Search Results

Search found 35340 results on 1414 pages for 'policy based management'.

Page 374/1414 | < Previous Page | 370 371 372 373 374 375 376 377 378 379 380 381  | Next Page >

  • Recap: Oracle Fusion Middleware Strategies Driving Business Innovation

    - by Harish Gaur
    Hasan Rizvi, Executive Vice President of Oracle Fusion Middleware & Java took the stage on Tuesday to discuss how Oracle Fusion Middleware helps enable business innovation. Through a series of product demos and customer showcases, Hassan demonstrated how Oracle Fusion Middleware is a complete platform to harness the latest technological innovations (cloud, mobile, social and Fast Data) throughout the application lifecycle. Fig 1: Oracle Fusion Middleware is the foundation of business innovation This Session included 4 demonstrations to illustrate these strategies: 1. Build and deploy native mobile applications using Oracle ADF Mobile 2. Empower business user to model processes, design user interface and have rich mobile experience for process interaction using Oracle BPM Suite PS6. 3. Create collaborative user experience and integrate social sign-on using Oracle WebCenter Portal, Oracle WebCenter Content, Oracle Social Network & Oracle Identity Management 11g R2 4. Deploy and manage business applications on Oracle Exalogic Nike, LA Department of Water & Power and Nintendo joined Hasan on stage to share how their organizations are leveraging Oracle Fusion Middleware to enable business innovation. Managing Performance in the Wrld of Social and Mobile How do you provide predictable scalability and performance for an application that monitors active lifestyle of 8 million users on a daily basis? Nike’s answer is Oracle Coherence, a component of Oracle Fusion Middleware and Oracle Exadata. Fig 2: Oracle Coherence enabled data grid improves performance of Nike+ Digital Sports Platform Nicole Otto, Sr. Director of Consumer Digital Technology discussed the vision of the Nike+ platform, a platform which represents a shift for NIKE from a  "product"  to  a "product +" experience.  There are currently nearly 8 million users in the Nike+ system who are using digitally-enabled Nike+ devices.  Once data from the Nike+ device is transmitted to Nike+ application, users access the Nike+ website or via the Nike mobile applicatoin, seeing metrics around their daily active lifestyle and even engage in socially compelling experiences to compare, compete or collaborate their data with their friends. Nike expects the number of users to grow significantly this year which will drive an explosion of data and potential new experiences. To deal with this challenge, Nike envisioned building a shared platform that would drive a consumer-centric model for the company. Nike built this new platform using Oracle Coherence and Oracle Exadata. Using Coherence, Nike built a data grid tier as a distributed cache, thereby provide low-latency access to most recent and relevant data to consumers. Nicole discussed how Nike+ Digital Sports Platform is unique in the way that it utilizes the Coherence Grid.  Nike takes advantage of Coherence as a traditional cache using both cache-aside and cache-through patterns.  This new tier has enabled Nike to create a horizontally scalable distributed event-driven processing architecture. Current data grid volume is approximately 150,000 request per minute with about 40 million objects at any given time on the grid. Improving Customer Experience Across Multiple Channels Customer experience is on top of every CIO's mind. Customer Experience needs to be consistent and secure across multiple devices consumers may use.  This is the challenge Matt Lampe, CIO of Los Angeles Department of Water & Power (LADWP) was faced with. Despite being the largest utilities company in the country, LADWP had been relying on a 38 year old customer information system for serving its customers. Their prior system  had been unable to keep up with growing customer demands. Last year, LADWP embarked on a journey to improve customer experience for 1.6million LA DWP customers using Oracle WebCenter platform. Figure 3: Multi channel & Multi lingual LADWP.com built using Oracle WebCenter & Oracle Identity Management platform Matt shed light on his efforts to drive customer self-service across 3 dimensions – new website, new IVR platform and new bill payment service. LADWP has built a new portal to increase customer self-service while reducing the transactions via IVR. LADWP's website is powered Oracle WebCenter Portal and is accessible by desktop and mobile devices. By leveraging Oracle WebCenter, LADWP eliminated the need to build, format, and maintain individual mobile applications or websites for different devices. Their entire content is managed using Oracle WebCenter Content and secured using Oracle Identity Management. This new portal automated their paper based processes to web based workflows for customers. This includes automation of Self Service implemented through My Account -  like Bill Pay, Payment History, Bill History and Usage Analysis. LADWP's solution went live in April 2012. Matt indicated that LADWP's Self-Service Portal has greatly improved customer satisfaction.  In a JD Power Associates website satisfaction survey, results indicate rankings have climbed by 25+ points, marking a remarkable increase in user experience. Bolstering Performance and Simplifying Manageability of Business Applications Ingvar Petursson, Senior Vice Preisdent of IT at Nintendo America joined Hasan on-stage to discuss their choice of Exalogic. Nintendo had significant new requirements coming their way for business systems, both internal and external, in the years to come, especially with new products like the WiiU on the horizon this holiday season. Nintendo needed a platform that could give them performance, availability and ease of management as they deploy business systems. Ingvar selected Engineered Systems for two reasons: 1. High performance  2. Ease of management Figure 4: Nintendo relies on Oracle Exalogic to run ATG eCommerce, Oracle e-Business Suite and several business applications Nintendo made a decision to run their business applications (ATG eCommerce, E-Business Suite) and several Fusion Middleware components on the Exalogic platform. What impressed Ingvar was the "stress” testing results during evaluation. Oracle Exalogic could handle their 3-year load estimates for many functions, which was better than Nintendo expected without any hardware expansion. Faster Processing of Big Data Middleware plays an increasingly important role in Big Data. Last year, we announced at OpenWorld the introduction of Oracle Data Integrator for Hadoop and Oracle Loader for Hadoop which helps in the ability to move, transform, load data to and from Big Data Appliance to Exadata.  This year, we’ve added new capabilities to find, filter, and focus data using Oracle Event Processing. This product can natively integrate with Big Data Appliance or runs standalone. Hasan briefly discussed how NTT Docomo, largest mobile operator in Japan, leverages Oracle Event Processing & Oracle Coherence to process mobile data (from 13 million smartphone users) at a speed of 700K events per second before feeding it Hadoop for distributed processing of big data. Figure 5: Mobile traffic data processing at NTT Docomo with Oracle Event Processing & Oracle Coherence    

    Read the article

  • Oracle Sales Cloud Demo environments for partners

    - by Richard Lefebvre
    We are happy to inform our EMEA based CRM & CX partners that a new process for partners to get an access to the Oracle Sales Cloud (Fusion CRM SaaS) demo environment is in place.  If you are interested to take benefit of it, please send a short eMail to [email protected].  This offer - subject to final approval - is limited to EMEA based partners who have certified at least one sales and one presales on Oracle Sales Cloud.

    Read the article

  • What's new in the RightNow November 2012 release?

    - by Richard Lefebvre
    What new in the RightNow November 2012? In order to find out, please watch this tutorial with imbedded demonstration or read the November 2012 Release notes.   News Facts The November 2012 release of     Oracle’s RightNow CX Cloud Service marks the completion of development efforts for 2012 and continues Oracle’s commitment to enhancing the Oracle RightNow offering following the acquisition. New release delivers key capabilities designed to help organizations improve customer experiences in order to increase customer acquisition and retention, while reducing total cost of ownership. Part of the Oracle Cloud, Oracle RightNow CX Cloud Service now integrates Oracle RightNow Chat Cloud Service with Oracle Engagement Engine Cloud Service, helping organizations intelligently and proactively engage with customers through the right channel at the right time. Chat solutions have emerged as an important component of a cross-channel customer experience strategy. According to Forrester Research, Inc., chat adoption has risen dramatically between 2009 and 2011 from 19% to 37%, and it has the highest satisfaction level of all customer service channels at 62% satisfaction. (*) To help companies deliver enhanced customer experiences, Oracle has made significant investments in Oracle RightNow Chat Cloud Service throughout 2012. With the addition of rules-based engagement to existing capabilities such as co-browse, mobile chat, and cross-channel knowledge integration with the contact center, all delivered via the cloud, Oracle RightNow Chat Cloud Service is differentiated as the industry-leading chat solution. The Oracle Cloud offers a broad portfolio of software as-a-service applications, including Oracle Customer Service and Support Cloud Service, which is based on the Oracle RightNow CX Cloud Service. New Capabilities Key Oracle RightNow Chat Cloud Service and other cross-channel capabilities include: Chat Business Rules, with over 70 built-in rule conditions, leverage the Oracle Engagement Engine to help enable organizations capture rich visitor data and invoke complex actions and triggers. Chat Business Rules allow granular control over when to engage a customer via the chat channel based on customer behavior, customer profile information and operational information. Click-to-Call provides the option for a customer to engage with a live agent over the phone during the Web browsing experience. Chat Availability Controls provide organizations with the ability to throttle volume through the chat channel based on real-time agent availability and wait time thresholds. This ability to manage the channel more efficiently allows organizations to provide a better experience to customers using the chat channel. Strategic and Operational Chat Channel Analytics provide better insight into channel and agent productivity and utilization and effectiveness with both out-of-the-box reports and ad hoc reports. New chat channel analytics provide comprehensive metrics with full data transparency. Background Service Updates improve high availability metrics for Oracle RightNow Chat Cloud Service during service update periods, setting the industry leading standard for sales and service delivery to customers via the chat channel. Additional Capabilities include: Improved Web developer tools for more efficient self-service user interface design Improved administration for enhanced user sessions management Increased cross-channel community collaboration Enhanced extensibility widgets and syndication management Streamlined content management and analytics capabilities Read the full announcement here

    Read the article

  • Procedural, Semi-Procedural and Declarative Programming in SQL

    A lot of the time, the key to making SQL databases perform well is to take a break from the keyboard and rethink the way of approaching the problem; and rethinking in terms of a set-based declarative approach. Joe takes a simple discussion abut a problem with a UDF to illustrate the point that ingrained procedural reflexes can often prevent us from seeing simpler set-based techniques.

    Read the article

  • Is inline SQL still classed as bad practice now that we have Micro ORMs?

    - by Grofit
    This is a bit of an open ended question but I wanted some opinions, as I grew up in a world where inline SQL scripts were the norm, then we were all made very aware of SQL injection based issues, and how fragile the sql was when doing string manipulations all over the place. Then came the dawn of the ORM where you were explaining the query to the ORM and letting it generate its own SQL, which in a lot of cases was not optimal but was safe and easy. Another good thing about ORMs or database abstraction layers were that the SQL was generated with its database engine in mind, so I could use Hibernate/Nhibernate with MSSQL, MYSQL and my code never changed it was just a configuration detail. Now fast forward to current day, where Micro ORMs seem to be winning over more developers I was wondering why we have seemingly taken a U-Turn on the whole in-line sql subject. I must admit I do like the idea of no ORM config files and being able to write my query in a more optimal manner but it feels like I am opening myself back up to the old vulnerabilities such as SQL injection and I am also tying myself to one database engine so if I want my software to support multiple database engines I would need to do some more string hackery which seems to then start to make code unreadable and more fragile. (Just before someone mentions it I know you can use parameter based arguments with most micro orms which offers protection in most cases from sql injection) So what are peoples opinions on this sort of thing? I am using Dapper as my Micro ORM in this instance and NHibernate as my regular ORM in this scenario, however most in each field are quite similar. What I term as inline sql is SQL strings within source code. There used to be design debates over SQL strings in source code detracting from the fundamental intent of the logic, which is why statically typed linq style queries became so popular its still just 1 language, but with lets say C# and Sql in one page you have 2 languages intermingled in your raw source code now. Just to clarify, the SQL injection is just one of the known issues with using sql strings, I already mention you can stop this from happening with parameter based queries, however I highlight other issues with having SQL queries ingrained in your source code, such as the lack of DB Vendor abstraction as well as losing any level of compile time error capturing on string based queries, these are all issues which we managed to side step with the dawn of ORMs with their higher level querying functionality, such as HQL or LINQ etc (not all of the issues but most of them). So I am less focused on the individual highlighted issues and more the bigger picture of is it now becoming more acceptable to have SQL strings directly in your source code again, as most Micro ORMs use this mechanism. Here is a similar question which has a few different view points, although is more about the inline sql without the micro orm context: http://stackoverflow.com/questions/5303746/is-inline-sql-hard-coding

    Read the article

  • Does GNC mean the death of Internet Explorer?

    - by Monika Michael
    From the wikipedia - Google Native Client (NaCl) is a sandboxing technology for running a subset of Intel x86 or ARM native code using software-based fault isolation. It is proposed for safely running native code from a web browser, allowing web-based applications to run at near-native speeds. (Emphasis mine) (Source) Compiled C++ code running in a browser? Are other companies working on a similar offering? What would it mean for the browser landscape?

    Read the article

  • Security Controls on data for P6 Analytics

    - by Jeffrey McDaniel
    The Star database and P6 Analytics calculates security based on P6 security using OBS, global, project, cost, and resource security considerations. If there is some concern that users are not seeing expected data in P6 Analytics here are some areas to review: 1. Determining if a user has cost security is based on the Project level security privileges - either View Project Costs/Financials or Edit EPS Financials. If expecting to see costs make sure one of these permissions are allocated.  2. User must have OBS access on a Project. Not WBS level. WBS level security is not supported. Make sure user has OBS on project level.  3. Resource Access is determined by what is granted in P6. Verify the resource access granted to this user in P6. Resource security is hierarchical. Project access will override Resource access based on the way security policies are applied. 4. Module access must be given to a P6 user for that user to come over into Star/P6 Analytics. For earlier version of RDB there was a report_user_flag on the Users table. This flag field is no longer used after P6 Reporting Database 2.1. 5. For P6 Reporting Database versions 2.2 and higher, the Extended Schema Security service must be run to calculate all security. Any changes to privileges or security this service must be rerun before any ETL. 6. In P6 Analytics 2.0 or higher, a Weblogic user must exist that matches the P6 username. For example user Tim must exist in P6 and Weblogic users for Tim to be able to log into P6 Analytics and access data based on  P6 security.  In earlier versions the username needed to exist in RPD. 7. Cache in OBI is another area that can sometimes make it seem a user isn't seeing the data they expect. While cache can be beneficial for performance in OBI. If the data is outdated it can retrieve older, stale data. Clearing or turning off cache when rerunning a query can determine if the returned result set was from cache or from the database.

    Read the article

  • Download NServiceBus Framework

    - by Editor
    NServiceBus is a highly extensible, publish/subscribe, workflow integrated communications framework for .NET. NServiceBus is a lightweight higher-level API built on top of MSMQ and based on one-way messaging. For now the Technological Implementation is based on MSMQ, though other implementations are considered. Download NServiceBus.

    Read the article

  • Procedural, Semi-Procedural and Declarative Programming in SQL

    A lot of the time, the key to making SQL databases perform well is to take a break from the keyboard and rethink the way of approaching the problem; and rethinking in terms of a set-based declarative approach. Joe takes a simple discussion abut a problem with a UDF to illustrate the point that ingrained procedural reflexes can often prevent us from seeing simpler set-based techniques.

    Read the article

  • Bin packing part 6: Further improvements

    - by Hugo Kornelis
    In part 5 of my series on the bin packing problem, I presented a method that sits somewhere in between the true row-by-row iterative characteristics of the first three parts and the truly set-based approach of the fourth part. I did use iteration, but each pass through the loop would use a set-based statement to process a lot of rows at once. Since that statement is fairly complex, I am sure that a single execution of it is far from cheap – but the algorithm used is efficient enough that the entire...(read more)

    Read the article

  • A Community Cure for a String Splitting Headache

    - by Tony Davis
    A heartwarming tale of dogged perseverance and Community collaboration to solve some SQL Server string-related headaches. Michael J Swart posted a blog this week that had me smiling in recognition and agreement, describing how an inquisitive Developer or DBA deals with a problem. It's a three-step process, starting with discomfort and anxiety; a feeling that one doesn't know as much about one's chosen specialized subject as previously thought. It progresses through a phase of intense research and learning until finally one achieves breakthrough, blessed relief and renewed optimism. In this case, the discomfort was provoked by the mystery of massively high CPU when searching Unicode strings in SQL Server. Michael explored the problem via Stack Overflow, Google and Twitter #sqlhelp, finally leading to resolution and a blog post that shared what he learned. Perfect; except that sometimes you have to be prepared to share what you've learned so far, while still mired in the phase of nagging discomfort. A good recent example of this recently can be found on our own blogs. Despite being a loud advocate of the lightning fast T-SQL-based string splitting techniques, honed to near perfection over many years by Jeff Moden and others, Phil Factor retained a dogged conviction that, in theory, shredding element-based XML using XQuery ought to be even more efficient for splitting a string to create a table. After some careful testing, he found instead that the XML way performed and scaled miserably by comparison. Somewhat subdued, and with a nagging feeling that perhaps he was still missing "something", he posted his findings. What happened next was a joy to behold; the community jumped in to suggest subtle changes in approach, using an attribute-based rather than element-based XML list, and tweaking the XQuery shredding. The result was performance and scalability that surpassed all other techniques. I asked Phil how quickly he would have arrived at the real breakthrough on his own. His candid answer was "never". Both are great examples of the power of Community learning and the latter in particular the importance of being brave enough to parade one's ignorance. Perhaps Jeff Moden will accept the string-splitting gauntlet one more time. To quote the great man: you've just got to love this community! If you've an interesting tale to tell about being helped to a significant breakthrough for a problem by the community, I'd love to hear about it. Cheers, Tony.

    Read the article

  • Building Private IaaS with SPARC and Oracle Solaris

    - by ferhat
    A superior enterprise cloud infrastructure with high performing systems using built-in virtualization! We are happy to announce the expansion of Oracle Optimized Solution for Enterprise Cloud Infrastructure with Oracle's SPARC T-Series servers and Oracle Solaris.  Designed, tuned, tested and fully documented, the Oracle Optimized Solution for Enterprise Cloud Infrastructure now offers customers looking to upgrade, consolidate and virtualize their existing SPARC-based infrastructure a proven foundation for private cloud-based services which can lower TCO by up to 81 percent(1). Faster time to service, reduce deployment time from weeks to days, and can increase system utilization to 80 percent. The Oracle Optimized Solution for Enterprise Cloud Infrastructure can also be deployed at up to 50 percent lower cost over five years than comparable alternatives(2). The expanded solution announced today combines Oracle’s latest SPARC T-Series servers; Oracle Solaris 11, the first cloud OS; Oracle VM Server for SPARC, Oracle’s Sun ZFS Storage Appliance, and, Oracle Enterprise Manager Ops Center 12c, which manages all Oracle system technologies, streamlining cloud infrastructure management. Thank you to all who stopped by Oracle booth at the CloudExpo Conference in New York. We were also at Cloud Boot Camp: Building Private IaaS with Oracle Solaris and SPARC, discussing how this solution can maximize return on investment and help organizations manage costs for their existing infrastructures or for new enterprise cloud infrastructure design. Designed, tuned, and tested, Oracle Optimized Solution for Enterprise Cloud Infrastructure is a complete cloud infrastructure or any virtualized environment  using the proven documented best practices for deployment and optimization. The solution addresses each layer of the infrastructure stack using Oracle's powerful SPARC T-Series as well as x86 servers with storage, network, virtualization, and management configurations to provide a robust, flexible, and balanced foundation for your enterprise applications and databases.  For more information visit Oracle Optimized Solution for Enterprise Cloud Infrastructure. Solution Brief: Accelerating Enterprise Cloud Infrastructure Deployments White Paper: Reduce Complexity and Accelerate Enterprise Cloud Infrastructure Deployments Technical White Paper: Enterprise Cloud Infrastructure on SPARC (1) Comparison based on current SPARC server customers consolidating existing installations including Sun Fire E4900, Sun Fire V440 and SPARC Enterprise T5240 servers to latest generation SPARC T4 servers. Actual deployments and configurations will vary. (2) Comparison based on solution with SPARC T4-2 servers with Oracle Solaris and Oracle VM Server for SPARC versus HP ProLiant DL380 G7 with VMware and Red Hat Enterprise Linux and IBM Power 720 Express - Power 730 Express with IBM AIX Enterprise Edition and Power VM.

    Read the article

  • Should I be an algorithm developer, or java web frameworks type developer?

    - by Derek
    So - as I see it, there are really two kinds of developers. Those that do frameworks, web services, pretty-making front ends, etc etc. Then there are developers that write the algorithms that solve the problem. That is, unless the problem is "display this raw data in some meaningful way." In that case, the framework/web developer guy might be doing both jobs. So my basic problem is this. I have been an algorithms kind of software developer for a few years now. I double majored in Math and Computer science, and I have a master's in systems engineering. I have never done any web-dev work, with the exception of a couple minor jobs, and some hobby level stuff. I have been job interviewing lately, and this is what happens: Job is listed as "programmer- 5 years of experience with the following: C/C++, Java,Perl, Ruby, ant, blah blah blah" Recruiter calls me, says they want me to come in for interview In the interview, find out they have some webservices development, blah blah blah When asked in the interview, talk about my experience doing algorithms, optimization, blah blah..but very willing to learn new languages, frameworks, etc Get a call back saying "we didn't think you were a fit for the job you interviewed wtih, but our algorithm team got wind of you and wants to bring you on" This has happened to me a couple times now - see a vague-ish job description looking for a "programmer" Go in, find out they are doing some sort of web-based tool, maybe with some hardcore algorithms running in the background. interview with people for the web-based tool, but get an offer from the algorithms people. So the question is - which job is the better job? I basically just want to get a wide berth of experience at this level of my career, but are algorithm developers so much in demand? Even more so than all these supposed hot in demand web developer guys? Will I be ok in the long run if I go into the niche of math based algorithm development, and just little to no, or hobby level web-dev experience? I basically just don't want to pigeon hole myself this early. My salary is already starting to get pretty high - and I can see a company later on saying "we really need a web developer, but we'll hire this 50k/year college guy, instead of this 100k/year experience algorithm guy" Cliffs notes: I have been doing algorithm development. I consider myself to be a "good programmer." I would have no problem picking up web technologies and those sorts of frameworks. During job interviews, I keep getting "we think you've got a good skillset - talk to our algorithm team" instead of wanting me to learn new skills on the job to do their web services or whhatever other new technology they are doing. Edit: Whenever I am talking about algorithm development here - I am talking about the code that produces the answer. Typically I think of more math-based algorithms: solving a financial problem, solving a finite element method, image processing, etc

    Read the article

  • Do You Need a Static or a Dynamic Website?

    Web design industry is thriving despite the global economic slowdown. The boom in small home based businesses increased the demand of web design services. Today?s small businesses and home based busi... [Author: Emily Matthew - Web Design and Development - March 31, 2010]

    Read the article

  • Friday Fun: The Milk Quest

    - by Asian Angel
    Glorious Friday is here once again, so why not take a break and have a quick bit of fun? In this week’s game your mission is to help a hungry kitten successfully travel through strange and dangerous lands to reach the milk treasure shown on his map.How To Encrypt Your Cloud-Based Drive with BoxcryptorHTG Explains: Photography with Film-Based CamerasHow to Clean Your Dirty Smartphone (Without Breaking Something)

    Read the article

  • Oracle Support Customers take note My Oracle Support Flash is set to Retire

    - by user12244613
    Take Action – My Oracle Support Flash User Interface Set to Retire On July 13, 2012, Oracle plans to upgrade the HTML interface with additional functionality that will allow those users still remaining on the Flash-based interface to switch over to the HTML version. Although the Flash-based user interface will remain available for a brief period following the upgrade, we encourage you to begin using the new HTML version sooner. Find out when you should make the switch! Read complete communication to Flash users

    Read the article

  • Getting a design company to embrace the benefits of good development

    - by Toby
    I know there are already various topics discussing what we can do to get managers to buy into good development practices, but I was wondering if there are any specific things we can do to explain to designers that Web Development is more than just turning their design into a website. I want to try and push them to design based on progressive enhancement, responsive design and ajax but I think there is a trend to stick to the print based design principles, which is understandable as it is their background, but is frustrating to a dev.

    Read the article

  • 3D Ball Physics Theory: collision response on ground and against walls?

    - by David
    I'm really struggling to get a strong grasp on how I should be handling collision response in a game engine I'm building around a 3D ball physics concept. Think Monkey Ball as an example of the type of gameplay. I am currently using sphere-to-sphere broad phase, then AABB to OBB testing (the final test I am using right now is one that checks if one of the 8 OBB points crosses the planes of the object it is testing against). This seems to work pretty well, and I am getting back: Plane that object is colliding against (with a point on the plane, the plane's normal, and the exact point of intersection. I've tried what feels like dozens of different high-level strategies for handling these collisions, without any real success. I think my biggest problem is understanding how to handle collisions against walls in the x-y axes (left/right, front/back), which I want to have elasticity, and the ground (z-axis) where I want an elastic reaction if the ball drops down, but then for it to eventually normalize and be kept "on the ground" (not go into the ground, but also not continue bouncing). Without kluging something together, I'm positive there is a good way to handle this, my theories just aren't getting me all the way there. For physics modeling and movement, I am trying to use a Euler based setup with each object maintaining a position (and destination position prior to collision detection), a velocity (which is added onto the position to determine the destination position), and an acceleration (which I use to store any player input being put on the ball, as well as gravity in the z coord). Starting from when I detect a collision, what is a good way to approach the response to get the expected behavior in all cases? Thanks in advance to anyone taking the time to assist... I am grateful for any pointers, and happy to post any additional info or code if it is useful. UPDATE Based on Steve H's and eBusiness' responses below, I have adapted my collision response to what makes a lot more sense now. It was close to right before, but I didn't have all the right pieces together at the right time! I have one problem left to solve, and that is what is causing the floor collision to hit every frame. Here's the collision response code I have now for the ball, then I'll describe the last bit I'm still struggling to understand. // if we are moving in the direction of the plane (against the normal)... if (m_velocity.dot(intersection.plane.normal) <= 0.0f) { float dampeningForce = 1.8f; // eventually create this value based on mass and acceleration // Calculate the projection velocity PVRTVec3 actingVelocity = m_velocity.project(intersection.plane.normal); m_velocity -= actingVelocity * dampeningForce; } // Clamp z-velocity to zero if we are within a certain threshold // -- NOTE: this was an experimental idea I had to solve the "jitter" bug I'll describe below float diff = 0.2f - abs(m_velocity.z); if (diff > 0.0f && diff <= 0.2f) { m_velocity.z = 0.0f; } // Take this object to its new destination position based on... // -- our pre-collision position + vector to the collision point + our new velocity after collision * time // -- remaining after the collision to finish the movement m_destPosition = m_position + intersection.diff + (m_velocity * intersection.tRemaining * GAMESTATE->dt); The above snippet is run after a collision is detected on the ball (collider) with a collidee (floor in this case). With a dampening force of 1.8f, the ball's reflected "upward" velocity will eventually be overcome by gravity, so the ball will essentially be stuck on the floor. THIS is the problem I have now... the collision code is running every frame (since the ball's z-velocity is constantly pushing it a collision with the floor below it). The ball is not technically stuck, I can move it around still, but the movement is really goofy because the velocity and position keep getting affected adversely by the above snippet. I was experimenting with an idea to clamp the z-velocity to zero if it was "close to zero", but this didn't do what I think... probably because the very next frame the ball gets a new gravity acceleration applied to its velocity regardless (which I think is good, right?). Collisions with walls are as they used to be and work very well. It's just this last bit of "stickiness" to deal with. The camera is constantly jittering up and down by extremely small fractions too when the ball is "at rest". I'll keep playing with it... I like puzzles like this, especially when I think I'm close. Any final ideas on what I could be doing wrong here? UPDATE 2 Good news - I discovered I should be subtracting the intersection.diff from the m_position (position prior to collision). The intersection.diff is my calculation of the difference in the vector of position to destPosition from the intersection point to the position. In this case, adding it was causing my ball to always go "up" just a little bit, causing the jitter. By subtracting it, and moving that clamper for the velocity.z when close to zero to being above the dot product (and changing the test from <= 0 to < 0), I now have the following: // Clamp z-velocity to zero if we are within a certain threshold float diff = 0.2f - abs(m_velocity.z); if (diff > 0.0f && diff <= 0.2f) { m_velocity.z = 0.0f; } // if we are moving in the direction of the plane (against the normal)... float dotprod = m_velocity.dot(intersection.plane.normal); if (dotprod < 0.0f) { float dampeningForce = 1.8f; // eventually create this value based on mass and acceleration? // Calculate the projection velocity PVRTVec3 actingVelocity = m_velocity.project(intersection.plane.normal); m_velocity -= actingVelocity * dampeningForce; } // Take this object to its new destination position based on... // -- our pre-collision position + vector to the collision point + our new velocity after collision * time // -- remaining after the collision to finish the movement m_destPosition = m_position - intersection.diff + (m_velocity * intersection.tRemaining * GAMESTATE->dt); UpdateWorldMatrix(m_destWorldMatrix, m_destOBB, m_destPosition, false); This is MUCH better. No jitter, and the ball now "rests" at the floor, while still bouncing off the floor and walls. The ONLY thing left is that the ball is now virtually "stuck". He can move but at a much slower rate, likely because the else of my dot product test is only letting the ball move at a rate multiplied against the tRemaining... I think this is a better solution than I had previously, but still somehow not the right idea. BTW, I'm trying to journal my progress through this problem for anyone else with a similar situation - hopefully it will serve as some help, as many similar posts have for me over the years.

    Read the article

  • Dynamic character animation - Using the physics engine or not

    - by Lex Webb
    I'm planning on building a dynamic reactant animation engine for the characters in my 2D Game. I have already built templates for a skeleton based animation system using key frames and interpolation to specify a limbs position at any given moment in time. I am using Farseer physics (an extension of Box2D) in Monogame/XNA in C# My real question lies in how i go about tying this character animation into the physics engine. I have two options: Moving limbs using physics engine - applying a interpolated force to each limb (dynamic body) in order to attempt to get it to its position as donated by the skeleton animation. Moving limbs by simply changing the position of a fixed body - Updating the new position of each limb manually, attempting to take into account physics collisions. Then stepping the physics after the animation to allow for environment interaction. Each of these methods have their distinct advantages and disadvantages. Physics based movement Advantages: Possibly more natural/realistic movement Better interaction with game objects as force applying to objects colliding with characters would be calculated for me. No need to convert to dynamic bodies when reacting to projectiles/death/fighting. Disadvantages: Possible difficulty in calculating correct amount of force to move a limb a certain distance at a constant rate. Underlying character balance system would need to be created that would need to be robust enough to prevent characters falling over at the touch of a feather. Added code complexity and processing time for the above. Static Object movement Advantages: Easy to interpolate movement of limbs between game steps Moving limbs is as simple as applying a rotation to the skeleton bone. Greater control over limbs, wont need to worry about characters falling over as all animation would be pre-defined. Disadvantages: Possible unnatural movement (Depends entirely on my animation skills!) Bad physics collision reactions with physics engine (Dynamic bodies simply slide out of the way of static objects) Need to calculate collisions with physics objects and my limbs myself and apply directional forces to them. Hard to account for slopes/stairs/non standard planes when animating walking/running animations. Need to convert objects to dynamic when reacting to projectile/fighting/death physics objects. The Question! As you can see, i have thought about this extensively, i have also had Google into physics based animation and have found mostly dissertation papers! Which is filling me with sense that it may a lot more advanced than my mathematics skills. My question is mostly subjective based on my findings above/any experience you may have: Which of the above methods should i use when creating my game? I am willing to spend the time to get a physics solution working if you think it would be possible. In the end i want to provide the most satisfying experience for the gamer, as well as a robust and dynamic system i can use to animate pretty much anything i need.

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • Software for Managing Subscriptions to Website Content?

    - by an00b
    Can you recommend a package that allows me to manage subscriptions to certain content on my website (not necessarily displayable) based on payment levels? Ideally, the software would allow logging in using both site-specific registration and PayPal/Facebook/Twitter/MyOpenId, etc. Preferably, it would also be open source, LAMP-based. One idea that I have in mind is hacking a shopping cart software like Zen-Cart but this may be an overkill if a non-shopping lighter-weight package exists.

    Read the article

  • Oracle OpenWorld 2013 – Wrap up by Sven Bernhardt

    - by JuergenKress
    OOW 2013 is over and we’re heading home, so it is time to lean back and reflecting about the impressions we have from the conference. First of all: OOW was great! It was a pleasure to be a part of it. As already mentioned in our last blog article: It was the biggest OOW ever. Parallel to the conference the America’s Cup took place in San Francisco and the Oracle Team America won. Amazing job by the team and again congratulations from our side Back to the conference. The main topics for us are: Oracle SOA / BPM Suite 12c Adaptive Case management (ACM) Big Data Fast Data Cloud Mobile Below we will go a little more into detail, what are the key takeaways regarding the mentioned points: Oracle SOA / BPM Suite 12c During the five days at OOW, first details of the upcoming major release of Oracle SOA Suite 12c and Oracle BPM Suite 12c have been introduced. Some new key features are: Managed File Transfer (MFT) for transferring big files from a source to a target location Enhanced REST support by introducing a new REST binding Introduction of a generic cloud adapter, which can be used to connect to different cloud providers, like Salesforce Enhanced analytics with BAM, which has been totally reengineered (BAM Console now also runs in Firefox!) Introduction of templates (OSB pipelines, component templates, BPEL activities templates) EM as a single monitoring console OSB design-time integration into JDeveloper (Really great!) Enterprise modeling capabilities in BPM Composer These are only a few points from what is coming with 12c. We are really looking forward for the new realese to come out, because this seems to be really great stuff. The suite becomes more and more integrated. From 10g to 11g it was an evolution in terms of developing SOA-based applications. With 12c, Oracle continues it’s way – very impressive. Adaptive Case Management Another fantastic topic was Adaptive Case Management (ACM). The Oracle PMs did a great job especially at the demo grounds in showing the upcoming Case Management UI (will be available in 11g with the next BPM Suite MLR Patch), the roadmap and the differences between traditional business process modeling. They have been very busy during the conference because a lot of partners and customers have been interested Big Data Big Data is one of the current hype themes. Because of huge data amounts from different internal or external sources, the handling of these data becomes more and more challenging. Companies have a need for analyzing the data to optimize their business. The challenge is here: the amount of data is growing daily! To store and analyze the data efficiently, it is necessary to have a scalable and flexible infrastructure. Here it is important that hardware and software are engineered to work together. Therefore several new features of the Oracle Database 12c, like the new in-memory option, have been presented by Larry Ellison himself. From a hardware side new server machines like Fujitsu M10 or new processors, such as Oracle’s new M6-32 have been announced. The performance improvements, when using one of these hardware components in connection with the improved software solutions were really impressive. For more details about this, please take look at our previous blog post. Regarding Big Data, Oracle also introduced their Big Data architecture, which consists of: Oracle Big Data Appliance that is preconfigured with Hadoop Oracle Exdata which stores a huge amount of data efficently, to achieve optimal query performance Oracle Exalytics as a fast and scalable Business analytics system Analysis of the stored data can be performed using SQL, by streaming the data directly from Hadoop to an Oracle Database 12c. Alternatively the analysis can be directly implemented in Hadoop using “R”. In addition Oracle BI Tools can be used to analyze the data. Fast Data Fast Data is a complementary approach to Big Data. A huge amount of mostly unstructured data comes in via different channels with a high frequency. The analysis of these data streams is also important for companies, because the incoming data has to be analyzed regarding business-relevant patterns in real-time. Therefore these patterns must be identified efficiently and performant. To do so, in-memory grid solutions in combination with Oracle Coherence and Oracle Event Processing demonstrated very impressive how efficient real-time data processing can be. One example for Fast Data solutions that was shown during the OOW was the analysis of twitter streams regarding customer satisfaction. The feeds with negative words like “bad” or “worse” have been filtered and after a defined treshold has been reached in a certain timeframe, a business event was triggered. Cloud Another key trend in the IT market is of course Cloud Computing and what it means for companies and their businesses. Oracle announced their Cloud strategy and vision – companies can focus on their real business while all of the applications are available via Cloud. This also includes Oracle Database or Oracle Weblogic, so that companies can also build, deploy and run their own applications within the cloud. Three different approaches have been introduced: Infrastructure as a Service (IaaS) Platform as a Service (PaaS) Software as a Service (SaaS) Using the IaaS approach only the infrastructure components will be managed in the Cloud. Customers will be very flexible regarding memory, storage or number of CPUs because those parameters can be adjusted elastically. The PaaS approach means that besides the infrastructure also the platforms (such as databases or application servers) necessary for running applications will be provided within the Cloud. Here customers can also decide, if installation and management of these infrastructure components should be done by Oracle. The SaaS approach describes the most complete one, hence all applications a company uses are managed in the Cloud. Oracle is planning to provide all of their applications, like ERP systems or HR applications, as Cloud services. In conclusion this seems to be a very forward-thinking strategy, which opens up new possibilities for customers to manage their infrastructure and applications in a flexible, scalable and future-oriented manner. As you can see, our OOW days have been very very interresting. We collected many helpful informations for our projects. The new innovations presented at the confernce are great and being part of this was even greater! We are looking forward to next years’ conference! Links: http://www.oracle.com/openworld/index.html http://thecattlecrew.wordpress.com/2013/09/23/first-impressions-from-oracle-open-world-2013 SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Mix Forum Technorati Tags: cattleCrew,Sven Bernhard,OOW2013,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • Generating geometry when using VBO

    - by onedayitwillmake
    Currently I am working on a project in which I generate geometry based on the players movement. A glorified very long trail, composed of quads. I am doing this by storing a STD::Vector, and removing the oldest verticies once enough exist, and then calling glDrawArrays. I am interested in switching to a shader based model, usually examples I see the VBO is generated at start and then that's basically it. What is the best route to go about creating geometry in real time, using shader / VBO approach

    Read the article

  • Online Application Upgrade

    - by lsarecz
    Amikor HA (High Availability - Magas Rendelkezésre Állás) megoldásokról beszélünk, általában elsoként a klaszterek, redundáns megoldások jutnak eszünkbe. Pedig nem csak a hardver hibákra kell gondolni, hanem a tervezett leállásokkal is érdemes foglalkozni. Az egyik talán legkevésbé megoldott probléma az, ha egy alkalmazás verzió váltást kell végrehajtani úgy, hogy közben változik az adatstruktúra is. Ez nyilván azt eredményezi, hogy le kell állítani az adatbázist is, és az átszervezéseket, akár adat átalakításokkal együtt végre kell hajtani. De a legnagyobb probléma talán az, hogy amennyiben valami rosszul sül el, és vissza kell állni a kiinduló állapotra, akkor az adatbázis mentést is vissza kell tölteni, hiszen átmenetileg minden felhasználó aki épp használatba vette az új alkalmazás verziót már egy új adatstruktúrába kezdett dolgozni. Az Oracle Database Online Application Upgrade képessége, vagy pontosabb nevén az Edition Based Redefinition pontosan ezt a problémát célozza meg. Az Edition Based Redefinition 3 alap objektummal muködik, ezek: edition, editioning view és crossedition trigger. Az edition egy új nonschema objektum típus. 11gR2 verziótól minden adatbázis rendelkezik legalább egy edition-nel, melynek neve Ora$Base. Minden új edition egy már létezo gyermeke kell, hogy legyen. Amikor kapcsolódunk az adatbázishoz, meghatározható, hogy melyik edition-höz kapcsolódjunk. Kizárólag nézetek, szinonímák és PL/SQL ojektum típusoknak lehet több edíciója (ezek metadat típusú objektumok, nem tartalmaznak adatokat). Azok az objektumok, melyek több edícióval rendelkeznek egyedileg csak úgy azonosíthatók, ha az owner, name, namespace mellett az edition-t is megnevezzük. Azaz két vagy több példánya is létezhet egy adatbázison belül ugyanazzal az owner, name és namespace azonosítókkal rendelkezo objektumnak, amennyiben használjuk az edition-based redefinition-t. Egy új objektum típus, az editioning view is edicionálható. Mivel a fizikai tábla nem edicionálható (elkerülendo az adatok többszörös tárolását és teljesítmény gondokat), ezért az editioning view feladata egy adott tábla egyszeru leképezése egy nézet formájában, ami már több edition-ben is létezhet, és képes elfedni a tábla módosításait. Amennyiben a tábla módosítások olyan táblákat érintenek, amelyek tartalmát  az alkalmazás felhasználók módosítják, szükség van olyan triggerekre, amelyek az egyes editioning view-k között a módosításokat karbantartják. Ezek a crossedition triggerek. Természetesen ahhoz, hogy az online application upgrade muködjön, minden érintett tábla elé el kell készíteni az editioning nézetet és a megfelelo crossedition triggereket. Ezeket használva az alkalmazás két vagy több különbözo verzió képes ugyanazon adatbázison párhuzamosan futni, és ha megtörtént a verzióváltás, akkor még mindig egyszeru visszaállni a régi verzióra egészen addig, amíg a régi edition eldobásra nem kerül. További információk az Edition-Based Redefinition címu whitepaper-ben találhatók.

    Read the article

< Previous Page | 370 371 372 373 374 375 376 377 378 379 380 381  | Next Page >