Search Results

Search found 10711 results on 429 pages for 'blog spotlight'.

Page 397/429 | < Previous Page | 393 394 395 396 397 398 399 400 401 402 403 404  | Next Page >

  • Rebuilding CoasterBuzz, Part IV: Dependency injection, it's what's for breakfast

    - by Jeff
    (Repost from my personal blog.) This is another post in a series about rebuilding one of my Web sites, which has been around for 12 years. I hope to relaunch soon. More: Part I: Evolution, and death to WCF Part II: Hot data objects Part III: The architecture using the "Web stack of love" If anything generally good for the craft has come out of the rise of ASP.NET MVC, it's that people are more likely to use dependency injection, and loosely couple the pieces parts of their applications. A lot of the emphasis on coding this way has been to facilitate unit testing, and that's awesome. Unit testing makes me feel a lot less like a hack, and a lot more confident in what I'm doing. Dependency injection is pretty straight forward. It says, "Given an instance of this class, I need instances of other classes, defined not by their concrete implementations, but their interfaces." Probably the first place a developer exercises this in when having a class talk to some kind of data repository. For a very simple example, pretend the FooService has to get some Foo. It looks like this: public class FooService {    public FooService(IFooRepository fooRepo)    {       _fooRepo = fooRepo;    }    private readonly IFooRepository _fooRepo;    public Foo GetMeFoo()    {       return _fooRepo.FooFromDatabase();    } } When we need the FooService, we ask the dependency container to get it for us. It says, "You'll need an IFooRepository in that, so let me see what that's mapped to, and put it in there for you." Why is this good for you? It's good because your FooService doesn't know or care about how you get some foo. You can stub out what the methods and properties on a fake IFooRepository might return, and test just the FooService. I don't want to get too far into unit testing, but it's the most commonly cited reason to use DI containers in MVC. What I wanted to mention is how there's another benefit in a project like mine, where I have to glue together a bunch of stuff. For example, when I have someone sign up for a new account on CoasterBuzz, I'm actually using POP Forums' new account mailer, which composes a bunch of text that includes a link to verify your account. The thing is, I want to use custom text and some other logic that's specific to CoasterBuzz. To accomplish this, I make a new class that inherits from the forum's NewAccountMailer, and override some stuff. Easy enough. Then I use Ninject, the DI container I'm using, to unbind the forum's implementation, and substitute my own. Ninject uses something called a NinjectModule to bind interfaces to concrete implementations. The forum has its own module, and then the CoasterBuzz module is loaded second. The CB module has two lines of code to swap out the mailer implementation: Unbind<PopForums.Email.INewAccountMailer>(); Bind<PopForums.Email.INewAccountMailer>().To<CbNewAccountMailer>(); Piece of cake! Now, when code asks the DI container for an INewAccountMailer, it gets my custom implementation instead. This is a lot easier to deal with than some of the alternatives. I could do some copy-paste, but then I'm not using well-tested code from the forum. I could write stuff from scratch, but then I'm throwing away a bunch of logic I've already written (in this case, stuff around e-mail, e-mail settings, mail delivery failures). There are other places where the DI container comes in handy. For example, CoasterBuzz does a number of custom things with user profiles, and special content for paid members. It uses the forum as the core piece to managing users, so I can ask the container to get me instances of classes that do user lookups, for example, and have zero care about how the forum handles database calls, configuration, etc. What a great world to live in, compared to ten years ago. Sure, the primary interest in DI is around the "separation of concerns" and facilitating unit testing, but as your library grows and you use more open source, it starts to be the glue that pulls everything together.

    Read the article

  • Rebuilding CoasterBuzz, Part II: Hot data objects

    - by Jeff
    This is the second post, originally from my personal blog, in a series about rebuilding one of my Web sites, which has been around for 12 years. More: Part I: Evolution, and death to WCF After the rush to get moving on stuff, I temporarily lost interest. I went almost two weeks without touching the project, in part because the next thing on my backlog was doing up a bunch of administrative pages. So boring. Unfortunately, because most of the site's content is user-generated, you need some facilities for editing data. CoasterBuzz has a database full of amusement parks and roller coasters. The entities enjoy the relationships that you would expect, though they're further defined by "instances" of a coaster, to define one that has moved between parks as one, with different names and operational dates. And of course, there are pictures and news items, too. It's not horribly complex, except when you have to account for a name change and display just the newest name. In all previous versions, data access was straight SQL. As so much of the old code was rooted in 2003, with some changes in 2008, there wasn't much in the way of ORM frameworks going on then. Let me rephrase that, I mostly wasn't interested in ORM's. Since that time, I used a little LINQ to SQL in some projects, and a whole bunch of nHibernate while at Microsoft. Through all of that experience, I have to admit that these frameworks are often a bigger pain in the ass than not. They're great for basic crud operations, but when you start having all kinds of exotic relationships, they get difficult, and generate all kinds of weird SQL under the covers. The black box can quickly turn into a black hole. Sometimes you end up having to build all kinds of new expertise to do things "right" with a framework. Still, despite my reservations, I used the newer version of Entity Framework, with the "code first" modeling, in a science project and I really liked it. Since it's just a right-click away with NuGet, I figured I'd give it a shot here. My initial effort was spent defining the context class, which requires a bit of work because I deviate quite a bit from the conventions that EF uses, starting with table names. Then throw some partial querying of certain tables (where you'll find image data), and you're splitting tables across several objects (navigation properties). I won't go into the details, because these are all things that are well documented around the Internet, but there was a minor learning curve there. The basics of reading data using EF are fantastic. For example, a roller coaster object has a park associated with it, as well as a number of instances (if it was ever relocated), and there also might be a big banner image for it. This is stupid easy to use because it takes one line of code in your repository class, and by the time you pass it to the view, you have a rich object graph that has everything you need to display stuff. Likewise, editing simple data is also, well, simple. For this goodness, thank the ASP.NET MVC framework. The UpdateModel() method on the controllers is very elegant. Remember the old days of assigning all kinds of properties to objects in your Webforms code-behind? What a time consuming mess that used to be. Even if you're not using an ORM tool, having hydrated objects come off the wire is such a time saver. Not everything is easy, though. When you have to persist a complex graph of objects, particularly if they were composed in the user interface with all kinds of AJAX elements and list boxes, it's not just a simple matter of submitting the form. There were a few instances where I ended up going back to "old-fashioned" SQL just in the interest of time. It's not that I couldn't do what I needed with EF, it's just that the efficiency, both my own and that of the generated SQL, wasn't good. Since EF context objects expose a database connection object, you can use that to do the old school ADO.NET stuff you've done for a decade. Using various extension methods from POP Forums' data project, it was a breeze. You just have to stick to your decision, in this case. When you start messing with SQL directly, you can't go back in the same code to messing with entities because EF doesn't know what you're changing. Not really a big deal. There are a number of take-aways from using EF. The first is that you write a lot less code, which has always been a desired outcome of ORM's. The other lesson, and I particularly learned this the hard way working on the MSDN forums back in the day, is that trying to retrofit an ORM framework into an existing schema isn't fun at all. The CoasterBuzz database isn't bad, but there are design decisions I'd make differently if I were starting from scratch. Now that I have some of this stuff done, I feel like I can start to move on to the more interesting things on the backlog. There's a lot to do, but at least it's fun stuff, and not more forms that will be used infrequently.

    Read the article

  • Take Two: Comparing JVMs on ARM/Linux

    - by user12608080
    Although the intent of the previous article, entitled Comparing JVMs on ARM/Linux, was to introduce and highlight the availability of the HotSpot server compiler (referred to as c2) for Java SE-Embedded ARM v7,  it seems, based on feedback, that everyone was more interested in the OpenJDK comparisons to Java SE-E.  In fact there were two main concerns: The fact that the previous article compared Java SE-E 7 against OpenJDK 6 might be construed as an unlevel playing field because version 7 is newer and therefore potentially more optimized. That the generic compiler settings chosen to build the OpenJDK implementations did not put those versions in a particularly favorable light. With those considerations in mind, we'll institute the following changes to this version of the benchmarking: In order to help alleviate an additional concern that there is some sort of benchmark bias, we'll use a different suite, called DaCapo.  Funded and supported by many prestigious organizations, DaCapo's aim is to benchmark real world applications.  Further information about DaCapo can be found at http://dacapobench.org. At the suggestion of Xerxes Ranby, who has been a great help through this entire exercise, a newer Linux distribution will be used to assure that the OpenJDK implementations were built with more optimal compiler settings.  The Linux distribution in this instance is Ubuntu 11.10 Oneiric Ocelot. Having experienced difficulties getting Ubuntu 11.10 to run on the original D2Plug ARMv7 platform, for these benchmarks, we'll switch to an embedded system that has a supported Ubuntu 11.10 release.  That platform is the Freescale i.MX53 Quick Start Board.  It has an ARMv7 Coretex-A8 processor running at 1GHz with 1GB RAM. We'll limit comparisons to 4 JVM implementations: Java SE-E 7 Update 2 c1 compiler (default) Java SE-E 6 Update 30 (c1 compiler is the only option) OpenJDK 6 IcedTea6 1.11pre 6b23~pre11-0ubuntu1.11.10.2 CACAO build 1.1.0pre2 OpenJDK 6 IcedTea6 1.11pre 6b23~pre11-0ubuntu1.11.10.2 JamVM build-1.6.0-devel Certain OpenJDK implementations were eliminated from this round of testing for the simple reason that their performance was not competitive.  The Java SE 7u2 c2 compiler was also removed because although quite respectable, it did not perform as well as the c1 compilers.  Recall that c2 works optimally in long-lived situations.  Many of these benchmarks completed in a relatively short period of time.  To get a feel for where c2 shines, take a look at the first chart in this blog. The first chart that follows includes performance of all benchmark runs on all platforms.  Later on we'll look more at individual tests.  In all runs, smaller means faster.  The DaCapo aficionado may notice that only 10 of the 14 DaCapo tests for this version were executed.  The reason for this is that these 10 tests represent the only ones successfully completed by all 4 JVMs.  Only the Java SE-E 6u30 could successfully run all of the tests.  Both OpenJDK instances not only failed to complete certain tests, but also experienced VM aborts too. One of the first observations that can be made between Java SE-E 6 and 7 is that, for all intents and purposes, they are on par with regards to performance.  While it is a fact that successive Java SE releases add additional optimizations, it is also true that Java SE 7 introduces additional complexity to the Java platform thus balancing out any potential performance gains at this point.  We are still early into Java SE 7.  We would expect further performance enhancements for Java SE-E 7 in future updates. In comparing Java SE-E to OpenJDK performance, among both OpenJDK VMs, Cacao results are respectable in 4 of the 10 tests.  The charts that follow show the individual results of those four tests.  Both Java SE-E versions do win every test and outperform Cacao in the range of 9% to 55%. For the remaining 6 tests, Java SE-E significantly outperforms Cacao in the range of 114% to 311% So it looks like OpenJDK results are mixed for this round of benchmarks.  In some cases, performance looks to have improved.  But in a majority of instances, OpenJDK still lags behind Java SE-Embedded considerably. Time to put on my asbestos suit.  Let the flames begin...

    Read the article

  • Data Binding to Attached Properties

    - by Chris Gardner
    Originally posted on: http://geekswithblogs.net/freestylecoding/archive/2013/06/14/data-binding-to-attached-properties.aspx When I was working on my C#/XAML game framework, I discovered I wanted to try to data bind my sprites to background objects. That way, I could update my objects and the draw functionality would take care of the work for me. After a little experimenting and web searching, it appeared this concept was an impossible dream. Of course, when has that ever stopped me? In my typical way, I started to massively dive down the rabbit hole. I created a sprite on a canvas, and I bound it to a background object. <Canvas Name="GameField" Background="Black"> <Image Name="PlayerStrite" Source="Assets/Ship.png" Width="50" Height="50" Canvas.Left="{Binding X}" Canvas.Top="{Binding Y}"/> </Canvas> Now, we wire the UI item to the background item. public MainPage() { this.InitializeComponent(); this.Loaded += StartGame; }   void StartGame( object sender, RoutedEventArgs e ) { BindingPlayer _Player = new BindingPlayer(); _Player.X = Window.Current.Bounds.Height - PlayerSprite.Height; _Player.X = ( Window.Current.Bounds.Width - PlayerSprite.Width ) / 2.0; } Of course, now we need to actually have our background object. public class BindingPlayer : INotifyPropertyChanged { private double m_X; public double X { get { return m_X; } set { m_X = value; NotifyPropertyChanged(); } }   private double m_Y; public double Y { get { return m_Y; } set { m_Y = value; NotifyPropertyChanged(); } }   public event PropertyChangedEventHandler PropertyChanged; protected void NotifyPropertyChanged( [CallerMemberName] string p_PropertyName = null ) { if( PropertyChanged != null ) PropertyChanged( this, new PropertyChangedEventArgs( p_PropertyName ) ); } } I fired this baby up, and my sprite was correctly positioned on the screen. Maybe the sky wasn't falling after all. Wouldn't it be great if that was the case? I created some code to allow me to move the sprite, but nothing happened. This seems odd. So, I start debugging the application and stepping through code. Everything appears to be working. Time to dig a little deeper. After much profanity was spewed, I stumbled upon a breakthrough. The code only looked like it was working. What was really happening is that there was an exception being thrown in the background thread that I never saw. Apparently, the key call was the one to PropertyChanged. If PropertyChanged is not called on the UI thread, the UI thread ignores the call. Actually, it throws an exception and the background thread silently crashes. Of course, you'll never see this unless you're looking REALLY carefully. This seemed to be a simple problem. I just need to marshal this to the UI thread. Unfortunately, this object has no knowledge of this mythical UI Thread in which we speak. So, I had to pull the UI Thread out of thin air. Let's change our PropertyChanged call to look this. public event PropertyChangedEventHandler PropertyChanged; protected void NotifyPropertyChanged( [CallerMemberName] string p_PropertyName = null ) { if( PropertyChanged != null ) Windows.ApplicationModel.Core.CoreApplication.MainView.CoreWindow.Dispatcher.RunAsync( Windows.UI.Core.CoreDispatcherPriority.Normal, new Windows.UI.Core.DispatchedHandler( () => { PropertyChanged( this, new PropertyChangedEventArgs( p_PropertyName ) ); } ) ); } Now, we raised our notification on the UI thread. Everything is fine, people are happy, and the world moves on. You may have noticed that I didn't await my call to the dispatcher. This was intentional. If I am trying to update a slew of sprites, I don't want thread being hung while I wait my turn. Thus, I send the message and move on. It is worth nothing that this is NOT the most efficient way to do this for game programming. We'll get to that in another blog post. However, it is perfectly acceptable for a business app that is running a background task that would like to notify the UI thread of progress on a periodic basis. It is worth noting that this code was written for a Windows Store App. You can do the same thing with WP8 and WPF. The call to the marshaler changes, but it is the same idea.

    Read the article

  • Application Composer Series: Where and When to use Groovy

    - by Richard Bingham
    This brief post is really intended as more of a reference than an article. The table below highlights two things, firstly where you can add you own custom logic via groovy code (end column), and secondly (middle column) when you might use each particular feature. Obviously this applies only where Application Composer exists, namely Fusion CRM and Oracle Sales Cloud, and is based on current (release 8) functionality. Feature Most Common Use Case Groovy Field Triggers React to run-time data changes. Only fired when the field is changed and upon submit. Y Object Triggers To extend the standard processing logic for an object, based on record creation, updates and deletes. There is a split between these firing events, with some related to UI/ADF actions and others originating in the database. UI Trigger Points: After Create - fires when a new object record is created. Commonly used to set default values for fields. Before Modify - Fires when the end-user tries to modify a field value. Could be used for generic warnings or extra security logic. Before Invalidate - Fires on the parent object when one of its child object records is created, updated, or deleted. For building in relationship logic. Before Remove - Fires when an attempt is made to delete an object record. Can be used to create conditions that prevent deletes. Database Trigger Points: Before Insert in Database - Fires before a new object is inserted into the database. Can be used to ensure a dependent record exists or check for duplicates. After Insert in Database - Fires after a new object is inserted into the database. Could be used to create a complementary record. Before Update in Database -Fires before an existing object is modified in the database. Could be used to check dependent record values. After Update in Database - Fires after an existing object is modified in the database. Could be used to update a complementary record. Before Delete in Database - Fires before an existing object is deleted from the database. Could be used to check dependent record values. After Delete in Database - Fires after an existing object is deleted from the database. Could be used to remove dependent records. After Commit in Database - Fires after the change pending for the current object (insert, update, delete) is made permanent in the current transaction. Could be used when committed data that has passed all validation is required. After Changes Posted to Database - Fires after all changes have been posted to the database, but before they are permanently committed. Could be used to make additional changes that will be saved as part of the current transaction. Y Field Validation Displays a user entered error message based groovy logic validating the field value. The message is shown only when the validation logic returns false, and the logic is triggered only when tabbing out of the field on the user interface. Y Object Validation Commonly used where validation is needed across multiple related fields on the object. Triggered on the submit UI action. Y Object Workflows All Object Workflows are fired upon either record creation or update, along with the option of adding a custom groovy firing condition. Y Field Updates - change another field when a specified one changes. Intended as an easy way to set different run-time values (e.g. pick values for LOV's) plus the value field permits groovy logic entry. Y E-Mail Notification - sends an email notification to specified users/roles. Templates support using run-time value tokens and rich text. N Task Creation - for adding standard tasks for use in the worklist functionality. N Outbound Message - will create and send an XML payload of the related object SDO to a specified endpoint. N Business Process Flow - intended for approval using the seeded process, however can also trigger custom BPMN flows. N Global Functions Utility functions that can be called from any groovy code in Application Composer (across applications). Y Object Functions Utility functions that are local to the parent object. Usually triggered from within 'Buttons and Actions' definitions in Application Composer, although can be called from other code for that object (e.g. from a trigger). Y Add Custom Fields When adding custom fields there are a few places you can include groovy logic. Y Default Value - to add logic within setting the default value when new records are entered. Y Conditionally Updateable - to add logic to set the field to read-only or not. Y Conditionally Required - to add logic to set the field to required or not. Y Formula Field - Used to provide a new aggregate field that is entirely based on groovy logic and other field values. Y Simplified UI Layouts - Advanced Expressions Used for creating dynamic layouts for simplified UI pages where fields and regions show/hide based on run-time context values and logic. Also includes support for the depends-on feature as a trigger. Y Related References This Blog: Application Composer Series Extending Sales Guide: Using Groovy Scripts Groovy Scripting Reference Guide

    Read the article

  • Performance triage

    - by Dave
    Folks often ask me how to approach a suspected performance issue. My personal strategy is informed by the fact that I work on concurrency issues. (When you have a hammer everything looks like a nail, but I'll try to keep this general). A good starting point is to ask yourself if the observed performance matches your expectations. Expectations might be derived from known system performance limits, prototypes, and other software or environments that are comparable to your particular system-under-test. Some simple comparisons and microbenchmarks can be useful at this stage. It's also useful to write some very simple programs to validate some of the reported or expected system limits. Can that disk controller really tolerate and sustain 500 reads per second? To reduce the number of confounding factors it's better to try to answer that question with a very simple targeted program. And finally, nothing beats having familiarity with the technologies that underlying your particular layer. On the topic of confounding factors, as our technology stacks become deeper and less transparent, we often find our own technology working against us in some unexpected way to choke performance rather than simply running into some fundamental system limit. A good example is the warm-up time needed by just-in-time compilers in Java Virtual Machines. I won't delve too far into that particular hole except to say that it's rare to find good benchmarks and methodology for java code. Another example is power management on x86. Power management is great, but it can take a while for the CPUs to throttle up from low(er) frequencies to full throttle. And while I love "turbo" mode, it makes benchmarking applications with multiple threads a chore as you have to remember to turn it off and then back on otherwise short single-threaded runs may look abnormally fast compared to runs with higher thread counts. In general for performance characterization I disable turbo mode and fix the power governor at "performance" state. Another source of complexity is the scheduler, which I've discussed in prior blog entries. Lets say I have a running application and I want to better understand its behavior and performance. We'll presume it's warmed up, is under load, and is an execution mode representative of what we think the norm would be. It should be in steady-state, if a steady-state mode even exists. On Solaris the very first thing I'll do is take a set of "pstack" samples. Pstack briefly stops the process and walks each of the stacks, reporting symbolic information (if available) for each frame. For Java, pstack has been augmented to understand java frames, and even report inlining. A few pstack samples can provide powerful insight into what's actually going on inside the program. You'll be able to see calling patterns, which threads are blocked on what system calls or synchronization constructs, memory allocation, etc. If your code is CPU-bound then you'll get a good sense where the cycles are being spent. (I should caution that normal C/C++ inlining can diffuse an otherwise "hot" method into other methods. This is a rare instance where pstack sampling might not immediately point to the key problem). At this point you'll need to reconcile what you're seeing with pstack and your mental model of what you think the program should be doing. They're often rather different. And generally if there's a key performance issue, you'll spot it with a moderate number of samples. I'll also use OS-level observability tools to lock for the existence of bottlenecks where threads contend for locks; other situations where threads are blocked; and the distribution of threads over the system. On Solaris some good tools are mpstat and too a lesser degree, vmstat. Try running "mpstat -a 5" in one window while the application program runs concurrently. One key measure is the voluntary context switch rate "vctx" or "csw" which reflects threads descheduling themselves. It's also good to look at the user; system; and idle CPU percentages. This can give a broad but useful understanding if your threads are mostly parked or mostly running. For instance if your program makes heavy use of malloc/free, then it might be the case you're contending on the central malloc lock in the default allocator. In that case you'd see malloc calling lock in the stack traces, observe a high csw/vctx rate as threads block for the malloc lock, and your "usr" time would be less than expected. Solaris dtrace is a wonderful and invaluable performance tool as well, but in a sense you have to frame and articulate a meaningful and specific question to get a useful answer, so I tend not to use it for first-order screening of problems. It's also most effective for OS and software-level performance issues as opposed to HW-level issues. For that reason I recommend mpstat & pstack as my the 1st step in performance triage. If some other OS-level issue is evident then it's good to switch to dtrace to drill more deeply into the problem. Only after I've ruled out OS-level issues do I switch to using hardware performance counters to look for architectural impediments.

    Read the article

  • JPRT: A Build & Test System

    - by kto
    DRAFT A while back I did a little blogging on a system called JPRT, the hardware used and a summary on my java.net weblog. This is an update on the JPRT system. JPRT ("JDK Putback Reliablity Testing", but ignore what the letters stand for, I change what they mean every day, just to annoy people :\^) is a build and test system for the JDK, or any source base that has been configured for JPRT. As I mentioned in the above blog, JPRT is a major modification to a system called PRT that the HotSpot VM development team has been using for many years, very successfully I might add. Keeping the source base always buildable and reliable is the first step in the 12 steps of dealing with your product quality... or was the 12 steps from Alcoholics Anonymous... oh well, anyway, it's the first of many steps. ;\^) Internally when we make changes to any part of the JDK, there are certain procedures we are required to perform prior to any putback or commit of the changes. The procedures often vary from team to team, depending on many factors, such as whether native code is changed, or if the change could impact other areas of the JDK. But a common requirement is a verification that the source base with the changes (and merged with the very latest source base) will build on many of not all 8 platforms, and a full 'from scratch' build, not an incremental build, which can hide full build problems. The testing needed varies, depending on what has been changed. Anyone that was worked on a project where multiple engineers or groups are submitting changes to a shared source base knows how disruptive a 'bad commit' can be on everyone. How many times have you heard: "So And So made a bunch of changes and now I can't build!". But multiply the number of platforms by 8, and make all the platforms old and antiquated OS versions with bizarre system setup requirements and you have a pretty complicated situation (see http://download.java.net/jdk6/docs/build/README-builds.html). We don't tolerate bad commits, but our enforcement is somewhat lacking, usually it's an 'after the fact' correction. Luckily the Source Code Management system we use (another antique called TeamWare) allows for a tree of repositories and 'bad commits' are usually isolated to a small team. Punishment to date has been pretty drastic, the Queen of Hearts in 'Alice in Wonderland' said 'Off With Their Heads', well trust me, you don't want to be the engineer doing a 'bad commit' to the JDK. With JPRT, hopefully this will become a thing of the past, not that we have had many 'bad commits' to the master source base, in general the teams doing the integrations know how important their jobs are and they rarely make 'bad commits'. So for these JDK integrators, maybe what JPRT does is keep them from chewing their finger nails at night. ;\^) Over the years each of the teams have accumulated sets of machines they use for building, or they use some of the shared machines available to all of us. But the hunt for build machines is just part of the job, or has been. And although the issues with consistency of the build machines hasn't been a horrible problem, often you never know if the Solaris build machine you are using has all the right patches, or if the Linux machine has the right service pack, or if the Windows machine has it's latest updates. Hopefully the JPRT system can solve this problem. When we ship the binary JDK bits, it is SO very important that the build machines are correct, and we know how difficult it is to get them setup. Sure, if you need to debug a JDK problem that only shows up on Windows XP or Solaris 9, you'll still need to hunt down a machine, but not as a regular everyday occurance. I'm a big fan of a regular nightly build and test system, constantly verifying that a source base builds and tests out. There are many examples of automated build/tests, some that trigger on any change to the source base, some that just run every night. Some provide a protection gateway to the 'golden' source base which only gets changes that the nightly process has verified are good. The JPRT (and PRT) system is meant to guard the source base before anything is sent to it, guarding all source bases from the evil developer, well maybe 'evil' isn't the right word, I haven't met many 'evil' developers, more like 'error prone' developers. ;\^) Humm, come to think about it, I may be one from time to time. :\^{ But the point is that by spreading the build up over a set of machines, and getting the turnaround down to under an hour, it becomes realistic to completely build on all platforms and test it, on every putback. We have the technology, we can build and rebuild and rebuild, and it will be better than it was before, ha ha... Anybody remember the Six Million Dollar Man? Man, I gotta get out more often.. Anyway, now the nightly build and test can become a 'fetch the latest JPRT build bits' and start extensive testing (the testing not done by JPRT, or the platforms not tested by JPRT). Is it Open Source? No, not yet. Would you like to be? Let me know. Or is it more important that you have the ability to use such a system for JDK changes? So enough blabbering on about this JPRT system, tell me what you think. And let me know if you want to hear more about it or not. Stay tuned for the next episode, same Bloody Bat time, same Bloody Bat channel. ;\^) -kto

    Read the article

  • Cloud to On-Premise Connectivity Patterns

    - by Rajesh Raheja
    Do you have a requirement to convert an Opportunity in Salesforce.com to an Order/Quote in Oracle E-Business Suite? Or maybe you want the creation of an Oracle RightNow Incident to trigger an on-premise Oracle E-Business Suite Service Request creation for RMA and Field Scheduling? If so, read on. In a previous blog post, I discussed integrating TO cloud applications, however the use cases above are the reverse i.e. receiving data FROM cloud applications (SaaS) TO on-premise applications/databases that sit behind a firewall. Oracle SOA Suite is assumed to be on-premise with with Oracle Service Bus as the mediation and virtualization layer. The main considerations for the patterns are are security i.e. shielding enterprise resources; and scalability i.e. minimizing firewall latency. Let me use an analogy to help visualize the patterns: the on-premise system is your home - with your most valuable possessions - and the SaaS app is your favorite on-line store which regularly ships (inbound calls) various types of parcels/items (message types/service operations). You need the items at home (on-premise) but want to safe guard against misguided elements of society (internet threats) who may masquerade as postal workers and vandalize property (denial of service?). Let's look at the patterns. Pattern: Pull from Cloud The on-premise system polls from the SaaS apps and picks up the message instead of having it delivered. This may be done using Oracle RightNow Object Query Language or SOAP APIs. This is particularly suited for certain integration approaches wherein messages are trickling in, can be centralized and batched e.g. retrieving event notifications on an hourly schedule from the Oracle Messaging Service. To compare this pattern with the home analogy, you are avoiding any deliveries to your home and instead go to the post office/UPS/Fedex store to pick up your parcel. Every time. Pros: On-premise assets not exposed to the Internet, firewall issues avoided by only initiating outbound connections Cons: Polling mechanisms may affect performance, may not satisfy near real-time requirements Pattern: Open Firewall Ports The on-premise system exposes the web services that needs to be invoked by the cloud application. This requires opening up firewall ports, routing calls to the appropriate internal services behind the firewall. Fusion Applications uses this pattern, and auto-provisions the services on the various virtual hosts to secure the topology. This works well for service integration, but may not suffice for large volume data integration. Using the home analogy, you have now decided to receive parcels instead of going to the post office every time. A door mail slot cut out allows the postman can drop small parcels, but there is still concern about cutting new holes for larger packages. Pros: optimal pattern for near real-time needs, simpler administration once the service is provisioned Cons: Needs firewall ports to be opened up for new services, may not suffice for batch integration requiring direct database access Pattern: Virtual Private Networking The on-premise network is "extended" to the cloud (or an intermediary on-demand / managed service offering) using Virtual Private Networking (VPN) so that messages are delivered to the on-premise system in a trusted channel. Using the home analogy, you entrust a set of keys with a neighbor or property manager who receives the packages, and then drops it inside your home. Pros: Individual firewall ports don't need to be opened, more suited for high scalability needs, can support large volume data integration, easier management of one connection vs a multitude of open ports Cons: VPN setup, specific hardware support, requires cloud provider to support virtual private computing Pattern: Reverse Proxy / API Gateway The on-premise system uses a reverse proxy "API gateway" software on the DMZ to receive messages. The reverse proxy can be implemented using various mechanisms e.g. Oracle API Gateway provides firewall and proxy services along with comprehensive security, auditing, throttling benefits. If a firewall already exists, then Oracle Service Bus or Oracle HTTP Server virtual hosts can provide reverse proxy implementations on the DMZ. Custom built implementations are also possible if specific functionality (such as message store-n-forward) is needed. In the home analogy, this pattern sits in between cutting mail slots and handing over keys. Instead, you install (and maintain) a mailbox in your home premises outside your door. The post office delivers the parcels in your mailbox, from where you can securely retrieve it. Pros: Very secure, very flexible Cons: Introduces a new software component, needs DMZ deployment and management Pattern: On-Premise Agent (Tunneling) A light weight "agent" software sits behind the firewall and initiates the communication with the cloud, thereby avoiding firewall issues. It then maintains a bi-directional connection either with pull or push based approaches using (or abusing, depending on your viewpoint) the HTTP protocol. Programming protocols such as Comet, WebSockets, HTTP CONNECT, HTTP SSH Tunneling etc. are possible implementation options. In the home analogy, a resident receives the parcel from the postal worker by opening the door, however you still take precautions with chain locks and package inspections. Pros: Light weight software, IT doesn't need to setup anything Cons: May bypass critical firewall checks e.g. virus scans, separate software download, proliferation of non-IT managed software Conclusion The patterns above are some of the most commonly encountered ones for cloud to on-premise integration. Selecting the right pattern for your project involves looking at your scalability needs, security restrictions, sync vs asynchronous implementation, near real-time vs batch expectations, cloud provider capabilities, budget, and more. In some cases, the basic "Pull from Cloud" may be acceptable, whereas in others, an extensive VPN topology may be well justified. For more details on the Oracle cloud integration strategy, download this white paper.

    Read the article

  • Cloud to On-Premise Connectivity Patterns

    - by Rajesh Raheja
    Do you have a requirement to convert an Opportunity in Salesforce.com to an Order/Quote in Oracle E-Business Suite? Or maybe you want the creation of an Oracle RightNow Incident to trigger an on-premise Oracle E-Business Suite Service Request creation for RMA and Field Scheduling? If so, read on. In a previous blog post, I discussed integrating TO cloud applications, however the use cases above are the reverse i.e. receiving data FROM cloud applications (SaaS) TO on-premise applications/databases that sit behind a firewall. Oracle SOA Suite is assumed to be on-premise with with Oracle Service Bus as the mediation and virtualization layer. The main considerations for the patterns are are security i.e. shielding enterprise resources; and scalability i.e. minimizing firewall latency. Let me use an analogy to help visualize the patterns: the on-premise system is your home - with your most valuable possessions - and the SaaS app is your favorite on-line store which regularly ships (inbound calls) various types of parcels/items (message types/service operations). You need the items at home (on-premise) but want to safe guard against misguided elements of society (internet threats) who may masquerade as postal workers and vandalize property (denial of service?). Let's look at the patterns. Pattern: Pull from Cloud The on-premise system polls from the SaaS apps and picks up the message instead of having it delivered. This may be done using Oracle RightNow Object Query Language or SOAP APIs. This is particularly suited for certain integration approaches wherein messages are trickling in, can be centralized and batched e.g. retrieving event notifications on an hourly schedule from the Oracle Messaging Service. To compare this pattern with the home analogy, you are avoiding any deliveries to your home and instead go to the post office/UPS/Fedex store to pick up your parcel. Every time. Pros: On-premise assets not exposed to the Internet, firewall issues avoided by only initiating outbound connections Cons: Polling mechanisms may affect performance, may not satisfy near real-time requirements Pattern: Open Firewall Ports The on-premise system exposes the web services that needs to be invoked by the cloud application. This requires opening up firewall ports, routing calls to the appropriate internal services behind the firewall. Fusion Applications uses this pattern, and auto-provisions the services on the various virtual hosts to secure the topology. This works well for service integration, but may not suffice for large volume data integration. Using the home analogy, you have now decided to receive parcels instead of going to the post office every time. A door mail slot cut out allows the postman can drop small parcels, but there is still concern about cutting new holes for larger packages. Pros: optimal pattern for near real-time needs, simpler administration once the service is provisioned Cons: Needs firewall ports to be opened up for new services, may not suffice for batch integration requiring direct database access Pattern: Virtual Private Networking The on-premise network is "extended" to the cloud (or an intermediary on-demand / managed service offering) using Virtual Private Networking (VPN) so that messages are delivered to the on-premise system in a trusted channel. Using the home analogy, you entrust a set of keys with a neighbor or property manager who receives the packages, and then drops it inside your home. Pros: Individual firewall ports don't need to be opened, more suited for high scalability needs, can support large volume data integration, easier management of one connection vs a multitude of open ports Cons: VPN setup, specific hardware support, requires cloud provider to support virtual private computing Pattern: Reverse Proxy / API Gateway The on-premise system uses a reverse proxy "API gateway" software on the DMZ to receive messages. The reverse proxy can be implemented using various mechanisms e.g. Oracle API Gateway provides firewall and proxy services along with comprehensive security, auditing, throttling benefits. If a firewall already exists, then Oracle Service Bus or Oracle HTTP Server virtual hosts can provide reverse proxy implementations on the DMZ. Custom built implementations are also possible if specific functionality (such as message store-n-forward) is needed. In the home analogy, this pattern sits in between cutting mail slots and handing over keys. Instead, you install (and maintain) a mailbox in your home premises outside your door. The post office delivers the parcels in your mailbox, from where you can securely retrieve it. Pros: Very secure, very flexible Cons: Introduces a new software component, needs DMZ deployment and management Pattern: On-Premise Agent (Tunneling) A light weight "agent" software sits behind the firewall and initiates the communication with the cloud, thereby avoiding firewall issues. It then maintains a bi-directional connection either with pull or push based approaches using (or abusing, depending on your viewpoint) the HTTP protocol. Programming protocols such as Comet, WebSockets, HTTP CONNECT, HTTP SSH Tunneling etc. are possible implementation options. In the home analogy, a resident receives the parcel from the postal worker by opening the door, however you still take precautions with chain locks and package inspections. Pros: Light weight software, IT doesn't need to setup anything Cons: May bypass critical firewall checks e.g. virus scans, separate software download, proliferation of non-IT managed software Conclusion The patterns above are some of the most commonly encountered ones for cloud to on-premise integration. Selecting the right pattern for your project involves looking at your scalability needs, security restrictions, sync vs asynchronous implementation, near real-time vs batch expectations, cloud provider capabilities, budget, and more. In some cases, the basic "Pull from Cloud" may be acceptable, whereas in others, an extensive VPN topology may be well justified. For more details on the Oracle cloud integration strategy, download this white paper.

    Read the article

  • Understanding the 'High Performance' meaning in Extreme Transaction Processing

    - by kyap
    Despite my previous blogs entries on SOA/BPM and Identity Management, the domain where I'm the most passionated is definitely the Extreme Transaction Processing, commonly called XTP.I came across XTP back to 2007 while I was still FMW Product Manager in EMEA. At that time Oracle acquired a company called Tangosol, which owned an unique product called Coherence that we renamed to Oracle Coherence. Beside this innovative renaming of the product, to be honest, I didn't know much about it, except being a "distributed in-memory cache for Extreme Transaction Processing"... not very helpful still.In general when people doesn't fully understand a technology or a concept, they tend to find some shortcuts, either correct or not, to justify their lack-of understanding... and of course I was part of this category of individuals. And the shortcut was "Oracle Coherence Cache helps to improve Performance". Excellent marketing slogan... but not very meaningful still. By chance I was able to get away quickly from that group in July 2007* at Thames Valley Park (UK), after I attended one of the most interesting workshops, in my 10 years career in Oracle, delivered by Brian Oliver. The biggest mistake I made was to assume that performance improvement with Coherence was related to the response time. Which can be considered as legitimus at that time, because after-all caches help to reduce latency on cached data access, hence reduce the response-time. But like all caches, you need to define caching and expiration policies, thinking about the cache-missed strategy, and most of the time you have to re-write partially your application in order to work with the cache. At a result, the expected benefit vanishes... so, not very useful then?The key mistake I made was my perception or obsession on how performance improvement should be driven, but I strongly believe this is still a common problem to most of the developers. In fact we all know the that the performance of a system is generally presented by the Capacity (or Throughput), with the 2 important dimensions Speed (response-time) and Volume (load) :Capacity (TPS) = Volume (T) / Speed (S)To increase the Capacity, we can either reduce the Speed(in terms of response-time), or to increase the Volume. However we tend to only focus on reducing the Speed dimension, perhaps it is more concrete and tangible to measure, and nicer to present to our management because there's a direct impact onto the end-users experience. On the other hand, we assume the Volume can be addressed by the underlying hardware or software stack, so if we need more capacity (scale out), we just add more hardware or software. Unfortunately, the reality proves that IT is never as ideal as we assume...The challenge with Speed improvement approach is that it is generally difficult and costly to make things already fast... faster. And by adding Coherence will not necessarily help either. Even though we manage to do so, the Capacity can not increase forever because... the Speed can be influenced by the Volume. For all system, we always have a performance illustration as follow: In all traditional system, the increase of Volume (Transaction) will also increase the Speed (Response-Time) as some point. The reason is simple: most of the time the Application logics were not designed to scale. As an example, if you have a while-loop in your application, it is natural to conceive that parsing 200 entries will require double execution-time compared to 100 entries. If you need to "Speed-up" the execution, you can only upgrade your hardware (scale-up) with faster CPU and/or network to reduce network latency. It is technically limited and economically inefficient. And this is exactly where XTP and Coherence kick in. The primary objective of XTP is about designing applications which can scale-out for increasing the Volume, by applying coding techniques to keep the execution-time as constant as possible, independently of the number of runtime data being manipulated. It is actually not just about having an application running as fast as possible, but about having a much more predictable system, with constant response-time and linearly scale, so we can easily increase throughput by adding more hardwares in parallel. It is in general combined with the Low Latency Programming model, where we tried to optimize the network usage as much as possible, either from the programmatic angle (less network-hoops to complete a task), and/or from a hardware angle (faster network equipments). In this picture, Oracle Coherence can be considered as software-level XTP enabler, via the Distributed-Cache because it can guarantee: - Constant Data Objects access time, independently from the number of Objects and the Coherence Cluster size - Data Objects Distribution by Affinity for in-memory data grouping - In-place Data Processing for parallel executionTo summarize, Oracle Coherence is indeed useful to improve your application performance, just not in the way we commonly think. It's not about the Speed itself, but about the overall Capacity with Extreme Load while keeping consistant Speed. In the future I will keep adding new blog entries around this topic, with some sample codes experiences sharing that I capture in the last few years. In the meanwhile if you want to know more how Oracle Coherence, I strongly suggest you to start with checking how our worldwide customers are using Oracle Coherence first, then you can start playing with the product through our tutorial.Have Fun !

    Read the article

  • Why bother writing an Windows 8 app?

    - by Dennis Vroegop
    So you want to know more about development for Window 8. Great! There are lots of reasons you should be excited about this. Since I don’t know why YOU are interested in this, I’ll make a list of reasons people can choose from. (as a side note: whenever I talk about Win8 development I am referring to the Metro Style / WinRt side of things. Apps for the ‘classic’ desktop side of Win8 on Intel are business as usual…) So… Why would you care about making an app for Windows 8? 1. It’s cool. Let’s not beat around the bush: if you like development for a hobby then you’ll love to work on this new platform. You can create apps in a relative short time (short time as in compared to writing a new CRM system) and that makes it great for a hobby product. 2. You’ll stand out. Hey, we all need an ego boost every now and then. We all need to feel special. So if you can manage to be one of the first to have you app in the Store then you’ll likely to be noticed. Just close your eyes for a moment and image you standing in a bar. It’s crowded, and then you casually say “Oh yeah, I just had my app certified and it’s in the Win8 store now”. People will stop talking, will offer you drinks and beautiful women / gorgeous man / furry creatures from Alpha Centauri (whatever your preferences are) will propose. Or maybe not. Anyway…. 3. Make some cash! IDC predicts there will be about 350,000,000 Windows 8 licenses sold in the next year. Think about that number. 350,000,000. And they all have access to the Store. Where you’re app will be. With one little click they can select it, download and somehow magically $1.00 or $2.00 from their bank account is transferred to yours. Now, I am not saying that all of those people will download and buy your app but what if only 1% of them did? Remember: there aren’t that many apps available yet….. 4. Learn. Creating new small apps is a great way to learn new stuff. Yes, you could read about it (on this blog for instance) but the only way to learn something is to do it. So be prepared for the future and learn something new by doing it.Write an app! Now! 5. The biggie (for me at least): it’s fun. Even if you remove the points above it’s still fun to write for these devices and this platform. Now some of you will say : “But why not write a great app for IOS or Android?” I think this is a valid question. Of course the novelty of the platform wears out and points 2 and 3 from above list will not be as relevant as it is today. But still 1 4 and 5 remain. And don’t forget: if you already work on the Microsoft platform it’s not that hard to learn this new Win8 stuff. If you have done some XAML development (be it WPF or Silverlight) you are almost there in becoming a good Win8 developer. So you’ll be more productive much sooner than when you have to learn Objective C or Java. Even if you’re a HTML / Javascript developer (I say developer here, not designer) you’ll be up to speed on Win8 development pretty soon. Yes, you, that funky Web Developer who lives and breathes HTML5, CSS3 and JavaScript / Node.Js / JQuery: you too can be a Win8 developer. A first class Win8 developer! So.. Download the stuff you need from http://dev.windows.com install Windows 8 and Visual Studio 12 and by the time you’re ready I’ll be working on the next article: how to do all this? Happy coding!

    Read the article

  • Documentation Changes in Solaris 11.1

    - by alanc
    One of the first places you can see Solaris 11.1 changes are in the docs, which have now been posted in the Solaris 11.1 Library on docs.oracle.com. I spent a good deal of time reviewing documentation for this release, and thought some would be interesting to blog about, but didn't review all the changes (not by a long shot), and am not going to cover all the changes here, so there's plenty left for you to discover on your own. Just comparing the Solaris 11.1 Library list of docs against the Solaris 11 list will show a lot of reorganization and refactoring of the doc set, especially in the system administration guides. Hopefully the new break down will make it easier to get straight to the sections you need when a task is at hand. Packaging System Unfortunately, the excellent in-depth guide for how to build packages for the new Image Packaging System (IPS) in Solaris 11 wasn't done in time to make the initial Solaris 11 doc set. An interim version was published shortly after release, in PDF form on the OTN IPS page. For Solaris 11.1 it was included in the doc set, as Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1, so should be easier to find, and easier to share links to specific pages the HTML version. Beyond just how to build a package, it includes details on how Solaris is packaged, and how package updates work, which may be useful to all system administrators who deal with Solaris 11 upgrades & installations. The Adding and Updating Oracle Solaris 11.1 Software Packages was also extended, including new sections on Relaxing Version Constraints Specified by Incorporations and Locking Packages to a Specified Version that may be of interest to those who want to keep the Solaris 11 versions of certain packages when they upgrade, such as the couple of packages that had functionality removed by an (unusual for an update release) End of Feature process in the 11.1 release. Also added in this release is a document containing the lists of all the packages in each of the major package groups in Solaris 11.1 (solaris-desktop, solaris-large-server, and solaris-small-server). While you can simply get the contents of those groups from the package repository, either via the web interface or the pkg command line, the documentation puts them in handy tables for easier side-by-side comparison, or viewing the lists before you've installed the system to pick which one you want to initially install. X Window System We've not had good X11 coverage in the online Solaris docs in a while, mostly relying on the man pages, and upstream X.Org docs. In this release, we've integrated some X coverage into the Solaris 11.1 Desktop Adminstrator's Guide, including sections on installing fonts for fontconfig or legacy X11 clients, X server configuration, and setting up remote access via X11 or VNC. Of course we continue to work on improving the docs, including a lot of contributions to the upstream docs all OS'es share (more about that another time). Security One of the things Oracle likes to do for its products is to publish security guides for administrators & developers to know how to build systems that meet their security needs. For Solaris, we started this with Solaris 11, providing a guide for sysadmins to find where the security relevant configuration options were documented. The Solaris 11.1 Security Guidelines extend this to cover new security features, such as Address Space Layout Randomization (ASLR) and Read-Only Zones, as well as adding additional guidelines for existing features, such as how to limit the size of tmpfs filesystems, to avoid users driving the system into swap thrashing situations. For developers, the corresponding document is the Developer's Guide to Oracle Solaris 11 Security, which has been the source for years for documentation of security-relevant Solaris API's such as PAM, GSS-API, and the Solaris Cryptographic Framework. For Solaris 11.1, a new appendix was added to start providing Secure Coding Guidelines for Developers, leveraging the CERT Secure Coding Standards and OWASP guidelines to provide the base recommendations for common programming languages and their standard API's. Solaris specific secure programming guidance was added via links to other documentation in the product doc set. In parallel, we updated the Solaris C Libary Functions security considerations list with details of Solaris 11 enhancements such as FD_CLOEXEC flags, additional *at() functions, and new stdio functions such as asprintf() and getline(). A number of code examples throughout the Solaris 11.1 doc set were updated to follow these recommendations, changing unbounded strcpy() calls to strlcpy(), sprintf() to snprintf(), etc. so that developers following our examples start out with safer code. The Writing Device Drivers guide even had the appendix updated to list which of these utility functions, like snprintf() and strlcpy(), are now available via the Kernel DDI. Little Things Of course all the big new features got documented, and some major efforts were put into refactoring and renovation, but there were also a lot of smaller things that got fixed as well in the nearly a year between the Solaris 11 and 11.1 doc releases - again too many to list here, but a random sampling of the ones I know about & found interesting or useful: The Privileges section of the DTrace Guide now gives users a pointer to find out how to set up DTrace privileges for non-global zones and what limitations are in place there. A new section on Recommended iSCSI Configuration Practices was added to the iSCSI configuration section when it moved into the SAN Configuration and Multipathing administration guide. The Managing System Power Services section contains an expanded explanation of the various tunables for power management in Solaris 11.1. The sample dcmd sources in /usr/demo/mdb were updated to include ::help output, so that developers like myself who follow the examples don't forget to include it (until a helpful code reviewer pointed it out while reviewing the mdb module changes for Xorg 1.12). The README file in that directory was updated to show the correct paths for installing both kernel & userspace modules, including the 64-bit variants.

    Read the article

  • Clone a VirtualBox Machine

    I just installed VirtualBox, which I want to try out based on recommendations from peers for running a server from within my Windows 7 x64 OS.  Ive never used VirtualBox, so Im certainly no expert at it, but I did want to share my experience with it thus far.  Specifically, my intention is to create a couple of virtual machines.  One I intend to use as a build server, for which a virtual machine makes sense because I can easily move it around as needed if there are hardware issues (its worth noting my need for setting up a build server at the moment is a result of a disk failure on the old build server).  The other VM I want to set up will act as a proxy server for the issue tracking system were using at Code Project, Axosoft OnTime.  They have a Remote Server application for this purpose, and since the OnTime install is 300 miles away from my location, the Remote Server should speed up my use of the OnTime client by limiting the chattiness with the database (at least, thats the hope). So, I need two VMs, and Im lazy.  I dont want to have to install the OS and such twice.  No problem, it should be simple to clone a virtualbox machine, or clone a virtualbox hard drive, right?  Well unfortunately, if you look at the UI for VirtualBox, theres no such command.  Youre left wondering How do I clone a VirtualBox machine? or the slightly related How do I clone a VirtualBox hard drive? If youve used VirtualPC, then you know that its actually pretty easy to copy and move around those VMs.  Not quite so easy with VirtualBox.  Finding the files is easy, theyre located in your user folder within the .VirtualBox folder (possibly within a HardDisks folder).  The disks have a .vdi extension and will be pretty large if youve installed anything.  The one shown here has just Windows Server 2008 R2 installed on it nothing else. If you copy the .vdi file and rename it, you can use the Virtual Media Manager to view it and you can create a new machine and choose the new drive to attach to.  Unfortunately, if you simply make a copy of the drive, this wont work and youll get an error that says something to the effect of: Cannot register the hard disk PATH with UUID {id goes here} because a hard disk PATH2 with UUID {same id goes here} already exists in the media registry (PATH to XML file). There are command line tools you can use to do this in a way that avoids this error.  Specifically, the c:\Program File\Sun\VirtualBox\VBoxManage.exe program is used for all command line access to VirtualBox, and to copy a virtual disk (.vdi file) you would call something like this: VBoxManage clonehd Disk1.vdi Disk1_Copy.vdi However, in my case this didnt work.  I got basically the same error I showed above, along with some debug information for line 628 of VBoxManageDisk.cpp.  As my main task was not to debug the C++ code used to write VirtualBox, I continued looking for a simple way to clone a virtual drive.  I found it in this blog post. The Secret setvdiuuid Command VBoxManage has a whole bunch of commands you can use with it just pass it /? to see the list.  However, it also has a special command called internalcommands that opens up access to even more commands.  The one thats interesting for us here is the setvdiuuid command.  By calling this command and passing in the file path to your vdi file, it will reset the UUID to a new (random, apparently) UUID.  This then allows the virtual media manager to cope with the file, and lets you set up new machines that reference the newly UUIDd virtual drive.  The full command line would be: VBoxManage internalcommands setvdiuuid MyCopy.vdi The following screenshot shows the error when trying clonehd as well as the successful use of setvdiuuid. Summary Now that I can clone machines easily, its a simple matter to set up base builds of any OS I might need, and then fork from there as needed.  Hopefully the GUI for VirtualBox will be improved to include better support for copying machines/disks, as this is Im sure a very common scenario. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Using Unity – Part 4

    - by nmarun
    In this part, I’ll be discussing about constructor and property or setter injection. I’ve created a new class – Product3: 1: public class Product3 : IProduct 2: { 3: public string Name { get; set; } 4: [Dependency] 5: public IDistributor Distributor { get; set; } 6: public ILogger Logger { get; set; } 7:  8: public Product3(ILogger logger) 9: { 10: Logger = logger; 11: Name = "Product 1"; 12: } 13:  14: public string WriteProductDetails() 15: { 16: StringBuilder productDetails = new StringBuilder(); 17: productDetails.AppendFormat("{0}<br/>", Name); 18: productDetails.AppendFormat("{0}<br/>", Logger.WriteLog()); 19: productDetails.AppendFormat("{0}<br/>", Distributor.WriteDistributorDetails()); 20: return productDetails.ToString(); 21: } 22: } This version has a property of type IDistributor and takes a constructor parameter of type ILogger. The IDistributor property has a Dependency attribute (Microsoft.Practices.Unity namespace) applied to it. IDistributor and its implementation are shown below: 1: public interface IDistributor 2: { 3: string WriteDistributorDetails(); 4: } 5:  6: public class Distributor : IDistributor 7: { 8: public List<string> DistributorNames = new List<string>(); 9:  10: public Distributor() 11: { 12: DistributorNames.Add("Distributor1"); 13: DistributorNames.Add("Distributor2"); 14: DistributorNames.Add("Distributor3"); 15: DistributorNames.Add("Distributor4"); 16: } 17: public string WriteDistributorDetails() 18: { 19: StringBuilder distributors = new StringBuilder(); 20: for (int i = 0; i < DistributorNames.Count; i++) 21: { 22: distributors.AppendFormat("{0}<br/>", DistributorNames[i]); 23: } 24: return distributors.ToString(); 25: } 26: } ILogger and the FileLogger have the following definition: 1: public interface ILogger 2: { 3: string WriteLog(); 4: } 5:  6: public class FileLogger : ILogger 7: { 8: public string WriteLog() 9: { 10: return string.Format("Type: {0}", GetType()); 11: } 12: } The Unity container creates an instance of the dependent class (the Distributor class) within the scope of the target object (an instance of Product3 class that will be called by doing a Resolve<IProduct>() in the calling code) and assign this dependent object to the attributed property of the target object. To add to it, property injection is a form of optional injection of dependent objects.The dependent object instance is generated before the container returns the target object. Unlike constructor injection, you must apply the appropriate attribute in the target class to initiate property injection. Let’s see how to change the config file to make this work. The first step is to add all the type aliases: 1: <typeAlias alias="Product3" type="ProductModel.Product3, ProductModel"/> 2: <typeAlias alias="ILogger" type="ProductModel.ILogger, ProductModel"/> 3: <typeAlias alias="FileLogger" type="ProductModel.FileLogger, ProductModel"/> 4: <typeAlias alias="IDistributor" type="ProductModel.IDistributor, ProductModel"/> 5: <typeAlias alias="Distributor" type="ProductModel.Distributor, ProductModel"/> Now define mappings for these aliases: 1: <type type="ILogger" mapTo="FileLogger" /> 2: <type type="IDistributor" mapTo="Distributor" /> Next step is to define the constructor and property injection in the config file: 1: <type type="IProduct" mapTo="Product3" name="ComplexProduct"> 2: <typeConfig extensionType="Microsoft.Practices.Unity.Configuration.TypeInjectionElement, Microsoft.Practices.Unity.Configuration"> 3: <constructor> 4: <param name="logger" parameterType="ILogger" /> 5: </constructor> 6: <property name="Distributor" propertyType="IDistributor"> 7: <dependency /> 8: </property> 9: </typeConfig> 10: </type> There you see a constructor element that tells there’s a property named ‘logger’ that is of type ILogger. By default, the type of ILogger gets resolved to type FileLogger. There’s also a property named ‘Distributor’ which is of type IDistributor and which will get resolved to type Distributor. On the calling side, I’ve added a new button, whose click event does the following: 1: protected void InjectionButton_Click(object sender, EventArgs e) 2: { 3: unityContainer.RegisterType<IProduct, Product3>(); 4: IProduct product3 = unityContainer.Resolve<IProduct>(); 5: productDetailsLabel.Text = product3.WriteProductDetails(); 6: } This renders the following output: This completes the part for constructor and property injection. In the next blog, I’ll talk about Arrays and Generics. Please see the code used here.

    Read the article

  • Separating text strings into a table of individual words in SQL via XML.

    - by Phil Factor
    p.MsoNormal {margin-top:0cm; margin-right:0cm; margin-bottom:10.0pt; margin-left:0cm; line-height:115%; font-size:11.0pt; font-family:"Calibri","sans-serif"; } Nearly nine years ago, Mike Rorke of the SQL Server 2005 XML team blogged ‘Querying Over Constructed XML Using Sub-queries’. I remember reading it at the time without being able to think of a use for what he was demonstrating. Just a few weeks ago, whilst preparing my article on searching strings, I got out my trusty function for splitting strings into words and something reminded me of the old blog. I’d been trying to think of a way of using XML to split strings reliably into words. The routine I devised turned out to be slightly slower than the iterative word chop I’ve always used in the past, so I didn’t publish it. It was then I suddenly remembered the old routine. Here is my version of it. I’ve unwrapped it from its obvious home in a function or procedure just so it is easy to appreciate. What it does is to chop a text string into individual words using XQuery and the good old nodes() method. I’ve benchmarked it and it is quicker than any of the SQL ways of doing it that I know about. Obviously, you can’t use the trick I described here to do it, because it is awkward to use REPLACE() on 1…n characters of whitespace. I’ll carry on using my iterative function since it is able to tell me the location of each word as a character-offset from the start, and also because this method leaves punctuation in (removing it takes time!). However, I can see other uses for this in passing lists as input or output parameters, or as return values.   if exists (Select * from sys.xml_schema_collections where name like 'WordList')   drop XML SCHEMA COLLECTION WordList go create xml schema collection WordList as ' <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:element name="words">        <xs:simpleType>               <xs:list itemType="xs:string" />        </xs:simpleType> </xs:element> </xs:schema>'   go   DECLARE @string VARCHAR(MAX) –we'll get some sample data from the great Ogden Nash Select @String='This is a song to celebrate banks, Because they are full of money and you go into them and all you hear is clinks and clanks, Or maybe a sound like the wind in the trees on the hills, Which is the rustling of the thousand dollar bills. Most bankers dwell in marble halls, Which they get to dwell in because they encourage deposits and discourage withdrawals, And particularly because they all observe one rule which woe betides the banker who fails to heed it, Which is you must never lend any money to anybody unless they don''t need it. I know you, you cautious conservative banks! If people are worried about their rent it is your duty to deny them the loan of one nickel, yes, even one copper engraving of the martyred son of the late Nancy Hanks; Yes, if they request fifty dollars to pay for a baby you must look at them like Tarzan looking at an uppity ape in the jungle, And tell them what do they think a bank is, anyhow, they had better go get the money from their wife''s aunt or ungle. But suppose people come in and they have a million and they want another million to pile on top of it, Why, you brim with the milk of human kindness and you urge them to accept every drop of it, And you lend them the million so then they have two million and this gives them the idea that they would be better off with four, So they already have two million as security so you have no hesitation in lending them two more, And all the vice-presidents nod their heads in rhythm, And the only question asked is do the borrowers want the money sent or do they want to take it withm. Because I think they deserve our appreciation and thanks, the jackasses who go around saying that health and happi- ness are everything and money isn''t essential, Because as soon as they have to borrow some unimportant money to maintain their health and happiness they starve to death so they can''t go around any more sneering at good old money, which is nothing short of providential. '   –we now turn it into XML declare @xml_data xml(WordList)  set @xml_data='<words>'+ replace(@string,'&', '&amp;')+'</words>'    select T.ref.value('.', 'nvarchar(100)')  from (Select @xml_data.query('                      for $i in data(/words) return                      element li { $i }               '))  A(list) cross apply A.List.nodes('/li') T(ref)     …which gives (truncated, of course)…

    Read the article

  • World Backup Day

    - by red(at)work
    Here at Red Gate Towers, the SQL Backup development team have been hunkered down in their shed for the last few months, with the toolbox, blowtorch and chamois leather out, upgrading SQL Backup. When we started, autumn leaves were falling. Now we're about to finish, spring flowers are budding. If not quite a gleaming new machine, at the very least a familiar, reliable engine with some shiny new bits on it will trundle magnificently out of the workshop. One of the interesting things I've noticed about working on software development teams is that the team is together for so long 'implementing' stuff - designing, coding, testing, fixing bugs and so on - that you occasionally forget why you're doing what you're doing. Doubt creeps in. It feels like a long time since we launched this project in a fanfare of optimism and enthusiasm, and all that clarity of purpose and mission "yee-haw" has dissipated with the daily pressures of development. Every now and again, we look up from our bunker and notice all those thousands of users out there, with their different configurations and working practices and each with their own set of problems and requirements, and we ask ourselves "does anyone care about what we're doing?" Has the world moved on while we've been busy? Could we have been doing something more useful with the time and talent of all these excellent people we've assembled? In truth, you can research and test and validate all you like, but you never really know if you've done the right thing (or at least, something valuable for some users) until you release. All projects suffer this insecurity. If they don't, maybe you're not worrying enough about what you're building. The two enemies of software development are certainty and complacency. Oh, and of course, rival teams with Nerf guns. The goal of SQL Backup 7 is to make it so easy to schedule regular restores of your backups that you have no excuse not to. Why schedule a restore? Because your data is not as good as your last backup. It's only as good as your last successful restore. If you're not checking your backups by restoring them and running an integrity check on the database, you're only doing half the job. It seems that most DBAs know that this is best practice, but it can be tricky and time-consuming to set up, so it's one of those tasks that can get forgotten in the midst all the other demands on their time. Sometimes, they're just too busy firefighting. But if it was simple to do? That was our inspiration for SQL Backup 7. So it was heartening to read Brent Ozar's blog post the other day about World Backup Day. To be honest, I'd never heard of World Backup Day (Talk Like a Pirate Day, yes, but not this one); however, its emphasis on not just backing up your data but checking the validity of those backups was exactly the same message we had in mind when building SQL Backup 7. It's printed on a piece of A3 above our planning board - "Make backup verification so easy to do that no DBA has an excuse for not doing it" It's the missing piece that completes the puzzle. Simple idea, great concept, useful feature, but, as it turned out, far from straightforward to implement. The problem is the future. As Marty McFly discovered over the course of three movies, the future is uncertain and hard to predict - so when you are scheduling a restore to take place an hour, day, week or month after the backup, there are all kinds of questions that you wouldn't normally have to consider. Where will this backup live? Will it even exist at the time? Will it be split into multiple files? What will the file names be? Will it be encrypted? What files should it be restored to? SQL Backup needs to know what to expect at the time the restore job is actually run. Of course, a DBA will know the answer to all these questions, but to deliver the whole point of version 7, we wanted to make it easy for them to input that information into SQL Backup. We think we've done that. When you create your scheduled backup job, there is now an option to create a "reminder" to follow it up with a scheduled restore to verify the resulting backups. Actually, it's much more than a reminder, as it stores all the relevant data so you can click it and pre-populate the wizard with all the right settings to set up your verification restores. Simple. But, what do you think? We'd love you to try it. Post by Brian Harris

    Read the article

  • Cloud Computing Forces Better Design Practices

    - by Herve Roggero
    Is cloud computing simply different than on premise development, or is cloud computing actually forcing you to create better applications than you normally would? In other words, is cloud computing merely imposing different design principles, or forcing better design principles?  A little while back I got into a discussion with a developer in which I was arguing that cloud computing, and specifically Windows Azure in his case, was forcing developers to adopt better design principles. His opinion was that cloud computing was not yielding better systems; just different systems. In this blog, I will argue that cloud computing does force developers to use better design practices, and hence better applications. So the first thing to define, of course, is the word “better”, in the context of application development. Looking at a few definitions online, better means “superior quality”. As it relates to this discussion then, I stipulate that cloud computing can yield higher quality applications in terms of scalability, everything else being equal. Before going further I need to also outline the difference between performance and scalability. Performance and scalability are two related concepts, but they don’t mean the same thing. Scalability is the measure of system performance given various loads. So when developers design for performance, they usually give higher priority to a given load and tend to optimize for the given load. When developers design for scalability, the actual performance at a given load is not as important; the ability to ensure reasonable performance regardless of the load becomes the objective. This can lead to very different design choices. For example, if your objective is to obtains the fastest response time possible for a service you are building, you may choose the implement a TCP connection that never closes until the client chooses to close the connection (in other words, a tightly coupled service from a connectivity standpoint), and on which a connection session is established for faster processing on the next request (like SQL Server or other database systems for example). If you objective is to scale, you may implement a service that answers to requests without keeping session state, so that server resources are released as quickly as possible, like a REST service for example. This alternate design would likely have a slower response time than the TCP service for any given load, but would continue to function at very large loads because of its inherently loosely coupled design. An example of a REST service is the NO-SQL implementation in the Microsoft cloud called Azure Tables. Now, back to cloud computing… Cloud computing is designed to help you scale your applications, specifically when you use Platform as a Service (PaaS) offerings. However it’s not automatic. You can design a tightly-coupled TCP service as discussed above, and as you can imagine, it probably won’t scale even if you place the service in the cloud because it isn’t using a connection pattern that will allow it to scale [note: I am not implying that all TCP systems do not scale; I am just illustrating the scalability concepts with an imaginary TCP service that isn’t designed to scale for the purpose of this discussion]. The other service, using REST, will have a better chance to scale because, by design, it minimizes resource consumption for individual requests and doesn’t tie a client connection to a specific endpoint (which means you can easily deploy this service to hundreds of machines without much trouble, as long as your pockets are deep enough). The TCP and REST services discussed above are both valid designs; the TCP service is faster and the REST service scales better. So is it fair to say that one service is fundamentally better than the other? No; not unless you need to scale. And if you don’t need to scale, then you don’t need the cloud in the first place. However, it is interesting to note that if you do need to scale, then a loosely coupled system becomes a better design because it can almost always scale better than a tightly-coupled system. And because most applications grow overtime, with an increasing user base, new functional requirements, increased data and so forth, most applications eventually do need to scale. So in my humble opinion, I conclude that a loosely coupled system is not just different than a tightly coupled system; it is a better design, because it will stand the test of time. And in my book, if a system stands the test of time better than another, it is of superior quality. Because cloud computing demands loosely coupled systems so that its underlying service architecture can be leveraged, developers ultimately have no choice but to design loosely coupled systems for the cloud. And because loosely coupled systems are better… … the cloud forces better design practices. My 2 cents.

    Read the article

  • What Counts for A DBA - Logic

    - by drsql
    "There are 10 kinds of people in the world. Those who will always wonder why there are only two items in my list and those who will figured it out the first time they saw this very old joke."  Those readers who will give up immediately and get frustrated with me for not explaining it to them are not likely going to be great technical professionals of any sort, much less a programmer or administrator who will be constantly dealing with the common failures that make up a DBA's day.  Many of these people will stare at this like a dog staring at a traffic signal and still have no more idea of how to decipher the riddle. Without explanation they will give up, call the joke "stupid" and, feeling quite superior, walk away indignantly to their job likely flipping patties of meat-by-product. As a data professional or any programmer who has strayed  to this very data-oriented blog, you would, if you are worth your weight in air, either have recognized immediately what was going on, or felt a bit ignorant.  Your friends are chuckling over the joke, but why is it funny? Unfortunately you left your smartphone at home on the dresser because you were up late last night programming and were running late to work (again), so you will either have to fake a laugh or figure it out.  Digging through the joke, you figure out that the word "two" is the most important part, since initially the joke mentioned 10. Hmm, why did they spell out two, but not ten? Maybe 10 could be interpreted a different way?  As a DBA, this sort of logic comes into play every day, and sometimes it doesn't involve nerdy riddles or Star Wars folklore.  When you turn on your computer and get the dreaded blue screen of death, you don't immediately cry to the help desk and sit on your thumbs and whine about not being able to work. Do that and your co-workers will question your nerd-hood; I know I certainly would. You figure out the problem, and when you have it narrowed down, you call the help desk and tell them what the problem is, usually having to explain that yes, you did in fact try to reboot before calling.  Of course, sometimes humility does come in to play when you reach the end of your abilities, but the ‘end of abilities’ is not something any of us recognize readily. It is handy to have the ability to use logic to solve uncommon problems: It becomes especially useful when you are trying to solve a data-related problem such as a query performance issue, and the way that you approach things will tell your coworkers a great deal about your abilities.  The novice is likely to immediately take the approach of  trying to add more indexes or blaming the hardware. As you become more and more experienced, it becomes increasingly obvious that performance issues are a very complex topic. A query may be slow for a myriad of reasons, from concurrency issues, a poor query plan because of a parameter value (like parameter sniffing,) poor coding standards, or just because it is a complex query that is going to be slow sometimes. Some queries that you will deal with may have twenty joins and hundreds of search criteria, and it can take a lot of thought to determine what is going on.  You can usually figure out the problem to almost any query by using basic knowledge of how joins and queries work, together with the help of such things as the query plan, profiler or monitoring tools.  It is not unlikely that it can take a full day’s work to understand some queries, breaking them down into smaller queries to find a very tiny problem. Not every time will you actually find the problem, and it is part of the process to occasionally admit that the problem is random, and everything works fine now.  Sometimes, it is necessary to realize that a problem is outside of your current knowledge, and admit temporary defeat: You can, at least, narrow down the source of the problem by looking logically at all of the possible solutions. By doing this, you can satisfy your curiosity and learn more about what the actual problem was. For example, in the joke, had you never been exposed to the concept of binary numbers, there is no way you could have known that binary - 10 = decimal - 2, but you could have logically come to the conclusion that 10 must not mean ten in the context of the joke, and at that point you are that much closer to getting the joke and at least won't feel so ignorant.

    Read the article

  • Tip #19 Module Private Visibility in OSGi

    - by ByronNevins
    I hate public and protected methods and classes.  It requires so much work to change them in a huge project like GlassFish.  Not to mention that you may well have to support those APIs forever.  They are highly overused in GlassFish.  In fact I'd bet that > 95% of classes are marked as public for no good reason.  It's just (bad) habit is my guess. private and default visibility (I call it package-private) is easier to maintain.  It is much much easier to change such classes and methods around.  If you have ANY public method or public class in GlassFish you'll need to grep through a tremendous amount of source code to find all callers.  But even that won't be theoretically reliable.  What if a caller is using reflection to access public methods?  You may never find such usages. If you have package private methods, it's easy.  Simply grep through all the code in that one package.  As long as that package compiles ok you're all set.  There can' be any compile errors anywhere else.  It's a waste of time to even look around or build the "outside" world.  So you may be thinking: "Aha!  I'll just make my module have one giant package with all the java files.  Then I can use the default visibility and maintenance will be much easier.  But there's a problem.  You are wasting a very nice feature of java -- organizing code into separate packages.  It also makes the code much more encapsulated.  Unfortunately to share code between the packages you have no choice but to declare public visibility. What happens in practice is that a module ends up having tons of public classes and methods that are used exclusively inside the module.  Which finally brings me to the point of this blog:  If Only There Was A Module-Private Visibility Available Well, surprise!  There is such a mechanism.  If your project is running under OSGi that is.  Like GlassFish does!  With this mechanism you can easily add another level of visibility by telling OSGi exactly which public you want to be exposed outside of the module.  You get the best of both worlds: Better encapsulation of your code so that maintenance is easier and productivity is increased. Usage of public visibility inside the module so that you can encapsulate intra-module better with packages. How I do this in GlassFish: Carefully plan out at least one package that will contain "true" publics.  This is the package that will be exported by OSGi.  I recommend just one package. Here is how to tell OSGi to use it in GlassFish -- edit osgi.bundle like so:-exportcontents:     org.glassfish.mymodule.truepublics;  version=${project.osgi.version} Now all publics declared in any other packages will be visible module-wide but not outside the module. There is one caveat: Accessing "module-private" items outside of the module is controlled at run-time, not compile-time.  The compiler has no clue that a public in a dependent module isn't really public.  it will happily compile it.  At runtime you will definitely see fireworks.  The good news is that you don't have to wait for the code path that tries to use the "module-private" items to fire.  OSGi will complain loudly when that module gets loaded.  OSGi will refuse to load it.  You will see an error like this: remote failure: Error while loading FOO: Exception while adding the new configuration : Error occurred during deployment: Exception while loading the app : org.osgi.framework.BundleException: Unresolved constraint in bundle com.oracle.glassfish.miscreant.code [115]: Unable to resolve 115.0: missing requirement [115.0] osgi.wiring.package; (osgi.wiring.package=org.glassfish.mymodule.unexported). Please see server.log for more details. That is if you accidentally change code in module B to use a public that is really a "module-private" in module A, then you will see the error immediately when you try to test whatever you were changing in module B.

    Read the article

  • Migrating R Scripts from Development to Production

    - by Mark Hornick
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 “How do I move my R scripts stored in one database instance to another? I have my development/test system and want to migrate to production.” Users of Oracle R Enterprise Embedded R Execution will often store their R scripts in the R Script Repository in Oracle Database, especially when using the ORE SQL API. From previous blog posts, you may recall that Embedded R Execution enables running R scripts managed by Oracle Database using both R and SQL interfaces. In ORE 1.3.1., the SQL API requires scripts to be stored in the database and referenced by name in SQL queries. The SQL API enables seamless integration with database-based applications and ease of production deployment. Loading R scripts in the repository Before talking about migration, we’ll first introduce how users store R scripts in Oracle Database. Users can add R scripts to the repository in R using the function ore.scriptCreate, or SQL using the function sys.rqScriptCreate. For the sample R script     id <- 1:10     plot(1:100,rnorm(100),pch=21,bg="red",cex =2)     data.frame(id=id, val=id / 100) users wrap this in a function and store it in the R Script Repository with a name. In R, this looks like ore.scriptCreate("RandomRedDots", function () { line-height: 115%; font-family: "Courier New";">     id <- 1:10     plot(1:100,rnorm(100),pch=21,bg="red",cex =2)     data.frame(id=id, val=id / 100)) }) In SQL, this looks like begin sys.rqScriptCreate('RandomRedDots',  'function(){     id <- 1:10     plot(1:100,rnorm(100),pch=21,bg="red",cex =2)     data.frame(id=id, val=id / 100)   }'); end; / The R function ore.scriptDrop and SQL function sys.rqScriptDrop can be used to drop these scripts as well. Note that the system will give an error if the script name already exists. Accessing R scripts once they’ve been loaded If you’re not using a source code control system, it is possible that your R scripts can be misplaced or files modified, making what is stored in Oracle Database to only or best copy of your R code. If you’ve loaded your R scripts to the database, it is straightforward to access these scripts from the database table SYS.RQ_SCRIPTS. For example, select * from sys.rq_scripts where name='myScriptName'; From R, scripts in the repository can be loaded into the R client engine using a function similar to the following: ore.scriptLoad <- function(name) { query <- paste("select script from sys.rq_scripts where name='",name,"'",sep="") str.f <- OREbase:::.ore.dbGetQuery(query) assign(name,eval(parse(text = str.f)),pos=1) } ore.scriptLoad("myFunctionName") This function is also useful if you want to load an existing R script from the repository into another R script in the repository – think modular coding style. Just include this function in the body of the other function and load the named script. Migrating R scripts from one database instance to another To move a set of functions from one system to another, the following script loads the functions from one R script repository into the client R engine, then connects to the target database and creates the scripts there with the same names. scriptNames <- OREbase:::.ore.dbGetQuery("select name from sys.rq_scripts where name not like 'RQG$%' and name not like 'RQ$%'")$NAME for(s in scriptNames) { cat(s,"\n") ore.scriptLoad(s) } ore.disconnect() ore.connect("rquser","orcl","localhost","rquser") for(s in scriptNames) { cat(s,"\n") ore.scriptDrop(s) ore.scriptCreate(s,get(s)) } Best Practice When naming R scripts, keep in mind that the name can be up to 128 characters. As such, consider organizing scripts in a directory structure manner. For example, if an organization has multiple groups or applications sharing the same database and there are multiple components, use “/” to facilitate the function organization: line-height: 115%;">ore.scriptCreate("/org1/app1/component1/myFuntion1", myFunction1) ore.scriptCreate("/org1/app1/component1/myFuntion2", myFunction2) ore.scriptCreate("/org1/app2/component2/myFuntion2", myFunction2) ore.scriptCreate("/org2/app2/component1/myFuntion3", myFunction3) ore.scriptCreate("/org3/app2/component1/myFuntion4", myFunction4) Users can then query for all functions using the path prefix when looking up functions. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Cloud Deployment Models

    - by B R Clouse
    Normal 0 false false false EN-US X-NONE X-NONE As the cloud paradigm grows in depth and breadth, more readers are approaching the topic for the first time, or from a new perspective.  This blog is a basic review of  cloud deployment models, to help orient newcomers and neophytes. Most cloud deployments today are either private or public. It is also possible to connect a private cloud and a public cloud to form a hybrid cloud. A private cloud is for the exclusive use of an organization. Enterprises, universities and government agencies throughout the world are using private clouds. Some have designed, built and now manage their private clouds. Others use a private cloud that was built by and is now managed by a provider, hosted either onsite or at the provider’s datacenter. Because private clouds are for exclusive use, they are usually the option chosen by organizations with concerns about data security and guaranteed performance. Public clouds are open to anyone with an Internet connection. Because they require no capital investment from their users, they are particularly attractive to companies with limited resources in less regulated environments and for temporary workloads such as development and test environments. Public clouds offer a range of products, from end-user software packages to more basic services such as databases or operating environments. Public clouds may also offer cloud services such as a disaster recovery for a private cloud, or the ability to “cloudburst” a temporary workload spike from a private cloud to a public cloud. These are examples of a hybrid cloud. These are most feasible when the private and public clouds are built with similar technologies. Usually people think of a public cloud in terms of a user role, e.g., “Which public cloud should I consider using?” But someone needs to own and manage that public cloud. The company who owns and operates a public cloud is known as a public cloud provider. Oracle Database Cloud Service, Amazon RDS, database.com and Savvis Symphony Database are examples of public cloud database services. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} When evaluating deployment models, be aware that you can use any or all of the available options. Some workloads may be best-suited for a private cloud, some for a public or hybrid cloud. And you might deploy multiple private clouds in your organization. If you are going to combine multiple clouds, then you want to make sure that each cloud is based on a consistent technology portfolio and architecture. This simplifies management and gives you the greatest flexibility in moving resources and workloads among your different clouds. Oracle’s portfolio of cloud products and services enables both deployment models. Oracle can manage either model. Universities, government agencies and companies in all types of business everywhere in the world are using clouds built with the Oracle portfolio. By employing a consistent portfolio, these customers are able to run all of their workloads – from test and development to the most mission-critical -- in a consistent manner: One Enterprise Cloud, powered by Oracle.   /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Wordpress Theme

    - by HotPizzaBox
    I'm trying to create a basic wordpress theme. As far as I know the basic files I need are the style.css, header.php, index.php, footer.php, functions.php. Then it should show a blank site with some meta tags in the header. These are my files: functions.php <?php // load the language files load_theme_textdomain('brianroyfoundation', get_template_directory() . '/languages'); // add menu support add_theme_support('menus'); register_nav_menus(array('primary_navigation' => __('Primary Navigation', 'BrianRoyFoundation'))); // create widget areas: sidebar $sidebars = array('Sidebar'); foreach ($sidebars as $sidebar) { register_sidebar(array('name'=> $sidebar, 'before_widget' => '<div class="widget %2$s">', 'after_widget' => '</div>', 'before_title' => '<h6><strong>', 'after_title' => '</strong></h6>' )); } // Add Foundation 'active' class for the current menu item function active_nav_class($classes, $item) { if($item->current == 1) { $classes[] = 'active'; } return $classes; } add_filter( 'nav_menu_css_class', 'active_nav_class', 10, 2); ?> header.php <!DOCTYPE html> <html <?php language_attributes(); ?>> <head> <meta charset="<?php bloginfo('charset'); ?>" /> <meta name="description" content="<?php bloginfo('description'); ?>"> <meta name="google-site-verification" content=""> <meta name="author" content="Your Name Here"> <!-- No indexing if Search page is displayed --> <?php if(is_search()){ echo '<meta name="robots" content="noindex, nofollow" />' } ?> <title><?php wp_title('|', true, 'right'); bloginfo('name'); ?></title> <link rel="stylesheet" type="text/css" href="<?php bloginfo('stylesheet_url'); ?>" /> <?php wp_head(); ?> </head> <body> <div id="page"> <div id="page-header"> <div id="page-title"> <a href="<?php bloginfo('url'); ?>" title="<?php bloginfo('name'); ?>"><?php bloginfo('name'); ?></a> </div> <div id="page-navigation"> <?php wp_nav_menu( array( 'theme_location' => 'primary_navigation', 'container' =>false, 'menu_class' => '' ); ?> </div> </div> <div id="page-content"> index.php <?php get_header(); ?> <div class="page-blog"> <?php get_template_part('loop', 'index'); ?> </div> <div class="page-sidebar"> <?php get_sidebar(); ?> </div> <?php get_footer(); ?> footer.php </div> <div id="page-footer"> &copy; 2008 - <?php echo date('Y'); ?> All rights reserved. </div> </div> <?php wp_footer(); ?> </body> </html> I activated the theme in wordpress. But it just shows nothing. Not even if I view the page source. Can anyone help?

    Read the article

  • Collaborative Whiteboard using WebSocket in GlassFish 4 - Text/JSON and Binary/ArrayBuffer Data Transfer (TOTD #189)

    - by arungupta
    This blog has published a few blogs on using JSR 356 Reference Implementation (Tyrus) as its integrated in GlassFish 4 promoted builds. TOTD #183: Getting Started with WebSocket in GlassFish TOTD #184: Logging WebSocket Frames using Chrome Developer Tools, Net-internals and Wireshark TOTD #185: Processing Text and Binary (Blob, ArrayBuffer, ArrayBufferView) Payload in WebSocket TOTD #186: Custom Text and Binary Payloads using WebSocket One of the typical usecase for WebSocket is online collaborative games. This Tip Of The Day (TOTD) explains a sample that can be used to build such games easily. The application is a collaborative whiteboard where different shapes can be drawn in multiple colors. The shapes drawn on one browser are automatically drawn on all other peer browsers that are connected to the same endpoint. The shape, color, and coordinates of the image are transfered using a JSON structure. A browser may opt-out of sharing the figures. Alternatively any browser can send a snapshot of their existing whiteboard to all other browsers. Take a look at this video to understand how the application work and the underlying code. The complete sample code can be downloaded here. The code behind the application is also explained below. The web page (index.jsp) has a HTML5 Canvas as shown: <canvas id="myCanvas" width="150" height="150" style="border:1px solid #000000;"></canvas> And some radio buttons to choose the color and shape. By default, the shape, color, and coordinates of any figure drawn on the canvas are put in a JSON structure and sent as a message to the WebSocket endpoint. The JSON structure looks like: { "shape": "square", "color": "#FF0000", "coords": { "x": 31.59999942779541, "y": 49.91999053955078 }} The endpoint definition looks like: @WebSocketEndpoint(value = "websocket",encoders = {FigureDecoderEncoder.class},decoders = {FigureDecoderEncoder.class})public class Whiteboard { As you can see, the endpoint has decoder and encoder registered that decodes JSON to a Figure (a POJO class) and vice versa respectively. The decode method looks like: public Figure decode(String string) throws DecodeException { try { JSONObject jsonObject = new JSONObject(string); return new Figure(jsonObject); } catch (JSONException ex) { throw new DecodeException("Error parsing JSON", ex.getMessage(), ex.fillInStackTrace()); }} And the encode method looks like: public String encode(Figure figure) throws EncodeException { return figure.getJson().toString();} FigureDecoderEncoder implements both decoder and encoder functionality but thats purely for convenience. But the recommended design pattern is to keep them in separate classes. In certain cases, you may even need only one of them. On the client-side, the Canvas is initialized as: var canvas = document.getElementById("myCanvas");var context = canvas.getContext("2d");canvas.addEventListener("click", defineImage, false); The defineImage method constructs the JSON structure as shown above and sends it to the endpoint using websocket.send(). An instant snapshot of the canvas is sent using binary transfer with WebSocket. The WebSocket is initialized as: var wsUri = "ws://localhost:8080/whiteboard/websocket";var websocket = new WebSocket(wsUri);websocket.binaryType = "arraybuffer"; The important part is to set the binaryType property of WebSocket to arraybuffer. This ensures that any binary transfers using WebSocket are done using ArrayBuffer as the default type seem to be blob. The actual binary data transfer is done using the following: var image = context.getImageData(0, 0, canvas.width, canvas.height);var buffer = new ArrayBuffer(image.data.length);var bytes = new Uint8Array(buffer);for (var i=0; i<bytes.length; i++) { bytes[i] = image.data[i];}websocket.send(bytes); This comprehensive sample shows the following features of JSR 356 API: Annotation-driven endpoints Send/receive text and binary payload in WebSocket Encoders/decoders for custom text payload In addition, it also shows how images can be captured and drawn using HTML5 Canvas in a JSP. How could this be turned in to an online game ? Imagine drawing a Tic-tac-toe board on the canvas with two players playing and others watching. Then you can build access rights and controls within the application itself. Instead of sending a snapshot of the canvas on demand, a new peer joining the game could be automatically transferred the current state as well. Do you want to build this game ? I built a similar game a few years ago. Do somebody want to rewrite the game using WebSocket APIs ? :-) Many thanks to Jitu and Akshay for helping through the WebSocket internals! Here are some references for you: JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) Subsequent blogs will discuss the following topics (not necessary in that order) ... Error handling Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API

    Read the article

  • Building a Repository Pattern against an EF 5 EDMX Model - Part 1

    - by Juan
    I am part of a year long plus project that is re-writing an existing application for a client.  We have decided to develop the project using Visual Studio 2012 and .NET 4.5.  The project will be using a number of technologies and patterns to include Entity Framework 5, WCF Services, and WPF for the client UI.This is my attempt at documenting some of the successes and failures that I will be coming across in the development of the application.In building the data access layer we have to access a database that has already been designed by a dedicated dba. The dba insists on using Stored Procedures which has made the use of EF a little more difficult.  He will not allow direct table access but we did manage to get him to allow us to use Views.  Since EF 5 does not have good support to do Code First with Stored Procedures, my option was to create a model (EDMX) against the existing database views.   I then had to go select each entity and map the Insert/Update/Delete functions to their respective stored procedure. The next step after I had completed mapping the stored procedures to the entities in the EDMX model was to figure out how to build a generic repository that would work well with Entity Framework 5.  After reading the blog posts below, I adopted much of their code with some changes to allow for the use of Ninject for dependency injection.http://www.tcscblog.com/2012/06/22/entity-framework-generic-repository/ http://www.tugberkugurlu.com/archive/generic-repository-pattern-entity-framework-asp-net-mvc-and-unit-testing-triangle IRepository.cs public interface IRepository : IDisposable where T : class { void Add(T entity); void Update(T entity, int id); T GetById(object key); IQueryable Query(Expression> predicate); IQueryable GetAll(); int SaveChanges(); int SaveChanges(bool validateEntities); } GenericRepository.cs public abstract class GenericRepository : IRepository where T : class { public abstract void Add(T entity); public abstract void Update(T entity, int id); public abstract T GetById(object key); public abstract IQueryable Query(Expression> predicate); public abstract IQueryable GetAll(); public int SaveChanges() { return SaveChanges(true); } public abstract int SaveChanges(bool validateEntities); public abstract void Dispose(); } One of the issues I ran into was trying to do an update. I kept receiving errors so I posted a question on Stack Overflow http://stackoverflow.com/questions/12585664/an-object-with-the-same-key-already-exists-in-the-objectstatemanager-the-object and came up with the following hack. If someone has a better way, please let me know. DbContextRepository.cs public class DbContextRepository : GenericRepository where T : class { protected DbContext Context; protected DbSet DbSet; public DbContextRepository(DbContext context) { if (context == null) throw new ArgumentException("context"); Context = context; DbSet = Context.Set(); } public override void Add(T entity) { if (entity == null) throw new ArgumentException("Cannot add a null entity."); DbSet.Add(entity); } public override void Update(T entity, int id) { if (entity == null) throw new ArgumentException("Cannot update a null entity."); var entry = Context.Entry(entity); if (entry.State == EntityState.Detached) { var attachedEntity = DbSet.Find(id); // Need to have access to key if (attachedEntity != null) { var attachedEntry = Context.Entry(attachedEntity); attachedEntry.CurrentValues.SetValues(entity); } else { entry.State = EntityState.Modified; // This should attach entity } } } public override T GetById(object key) { return DbSet.Find(key); } public override IQueryable Query(Expression> predicate) { return DbSet.Where(predicate); } public override IQueryable GetAll() { return Context.Set(); } public override int SaveChanges(bool validateEntities) { Context.Configuration.ValidateOnSaveEnabled = validateEntities; return Context.SaveChanges(); } #region IDisposable implementation public override void Dispose() { if (Context != null) { Context.Dispose(); GC.SuppressFinalize(this); } } #endregion IDisposable implementation } At this point I am able to start creating individual repositories that are needed and add a Unit of Work.  Stay tuned for the next installment in my path to creating a Repository Pattern against EF5.

    Read the article

  • Processing Text and Binary (Blob, ArrayBuffer, ArrayBufferView) Payload in WebSocket - (TOTD #185)

    - by arungupta
    The WebSocket API defines different send(xxx) methods that can be used to send text and binary data. This Tip Of The Day (TOTD) will show how to send and receive text and binary data using WebSocket. TOTD #183 explains how to get started with a WebSocket endpoint using GlassFish 4. A simple endpoint from that blog looks like: @WebSocketEndpoint("/endpoint") public class MyEndpoint { public void receiveTextMessage(String message) { . . . } } A message with the first parameter of the type String is invoked when a text payload is received. The payload of the incoming WebSocket frame is mapped to this first parameter. An optional second parameter, Session, can be specified to map to the "other end" of this conversation. For example: public void receiveTextMessage(String message, Session session) {     . . . } The return type is void and that means no response is returned to the client that invoked this endpoint. A response may be returned to the client in two different ways. First, set the return type to the expected type, such as: public String receiveTextMessage(String message) { String response = . . . . . . return response; } In this case a text payload is returned back to the invoking endpoint. The second way to send a response back is to use the mapped session to send response using one of the sendXXX methods in Session, when and if needed. public void receiveTextMessage(String message, Session session) {     . . .     RemoteEndpoint remote = session.getRemote();     remote.sendString(...);     . . .     remote.sendString(...);    . . .    remote.sendString(...); } This shows how duplex and asynchronous communication between the two endpoints can be achieved. This can be used to define different message exchange patterns between the client and server. The WebSocket client can send the message as: websocket.send(myTextField.value); where myTextField is a text field in the web page. Binary payload in the incoming WebSocket frame can be received if ByteBuffer is used as the first parameter of the method signature. The endpoint method signature in that case would look like: public void receiveBinaryMessage(ByteBuffer message) {     . . . } From the client side, the binary data can be sent using Blob, ArrayBuffer, and ArrayBufferView. Blob is a just raw data and the actual interpretation is left to the application. ArrayBuffer and ArrayBufferView are defined in the TypedArray specification and are designed to send binary data using WebSocket. In short, ArrayBuffer is a fixed-length binary buffer with no format and no mechanism for accessing its contents. These buffers are manipulated using one of the views defined by one of the subclasses of ArrayBufferView listed below: Int8Array (signed 8-bit integer or char) Uint8Array (unsigned 8-bit integer or unsigned char) Int16Array (signed 16-bit integer or short) Uint16Array (unsigned 16-bit integer or unsigned short) Int32Array (signed 32-bit integer or int) Uint32Array (unsigned 16-bit integer or unsigned int) Float32Array (signed 32-bit float or float) Float64Array (signed 64-bit float or double) WebSocket can send binary data using ArrayBuffer with a view defined by a subclass of ArrayBufferView or a subclass of ArrayBufferView itself. The WebSocket client can send the message using Blob as: blob = new Blob([myField2.value]);websocket.send(blob); where myField2 is a text field in the web page. The WebSocket client can send the message using ArrayBuffer as: var buffer = new ArrayBuffer(10);var bytes = new Uint8Array(buffer);for (var i=0; i<bytes.length; i++) { bytes[i] = i;}websocket.send(buffer); A concrete implementation of receiving the binary message may look like: @WebSocketMessagepublic void echoBinary(ByteBuffer data, Session session) throws IOException {    System.out.println("echoBinary: " + data);    for (byte b : data.array()) {        System.out.print(b);    }    session.getRemote().sendBytes(data);} This method is just printing the binary data for verification but you may actually be storing it in a database or converting to an image or something more meaningful. Be aware of TYRUS-51 if you are trying to send binary data from server to client using method return type. Here are some references for you: JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) TOTD #183 - Getting Started with WebSocket in GlassFish TOTD #184 - Logging WebSocket Frames using Chrome Developer Tools, Net-internals and Wireshark Subsequent blogs will discuss the following topics (not necessary in that order) ... Error handling Custom payloads using encoder/decoder Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API

    Read the article

< Previous Page | 393 394 395 396 397 398 399 400 401 402 403 404  | Next Page >