideally the costs of adding feature X to an evolvable code base is independent of when it is requested - or at least the costs should only increase linearly, not exponentially.[2] Clean Code, Agile Architecture, and even traditional Software Engineering are concerned with Evolvability. However, it seems no systematic way of achieving it has been layed out yet. TDD + SOLID help - but still… When I look at the design ability reality in teams I see much room for improvement. As stated previously, SoI - or to be more precise: Evolvability - can hardly be measured. Plus the customer rarely states an explicit expectation with regard to it. That´s why I think, special care must be taken to not neglect it. Postponing it to some large refactorings should not be an option. Rather Evolvability needs to be a core concern for every single developer day. This should not mean Evolvability is more important than any of the other requirement aspects. But neither is it less important. That´s why more effort needs to be invested into it, to bring it on par with the other aspects, which usually are much more in focus. In closing As you see, requirements are of quite different kinds. To not take that into account will make it harder to understand the customer, and to make economic decisions. Those sub-aspects of requirements are forces pulling in different directions. To improve performance might have an impact on Evolvability. To increase Production Efficiency might have an impact on security etc. No requirement aspect should go unchecked when deciding how to allocate resources. Balancing should be explicit. And it should be possible to trace back each decision to a requirement. Why is there a null-check on parameters at the start of the method? Why are there 5000 LOC in this method? Why are there interfaces on those classes? Why is this functionality running on the threadpool? Why is this function defined on that class? Why is this class depending on three other classes? These and a thousand more questions are not to mean anything should be different in a code base. But it´s important to know the reason behind all of these decisions. Because not knowing the reason possibly means waste and having decided suboptimally. And how do we ensure to balance all requirement aspects? That needs practices and transparency. Practices means doing things a certain way and not another, even though that might be possible. We´re dealing with dangerous tools here. Like a knife is a dangerous tool. Harm can be done if we use our tools in just any way at the whim of the moment. Over the centuries rules and practices have been established how to use knifes. You don´t put them in peoples´ legs just because you´re feeling like it. You hand over a knife with the handle towards the receiver. You might not even be allowed to cut round food like potatos or eggs with it. The same should be the case for dangerous tools like object-orientation, remote communication, threads etc. We need practices to use them in a way so requirements are balanced almost automatically. In addition, to be able to work on software as a team we need transparency. We need means to share our thoughts, to work jointly on mental models. So far our tools are focused on working with code. Testing frameworks, build servers, DI containers, intellisense, refactoring support… That´s all nice and well. I don´t want to miss any of that. But I think it´s not enough. We´re missing mental tools, tools for making thinking and talking about software (independently of code) easier. You might think, enough of such tools already exist like all those UML diagram types or Flow Charts. But then, isn´t it strange, hardly any team is using them to design software? Or is that just due to a lack of education? I don´t think so. It´s a matter value/weight ratio: the current mental tools are too heavy weight compared to the value they deliver. So my conclusion is, we need lightweight tools to really be able to balance requirements. Software development is complex. We need guidance not to forget important aspects. That´s like with flying an airplane. Pilots don´t just jump in and take off for their destination. Yes, there are times when they are “flying by the seats of their pants”, when they are just experts doing thing intuitively. But most of the time they are going through honed practices called checklist. See “The Checklist Manifesto” for very enlightening details on this. Maybe then I should say it like this: We need more checklists for the complex businss of software development.[3] But that´s what software development mostly is about: changing software over an unknown period of time. It needs to be corrected in order to finally provide promised operations. It needs to be enhanced to provide ever more operations and qualities. All this without knowing when it´s going to stop. Probably never - until “maintainability” hits a wall when the technical debt is too large, the brownfield too deep. Software development is not a sprint, is not a marathon, not even an ultra marathon. Because to all this there is a foreseeable end. Software development is like continuously and foreever running… ? And sometimes I dare to think that costs could even decrease over time. Think of it: With each feature a software becomes richer in functionality. So with each additional feature the chance of there being already functionality helping its implementation increases. That should lead to less costs of feature X if it´s requested later than sooner. X requested later could stand on the shoulders of previous features. Alas, reality seems to be far from this despite 20+ years of admonishing developers to think in terms of reusability.[1] ? Please don´t get me wrong: I don´t want to bog down the “art” of software development with heavyweight practices and heaps of rules to follow. The framework we need should be lightweight. It should not stand in the way of delivering value to the customer. It´s purpose is even to make that easier by helping us to focus and decreasing waste and rework. ?

    Read the article

  • Understanding the value of Customer Experience & Loyalty for the Telecommunications Industry

    - by raul.goycoolea
    Worried by economic woes and market forces, especially in mature markets, communications service providers (CSPs) increasingly focus on improving customer experience. In fact, it seems difficult to find a major message by a C-level executive in the developed world that does not include something on "meeting and exceeding customers' needs". Frequently in customer satisfaction studies by prominent firms, CSPs fall short of the leadership demonstrated by other industries that take customer-centric approaches to their bottom-line strategies. Consider the following:Despite the continued impact of global economic crisis, in July 2010, Apple Computer posted record revenue and net quarterly profit. Those who attribute the results primarily to the iPhone 4 launch should note that Apple also shipped around 30% more Macintosh computers than the same period the previous year. Even sales of the iPod line increased by 8% in a highly commoditized, shrinking media player market. Finally, Apple began selling iPads during the quarter, with total sales of more than 3 million units. What does Apple have that the others lack? Well, some great products (and services) to be sure, but it also excels at customer service and support, marketing, and distribution, and has one of the strongest brands globally. Its products are useful, simple to use, easy to acquire and augment, high quality, and considered very cool. They also evoke such an emotional response from many of Apple's customers, which they turn up their noses at competitive products.In other words, Apple appears to have mastered virtually every aspect of customer experience and the resultant loyalty of its customer base - even in difficult financial times. Through that unwavering customer focus, Apple continues to drive its revenues and profits to new heights. Other customer loyalty leaders like Wal-Mart, Google, Toyota and Honda are also doing well by focusing on customer experience as an essential driver of profitability. Service providers should note this performance and ask themselves how they might leverage the same principles to increase their own profitability. After all, that is what customer experience and loyalty are all about: profitability.To successfully manage all the critical touch points of customer experience, CSPs must shun the one-size-fits-all approach. They can no longer afford to view customer service fundamentally as an act of altruism - which mentality dates back to the industry's civil service days, when CSPs were typically government organizations that were critical to economic development and public safety.As regulators and public officials have pushed, and continue to push, service providers to new heights of reliability - using incentives and punishments - most CSPs already have some of the fundamental building blocks of customer service in place. Yet despite that history and experience, service providers still lag other industries in providing what is seen as good customer service.As we observed in the TMF's 2009 Insights Research report, Customer Experience Management: Driving Loyalty & Profitability there has been resurgence in interest by CSPs. More and more of them have stated ambitions to catch up other industries, and they are realizing that good customer service is a powerful strategy for increasing business performance and profitability, not an act of good will.CSPs are recognizing the connection between customer experience and profitability, as demonstrated in many studies. For example, according to research by Bain & Company, a 5 percent improvement in customer retention rates can yield as much as a 75 percent increase in profits for companies across a range of industries.After decades of customer experience strategy formulation, Bain partner and business author, Frederick Reichheld, considers "would you recommend us to a friend?" as the ultimate question for a customer. How many times have you or your friends recommended an iPod, iPhone or a Mac? What do your children recommend to their peers? Their peers to them?There are certain steps service providers have to take to create more personalized relationships with their customers, as well as reduce churn and increase profitability, all while becoming leaner and more agile. First, they have to define customer experience, we define it as the result of the sum of observations, perceptions, thoughts and feelings arising from interactions and relationships between customers and their service provider(s). Virtually every customer touch point - whether directly or indirectly linked to service providers and their partners - contributes to customer perception, satisfaction, loyalty, and ultimately profitability. Gaining leadership in customer experience and satisfaction will not be a simple task, as it is affected by virtually every customer-facing aspect of the service provider, and in turn impacts the service provider deeply - especially on the all-important bottom line. The scope of issues affecting customer experience is complex and dynamic.With new services, devices and applications extending the basis of customer experience to domains beyond the direct control of the service provider, it is likely to increase in complexity and dynamism.Customer loyalty = increased profitsAs stated earlier, customer experience programs are not fundamentally altruistic exercises, but a strategic means of improving competitiveness and profitability in the short and long term. Loyalty is essential to deriving long term profits from customers.Some of the earliest loyalty programs date back to the 1930s, when packaged goods companies offered embedded coupons for rewards to buyers, and eventually retail chains began offering reward programs to frequent shoppers. These programs continued for decades but were leapfrogged in the 1980s by more aggressive programs from the airlines.This movement was led by American Airlines, which launched the first full-scale loyalty marketing program of the modern era with the AAdvantage frequent flyer scheme. It was the first to reward frequent fliers with notional air miles that could be accumulated and later redeemed for free travel. Figure 1: Opportunities example of Customer loyalty driven profitOther airlines and travel providers were quick to grasp the incredible value of providing customers with an incentive to use their company exclusively. Within a few years, dozens of travel industry companies launched similar initiatives and now loyalty programs are achieving near-ubiquity in many service industries, especially those in which it is difficult to differentiate offerings by product attributes.The belief is that increased profitability will result from customer retention efforts because:•    The cost of acquisition occurs only at the beginning of a relationship: the longer the relationship, the lower the amortized cost;•    Account maintenance costs decline as a percentage of total costs, or as a percentage of revenue, over the lifetime of the relationship;•    Long term customers tend to be less inclined to switch and less price sensitive which can result in stable unit sales volume and increases in dollar-sales volume;•    Long term customers may initiate word-of-mouth promotions and referrals, which cost the company nothing and arguably are the most effective form of advertising;•    Long-term customers are more likely to buy ancillary products and higher margin supplemental products;•    Long term customers tend to be satisfied with their relationship with the company and are less likely to switch to competitors, making market entry or competitors gaining market share difficult;•    Regular customers tend to be less expensive to service, as they are familiar with the processes involved, require less 'education', and are consistent in their order placement;•    Increased customer retention and loyalty makes the employees' jobs easier and more satisfying. In turn, happy employees feed back into higher customer satisfaction in a virtuous circle. Figure 2: The virtuous circle of customer loyaltyFigure 2 represents a high-level example of a virtuous cycle driven by customer satisfaction and loyalty, depicting how superiority in product and service offerings, as well as strong customer support by competent employees, lead to higher sales and ultimately profitability. As stated above, this is not a new concept, but succeeding with it is difficult. It has eluded many a company driven to achieve profitability goals. Of course, for this circle to be virtuous, the customer relationship(s) must be profitable.Trying to maintain the loyalty of unprofitable customers is not a viable business strategy. It is, therefore, important that marketers can assess the profitability of each customer (or customer segment), and either improve or terminate relationships that are not profitable. This means each customer's 'relationship costs' must be understood and compared to their 'relationship revenue'. Customer lifetime value (CLV) is the most commonly used metric here, as it is generally accepted as a representation of exactly how much each customer is worth in monetary terms, and therefore a determinant of exactly how much a service provider should be willing to spend to acquire or retain that customer.CLV models make several simplifying assumptions and often involve the following inputs:•    Churn rate represents the percentage of customers who end their relationship with a company in a given period;•    Retention rate is calculated by subtracting the churn rate percentage from 100;•    Period/horizon equates to the units of time into which a customer relationship can be divided for analysis. A year is the most commonly used period for this purpose. Customer lifetime value is a multi-period calculation, often projecting three to seven years into the future. In practice, analysis beyond this point is viewed as too speculative to be reliable. The model horizon is the number of periods used in the calculation;•    Periodic revenue is the amount of revenue collected from a customer in a given period (though this is often extended across multiple periods into the future to understand lifetime value), such as usage revenue, revenues anticipated from cross and upselling, and often some weighting for referrals by a loyal customer to others; •    Retention cost describes the amount of money the service provider must spend, in a given period, to retain an existing customer. Again, this is often forecast across multiple periods. Retention costs include customer support, billing, promotional incentives and so on;•    Discount rate means the cost of capital used to discount future revenue from a customer. Discounting is an advanced method used in more sophisticated CLV calculations;•    Profit margin is the projected profit as a percentage of revenue for the period. This may be reflected as a percentage of gross or net profit. Again, this is generally projected across the model horizon to understand lifetime value.A strong focus on managing these inputs can help service providers realize stronger customer relationships and profits, but there are some obstacles to overcome in achieving accurate calculations of CLV, such as the complexity of allocating costs across the customer base. There are many costs that serve all customers which must be properly allocated across the base, and often a simple proportional allocation across the whole base or a segment may not accurately reflect the true cost of serving that customer;  This is made worse by the fragmentation of customer information, which is likely to be across a variety of product or operations groups, and may be difficult to aggregate due to different representations.In addition, there is the complexity of account relationships and structures to take into consideration. Complex account structures may not be understood or properly represented. For example, a profitable customer may have a separate account for a second home or another family member, which may appear to be unprofitable. If the service provider cannot relate the two accounts, CLV is not properly represented and any resultant cancellation of the apparently unprofitable account may result in the customer churning from the profitable one.In summary, if service providers are to realize strong customer relationships and their attendant profits, there must be a very strong focus on data management. This needs to be coupled with analytics that help business managers and those who work in customer-facing functions offer highly personalized solutions to customers, while maintaining profitability for the service provider. It's clear that acquiring new customers is expensive. Advertising costs, campaign management expenses, promotional service pricing and discounting, and equipment subsidies make a serious dent in a new customer's profitability. That is especially true given the rising subsidies for Smartphone users, which service providers hope will result in greater profits from profits from data services profitability in future.  The situation is made worse by falling prices and greater competition in mature markets.Customer acquisition through industry consolidation isn't cheap either. A North American service provider spent about $2,000 per subscriber in its acquisition of a smaller company earlier this year. While this has allowed it to leapfrog to become the largest mobile service provider in the country, it required a total investment of more than $28 billion (including assumption of the acquiree's debt).While many operating cost synergies clearly made this deal more attractive to the acquiring company, this is certainly an expensive way to acquire customers: the cost per subscriber in this case is not out of line with the prices others have paid for acquisitions.While growth by acquisition certainly increases overall revenues, it often creates tremendous challenges for profitability. Organic growth through increased customer loyalty and retention is a more effective driver of profit, as well as a stronger predictor of future profitability. Service providers, especially those in mature markets, are increasingly recognizing this and taking steps toward a creating a more personalized, flexible and satisfying experience for their customers.In summary, the clearest path to profitability for companies in virtually all industries is through customer retention and maximization of lifetime value. Service providers would do well to recognize this and focus attention on profitable customer relationships.

    Read the article

  • Overview of SOA Diagnostics in 11.1.1.6

    - by ShawnBailey
    What tools are available for diagnosing SOA Suite issues? There are a variety of tools available to help you and Support diagnose SOA Suite issues in 11g but it can be confusing as to which tool is appropriate for a particular situation and what their relationships are. This blog post will introduce the various tools and attempt to clarify what each is for and how they are related. Let's first list the tools we'll be addressing: RDA: Remote Diagnostic Agent DFW: Diagnostic Framework Selective Tracing DMS: Dynamic Monitoring Service ODL: Oracle Diagnostic Logging ADR: Automatic Diagnostics Repository ADRCI: Automatic Diagnostics Repository Command Interpreter WLDF: WebLogic Diagnostic Framework This overview is not mean to be a comprehensive guide on using all of these tools, however, extensive reference materials are included that will provide many more details on their execution. Another point to note is that all of these tools are applicable for Fusion Middleware as a whole but specific products may or may not have implemented features to leverage them. A couple of the tools have a WebLogic Scripting Tool or 'WLST' interface. WLST is a command interface for executing pre-built functions and custom scripts against a domain. A detailed WLST tutorial is beyond the scope of this post but you can find general information here. There are more specific resources in the below sections. In this post when we refer to 'Enterprise Manager' or 'EM' we are referring to Enterprise Manager Fusion Middleware Control. RDA (Remote Diagnostic Agent) RDA is a standalone tool that is used to collect both static configuration and dynamic runtime information from the SOA environment. RDA is generally run manually from the command line against a domain or single server. When opening a new Service Request, including an RDA collection can dramatically decrease the back and forth required to collect logs and configuration information for Support. After installing RDA you configure it to use the SOA Suite module as decribed in the referenced resources. The SOA module includes the Oracle WebLogic Server (WLS) module by default in order to include all of the relevant information for the environment. In addition to this basic configuration there is also an advanced mode where you can set the number of thread dumps for the collections, log files, Incidents, etc. When would you use it? When creating a Service Request or otherwise working with Oracle resources on an issue, capturing environment snapshots to baseline your configuration or to diagnose an issue on your own. How is it related to the other tools? RDA is related to DFW in that it collects the last 10 Incidents from the server by default. In a similar manner, RDA is related to ODL through its collection of the diagnostic logs and these may contain information from Selective Tracing sessions. Examples of what it currently collects: (for details please see the links in the Resources section) Diagnostic Logs (ODL) Diagnostic Framework Incidents (DFW) SOA MDS Deployment Descriptors SOA Repository Summary Statistics Thread Dumps Complete Domain Configuration RDA Resources: Webcast Recording: Using RDA with Oracle SOA Suite 11g Blog Post: Diagnose SOA Suite 11g Issues Using RDA Download RDA How to Collect Analysis Information Using RDA for Oracle SOA Suite 11g Products [ID 1350313.1] How to Collect Analysis Information Using RDA for Oracle SOA Suite and BPEL Process Manager 11g [ID 1352181.1] Getting Started With Remote Diagnostic Agent: Case Study - Oracle WebLogic Server (Video) [ID 1262157.1] top DFW (Diagnostic Framework) DFW provides the ability to collect specific information for a particular problem when that problem occurs. DFW is included with your SOA Suite installation and deployed to the domain. Let's define the components of DFW. Diagnostic Dumps: Specific diagnostic collections that are defined at either the 'system' or product level. Examples would be diagnostic logs or thread dumps. Incident: A collection of Diagnostic Dumps associated with a particular problem Log Conditions: An Oracle Diagnostic Logging event that DFW is configured to listen for. If the event is identified then an Incident will be created. WLDF Watch: The WebLogic Diagnostic Framework or 'WLDF' is not a component of DFW, however, it can be a source of DFW Incident creation through the use of a 'Watch'. WLDF Notification: A Notification is a component of WLDF and is the link between the Watch and DFW. You can configure multiple Notification types in WLDF and associate them with your Watches. 'FMWDFW-notification' is available to you out of the box to allow for DFW notification of Watch execution. Rule: Defines a WLDF Watch or Log Condition for which we want to associate a set of Diagnostic Dumps. When triggered the specified dumps will be collected and added to the Incident Rule Action: Defines the specific Diagnostic Dumps to collect for a particular rule ADR: Automatic Diagnostics Repository; Defined for every server in a domain. This is where Incidents are stored Now let's walk through a simple flow: Oracle Web Services error message OWS-04086 (SOAP Fault) is generated on managed server 1 DFW Log Condition for OWS-04086 evaluates to TRUE DFW creates a new Incident in the ADR for managed server 1 DFW executes the specified Diagnostic Dumps and adds the output to the Incident In this case we'll grab the diagnostic log and thread dump. We might also want to collect the WSDL binding information and SOA audit trail When would you use it? When you want to automatically collect Diagnostic Dumps at a particular time using a trigger or when you want to manually collect the information. In either case it can be readily uploaded to Oracle Support through the Service Request. How is it related to the other tools? DFW generates Incidents which are collections of Diagnostic Dumps. One of the system level Diagonstic Dumps collects the current server diagnostic log which is generated by ODL and can contain information from Selective Tracing sessions. Incidents are included in RDA collections by default and ADRCI is a tool that is used to package an Incident for upload to Oracle Support. In addition, both ODL and DMS can be used to trigger Incident creation through DFW. The conditions and rules for generating Incidents can become quite complicated and the below resources go into more detail. A simpler approach to leveraging at least the Diagnostic Dumps is through WLST (WebLogic Scripting Tool) where there are commands to do the following: Create an Incident Execute a single Diagnostic Dump Describe a Diagnostic Dump List the available Diagnostic Dumps The WLST option offers greater control in what is generated and when. It can be a great help when collecting information for Support. There are overlaps with RDA, however, DFW is geared towards collecting specific runtime information when an issue occurs while existing Incidents are collected by RDA. There are 3 WLDF Watches configured by default in a SOA Suite 11g domain: Stuck Threads, Unchecked Exception and Deadlock. These Watches are enabled by default and will generate Incidents in ADR. They are configured to reset automatically after 30 seconds so they have the potential to create multiple Incidents if these conditions are consistent. The Incidents generated by these Watches will only contain System level Diagnostic Dumps. These same System level Diagnostic Dumps will be included in any application scoped Incident as well. Starting in 11.1.1.6, SOA Suite is including its own set of application scoped Diagnostic Dumps that can be executed from WLST or through a WLDF Watch or Log Condition. These Diagnostic Dumps can be added to an Incident such as in the earlier example using the error code OWS-04086. soa.config: MDS configuration files and deployed-composites.xml soa.composite: All artifacts related to the deployed composite soa.wsdl: Summary of endpoints configured for the composite soa.edn: EDN configuration summary if applicable soa.db: Summary DB information for the SOA repository soa.env: Coherence cluster configuration summary soa.composite.trail: Partial audit trail information for the running composite The current release of RDA has the option to collect the soa.wsdl and soa.composite Diagnostic Dumps. More Diagnostic Dumps for SOA Suite products are planned for future releases along with enhancements to DFW itself. DFW Resources: Webcast Recording: SOA Diagnostics Sessions: Diagnostic Framework Diagnostic Framework Documentation DFW WLST Command Reference Documentation for SOA Diagnostic Dumps in 11.1.1.6 top Selective Tracing Selective Tracing is a facility available starting in version 11.1.1.4 that allows you to increase the logging level for specific loggers and for a specific context. What this means is that you have greater capability to collect needed diagnostic log information in a production environment with reduced overhead. For example, a Selective Tracing session can be executed that only increases the log level for one composite, only one logger, limited to one server in the cluster and for a preset period of time. In an environment where dozens of composites are deployed this can dramatically reduce the volume and overhead of the logging without sacrificing relevance. Selective Tracing can be administered either from Enterprise Manager or through WLST. WLST provides a bit more flexibility in terms of exactly where the tracing is run. When would you use it? When there is an issue in production or another environment that lends itself to filtering by an available context criteria and increasing the log level globally results in too much overhead or irrelevant information. The information is written to the server diagnostic log and is exportable from Enterprise Manager How is it related to the other tools? Selective Tracing output is written to the server diagnostic log. This log can be collected by a system level Diagnostic Dump using DFW or through a default RDA collection. Selective Tracing also heavily leverages ODL fields to determine what to trace and to tag information that is part of a particular tracing session. Available Context Criteria: Application Name Client Address Client Host Composite Name User Name Web Service Name Web Service Port Selective Tracing Resources: Webcast Recording: SOA Diagnostics Session: Using Selective Tracing to Diagnose SOA Suite Issues How to Use Selective Tracing for SOA [ID 1367174.1] Selective Tracing WLST Reference top DMS (Dynamic Monitoring Service) DMS exposes runtime information for monitoring. This information can be monitored in two ways: Through the DMS servlet As exposed MBeans The servlet is deployed by default and can be accessed through http://<host>:<port>/dms/Spy (use administrative credentials to access). The landing page of the servlet shows identical columns of what are known as Noun Types. If you select a Noun Type you will see a table in the right frame that shows the attributes (Sensors) for the Noun Type and the available instances. SOA Suite has several exposed Noun Types that are available for viewing through the Spy servlet. Screenshots of the Spy servlet are available in the Knowledge Base article How to Monitor Runtime SOA Performance With the Dynamic Monitoring Service (DMS). Every Noun instance in the runtime is exposed as an MBean instance. As such they are generally available through an MBean browser and available for monitoring through WLDF. You can configure a WLDF Watch to monitor a particular attribute and fire a notification when the threshold is exceeded. A WLDF Watch can use the out of the box DFW notification type to notify DFW to create an Incident. When would you use it? When you want to monitor a metric or set of metrics either manually or through an automated system. When you want to trigger a WLDF Watch based on a metric exposed through DMS. How is it related to the other tools? DMS metrics can be monitored with WLDF Watches which can in turn notify DFW to create an Incident. DMS Resources: How to Monitor Runtime SOA Performance With the Dynamic Monitoring Service (DMS) [ID 1368291.1] How to Reset a SOA 11g DMS Metric DMS Documentation top ODL (Oracle Diagnostic Logging) ODL is the primary facility for most Fusion Middleware applications to log what they are doing. Whenever you change a logging level through Enterprise Manager it is ultimately exposed through ODL and written to the server diagnostic log. A notable exception to this is WebLogic Server which uses its own log format / file. ODL logs entries in a consistent, structured way using predefined fields and name/value pairs. Here's an example of a SOA Suite entry: [2012-04-25T12:49:28.083-06:00] [AdminServer] [ERROR] [] [oracle.soa.bpel.engine] [tid: [ACTIVE].ExecuteThread: '1' for queue: 'weblogic.kernel.Default (self-tuning)'] [userId: ] [ecid: 0963fdde7e77631c:-31a6431d:136eaa46cda:-8000-00000000000000b4,0] [errid: 41] [WEBSERVICE_PORT.name: BPELProcess2_pt] [APP: soa-infra] [composite_name: TestProject2] [J2EE_MODULE.name: fabric] [WEBSERVICE.name: bpelprocess1_client_ep] [J2EE_APP.name: soa-infra] Error occured while handling a post operation[[ When would you use it? You'll use ODL almost every time you want to identify and diagnose a problem in the environment. The entries are written to the server diagnostic log. How is it related to the other tools? The server diagnostic logs are collected by DFW and RDA. Selective Tracing writes its information to the diagnostic log as well. Additionally, DFW log conditions are triggered by ODL log events. ODL Resources: ODL Documentation top ADR (Automatic Diagnostics Repository) ADR is not a tool in and of itself but is where DFW stores the Incidents it creates. Every server in the domain has an ADR location which can be found under <SERVER_HOME>/adr. This is referred to the as the ADR 'Base' location. ADR also has what are known as 'Home' locations. Example: You have a domain called 'myDomain' and an associated managed server called 'myServer'. Your admin server is called 'AdminServer'. Your domain home directory is called 'myDomain' and it contains a 'servers' directory. The 'servers' directory contains a directory for the managed server called 'myServer' and here is where you'll find the 'adr' directory which is the ADR 'Base' location for myServer. To get to the ADR 'Home' locations we drill through a few levels: diag/ofm/myDomain/ In an 11.1.1.6 SOA Suite domain you will see 2 directories here, 'myServer' and 'soa-infra'. These are the ADR 'Home' locations. 'myServer' is the 'system' ADR home and contains system level Incidents. 'soa-infra' is the name that SOA Suite used to register with DFW and this ADR home contains SOA Suite related Incidents Each ADR home location contains a series of directories, one of which is called 'incident'. This is where your Incidents are stored. When would you use it? It's a good idea to check on these locations from time to time to see whether a lot of Incidents are being generated. They can be cleaned out by deleting the Incident directories or through the ADRCI tool. If you know that an Incident is of particular interest for an issue you're working with Oracle you can simply zip it up and provide it. How does it relate to the other tools? ADR is obviously very important for DFW since it's where the Incidents are stored. Incidents contain Diagnostic Dumps that may relate to diagnostic logs (ODL) and DMS metrics. The most recent 10 Incident directories are collected by RDA by default and ADRCI relies on the ADR locations to help manage the contents. top ADRCI (Automatic Diagnostics Repository Command Interpreter) ADRCI is a command line tool for packaging and managing Incidents. When would you use it? When purging Incidents from an ADR Home location or when you want to package an Incident along with an offline RDA collection for upload to Oracle Support. How does it relate to the other tools? ADRCI contains a tool called the Incident Packaging System or IPS. This is used to package an Incident for upload to Oracle Support through a Service Request. Starting in 11.1.1.6 IPS will attempt to collect an offline RDA collection and include it with the Incident package. This will only work if Perl is available on the path, otherwise it will give a warning and package only the Incident files. ADRCI Resources: How to Use the Incident Packaging System (IPS) in SOA 11g [ID 1381259.1] ADRCI Documentation top WLDF (WebLogic Diagnostic Framework) WLDF is functionality available in WebLogic Server since version 9. Starting with FMw 11g a link has been added between WLDF and the pre-existing DFW, the WLDF Watch Notification. Let's take a closer look at the flow: There is a need to monitor the performance of your SOA Suite message processing A WLDF Watch is created in the WLS console that will trigger if the average message processing time exceeds 2 seconds. This metric is monitored through a DMS MBean instance. The out of the box DFW Notification (the Notification is called FMWDFW-notification) is added to the Watch. Under the covers this notification is of type JMX. The Watch is triggered when the threshold is exceeded and fires the Notification. DFW has a listener that picks up the Notification and evaluates it according to its rules, etc When it comes to automatic Incident creation, WLDF is a key component with capabilities that will grow over time. When would you use it? When you want to monitor the WLS server log or an MBean metric for some condition and fire a notification when the Watch is triggered. How does it relate to the other tools? WLDF is used to automatically trigger Incident creation through DFW using the DFW Notification. WLDF Resources: How to Monitor Runtime SOA Performance With the Dynamic Monitoring Service (DMS) [ID 1368291.1] How To Script the Creation of a SOA WLDF Watch in 11g [ID 1377986.1] WLDF Documentation top

    Read the article

  • Windows Azure Service Bus Splitter and Aggregator

    - by Alan Smith
    This article will cover basic implementations of the Splitter and Aggregator patterns using the Windows Azure Service Bus. The content will be included in the next release of the “Windows Azure Service Bus Developer Guide”, along with some other patterns I am working on. I’ve taken the pattern descriptions from the book “Enterprise Integration Patterns” by Gregor Hohpe. I bought a copy of the book in 2004, and recently dusted it off when I started to look at implementing the patterns on the Windows Azure Service Bus. Gregor has also presented an session in 2011 “Enterprise Integration Patterns: Past, Present and Future” which is well worth a look. I’ll be covering more patterns in the coming weeks, I’m currently working on Wire-Tap and Scatter-Gather. There will no doubt be a section on implementing these patterns in my “SOA, Connectivity and Integration using the Windows Azure Service Bus” course. There are a number of scenarios where a message needs to be divided into a number of sub messages, and also where a number of sub messages need to be combined to form one message. The splitter and aggregator patterns provide a definition of how this can be achieved. This section will focus on the implementation of basic splitter and aggregator patens using the Windows Azure Service Bus direct programming model. In BizTalk Server receive pipelines are typically used to implement the splitter patterns, with sequential convoy orchestrations often used to aggregate messages. In the current release of the Service Bus, there is no functionality in the direct programming model that implements these patterns, so it is up to the developer to implement them in the applications that send and receive messages. Splitter A message splitter takes a message and spits the message into a number of sub messages. As there are different scenarios for how a message can be split into sub messages, message splitters are implemented using different algorithms. The Enterprise Integration Patterns book describes the splatter pattern as follows: How can we process a message if it contains multiple elements, each of which may have to be processed in a different way? Use a Splitter to break out the composite message into a series of individual messages, each containing data related to one item. The Enterprise Integration Patterns website provides a description of the Splitter pattern here. In some scenarios a batch message could be split into the sub messages that are contained in the batch. The splitting of a message could be based on the message type of sub-message, or the trading partner that the sub message is to be sent to. Aggregator An aggregator takes a stream or related messages and combines them together to form one message. The Enterprise Integration Patterns book describes the aggregator pattern as follows: How do we combine the results of individual, but related messages so that they can be processed as a whole? Use a stateful filter, an Aggregator, to collect and store individual messages until a complete set of related messages has been received. Then, the Aggregator publishes a single message distilled from the individual messages. The Enterprise Integration Patterns website provides a description of the Aggregator pattern here. A common example of the need for an aggregator is in scenarios where a stream of messages needs to be combined into a daily batch to be sent to a legacy line-of-business application. The BizTalk Server EDI functionality provides support for batching messages in this way using a sequential convoy orchestration. Scenario The scenario for this implementation of the splitter and aggregator patterns is the sending and receiving of large messages using a Service Bus queue. In the current release, the Windows Azure Service Bus currently supports a maximum message size of 256 KB, with a maximum header size of 64 KB. This leaves a safe maximum body size of 192 KB. The BrokeredMessage class will support messages larger than 256 KB; in fact the Size property is of type long, implying that very large messages may be supported at some point in the future. The 256 KB size restriction is set in the service bus components that are deployed in the Windows Azure data centers. One of the ways of working around this size restriction is to split large messages into a sequence of smaller sub messages in the sending application, send them via a queue, and then reassemble them in the receiving application. This scenario will be used to demonstrate the pattern implementations. Implementation The splitter and aggregator will be used to provide functionality to send and receive large messages over the Windows Azure Service Bus. In order to make the implementations generic and reusable they will be implemented as a class library. The splitter will be implemented in the LargeMessageSender class and the aggregator in the LargeMessageReceiver class. A class diagram showing the two classes is shown below. Implementing the Splitter The splitter will take a large brokered message, and split the messages into a sequence of smaller sub-messages that can be transmitted over the service bus messaging entities. The LargeMessageSender class provides a Send method that takes a large brokered message as a parameter. The implementation of the class is shown below; console output has been added to provide details of the splitting operation. public class LargeMessageSender {     private static int SubMessageBodySize = 192 * 1024;     private QueueClient m_QueueClient;       public LargeMessageSender(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public void Send(BrokeredMessage message)     {         // Calculate the number of sub messages required.         long messageBodySize = message.Size;         int nrSubMessages = (int)(messageBodySize / SubMessageBodySize);         if (messageBodySize % SubMessageBodySize != 0)         {             nrSubMessages++;         }           // Create a unique session Id.         string sessionId = Guid.NewGuid().ToString();         Console.WriteLine("Message session Id: " + sessionId);         Console.Write("Sending {0} sub-messages", nrSubMessages);           Stream bodyStream = message.GetBody<Stream>();         for (int streamOffest = 0; streamOffest < messageBodySize;             streamOffest += SubMessageBodySize)         {                                     // Get the stream chunk from the large message             long arraySize = (messageBodySize - streamOffest) > SubMessageBodySize                 ? SubMessageBodySize : messageBodySize - streamOffest;             byte[] subMessageBytes = new byte[arraySize];             int result = bodyStream.Read(subMessageBytes, 0, (int)arraySize);             MemoryStream subMessageStream = new MemoryStream(subMessageBytes);               // Create a new message             BrokeredMessage subMessage = new BrokeredMessage(subMessageStream, true);             subMessage.SessionId = sessionId;               // Send the message             m_QueueClient.Send(subMessage);             Console.Write(".");         }         Console.WriteLine("Done!");     }} The LargeMessageSender class is initialized with a QueueClient that is created by the sending application. When the large message is sent, the number of sub messages is calculated based on the size of the body of the large message. A unique session Id is created to allow the sub messages to be sent as a message session, this session Id will be used for correlation in the aggregator. A for loop in then used to create the sequence of sub messages by creating chunks of data from the stream of the large message. The sub messages are then sent to the queue using the QueueClient. As sessions are used to correlate the messages, the queue used for message exchange must be created with the RequiresSession property set to true. Implementing the Aggregator The aggregator will receive the sub messages in the message session that was created by the splitter, and combine them to form a single, large message. The aggregator is implemented in the LargeMessageReceiver class, with a Receive method that returns a BrokeredMessage. The implementation of the class is shown below; console output has been added to provide details of the splitting operation.   public class LargeMessageReceiver {     private QueueClient m_QueueClient;       public LargeMessageReceiver(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public BrokeredMessage Receive()     {         // Create a memory stream to store the large message body.         MemoryStream largeMessageStream = new MemoryStream();           // Accept a message session from the queue.         MessageSession session = m_QueueClient.AcceptMessageSession();         Console.WriteLine("Message session Id: " + session.SessionId);         Console.Write("Receiving sub messages");           while (true)         {             // Receive a sub message             BrokeredMessage subMessage = session.Receive(TimeSpan.FromSeconds(5));               if (subMessage != null)             {                 // Copy the sub message body to the large message stream.                 Stream subMessageStream = subMessage.GetBody<Stream>();                 subMessageStream.CopyTo(largeMessageStream);                   // Mark the message as complete.                 subMessage.Complete();                 Console.Write(".");             }             else             {                 // The last message in the sequence is our completeness criteria.                 Console.WriteLine("Done!");                 break;             }         }                     // Create an aggregated message from the large message stream.         BrokeredMessage largeMessage = new BrokeredMessage(largeMessageStream, true);         return largeMessage;     } }   The LargeMessageReceiver initialized using a QueueClient that is created by the receiving application. The receive method creates a memory stream that will be used to aggregate the large message body. The AcceptMessageSession method on the QueueClient is then called, which will wait for the first message in a message session to become available on the queue. As the AcceptMessageSession can throw a timeout exception if no message is available on the queue after 60 seconds, a real-world implementation should handle this accordingly. Once the message session as accepted, the sub messages in the session are received, and their message body streams copied to the memory stream. Once all the messages have been received, the memory stream is used to create a large message, that is then returned to the receiving application. Testing the Implementation The splitter and aggregator are tested by creating a message sender and message receiver application. The payload for the large message will be one of the webcast video files from http://www.cloudcasts.net/, the file size is 9,697 KB, well over the 256 KB threshold imposed by the Service Bus. As the splitter and aggregator are implemented in a separate class library, the code used in the sender and receiver console is fairly basic. The implementation of the main method of the sending application is shown below.   static void Main(string[] args) {     // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Open the input file.     FileStream fileStream = new FileStream(AccountDetails.TestFile, FileMode.Open);       // Create a BrokeredMessage for the file.     BrokeredMessage largeMessage = new BrokeredMessage(fileStream, true);       Console.WriteLine("Sending: " + AccountDetails.TestFile);     Console.WriteLine("Message body size: " + largeMessage.Size);     Console.WriteLine();         // Send the message with a LargeMessageSender     LargeMessageSender sender = new LargeMessageSender(queueClient);     sender.Send(largeMessage);       // Close the messaging facory.     factory.Close();  } The implementation of the main method of the receiving application is shown below. static void Main(string[] args) {       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Create a LargeMessageReceiver and receive the message.     LargeMessageReceiver receiver = new LargeMessageReceiver(queueClient);     BrokeredMessage largeMessage = receiver.Receive();       Console.WriteLine("Received message");     Console.WriteLine("Message body size: " + largeMessage.Size);       string testFile = AccountDetails.TestFile.Replace(@"\In\", @"\Out\");     Console.WriteLine("Saving file: " + testFile);       // Save the message body as a file.     Stream largeMessageStream = largeMessage.GetBody<Stream>();     largeMessageStream.Seek(0, SeekOrigin.Begin);     FileStream fileOut = new FileStream(testFile, FileMode.Create);     largeMessageStream.CopyTo(fileOut);     fileOut.Close();       Console.WriteLine("Done!"); } In order to test the application, the sending application is executed, which will use the LargeMessageSender class to split the message and place it on the queue. The output of the sender console is shown below. The console shows that the body size of the large message was 9,929,365 bytes, and the message was sent as a sequence of 51 sub messages. When the receiving application is executed the results are shown below. The console application shows that the aggregator has received the 51 messages from the message sequence that was creating in the sending application. The messages have been aggregated to form a massage with a body of 9,929,365 bytes, which is the same as the original large message. The message body is then saved as a file. Improvements to the Implementation The splitter and aggregator patterns in this implementation were created in order to show the usage of the patterns in a demo, which they do quite well. When implementing these patterns in a real-world scenario there are a number of improvements that could be made to the design. Copying Message Header Properties When sending a large message using these classes, it would be great if the message header properties in the message that was received were copied from the message that was sent. The sending application may well add information to the message context that will be required in the receiving application. When the sub messages are created in the splitter, the header properties in the first message could be set to the values in the original large message. The aggregator could then used the values from this first sub message to set the properties in the message header of the large message during the aggregation process. Using Asynchronous Methods The current implementation uses the synchronous send and receive methods of the QueueClient class. It would be much more performant to use the asynchronous methods, however doing so may well affect the sequence in which the sub messages are enqueued, which would require the implementation of a resequencer in the aggregator to restore the correct message sequence. Handling Exceptions In order to keep the code readable no exception handling was added to the implementations. In a real-world scenario exceptions should be handled accordingly.

    Read the article

< Previous Page | 361 362 363 364 365 366 367 368 369 370 371  | Next Page >