Search Results

Search found 22300 results on 892 pages for 'half bit'.

Page 411/892 | < Previous Page | 407 408 409 410 411 412 413 414 415 416 417 418  | Next Page >

  • The blocking nature of aggregates

    - by Rob Farley
    I wrote a post recently about how query tuning isn’t just about how quickly the query runs – that if you have something (such as SSIS) that is consuming your data (and probably introducing a bottleneck), then it might be more important to have a query which focuses on getting the first bit of data out. You can read that post here.  In particular, we looked at two operators that could be used to ensure that a query returns only Distinct rows. and The Sort operator pulls in all the data, sorts it (discarding duplicates), and then pushes out the remaining rows. The Hash Match operator performs a Hashing function on each row as it comes in, and then looks to see if it’s created a Hash it’s seen before. If not, it pushes the row out. The Sort method is quicker, but has to wait until it’s gathered all the data before it can do the sort, and therefore blocks the data flow. But that was my last post. This one’s a bit different. This post is going to look at how Aggregate functions work, which ties nicely into this month’s T-SQL Tuesday. I’ve frequently explained about the fact that DISTINCT and GROUP BY are essentially the same function, although DISTINCT is the poorer cousin because you have less control over it, and you can’t apply aggregate functions. Just like the operators used for Distinct, there are different flavours of Aggregate operators – coming in blocking and non-blocking varieties. The example I like to use to explain this is a pile of playing cards. If I’m handed a pile of cards and asked to count how many cards there are in each suit, it’s going to help if the cards are already ordered. Suppose I’m playing a game of Bridge, I can easily glance at my hand and count how many there are in each suit, because I keep the pile of cards in order. Moving from left to right, I could tell you I have four Hearts in my hand, even before I’ve got to the end. By telling you that I have four Hearts as soon as I know, I demonstrate the principle of a non-blocking operation. This is known as a Stream Aggregate operation. It requires input which is sorted by whichever columns the grouping is on, and it will release a row as soon as the group changes – when I encounter a Spade, I know I don’t have any more Hearts in my hand. Alternatively, if the pile of cards are not sorted, I won’t know how many Hearts I have until I’ve looked through all the cards. In fact, to count them, I basically need to put them into little piles, and when I’ve finished making all those piles, I can count how many there are in each. Because I don’t know any of the final numbers until I’ve seen all the cards, this is blocking. This performs the aggregate function using a Hash Match. Observant readers will remember this from my Distinct example. You might remember that my earlier Hash Match operation – used for Distinct Flow – wasn’t blocking. But this one is. They’re essentially doing a similar operation, applying a Hash function to some data and seeing if the set of values have been seen before, but before, it needs more information than the mere existence of a new set of values, it needs to consider how many of them there are. A lot is dependent here on whether the data coming out of the source is sorted or not, and this is largely determined by the indexes that are being used. If you look in the Properties of an Index Scan, you’ll be able to see whether the order of the data is required by the plan. A property called Ordered will demonstrate this. In this particular example, the second plan is significantly faster, but is dependent on having ordered data. In fact, if I force a Stream Aggregate on unordered data (which I’m doing by telling it to use a different index), a Sort operation is needed, which makes my plan a lot slower. This is all very straight-forward stuff, and information that most people are fully aware of. I’m sure you’ve all read my good friend Paul White (@sql_kiwi)’s post on how the Query Optimizer chooses which type of aggregate function to apply. But let’s take a look at SQL Server Integration Services. SSIS gives us a Aggregate transformation for use in Data Flow Tasks, but it’s described as Blocking. The definitive article on Performance Tuning SSIS uses Sort and Aggregate as examples of Blocking Transformations. I’ve just shown you that Aggregate operations used by the Query Optimizer are not always blocking, but that the SSIS Aggregate component is an example of a blocking transformation. But is it always the case? After all, there are plenty of SSIS Performance Tuning talks out there that describe the value of sorted data in Data Flow Tasks, describing the IsSorted property that can be set through the Advanced Editor of your Source component. And so I set about testing the Aggregate transformation in SSIS, to prove for sure whether providing Sorted data would let the Aggregate transform behave like a Stream Aggregate. (Of course, I knew the answer already, but it helps to be able to demonstrate these things). A query that will produce a million rows in order was in order. Let me rephrase. I used a query which produced the numbers from 1 to 1000000, in a single field, ordered. The IsSorted flag was set on the source output, with the only column as SortKey 1. Performing an Aggregate function over this (counting the number of rows per distinct number) should produce an additional column with 1 in it. If this were being done in T-SQL, the ordered data would allow a Stream Aggregate to be used. In fact, if the Query Optimizer saw that the field had a Unique Index on it, it would be able to skip the Aggregate function completely, and just insert the value 1. This is a shortcut I wouldn’t be expecting from SSIS, but certainly the Stream behaviour would be nice. Unfortunately, it’s not the case. As you can see from the screenshots above, the data is pouring into the Aggregate function, and not being released until all million rows have been seen. It’s not doing a Stream Aggregate at all. This is expected behaviour. (I put that in bold, because I want you to realise this.) An SSIS transformation is a piece of code that runs. It’s a physical operation. When you write T-SQL and ask for an aggregation to be done, it’s a logical operation. The physical operation is either a Stream Aggregate or a Hash Match. In SSIS, you’re telling the system that you want a generic Aggregation, that will have to work with whatever data is passed in. I’m not saying that it wouldn’t be possible to make a sometimes-blocking aggregation component in SSIS. A Custom Component could be created which could detect whether the SortKeys columns of the input matched the Grouping columns of the Aggregation, and either call the blocking code or the non-blocking code as appropriate. One day I’ll make one of those, and publish it on my blog. I’ve done it before with a Script Component, but as Script components are single-use, I was able to handle the data knowing everything about my data flow already. As per my previous post – there are a lot of aspects in which tuning SSIS and tuning execution plans use similar concepts. In both situations, it really helps to have a feel for what’s going on behind the scenes. Considering whether an operation is blocking or not is extremely relevant to performance, and that it’s not always obvious from the surface. In a future post, I’ll show the impact of blocking v non-blocking and synchronous v asynchronous components in SSIS, using some of LobsterPot’s Script Components and Custom Components as examples. When I get that sorted, I’ll make a Stream Aggregate component available for download.

    Read the article

  • The blocking nature of aggregates

    - by Rob Farley
    I wrote a post recently about how query tuning isn’t just about how quickly the query runs – that if you have something (such as SSIS) that is consuming your data (and probably introducing a bottleneck), then it might be more important to have a query which focuses on getting the first bit of data out. You can read that post here.  In particular, we looked at two operators that could be used to ensure that a query returns only Distinct rows. and The Sort operator pulls in all the data, sorts it (discarding duplicates), and then pushes out the remaining rows. The Hash Match operator performs a Hashing function on each row as it comes in, and then looks to see if it’s created a Hash it’s seen before. If not, it pushes the row out. The Sort method is quicker, but has to wait until it’s gathered all the data before it can do the sort, and therefore blocks the data flow. But that was my last post. This one’s a bit different. This post is going to look at how Aggregate functions work, which ties nicely into this month’s T-SQL Tuesday. I’ve frequently explained about the fact that DISTINCT and GROUP BY are essentially the same function, although DISTINCT is the poorer cousin because you have less control over it, and you can’t apply aggregate functions. Just like the operators used for Distinct, there are different flavours of Aggregate operators – coming in blocking and non-blocking varieties. The example I like to use to explain this is a pile of playing cards. If I’m handed a pile of cards and asked to count how many cards there are in each suit, it’s going to help if the cards are already ordered. Suppose I’m playing a game of Bridge, I can easily glance at my hand and count how many there are in each suit, because I keep the pile of cards in order. Moving from left to right, I could tell you I have four Hearts in my hand, even before I’ve got to the end. By telling you that I have four Hearts as soon as I know, I demonstrate the principle of a non-blocking operation. This is known as a Stream Aggregate operation. It requires input which is sorted by whichever columns the grouping is on, and it will release a row as soon as the group changes – when I encounter a Spade, I know I don’t have any more Hearts in my hand. Alternatively, if the pile of cards are not sorted, I won’t know how many Hearts I have until I’ve looked through all the cards. In fact, to count them, I basically need to put them into little piles, and when I’ve finished making all those piles, I can count how many there are in each. Because I don’t know any of the final numbers until I’ve seen all the cards, this is blocking. This performs the aggregate function using a Hash Match. Observant readers will remember this from my Distinct example. You might remember that my earlier Hash Match operation – used for Distinct Flow – wasn’t blocking. But this one is. They’re essentially doing a similar operation, applying a Hash function to some data and seeing if the set of values have been seen before, but before, it needs more information than the mere existence of a new set of values, it needs to consider how many of them there are. A lot is dependent here on whether the data coming out of the source is sorted or not, and this is largely determined by the indexes that are being used. If you look in the Properties of an Index Scan, you’ll be able to see whether the order of the data is required by the plan. A property called Ordered will demonstrate this. In this particular example, the second plan is significantly faster, but is dependent on having ordered data. In fact, if I force a Stream Aggregate on unordered data (which I’m doing by telling it to use a different index), a Sort operation is needed, which makes my plan a lot slower. This is all very straight-forward stuff, and information that most people are fully aware of. I’m sure you’ve all read my good friend Paul White (@sql_kiwi)’s post on how the Query Optimizer chooses which type of aggregate function to apply. But let’s take a look at SQL Server Integration Services. SSIS gives us a Aggregate transformation for use in Data Flow Tasks, but it’s described as Blocking. The definitive article on Performance Tuning SSIS uses Sort and Aggregate as examples of Blocking Transformations. I’ve just shown you that Aggregate operations used by the Query Optimizer are not always blocking, but that the SSIS Aggregate component is an example of a blocking transformation. But is it always the case? After all, there are plenty of SSIS Performance Tuning talks out there that describe the value of sorted data in Data Flow Tasks, describing the IsSorted property that can be set through the Advanced Editor of your Source component. And so I set about testing the Aggregate transformation in SSIS, to prove for sure whether providing Sorted data would let the Aggregate transform behave like a Stream Aggregate. (Of course, I knew the answer already, but it helps to be able to demonstrate these things). A query that will produce a million rows in order was in order. Let me rephrase. I used a query which produced the numbers from 1 to 1000000, in a single field, ordered. The IsSorted flag was set on the source output, with the only column as SortKey 1. Performing an Aggregate function over this (counting the number of rows per distinct number) should produce an additional column with 1 in it. If this were being done in T-SQL, the ordered data would allow a Stream Aggregate to be used. In fact, if the Query Optimizer saw that the field had a Unique Index on it, it would be able to skip the Aggregate function completely, and just insert the value 1. This is a shortcut I wouldn’t be expecting from SSIS, but certainly the Stream behaviour would be nice. Unfortunately, it’s not the case. As you can see from the screenshots above, the data is pouring into the Aggregate function, and not being released until all million rows have been seen. It’s not doing a Stream Aggregate at all. This is expected behaviour. (I put that in bold, because I want you to realise this.) An SSIS transformation is a piece of code that runs. It’s a physical operation. When you write T-SQL and ask for an aggregation to be done, it’s a logical operation. The physical operation is either a Stream Aggregate or a Hash Match. In SSIS, you’re telling the system that you want a generic Aggregation, that will have to work with whatever data is passed in. I’m not saying that it wouldn’t be possible to make a sometimes-blocking aggregation component in SSIS. A Custom Component could be created which could detect whether the SortKeys columns of the input matched the Grouping columns of the Aggregation, and either call the blocking code or the non-blocking code as appropriate. One day I’ll make one of those, and publish it on my blog. I’ve done it before with a Script Component, but as Script components are single-use, I was able to handle the data knowing everything about my data flow already. As per my previous post – there are a lot of aspects in which tuning SSIS and tuning execution plans use similar concepts. In both situations, it really helps to have a feel for what’s going on behind the scenes. Considering whether an operation is blocking or not is extremely relevant to performance, and that it’s not always obvious from the surface. In a future post, I’ll show the impact of blocking v non-blocking and synchronous v asynchronous components in SSIS, using some of LobsterPot’s Script Components and Custom Components as examples. When I get that sorted, I’ll make a Stream Aggregate component available for download.

    Read the article

  • Creating an SMF service for mercurial web server

    - by Chris W Beal
    I'm working on a project at the moment, which has a number of contributers. We're managing the project gate (which is stand alone) with mercurial. We want to have an easy way of seeing the changelog, so we can show management what is going on.  Luckily mercurial provides a basic web server which allows you to see the changes, and drill in to change sets. This can be run as a daemon, but as it was running on our build server, every time it was rebooted, someone needed to remember to start the process again. This is of course a classic usage of SMF. Now I'm not an experienced person at writing SMF services, so it took me 1/2 an hour or so to figure it out the first time. But going forward I should know what I'm doing a bit better. I did reference this doc extensively. Taking a step back, the command to start the mercurial web server is $ hg serve -p <port number> -d So we somehow need to get SMF to run that command for us. In the simplest form, SMF services are really made up of two components. The manifest Usually lives in /var/svc/manifest somewhere Can be imported from any location The method Usually live in /lib/svc/method I simply put the script straight in that directory. Not very repeatable, but it worked Can take an argument of start, stop, or refresh Lets start with the manifest. This looks pretty complex, but all it's doing is describing the service name, the dependencies, the start and stop methods, and some properties. The properties can be by instance, that is to say I could have multiple hg serve processes handling different mercurial projects, on different ports simultaneously Here is the manifest I wrote. I stole extensively from the examples in the Documentation. So my manifest looks like this $ cat hg-serve.xml <?xml version="1.0"?> <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type='manifest' name='hg-serve'> <service name='application/network/hg-serve' type='service' version='1'> <dependency name='network' grouping='require_all' restart_on='none' type='service'> <service_fmri value='svc:/milestone/network:default' /> </dependency> <exec_method type='method' name='start' exec='/lib/svc/method/hg-serve %m' timeout_seconds='2' /> <exec_method type='method' name='stop' exec=':kill' timeout_seconds='2'> </exec_method> <instance name='project-gate' enabled='true'> <method_context> <method_credential user='root' group='root' /> </method_context> <property_group name='hg-serve' type='application'> <propval name='path' type='astring' value='/src/project-gate'/> <propval name='port' type='astring' value='9998' /> </property_group> </instance> <stability value='Evolving' /> <template> <common_name> <loctext xml:lang='C'>hg-serve</loctext> </common_name> <documentation> <manpage title='hg' section='1' /> </documentation> </template> </service> </service_bundle> So the only things I had to decide on in this are the service name "application/network/hg-serve" the start and stop methods (more of which later) and the properties. This is the information I need to pass to the start method script. In my case the port I want to start the web server on "9998", and the path to the source gate "/src/project-gate". These can be read in to the start method. So now lets look at the method scripts $ cat /lib/svc/method/hg-serve #!/sbin/sh # # # Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved. # # Standard prolog # . /lib/svc/share/smf_include.sh if [ -z $SMF_FMRI ]; then echo "SMF framework variables are not initialized." exit $SMF_EXIT_ERR fi # # Build the command line flags # # Get the port and directory from the SMF properties port=`svcprop -c -p hg-serve/port $SMF_FMRI` dir=`svcprop -c -p hg-serve/path $SMF_FMRI` echo "$1" case "$1" in 'start') cd $dir /usr/bin/hg serve -d -p $port ;; *) echo "Usage: $0 {start|refresh|stop}" exit 1 ;; esac exit $SMF_EXIT_OK This is all pretty self explanatory, we read the port and directory using svcprop, and use those simply to run a command in the start case. We don't need to implement a stop case, as the manifest says to use "exec=':kill'for the stop method. Now all we need to do is import the manifest and start the service, but first verify the manifest # svccfg verify /path/to/hg-serve.xml If that doesn't give an error try importing it # svccfg import /path/to/hg-serve.xml If like me you originally put the hg-serve.xml file in /var/svc/manifest somewhere you'll get an error and told to restart the import service svccfg: Restarting svc:/system/manifest-import The manifest being imported is from a standard location and should be imported with the command : svcadm restart svc:/system/manifest-import # svcadm restart svc:/system/manifest-import and you're nearly done. You can look at the service using svcs -l # svcs -l hg-serve fmri svc:/application/network/hg-serve:project-gate name hg-serve enabled false state disabled next_state none state_time Thu May 31 16:11:47 2012 logfile /var/svc/log/application-network-hg-serve:project-gate.log restarter svc:/system/svc/restarter:default contract_id 15749 manifest /var/svc/manifest/network/hg/hg-serve.xml dependency require_all/none svc:/milestone/network:default (online) And look at the interesting properties # svcprop hg-serve hg-serve/path astring /src/project-gate hg-serve/port astring 9998 ...stuff deleted.... Then simply enable the service and if every things gone right, you can point your browser at http://server:9998 and get a nice graphical log of project activity. # svcadm enable hg-serve # svcs -l hg-serve fmri svc:/application/network/hg-serve:project-gate name hg-serve enabled true state online next_state none state_time Thu May 31 16:18:11 2012 logfile /var/svc/log/application-network-hg-serve:project-gate.log restarter svc:/system/svc/restarter:default contract_id 15858 manifest /var/svc/manifest/network/hg/hg-serve.xml dependency require_all/none svc:/milestone/network:default (online) None of this is rocket science, but a bit fiddly. Hence I thought I'd blog it. It might just be you see this in google and it clicks with you more than one of the many other blogs or how tos about it. Plus I can always refer back to it myself in 3 weeks, when I want to add another project to the server, and I've forgotten how to do it.

    Read the article

  • Improved Performance on PeopleSoft Combined Benchmark using SPARC T4-4

    - by Brian
    Oracle's SPARC T4-4 server running Oracle's PeopleSoft HCM 9.1 combined online and batch benchmark achieved a world record 18,000 concurrent users experiencing subsecond response time while executing a PeopleSoft Payroll batch job of 500,000 employees in 32.4 minutes. This result was obtained with a SPARC T4-4 server running Oracle Database 11g Release 2, a SPARC T4-4 server running PeopleSoft HCM 9.1 application server and a SPARC T4-2 server running Oracle WebLogic Server in the web tier. The SPARC T4-4 server running the application tier used Oracle Solaris Zones which provide a flexible, scalable and manageable virtualization environment. The average CPU utilization on the SPARC T4-2 server in the web tier was 17%, on the SPARC T4-4 server in the application tier it was 59%, and on the SPARC T4-4 server in the database tier was 47% (online and batch) leaving significant headroom for additional processing across the three tiers. The SPARC T4-4 server used for the database tier hosted Oracle Database 11g Release 2 using Oracle Automatic Storage Management (ASM) for database files management with I/O performance equivalent to raw devices. Performance Landscape Results are presented for the PeopleSoft HRMS Self-Service and Payroll combined benchmark. The new result with 128 streams shows significant improvement in the payroll batch processing time with little impact on the self-service component response time. PeopleSoft HRMS Self-Service and Payroll Benchmark Systems Users Ave Response Search (sec) Ave Response Save (sec) Batch Time (min) Streams SPARC T4-2 (web) SPARC T4-4 (app) SPARC T4-4 (db) 18,000 0.988 0.539 32.4 128 SPARC T4-2 (web) SPARC T4-4 (app) SPARC T4-4 (db) 18,000 0.944 0.503 43.3 64 The following results are for the PeopleSoft HRMS Self-Service benchmark that was previous run. The results are not directly comparable with the combined results because they do not include the payroll component. PeopleSoft HRMS Self-Service 9.1 Benchmark Systems Users Ave Response Search (sec) Ave Response Save (sec) Batch Time (min) Streams SPARC T4-2 (web) SPARC T4-4 (app) 2x SPARC T4-2 (db) 18,000 1.048 0.742 N/A N/A The following results are for the PeopleSoft Payroll benchmark that was previous run. The results are not directly comparable with the combined results because they do not include the self-service component. PeopleSoft Payroll (N.A.) 9.1 - 500K Employees (7 Million SQL PayCalc, Unicode) Systems Users Ave Response Search (sec) Ave Response Save (sec) Batch Time (min) Streams SPARC T4-4 (db) N/A N/A N/A 30.84 96 Configuration Summary Application Configuration: 1 x SPARC T4-4 server with 4 x SPARC T4 processors, 3.0 GHz 512 GB memory Oracle Solaris 11 11/11 PeopleTools 8.52 PeopleSoft HCM 9.1 Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031 Java Platform, Standard Edition Development Kit 6 Update 32 Database Configuration: 1 x SPARC T4-4 server with 4 x SPARC T4 processors, 3.0 GHz 256 GB memory Oracle Solaris 11 11/11 Oracle Database 11g Release 2 PeopleTools 8.52 Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031 Micro Focus Server Express (COBOL v 5.1.00) Web Tier Configuration: 1 x SPARC T4-2 server with 2 x SPARC T4 processors, 2.85 GHz 256 GB memory Oracle Solaris 11 11/11 PeopleTools 8.52 Oracle WebLogic Server 10.3.4 Java Platform, Standard Edition Development Kit 6 Update 32 Storage Configuration: 1 x Sun Server X2-4 as a COMSTAR head for data 4 x Intel Xeon X7550, 2.0 GHz 128 GB memory 1 x Sun Storage F5100 Flash Array (80 flash modules) 1 x Sun Storage F5100 Flash Array (40 flash modules) 1 x Sun Fire X4275 as a COMSTAR head for redo logs 12 x 2 TB SAS disks with Niwot Raid controller Benchmark Description This benchmark combines PeopleSoft HCM 9.1 HR Self Service online and PeopleSoft Payroll batch workloads to run on a unified database deployed on Oracle Database 11g Release 2. The PeopleSoft HRSS benchmark kit is a Oracle standard benchmark kit run by all platform vendors to measure the performance. It's an OLTP benchmark where DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published. PeopleSoft HR SS defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consist of 14 scenarios which emulate users performing typical HCM transactions such as viewing paycheck, promoting and hiring employees, updating employee profile and other typical HCM application transactions. All these transactions are well-defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. This benchmark metric is the weighted average response search/save time for all the transactions. The PeopleSoft 9.1 Payroll (North America) benchmark demonstrates system performance for a range of processing volumes in a specific configuration. This workload represents large batch runs typical of a ERP environment during a mass update. The benchmark measures five application business process run times for a database representing large organization. They are Paysheet Creation, Payroll Calculation, Payroll Confirmation, Print Advice forms, and Create Direct Deposit File. The benchmark metric is the cumulative elapsed time taken to complete the Paysheet Creation, Payroll Calculation and Payroll Confirmation business application processes. The benchmark metrics are taken for each respective benchmark while running simultaneously on the same database back-end. Specifically, the payroll batch processes are started when the online workload reaches steady state (the maximum number of online users) and overlap with online transactions for the duration of the steady state. Key Points and Best Practices Two PeopleSoft Domain sets with 200 application servers each on a SPARC T4-4 server were hosted in 2 separate Oracle Solaris Zones to demonstrate consolidation of multiple application servers, ease of administration and performance tuning. Each Oracle Solaris Zone was bound to a separate processor set, each containing 15 cores (total 120 threads). The default set (1 core from first and third processor socket, total 16 threads) was used for network and disk interrupt handling. This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors and offload I/O interrupt handling to default set threads, freeing up cpu resources for Application Servers threads and balancing application workload across 240 threads. A total of 128 PeopleSoft streams server processes where used on the database node to complete payroll batch job of 500,000 employees in 32.4 minutes. See Also Oracle PeopleSoft Benchmark White Papers oracle.com SPARC T4-2 Server oracle.com OTN SPARC T4-4 Server oracle.com OTN PeopleSoft Enterprise Human Capital Managementoracle.com OTN PeopleSoft Enterprise Human Capital Management (Payroll) oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 8 November 2012.

    Read the article

  • Working With Extended Events

    - by Fatherjack
    SQL Server 2012 has made working with Extended Events (XE) pretty simple when it comes to what sessions you have on your servers and what options you have selected and so forth but if you are like me then you still have some SQL Server instances that are 2008 or 2008 R2. For those servers there is no built-in way to view the Extended Event sessions in SSMS. I keep coming up against the same situations – Where are the xel log files? What events, actions or predicates are set for the events on the server? What sessions are there on the server already? I got tired of this being a perpetual question and wrote some TSQL to save as a snippet in SQL Prompt so that these details are permanently only a couple of clicks away. First, some history. If you just came here for the code skip down a few paragraphs and it’s all there. If you want a little time to reminisce about SQL Server then stick with me through the next paragraph or two. We are in a bit of a cross-over period currently, there are many versions of SQL Server but I would guess that SQL Server 2008, 2008 R2 and 2012 comprise the majority of installations. With each of these comes a set of management tools, of which SQL Server Management Studio (SSMS) is one. In 2008 and 2008 R2 Extended Events made their first appearance and there was no way to work with them in the SSMS interface. At some point the Extended Events guru Jonathan Kehayias (http://www.sqlskills.com/blogs/jonathan/) created the SQL Server 2008 Extended Events SSMS Addin which is really an excellent tool to ease XE session administration. This addin will install in SSMS 2008 or 2008R2 but not SSMS 2012. If you use a compatible version of SSMS then I wholly recommend downloading and using it to make your work with XE much easier. If you have SSMS 2012 installed, and there is no reason not to as it will let you work with all versions of SQL Server, then you cannot install this addin. If you are working with SQL Server 2012 then SSMS 2012 has built in functionality to manage XE sessions – this functionality does not apply for 2008 or 2008 R2 instances though. This means you are somewhat restricted and have to use TSQL to manage XE sessions on older versions of SQL Server. OK, those of you that skipped ahead for the code, you need to start from here: So, you are working with SSMS 2012 but have a SQL Server that is an earlier version that needs an XE session created or you think there is a session created but you aren’t sure, or you know it’s there but can’t remember if it is running and where the output is going. How do you find out? Well, none of the information is hidden as such but it is a bit of a wrangle to locate it and it isn’t a lot of code that is unlikely to remain in your memory. I have created two pieces of code. The first examines the SYS.Server_Event_… management views in combination with the SYS.DM_XE_… management views to give the name of all sessions that exist on the server, regardless of whether they are running or not and two pieces of TSQL code. One piece will alter the state of the session: if the session is running then the code will stop the session if executed and vice versa. The other piece of code will drop the selected session. If the session is running then the code will stop it first. Do not execute the DROP code unless you are sure you have the Create code to hand. It will be dropped from the server without a second chance to change your mind. /**************************************************************/ /***   To locate and describe event sessions on a server    ***/ /***                                                        ***/ /***   Generates TSQL to start/stop/drop sessions           ***/ /***                                                        ***/ /***        Jonathan Allen - @fatherjack                    ***/ /***                 June 2013                                ***/ /***                                                        ***/ /**************************************************************/ SELECT  [EES].[name] AS [Session Name - all sessions] ,         CASE WHEN [MXS].[name] IS NULL THEN ISNULL([MXS].[name], 'Stopped')              ELSE 'Running'         END AS SessionState ,         CASE WHEN [MXS].[name] IS NULL              THEN ISNULL([MXS].[name],                          'ALTER EVENT SESSION [' + [EES].[name]                          + '] ON SERVER STATE = START;')              ELSE 'ALTER EVENT SESSION [' + [EES].[name]                   + '] ON SERVER STATE = STOP;'         END AS ALTER_SessionState ,         CASE WHEN [MXS].[name] IS NULL              THEN ISNULL([MXS].[name],                          'DROP EVENT SESSION [' + [EES].[name]                          + '] ON SERVER; -- This WILL drop the session. It will no longer exist. Don't do it unless you are certain you can recreate it if you need it.')              ELSE 'ALTER EVENT SESSION [' + [EES].[name]                   + '] ON SERVER STATE = STOP; ' + CHAR(10)                   + '-- DROP EVENT SESSION [' + [EES].[name]                   + '] ON SERVER; -- This WILL stop and drop the session. It will no longer exist. Don't do it unless you are certain you can recreate it if you need it.'         END AS DROP_Session FROM    [sys].[server_event_sessions] AS EES         LEFT JOIN [sys].[dm_xe_sessions] AS MXS ON [EES].[name] = [MXS].[name] WHERE   [EES].[name] NOT IN ( 'system_health', 'AlwaysOn_health' ) ORDER BY SessionState GO I have excluded the system_health and AlwaysOn sessions as I don’t want to accidentally execute the drop script for these sessions that are created as part of the SQL Server installation. It is possible to recreate the sessions but that is a whole lot of aggravation I’d rather avoid. The second piece of code gathers details of running XE sessions only and provides information on the Events being collected, any predicates that are set on those events, the actions that are set to be collected, where the collected information is being logged and if that logging is to a file target, where that file is located. /**********************************************/ /***    Running Session summary                ***/ /***                                        ***/ /***    Details key values of XE sessions     ***/ /***    that are in a running state            ***/ /***                                        ***/ /***        Jonathan Allen - @fatherjack    ***/ /***        June 2013                        ***/ /***                                        ***/ /**********************************************/ SELECT  [EES].[name] AS [Session Name - running sessions] ,         [EESE].[name] AS [Event Name] ,         COALESCE([EESE].[predicate], 'unfiltered') AS [Event Predicate Filter(s)] ,         [EESA].[Action] AS [Event Action(s)] ,         [EEST].[Target] AS [Session Target(s)] ,         ISNULL([EESF].[value], 'No file target in use') AS [File_Target_UNC] -- select * FROM    [sys].[server_event_sessions] AS EES         INNER JOIN [sys].[dm_xe_sessions] AS MXS ON [EES].[name] = [MXS].[name]         INNER JOIN [sys].[server_event_session_events] AS [EESE] ON [EES].[event_session_id] = [EESE].[event_session_id]         LEFT JOIN [sys].[server_event_session_fields] AS EESF ON ( [EES].[event_session_id] = [EESF].[event_session_id]                                                               AND [EESF].[name] = 'filename'                                                               )         CROSS APPLY ( SELECT    STUFF(( SELECT  ', ' + sest.name                                         FROM    [sys].[server_event_session_targets]                                                 AS SEST                                         WHERE   [EES].[event_session_id] = [SEST].[event_session_id]                                       FOR                                         XML PATH('')                                       ), 1, 2, '') AS [Target]                     ) AS EEST         CROSS APPLY ( SELECT    STUFF(( SELECT  ', ' + [sesa].NAME                                         FROM    [sys].[server_event_session_actions]                                                 AS sesa                                         WHERE   [sesa].[event_session_id] = [EES].[event_session_id]                                       FOR                                         XML PATH('')                                       ), 1, 2, '') AS [Action]                     ) AS EESA WHERE   [EES].[name] NOT IN ( 'system_health', 'AlwaysOn_health' ) /*Optional to exclude 'out-of-the-box' traces*/ I hope that these scripts are useful to you and I would be obliged if you would keep my name in the script comments. I have no problem with you using it in production or personal circumstances, however it has no warranty or guarantee. Don’t use it unless you understand it and are happy with what it is going to do. I am not ever responsible for the consequences of executing this script on your servers.

    Read the article

  • Anatomy of a .NET Assembly - Custom attribute encoding

    - by Simon Cooper
    In my previous post, I covered how field, method, and other types of signatures are encoded in a .NET assembly. Custom attribute signatures differ quite a bit from these, which consequently affects attribute specifications in C#. Custom attribute specifications In C#, you can apply a custom attribute to a type or type member, specifying a constructor as well as the values of fields or properties on the attribute type: public class ExampleAttribute : Attribute { public ExampleAttribute(int ctorArg1, string ctorArg2) { ... } public Type ExampleType { get; set; } } [Example(5, "6", ExampleType = typeof(string))] public class C { ... } How does this specification actually get encoded and stored in an assembly? Specification blob values Custom attribute specification signatures use the same building blocks as other types of signatures; the ELEMENT_TYPE structure. However, they significantly differ from other types of signatures, in that the actual parameter values need to be stored along with type information. There are two types of specification arguments in a signature blob; fixed args and named args. Fixed args are the arguments to the attribute type constructor, named arguments are specified after the constructor arguments to provide a value to a field or property on the constructed attribute type (PropertyName = propValue) Values in an attribute blob are limited to one of the basic types (one of the number types, character, or boolean), a reference to a type, an enum (which, in .NET, has to use one of the integer types as a base representation), or arrays of any of those. Enums and the basic types are easy to store in a blob - you simply store the binary representation. Strings are stored starting with a compressed integer indicating the length of the string, followed by the UTF8 characters. Array values start with an integer indicating the number of elements in the array, then the item values concatentated together. Rather than using a coded token, Type values are stored using a string representing the type name and fully qualified assembly name (for example, MyNs.MyType, MyAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToken=0123456789abcdef). If the type is in the current assembly or mscorlib then just the type name can be used. This is probably done to prevent direct references between assemblies solely because of attribute specification arguments; assemblies can be loaded in the reflection-only context and attribute arguments still processed, without loading the entire assembly. Fixed and named arguments Each entry in the CustomAttribute metadata table contains a reference to the object the attribute is applied to, the attribute constructor, and the specification blob. The number and type of arguments to the constructor (the fixed args) can be worked out by the method signature referenced by the attribute constructor, and so the fixed args can simply be concatenated together in the blob without any extra type information. Named args are different. These specify the value to assign to a field or property once the attribute type has been constructed. In the CLR, fields and properties can be overloaded just on their type; different fields and properties can have the same name. Therefore, to uniquely identify a field or property you need: Whether it's a field or property (indicated using byte values 0x53 and 0x54, respectively) The field or property type The field or property name After the fixed arg values is a 2-byte number specifying the number of named args in the blob. Each named argument has the above information concatenated together, mostly using the basic ELEMENT_TYPE values, in the same way as a method or field signature. A Type argument is represented using the byte 0x50, and an enum argument is represented using the byte 0x55 followed by a string specifying the name and assembly of the enum type. The named argument property information is followed by the argument value, using the same encoding as fixed args. Boxed objects This would be all very well, were it not for object and object[]. Arguments and properties of type object allow a value of any allowed argument type to be specified. As a result, more information needs to be specified in the blob to interpret the argument bytes as the correct type. So, the argument value is simple prepended with the type of the value by specifying the ELEMENT_TYPE or name of the enum the value represents. For named arguments, a field or property of type object is represented using the byte 0x51, with the actual type specified in the argument value. Some examples... All property signatures start with the 2-byte value 0x0001. Similar to my previous post in the series, names in capitals correspond to a particular byte value in the ELEMENT_TYPE structure. For strings, I'll simply give the string value, rather than the length and UTF8 encoding in the actual blob. I'll be using the following enum and attribute types to demonstrate specification encodings: class AttrAttribute : Attribute { public AttrAttribute() {} public AttrAttribute(Type[] tArray) {} public AttrAttribute(object o) {} public AttrAttribute(MyEnum e) {} public AttrAttribute(ushort x, int y) {} public AttrAttribute(string str, Type type1, Type type2) {} public int Prop1 { get; set; } public object Prop2 { get; set; } public object[] ObjectArray; } enum MyEnum : int { Val1 = 1, Val2 = 2 } Now, some examples: Here, the the specification binds to the (ushort, int) attribute constructor, with fixed args only. The specification blob starts off with a prolog, followed by the two constructor arguments, then the number of named arguments (zero): [Attr(42, 84)] 0x0001 0x002a 0x00000054 0x0000 An example of string and type encoding: [Attr("MyString", typeof(Array), typeof(System.Windows.Forms.Form))] 0x0001 "MyString" "System.Array" "System.Windows.Forms.Form, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" 0x0000 As you can see, the full assembly specification of a type is only needed if the type isn't in the current assembly or mscorlib. Note, however, that the C# compiler currently chooses to fully-qualify mscorlib types anyway. An object argument (this binds to the object attribute constructor), and two named arguments (a null string is represented by 0xff and the empty string by 0x00) [Attr((ushort)40, Prop1 = 12, Prop2 = "")] 0x0001 U2 0x0028 0x0002 0x54 I4 "Prop1" 0x0000000c 0x54 0x51 "Prop2" STRING 0x00 Right, more complicated now. A type array as a fixed argument: [Attr(new[] { typeof(string), typeof(object) })] 0x0001 0x00000002 // the number of elements "System.String" "System.Object" 0x0000 An enum value, which is simply represented using the underlying value. The CLR works out that it's an enum using information in the attribute constructor signature: [Attr(MyEnum.Val1)] 0x0001 0x00000001 0x0000 And finally, a null array, and an object array as a named argument: [Attr((Type[])null, ObjectArray = new object[] { (byte)2, typeof(decimal), null, MyEnum.Val2 })] 0x0001 0xffffffff 0x0001 0x53 SZARRAY 0x51 "ObjectArray" 0x00000004 U1 0x02 0x50 "System.Decimal" STRING 0xff 0x55 "MyEnum" 0x00000002 As you'll notice, a null object is encoded as a null string value, and a null array is represented using a length of -1 (0xffffffff). How does this affect C#? So, we can now explain why the limits on attribute arguments are so strict in C#. Attribute specification blobs are limited to basic numbers, enums, types, and arrays. As you can see, this is because the raw CLR encoding can only accommodate those types. Special byte patterns have to be used to indicate object, string, Type, or enum values in named arguments; you can't specify an arbitary object type, as there isn't a generalised way of encoding the resulting value in the specification blob. In particular, decimal values can't be encoded, as it isn't a 'built-in' CLR type that has a native representation (you'll notice that decimal constants in C# programs are compiled as several integer arguments to DecimalConstantAttribute). Jagged arrays also aren't natively supported, although you can get around it by using an array as a value to an object argument: [Attr(new object[] { new object[] { new Type[] { typeof(string) } }, 42 })] Finally... Phew! That was a bit longer than I thought it would be. Custom attribute encodings are complicated! Hopefully this series has been an informative look at what exactly goes on inside a .NET assembly. In the next blog posts, I'll be carrying on with the 'Inside Red Gate' series.

    Read the article

  • J2EE Applications, SPARC T4, Solaris Containers, and Resource Pools

    - by user12620111
    I've obtained a substantial performance improvement on a SPARC T4-2 Server running a J2EE Application Server Cluster by deploying the cluster members into Oracle Solaris Containers and binding those containers to cores of the SPARC T4 Processor. This is not a surprising result, in fact, it is consistent with other results that are available on the Internet. See the "references", below, for some examples. Nonetheless, here is a summary of my configuration and results. (1.0) Before deploying a J2EE Application Server Cluster into a virtualized environment, many decisions need to be made. I'm not claiming that all of the decisions that I have a made will work well for every environment. In fact, I'm not even claiming that all of the decisions are the best possible for my environment. I'm only claiming that of the small sample of configurations that I've tested, this is the one that is working best for me. Here are some of the decisions that needed to be made: (1.1) Which virtualization option? There are several virtualization options and isolation levels that are available. Options include: Hard partitions:  Dynamic Domains on Sun SPARC Enterprise M-Series Servers Hypervisor based virtualization such as Oracle VM Server for SPARC (LDOMs) on SPARC T-Series Servers OS Virtualization using Oracle Solaris Containers Resource management tools in the Oracle Solaris OS to control the amount of resources an application receives, such as CPU cycles, physical memory, and network bandwidth. Oracle Solaris Containers provide the right level of isolation and flexibility for my environment. To borrow some words from my friends in marketing, "The SPARC T4 processor leverages the unique, no-cost virtualization capabilities of Oracle Solaris Zones"  (1.2) How to associate Oracle Solaris Containers with resources? There are several options available to associate containers with resources, including (a) resource pool association (b) dedicated-cpu resources and (c) capped-cpu resources. I chose to create resource pools and associate them with the containers because I wanted explicit control over the cores and virtual processors.  (1.3) Cluster Topology? Is it best to deploy (a) multiple application servers on one node, (b) one application server on multiple nodes, or (c) multiple application servers on multiple nodes? After a few quick tests, it appears that one application server per Oracle Solaris Container is a good solution. (1.4) Number of cluster members to deploy? I chose to deploy four big 64-bit application servers. I would like go back a test many 32-bit application servers, but that is left for another day. (2.0) Configuration tested. (2.1) I was using a SPARC T4-2 Server which has 2 CPU and 128 virtual processors. To understand the physical layout of the hardware on Solaris 10, I used the OpenSolaris psrinfo perl script available at http://hub.opensolaris.org/bin/download/Community+Group+performance/files/psrinfo.pl: test# ./psrinfo.pl -pv The physical processor has 8 cores and 64 virtual processors (0-63) The core has 8 virtual processors (0-7)   The core has 8 virtual processors (8-15)   The core has 8 virtual processors (16-23)   The core has 8 virtual processors (24-31)   The core has 8 virtual processors (32-39)   The core has 8 virtual processors (40-47)   The core has 8 virtual processors (48-55)   The core has 8 virtual processors (56-63)     SPARC-T4 (chipid 0, clock 2848 MHz) The physical processor has 8 cores and 64 virtual processors (64-127)   The core has 8 virtual processors (64-71)   The core has 8 virtual processors (72-79)   The core has 8 virtual processors (80-87)   The core has 8 virtual processors (88-95)   The core has 8 virtual processors (96-103)   The core has 8 virtual processors (104-111)   The core has 8 virtual processors (112-119)   The core has 8 virtual processors (120-127)     SPARC-T4 (chipid 1, clock 2848 MHz) (2.2) The "before" test: without processor binding. I started with a 4-member cluster deployed into 4 Oracle Solaris Containers. Each container used a unique gigabit Ethernet port for HTTP traffic. The containers shared a 10 gigabit Ethernet port for JDBC traffic. (2.3) The "after" test: with processor binding. I ran one application server in the Global Zone and another application server in each of the three non-global zones (NGZ):  (3.0) Configuration steps. The following steps need to be repeated for all three Oracle Solaris Containers. (3.1) Stop AppServers from the BUI. (3.2) Stop the NGZ. test# ssh test-z2 init 5 (3.3) Enable resource pools: test# svcadm enable pools (3.4) Create the resource pool: test# poolcfg -dc 'create pool pool-test-z2' (3.5) Create the processor set: test# poolcfg -dc 'create pset pset-test-z2' (3.6) Specify the maximum number of CPU's that may be addd to the processor set: test# poolcfg -dc 'modify pset pset-test-z2 (uint pset.max=32)' (3.7) bash syntax to add Virtual CPUs to the processor set: test# (( i = 64 )); while (( i < 96 )); do poolcfg -dc "transfer to pset pset-test-z2 (cpu $i)"; (( i = i + 1 )) ; done (3.8) Associate the resource pool with the processor set: test# poolcfg -dc 'associate pool pool-test-z2 (pset pset-test-z2)' (3.9) Tell the zone to use the resource pool that has been created: test# zonecfg -z test-z1 set pool=pool-test-z2 (3.10) Boot the Oracle Solaris Container test# zoneadm -z test-z2 boot (3.11) Save the configuration to /etc/pooladm.conf test# pooladm -s (4.0) Results. Using the resource pools improves both throughput and response time: (5.0) References: System Administration Guide: Oracle Solaris Containers-Resource Management and Oracle Solaris Zones Capitalizing on large numbers of processors with WebSphere Portal on Solaris WebSphere Application Server and T5440 (Dileep Kumar's Weblog)  http://www.brendangregg.com/zones.html Reuters Market Data System, RMDS 6 Multiple Instances (Consolidated), Performance Test Results in Solaris, Containers/Zones Environment on Sun Blade X6270 by Amjad Khan, 2009.

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 1

    - by Simon Cooper
    Before we look at the bytes comprising the CLR-specific data inside an assembly, we first need to understand the logical format of the metadata (For this post I only be looking at simple pure-IL assemblies; mixed-mode assemblies & other things complicates things quite a bit). Metadata streams Most of the CLR-specific data inside an assembly is inside one of 5 streams, which are analogous to the sections in a PE file. The name of each section in a PE file starts with a ., and the name of each stream in the CLR metadata starts with a #. All but one of the streams are heaps, which store unstructured binary data. The predefined streams are: #~ Also called the metadata stream, this stream stores all the information on the types, methods, fields, properties and events in the assembly. Unlike the other streams, the metadata stream has predefined contents & structure. #Strings This heap is where all the namespace, type & member names are stored. It is referenced extensively from the #~ stream, as we'll be looking at later. #US Also known as the user string heap, this stream stores all the strings used in code directly. All the strings you embed in your source code end up in here. This stream is only referenced from method bodies. #GUID This heap exclusively stores GUIDs used throughout the assembly. #Blob This heap is for storing pure binary data - method signatures, generic instantiations, that sort of thing. Items inside the heaps (#Strings, #US, #GUID and #Blob) are indexed using a simple binary offset from the start of the heap. At that offset is a coded integer giving the length of that item, then the item's bytes immediately follow. The #GUID stream is slightly different, in that GUIDs are all 16 bytes long, so a length isn't required. Metadata tables The #~ stream contains all the assembly metadata. The metadata is organised into 45 tables, which are binary arrays of predefined structures containing information on various aspects of the metadata. Each entry in a table is called a row, and the rows are simply concatentated together in the file on disk. For example, each row in the TypeRef table contains: A reference to where the type is defined (most of the time, a row in the AssemblyRef table). An offset into the #Strings heap with the name of the type An offset into the #Strings heap with the namespace of the type. in that order. The important tables are (with their table number in hex): 0x2: TypeDef 0x4: FieldDef 0x6: MethodDef 0x14: EventDef 0x17: PropertyDef Contains basic information on all the types, fields, methods, events and properties defined in the assembly. 0x1: TypeRef The details of all the referenced types defined in other assemblies. 0xa: MemberRef The details of all the referenced members of types defined in other assemblies. 0x9: InterfaceImpl Links the types defined in the assembly with the interfaces that type implements. 0xc: CustomAttribute Contains information on all the attributes applied to elements in this assembly, from method parameters to the assembly itself. 0x18: MethodSemantics Links properties and events with the methods that comprise the get/set or add/remove methods of the property or method. 0x1b: TypeSpec 0x2b: MethodSpec These tables provide instantiations of generic types and methods for each usage within the assembly. There are several ways to reference a single row within a table. The simplest is to simply specify the 1-based row index (RID). The indexes are 1-based so a value of 0 can represent 'null'. In this case, which table the row index refers to is inferred from the context. If the table can't be determined from the context, then a particular row is specified using a token. This is a 4-byte value with the most significant byte specifying the table, and the other 3 specifying the 1-based RID within that table. This is generally how a metadata table row is referenced from the instruction stream in method bodies. The third way is to use a coded token, which we will look at in the next post. So, back to the bytes Now we've got a rough idea of how the metadata is logically arranged, we can now look at the bytes comprising the start of the CLR data within an assembly: The first 8 bytes of the .text section are used by the CLR loader stub. After that, the CLR-specific data starts with the CLI header. I've highlighted the important bytes in the diagram. In order, they are: The size of the header. As the header is a fixed size, this is always 0x48. The CLR major version. This is always 2, even for .NET 4 assemblies. The CLR minor version. This is always 5, even for .NET 4 assemblies, and seems to be ignored by the runtime. The RVA and size of the metadata header. In the diagram, the RVA 0x20e4 corresponds to the file offset 0x2e4 Various flags specifying if this assembly is pure-IL, whether it is strong name signed, and whether it should be run as 32-bit (this is how the CLR differentiates between x86 and AnyCPU assemblies). A token pointing to the entrypoint of the assembly. In this case, 06 (the last byte) refers to the MethodDef table, and 01 00 00 refers to to the first row in that table. (after a gap) RVA of the strong name signature hash, which comes straight after the CLI header. The RVA 0x2050 corresponds to file offset 0x250. The rest of the CLI header is mainly used in mixed-mode assemblies, and so is zeroed in this pure-IL assembly. After the CLI header comes the strong name hash, which is a SHA-1 hash of the assembly using the strong name key. After that comes the bodies of all the methods in the assembly concatentated together. Each method body starts off with a header, which I'll be looking at later. As you can see, this is a very small assembly with only 2 methods (an instance constructor and a Main method). After that, near the end of the .text section, comes the metadata, containing a metadata header and the 5 streams discussed above. We'll be looking at this in the next post. Conclusion The CLI header data doesn't have much to it, but we've covered some concepts that will be important in later posts - the logical structure of the CLR metadata and the overall layout of CLR data within the .text section. Next, I'll have a look at the contents of the #~ stream, and how the table data is arranged on disk.

    Read the article

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • Given an XML which contains a representation of a graph, how to apply it DFS algorithm? [on hold]

    - by winston smith
    Given the followin XML which is a directed graph: <?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE graph PUBLIC "-//FC//DTD red//EN" "../dtd/graph.dtd"> <graph direct="1"> <vertex label="V0"/> <vertex label="V1"/> <vertex label="V2"/> <vertex label="V3"/> <vertex label="V4"/> <vertex label="V5"/> <edge source="V0" target="V1" weight="1"/> <edge source="V0" target="V4" weight="1"/> <edge source="V5" target="V2" weight="1"/> <edge source="V5" target="V4" weight="1"/> <edge source="V1" target="V2" weight="1"/> <edge source="V1" target="V3" weight="1"/> <edge source="V1" target="V4" weight="1"/> <edge source="V2" target="V3" weight="1"/> </graph> With this classes i parsed the graph and give it an adjacency list representation: import java.io.IOException; import java.util.HashSet; import java.util.LinkedList; import java.util.Collection; import java.util.Iterator; import java.util.logging.Level; import java.util.logging.Logger; import practica3.util.Disc; public class ParsingXML { public static void main(String[] args) { try { // TODO code application logic here Collection<Vertex> sources = new HashSet<Vertex>(); LinkedList<String> lines = Disc.readFile("xml/directed.xml"); for (String lin : lines) { int i = Disc.find(lin, "source=\""); String data = ""; if (i > 0 && i < lin.length()) { while (lin.charAt(i + 1) != '"') { data += lin.charAt(i + 1); i++; } Vertex v = new Vertex(); v.setName(data); v.setAdy(new HashSet<Vertex>()); sources.add(v); } } Iterator it = sources.iterator(); while (it.hasNext()) { Vertex ver = (Vertex) it.next(); Collection<Vertex> adyacencias = ver.getAdy(); LinkedList<String> ls = Disc.readFile("xml/graphs.xml"); for (String lin : ls) { int i = Disc.find(lin, "target=\""); String data = ""; if (lin.contains("source=\""+ver.getName())) { Vertex v = new Vertex(); if (i > 0 && i < lin.length()) { while (lin.charAt(i + 1) != '"') { data += lin.charAt(i + 1); i++; } v.setName(data); } i = Disc.find(lin, "weight=\""); data = ""; if (i > 0 && i < lin.length()) { while (lin.charAt(i + 1) != '"') { data += lin.charAt(i + 1); i++; } v.setWeight(Integer.parseInt(data)); } if (v.getName() != null) { adyacencias.add(v); } } } } for (Vertex vert : sources) { System.out.println(vert); System.out.println("adyacencias: " + vert.getAdy()); } } catch (IOException ex) { Logger.getLogger(ParsingXML.class.getName()).log(Level.SEVERE, null, ex); } } } This is another class: import java.util.Collection; import java.util.Objects; public class Vertex { private String name; private int weight; private Collection ady; public Collection getAdy() { return ady; } public void setAdy(Collection adyacencias) { this.ady = adyacencias; } public String getName() { return name; } public void setName(String nombre) { this.name = nombre; } public int getWeight() { return weight; } public void setWeight(int weight) { this.weight = weight; } @Override public int hashCode() { int hash = 7; hash = 43 * hash + Objects.hashCode(this.name); hash = 43 * hash + this.weight; return hash; } @Override public boolean equals(Object obj) { if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final Vertex other = (Vertex) obj; if (!Objects.equals(this.name, other.name)) { return false; } if (this.weight != other.weight) { return false; } return true; } @Override public String toString() { return "Vertice{" + "name=" + name + ", weight=" + weight + '}'; } } And finally: /** * * @author user */ /* -*-jde-*- */ /* <Disc.java> Contains the main argument*/ import java.io.*; import java.util.LinkedList; /** * Lectura y escritura de archivos en listas de cadenas * Ideal para el uso de las clases para gráficas. * * @author Peralta Santa Anna Victor Miguel * @since Julio 2011 */ public class Disc { /** * Metodo para lectura de un archivo * * @param fileName archivo que se va a leer * @return El archivo en representacion de lista de cadenas */ public static LinkedList<String> readFile(String fileName) throws IOException { BufferedReader file = new BufferedReader(new FileReader(fileName)); LinkedList<String> textlist = new LinkedList<String>(); while (file.ready()) { textlist.add(file.readLine().trim()); } file.close(); /* for(String linea:textlist){ if(linea.contains("source")){ //String generado = linea.replaceAll("<\\w+\\s+\"", ""); //System.out.println(generado); } }*/ return textlist; }//readFile public static int find(String linea,String palabra){ int i,j; boolean found = false; for(i=0,j=0;i<linea.length();i++){ if(linea.charAt(i)==palabra.charAt(j)){ j++; if(j==palabra.length()){ found = true; return i; } }else{ continue; } } if(!found){ i= -1; } return i; } /** * Metodo para la escritura de un archivo * * @param fileName archivo que se va a escribir * @param tofile la lista de cadenas que quedaran en el archivo * @param append el bit que dira si se anexa el contenido o se empieza de cero */ public static void writeFile(String fileName, LinkedList<String> tofile, boolean append) throws IOException { FileWriter file = new FileWriter(fileName, append); for (int i = 0; i < tofile.size(); i++) { file.write(tofile.get(i) + "\n"); } file.close(); }//writeFile /** * Metodo para escritura de un archivo * @param msg archivo que se va a escribir * @param tofile la cadena que quedaran en el archivo * @param append el bit que dira si se anexa el contenido o se empieza de cero */ public static void writeFile(String msg, String tofile, boolean append) throws IOException { FileWriter file = new FileWriter(msg, append); file.write(tofile); file.close(); }//writeFile }// I'm stuck on what can be the best way to given an adjacency list representation of the graph how to apply it Depth-first search algorithm. Any idea of how to aproach to complete the task?

    Read the article

  • Get Application Title from Windows Phone

    - by psheriff
    In a Windows Phone application that I am currently developing I needed to be able to retrieve the Application Title of the phone application. You can set the Deployment Title in the Properties of your Windows Phone Application, however getting to this value programmatically can be a little tricky. This article assumes that you have Visual Studio 2010 and the Windows Phone tools installed along with it. The Windows Phone tools must be downloaded separately and installed with Visual Studio2010. You may also download the free Visual Studio2010 Express for Windows Phone developer environment. The WMAppManifest.xml File First off you need to understand that when you set the Deployment Title in the Properties windows of your Windows Phone application, this title actually gets stored into an XML file located under the \Properties folder of your application. This XML file is named WMAppManifest.xml. A portion of this file is shown in the following listing. <?xml version="1.0" encoding="utf-8"?><Deployment  http://schemas.microsoft.com/windowsphone/2009/deployment"http://schemas.microsoft.com/windowsphone/2009/deployment"  AppPlatformVersion="7.0">  <App xmlns=""       ProductID="{71d20842-9acc-4f2f-b0e0-8ef79842ea53}"       Title="Mobile Time Track"       RuntimeType="Silverlight"       Version="1.0.0.0"       Genre="apps.normal"       Author="PDSA, Inc."       Description="Mobile Time Track"       Publisher="PDSA, Inc."> ... ...  </App></Deployment> Notice the “Title” attribute in the <App> element in the above XML document. This is the value that gets set when you modify the Deployment Title in your Properties Window of your Phone project. The only value you can set from the Properties Window is the Title. All of the other attributes you see here must be set by going into the XML file and modifying them directly. Note that this information duplicates some of the information that you can also set from the Assembly Information… button in the Properties Window. Why Microsoft did not just use that information, I don’t know. Reading Attributes from WMAppManifest I searched all over the namespaces and classes within the Windows Phone DLLs and could not find a way to read the attributes within the <App> element. Thus, I had to resort to good old fashioned XML processing. First off I created a WinPhoneCommon class and added two static methods as shown in the snippet below: public class WinPhoneCommon{  /// <summary>  /// Returns the Application Title   /// from the WMAppManifest.xml file  /// </summary>  /// <returns>The application title</returns>  public static string GetApplicationTitle()  {    return GetWinPhoneAttribute("Title");  }   /// <summary>  /// Returns the Application Description   /// from the WMAppManifest.xml file  /// </summary>  /// <returns>The application description</returns>  public static string GetApplicationDescription()  {    return GetWinPhoneAttribute("Description");  }   ... GetWinPhoneAttribute method here ...} In your Windows Phone application you can now simply call WinPhoneCommon.GetApplicationTitle() or WinPhone.GetApplicationDescription() to retrieve the Title or Description properties from the WMAppManifest.xml file respectively. You notice that each of these methods makes a call to the GetWinPhoneAttribute method. This method is shown in the following code snippet: /// <summary>/// Gets an attribute from the Windows Phone WMAppManifest.xml file/// To use this method, add a reference to the System.Xml.Linq DLL/// </summary>/// <param name="attributeName">The attribute to read</param>/// <returns>The Attribute's Value</returns>private static string GetWinPhoneAttribute(string attributeName){  string ret = string.Empty;   try  {    XElement xe = XElement.Load("WMAppManifest.xml");    var attr = (from manifest in xe.Descendants("App")                select manifest).SingleOrDefault();    if (attr != null)      ret = attr.Attribute(attributeName).Value;  }  catch  {    // Ignore errors in case this method is called    // from design time in VS.NET  }   return ret;} I love using the new LINQ to XML classes contained in the System.Xml.Linq.dll. When I did a Bing search the only samples I found for reading attribute information from WMAppManifest.xml used either an XmlReader or XmlReaderSettings objects. These are fine and work, but involve a little extra code. Instead of using these, I added a reference to the System.Xml.Linq.dll, then added two using statements to the top of the WinPhoneCommon class: using System.Linq;using System.Xml.Linq; Now, with just a few lines of LINQ to XML code you can read to the App element and extract the appropriate attribute that you pass into the GetWinPhoneAttribute method. Notice that I added a little bit of exception handling code in this method. I ignore the exception in case you call this method in the Loaded event of a user control. In design-time you cannot access the WMAppManifest file and thus an exception would be thrown. Summary In this article you learned how to retrieve the attributes from the WMAppManifest.xml file. I use this technique to grab information that I would otherwise have to hard-code in my application. Getting the Title or Description for your Windows Phone application is easy with just a little bit of LINQ to XML code. NOTE: You can download the complete sample code at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "Get Application Title from Windows Phone" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free video on Silverlight entitled Silverlight XAML for the Complete Novice - Part 1.  

    Read the article

  • Big Visible Charts

    - by Robert May
    An important part of Agile is the concept of transparency and visibility. In proper functioning teams, stakeholders can look at any team at any time in the iteration or release and see how that team is doing by simply looking at what we call Big Visible Charts. If you’ve done Scrum, you’ve seen these charts. However, interpreting these charts can often be an art form. There are several different charts that can be useful. In this newsletter, I’ll focus on the Iteration Burndown and Cumulative Flow charts. I’ve included a copy of the spreadsheet that I used to create the charts, and if you don’t have a tool that creates them for you, you can use this spreadsheet to do so. Our preferred tool for managing Scrum projects is Rally. Rally creates all of these charts for you, saving you quite a bit of time. The Iteration Burndown and Cumulative Flow Charts This is the main chart that teams use. Although less useful to stakeholders, this chart is critical to the team and provides quite a bit of information to the team about how their iteration is going. Most charts are a combination of the charts below, so you may need to combine aspects of each section to understand what is happening in your iterations. Ideal Ah, isn’t that a pretty picture? Unfortunately, it’s also very unrealistic. I’ve seen iterations that come close to ideal, but never that match perfectly. If your iteration matches perfectly, chances are, someone is playing with the numbers. Reality is just too difficult to have a burndown chart that matches this exactly. Late Planning Iteration started, but the team didn’t. You can tell this by the fact that the real number of estimated hours didn’t appear until day two. In the cumulative flow, you can also see that nothing was defined in Day one and two. You want to avoid situations like this. You’ll note that the team had to burn faster than is ideal to meet the iteration because of the late planning. This often results in long weeks and days. Testing Starved Determining whether or not testing is starved is difficult without the cumulative flow. The pattern in the burndown could be nothing more that developers not completing stories early enough or could be caused by stories being too big. With the cumulative flow, however, you see that only small bites are in progress and stories were completed early, but testing didn’t start testing until the end of the iteration, and didn’t complete testing all stories in the iteration. When this happens, question whether or not your testing resources are sufficient for your team and whether or not acceptance is adequately defined. No Testing With this one, both graphs show the same thing; the team needs testers and testing! Without testing, what was completed cannot be verified to make sure that it is acceptable to the business. If you find yourself in this situation, review your testing practices and acceptance testing process and make changes today. Late Development With this situation, both graphs tell a story. In the top graph, you can see that the hours failed to burn down as quickly as the team expected. This could be caused by the team not correctly estimating their hours or the team could have had illness or some other issue that affected them. Often, when teams are tackling something that is more unknown, they’ll run into technical barriers that cause the burn down to happen slower than expected. In the cumulative flow graph, you can see that not much was completed in the first few days. This could be because of illness or technical barriers or simply poor estimation. Testing was able to keep up with everything that was completed, however. No Tool Updating When you see graphs that look like this, you can be assured that it’s because the team is not updating the tool that generates the graphs. Review your policy for when they are to update. On the teams that I run, I require that each team member updates the tool at least once daily. You should also check to see how well the team is breaking down stories into tasks. If they’re creating few large tasks, graphs can look similar to this. As a general rule, I never allow tasks, other than Unit Testing and Uncertainty, to be greater than eight hours in duration. Scope Increase I always encourage team members to enter in however much time they think they have left on a task, even if that means increasing the total amount of time left to do. You get a much better and more realistic picture this way. Increasing time remaining could explain the burndown graph, but by looking at the cumulative flow graph, we can see that stories were added to the iteration and scope was increased. Since planning should consume all of the hours in the iteration, this is almost always a bad thing. If the scope change happened late in the iteration and the hours remaining were well below the ideal burn, then increasing scope is probably o.k., but estimation needs to get better. However, with the charts above, that’s clearly not what happened and the team was required to do extra work to make the iteration. If you find this happening, your product owner and ScrumMasters need training. The team also needs to learn to say no. Scope Decrease Scope decreases are just as bad as scope increases. Usually, graphs above show that the team did a poor job of estimating their stories and part way through had to reduce scope to change the iteration. This will happen once in a while, but if you find it’s a pattern on your team, you need to re-evaluate planning. Some teams are hopelessly optimistic. In those cases, I’ll introduce a task I call “Uncertainty.” With Uncertainty, the team estimates how many hours they might need if things don’t go well with the tasks they’ve defined. They try to estimate things that could go poorly and increase the time appropriately. Having an Uncertainty task allows them to have a low and high estimate. Uncertainty should not just be an arbitrary buffer. It must correlate to real uncertainty in the tasks that have been defined. Stories are too Big Often, we see graphs like the ones above. Note that the burndown looks fairly good, other than the chunky acceptance of stories. However, when you look at cumulative flow, you can see that at one point, everything is in progress. This is a bad thing. When you see graphs like this, you’re in one of two states. You may just have a very small team and can only handle one or two stories in your iteration. If you have more than one or two people, then the most likely problem is that your stories are far too big. To combat this, break large high hour stories into smaller pieces that can be completed independently and accepted independently. If you don’t, you’ll likely be requiring your testers to do heroic things to complete testing on the last day of the iteration and you’re much more likely to have the entire iteration fail, because of the limited amount of things that can be completed. Summary There are other charts that can be useful when doing scrum. If you don’t have any big visible charts, you really need to evaluate your process and change. These charts can provide the team a wealth of information and help you write better software. If you have any questions about charts that you’re seeing on your team, contact me with a screen capture of the charts and I’ll tell you what I’m seeing in those charts. I always want this information to be useful, so please let me know if you have other questions. Technorati Tags: Agile

    Read the article

  • Can you help me fix my broken packages?

    - by Andreas Hartmann
    I would like to upgrade from 13.04 to 13.10, but some broken packages are preventing upgrade success: grep Broken /var/log/dist-upgrade/apt.log output: Broken libwayland-client0:amd64 Conflicts on libwayland0 [ amd64 ] < 1.0.5-0ubuntu1 > ( libs ) (< 1.1.0) Broken libunity9:amd64 Breaks on unity-common [ amd64 ] < 7.0.0daily13.06.19~13.04-0ubuntu1 > ( gnome ) (< 7.1.2) Broken cups-filters:amd64 Conflicts on ghostscript-cups [ amd64 ] < 9.07~dfsg2-0ubuntu3.1 > ( text ) Broken libpam-systemd:amd64 Conflicts on libpam-xdg-support [ amd64 ] < 0.2-0ubuntu2 > ( admin ) Broken libharfbuzz0a:amd64 Breaks on libharfbuzz0 [ amd64 ] < 0.9.13-1 > ( libs ) Broken libharfbuzz0a:amd64 Breaks on libharfbuzz0 [ i386 ] < 0.9.13-1 > ( libs ) Broken libunity-scopes-json-def-desktop:amd64 Conflicts on libunity-common [ amd64 ] < 6.90.2daily13.04.05-0ubuntu1 > ( gnome ) (< 7.0.7) Broken libunity-scopes-json-def-desktop:amd64 Conflicts on libunity-common [ i386 ] < none > ( none ) (< 7.0.7) Broken libaccount-plugin-generic-oauth:amd64 Conflicts on account-plugin-generic-oauth [ amd64 ] < 0.10bzr13.03.26-0ubuntu1.1 > ( gnome ) (< 0.10bzr13.04.30) Broken libaccount-plugin-generic-oauth:amd64 Breaks on account-plugin-generic-oauth [ amd64 ] < 0.10bzr13.03.26-0ubuntu1.1 > ( gnome ) (< 0.10bzr13.04.30) Broken libmutter0b:amd64 Breaks on libmutter0a [ amd64 ] < 3.6.3-0ubuntu2 > ( libs ) Broken python3-aptdaemon.pkcompat:amd64 Breaks on libpackagekit-glib2-14 [ amd64 ] < 0.7.6-3ubuntu1 > ( libs ) (<= 0.7.6-4) Broken apache2:amd64 Conflicts on apache2.2-common [ amd64 ] < 2.2.22-6ubuntu5.1 > ( httpd ) Broken chromium-codecs-ffmpeg-extra:amd64 Conflicts on chromium-codecs-ffmpeg [ amd64 ] < 28.0.1500.71-0ubuntu1.13.04.1 -> 29.0.1547.65-0ubuntu2 > ( universe/web ) Broken unity-scope-home:amd64 Conflicts on unity-lens-shopping [ amd64 ] < 6.8.0daily13.03.04-0ubuntu1 > ( gnome ) Broken libsnmp30:amd64 Breaks on libsnmp15 [ amd64 ] < 5.4.3~dfsg-2.7ubuntu1 > ( libs ) Broken apache2.2-bin:amd64 Breaks on gnome-user-share [ amd64 ] < 3.0.4-0ubuntu1 > ( gnome ) (< 3.8.0-2~) Broken libgjs0d:amd64 Conflicts on libgjs0c [ amd64 ] < 1.34.0-0ubuntu1 > ( libs ) Broken unity-gtk2-module:amd64 Conflicts on appmenu-gtk [ amd64 ] < 12.10.3daily13.04.03-0ubuntu1 > ( libs ) Broken lib32asound2:amd64 Depends on libasound2 [ amd64 ] < 1.0.25-4ubuntu3.1 -> 1.0.27.2-1ubuntu6 > ( libs ) (= 1.0.25-4ubuntu3.1) Broken unity-gtk3-module:amd64 Conflicts on appmenu-gtk3 [ amd64 ] < 12.10.3daily13.04.03-0ubuntu1 > ( libs ) Broken activity-log-manager:amd64 Conflicts on activity-log-manager-common [ amd64 ] < 0.9.4-0ubuntu6.2 > ( utils ) Broken libgtksourceview-3.0-0:amd64 Depends on libgtksourceview-3.0-common [ amd64 ] < 3.6.3-0ubuntu1 -> 3.8.2-0ubuntu1 > ( libs ) (< 3.7) Broken icaclient:amd64 Depends on lib32asound2 [ amd64 ] < 1.0.25-4ubuntu3.1 > ( libs ) Broken libunity-core-6.0-5:amd64 Depends on unity-services [ amd64 ] < 7.0.0daily13.06.19~13.04-0ubuntu1 -> 7.1.2+13.10.20131014.1-0ubuntu1 > ( gnome ) (= 7.0.0daily13.06.19~13.04-0ubuntu1) Broken libbamf3-1:amd64 Depends on bamfdaemon [ amd64 ] < 0.4.0daily13.06.19~13.04-0ubuntu1 -> 0.5.1+13.10.20131011-0ubuntu1 > ( libs ) (= 0.4.0daily13.06.19~13.04-0ubuntu1) Broken apache2-bin:amd64 Conflicts on apache2.2-bin [ amd64 ] < 2.2.22-6ubuntu5.1 -> 2.4.6-2ubuntu2 > ( httpd ) (< 2.3~) Output for cat /etc/apt/sources.list /etc/apt/sources.list.d/*.list # deb cdrom:[Ubuntu 13.04 _Raring Ringtail_ - Release amd64 (20130424)]/ raring main restricted # See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to # newer versions of the distribution. deb http://de.archive.ubuntu.com/ubuntu/ raring main restricted ## Major bug fix updates produced after the final release of the ## distribution. deb http://de.archive.ubuntu.com/ubuntu/ raring-updates main restricted ## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu ## team. Also, please note that software in universe WILL NOT receive any ## review or updates from the Ubuntu security team. deb http://de.archive.ubuntu.com/ubuntu/ raring universe deb http://de.archive.ubuntu.com/ubuntu/ raring-updates universe ## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu ## team, and may not be under a free licence. Please satisfy yourself as to ## your rights to use the software. Also, please note that software in ## multiverse WILL NOT receive any review or updates from the Ubuntu ## security team. deb http://de.archive.ubuntu.com/ubuntu/ raring multiverse deb http://de.archive.ubuntu.com/ubuntu/ raring-updates multiverse ## N.B. software from this repository may not have been tested as ## extensively as that contained in the main release, although it includes ## newer versions of some applications which may provide useful features. ## Also, please note that software in backports WILL NOT receive any review ## or updates from the Ubuntu security team. deb http://security.ubuntu.com/ubuntu raring-security main restricted deb http://security.ubuntu.com/ubuntu raring-security universe deb http://security.ubuntu.com/ubuntu raring-security multiverse ## Uncomment the following two lines to add software from Canonical's ## 'partner' repository. ## This software is not part of Ubuntu, but is offered by Canonical and the ## respective vendors as a service to Ubuntu users. deb http://archive.canonical.com/ubuntu raring partner # deb-src http://archive.canonical.com/ubuntu raring partner ## This software is not part of Ubuntu, but is offered by third-party ## developers who want to ship their latest software. deb http://extras.ubuntu.com/ubuntu raring main # deb-src http://extras.ubuntu.com/ubuntu raring main # deb http://linux.dropbox.com/ubuntu precise main output for sudo dpkg -l | grep -e "^iU" -e "^rc": rc ibm-lotus-cae 8.5.2-20100805.0821 i386 IBM Lotus Composite Application Editor rc ibm-lotus-cae-nl1 8.5.2-20100805.0821 i386 IBM Lotus CAE NL1 rc ibm-lotus-feedreader 8.5.2-20100805.0821 i386 Feeds for IBM Lotus Notes 8.5.2 rc ibm-lotus-feedreader-nl1 8.5.2-20100805.0821 i386 IBM Lotus Feed Reader NL1 rc ibm-lotus-notes 8.5.2-20100805.0821 i386 IBM Lotus Notes rc ibm-lotus-notes-core-de 8.5.2-20100805.0821 i386 IBM Lotus Notes Native German (de) rc ibm-lotus-notes-nl1 8.5.2-20100805.0821 i386 IBM Lotus Notes Java NL1 rc ibm-lotus-sametime 8.5.2-20100805.0821 i386 IBM Lotus Sametime rc ibm-lotus-symphony 8.5.2-20100805.0821 i386 IBM Lotus Symphony rc ibm-lotus-symphony-nl1 8.5.2-20100805.0821 i386 IBM Lotus Symphony NL1 rc libapache2-mod-php5filter 5.4.9-4ubuntu2.2 amd64 server-side, HTML-embedded scripting language (apache 2 filter module) rc libavcodec53:amd64 6:0.8.6-1ubuntu2 amd64 Libav codec library rc libavutil51:amd64 6:0.8.6-1ubuntu2 amd64 Libav utility library rc libmotif4:amd64 2.3.3-7ubuntu1 amd64 Open Motif - shared libraries rc linux-image-3.8.0-25-generic 3.8.0-25.37 amd64 Linux kernel image for version 3.8.0 on 64 bit x86 SMP rc linux-image-extra-3.8.0-25-generic 3.8.0-25.37 amd64 Linux kernel image for version 3.8.0 on 64 bit x86 SMP

    Read the article

  • Deterministic/Consistent Unique Masking

    - by Dinesh Rajasekharan-Oracle
    One of the key requirements while masking data in large databases or multi database environment is to consistently mask some columns, i.e. for a given input the output should always be the same. At the same time the masked output should not be predictable. Deterministic masking also eliminates the need to spend enormous amount of time spent in identifying data relationships, i.e. parent and child relationships among columns defined in the application tables. In this blog post I will explain different ways of consistently masking the data across databases using Oracle Data Masking and Subsetting The readers of post should have minimal knowledge on Oracle Enterprise Manager 12c, Application Data Modeling, Data Masking concepts. For more information on these concepts, please refer to Oracle Data Masking and Subsetting document Oracle Data Masking and Subsetting 12c provides four methods using which users can consistently yet irreversibly mask their inputs. 1. Substitute 2. SQL Expression 3. Encrypt 4. User Defined Function SUBSTITUTE The substitute masking format replaces the original value with a value from a pre-created database table. As the method uses a hash based algorithm in the back end the mappings are consistent. For example consider DEPARTMENT_ID in EMPLOYEES table is replaced with FAKE_DEPARTMENT_ID from FAKE_TABLE. The substitute masking transformation that all occurrences of DEPARTMENT_ID say ‘101’ will be replaced with ‘502’ provided same substitution table and column is used , i.e. FAKE_TABLE.FAKE_DEPARTMENT_ID. The following screen shot shows the usage of the Substitute masking format with in a masking definition: Note that the uniqueness of the masked value depends on the number of columns being used in the substitution table i.e. if the original table contains 50000 unique values, then for the masked output to be unique and deterministic the substitution column should also contain 50000 unique values without which only consistency is maintained but not uniqueness. SQL EXPRESSION SQL Expression replaces an existing value with the output of a specified SQL Expression. For example while masking an EMPLOYEES table the EMAIL_ID of an employee has to be in the format EMPLOYEE’s [email protected] while FIRST_NAME and LAST_NAME are the actual column names of the EMPLOYEES table then the corresponding SQL Expression will look like %FIRST_NAME%||’.’||%LAST_NAME%||’@COMPANY.COM’. The advantage of this technique is that if you are masking FIRST_NAME and LAST_NAME of the EMPLOYEES table than the corresponding EMAIL ID will be replaced accordingly by the masking scripts. One of the interesting aspect’s of a SQL Expressions is that you can use sub SQL expressions, which means that you can write a nested SQL and use it as SQL Expression to address a complex masking business use cases. SQL Expression can also be used to consistently replace value with hashed value using Oracle’s PL/SQL function ORA_HASH. The following SQL Expression will help in the previous example for replacing the DEPARTMENT_IDs with a hashed number ORA_HASH (%DEPARTMENT_ID%, 1000) The following screen shot shows the usage of encrypt masking format with in the masking definition: ORA_HASH takes three arguments: 1. Expression which can be of any data type except LONG, LOB, User Defined Type [nested table type is allowed]. In the above example I used the Original value as expression. 2. Number of hash buckets which can be number between 0 and 4294967295. The default value is 4294967295. You can also co-relate the number of hash buckets to a range of numbers. In the above example above the bucket value is specified as 1000, so the end result will be a hashed number in between 0 and 1000. 3. Seed, can be any number which decides the consistency, i.e. for a given seed value the output will always be same. The default seed is 0. In the above SQL Expression a seed in not specified, so it to 0. If you have to use a non default seed then the function will look like. ORA_HASH (%DEPARTMENT_ID%, 1000, 1234 The uniqueness depends on the input and the number of hash buckets used. However as ORA_HASH uses a 32 bit algorithm, considering birthday paradox or pigeonhole principle there is a 0.5 probability of collision after 232-1 unique values. ENCRYPT Encrypt masking format uses a blend of 3DES encryption algorithm, hashing, and regular expression to produce a deterministic and unique masked output. The format of the masked output corresponds to the specified regular expression. As this technique uses a key [string] to encrypt the data, the same string can be used to decrypt the data. The key also acts as seed to maintain consistent outputs for a given input. The following screen shot shows the usage of encrypt masking format with in the masking definition: Regular Expressions may look complex for the first time users but you will soon realize that it’s a simple language. There are many resources in internet, oracle documentation, oracle learning library, my oracle support on writing a Regular Expressions, out of all the following My Oracle Support document helped me to get started with Regular Expressions: Oracle SQL Support for Regular Expressions[Video](Doc ID 1369668.1) USER DEFINED FUNCTION [UDF] User Defined Function or UDF provides flexibility for the users to code their own masking logic in PL/SQL, which can be called from masking Defintion. The standard format of an UDF in Oracle Data Masking and Subsetting is: Function udf_func (rowid varchar2, column_name varchar2, original_value varchar2) returns varchar2; Where • rowid is the row identifier of the column that needs to be masked • column_name is the name of the column that needs to be masked • original_value is the column value that needs to be masked You can achieve deterministic masking by using Oracle’s built in hash functions like, ORA_HASH, DBMS_CRYPTO.MD4, DBMS_CRYPTO.MD5, DBMS_UTILITY. GET_HASH_VALUE.Please refers to the Oracle Database Documentation for more information on the Oracle Hash functions. For example the following masking UDF generate deterministic unique hexadecimal values for a given string input: CREATE OR REPLACE FUNCTION RD_DUX (rid varchar2, column_name varchar2, orig_val VARCHAR2) RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE IS stext varchar2 (26); no_of_characters number(2); BEGIN no_of_characters:=6; stext:=substr(RAWTOHEX(DBMS_CRYPTO.HASH(UTL_RAW.CAST_TO_RAW(text),1)),0,no_of_characters); RETURN stext; END; The uniqueness depends on the input and length of the string and number of bits used by hash algorithm. In the above function MD4 hash is used [denoted by argument 1 in the DBMS_CRYPTO.HASH function which is a 128 bit algorithm which produces 2^128-1 unique hashed values , however this is limited by the length of the input string which is 6, so only 6^6 unique values will be generated. Also do not forget about the birthday paradox/pigeonhole principle mentioned earlier in this post. An another example is to consistently replace characters or numbers preserving the length and special characters as shown below: CREATE OR REPLACE FUNCTION RD_DUS(rid varchar2,column_name varchar2,orig_val VARCHAR2) RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE IS stext varchar2(26); BEGIN DBMS_RANDOM.SEED(orig_val); stext:=TRANSLATE(orig_val,'ABCDEFGHILKLMNOPQRSTUVWXYZ',DBMS_RANDOM.STRING('U',26)); stext:=TRANSLATE(stext,'abcdefghijklmnopqrstuvwxyz',DBMS_RANDOM.STRING('L',26)); stext:=TRANSLATE(stext,'0123456789',to_char(DBMS_RANDOM.VALUE(1,9))); stext:=REPLACE(stext,'.','0'); RETURN stext; END; The following screen shot shows the usage of an UDF with in a masking definition: To summarize, Oracle Data Masking and Subsetting helps you to consistently mask data across databases using one or all of the methods described in this post. It saves the hassle of identifying the parent-child relationships defined in the application table. Happy Masking

    Read the article

  • CodePlex Daily Summary for Monday, July 15, 2013

    CodePlex Daily Summary for Monday, July 15, 2013Popular ReleasesMVC Forum: MVC Forum v1.0: Finally version 1.0 is here! We have been fixing a few bugs, and making sure the release is as stable as possible. We have also changed the way configuration of the application works, mostly how to add your own code or replace some of the standard code with your own. If you download and use our software, please give us some sort of feedback, good or bad!SharePoint 2013 TypeScript Definitions: Release 1.1: TypeScript 0.9 support SharePoint TypeScript Definitions are now compliant with the new version of TypeScript TypeScript generics are now used for defining collection classes (derivatives of SP.ClientCollection object) Improved coverage Added mQuery definitions (m$) Added SPClientAutoFill definitions SP.Utilities namespace is now fully covered SP.UI modal dialog definitions improved CSR definitions improved, added some missing methods and context properties, mostly related to list ...GoAgent GUI: GoAgent GUI ??? 1.0.0: ????GoAgent GUI????,???????????.Net Framework 4.0 ???????: Windows 8 x64 Windows 8 x86 Windows 7 x64 Windows 7 x86 ???????: Windows 8.1 Preview (x86/x64) ???????: Windows XP ????: ????????GoAgent????,????????,?????????????,???????????????????,??????????,????。PiGraph: PiGraph 2.0.8.13: C?p nh?t:Các l?i dã s?a: S?a l?i không nh?p du?c s? âm. L?i tabindex trong giao di?n Thêm hàm Các l?i chua kh?c ph?c: L?i ghi chú nh?p nháy màu. L?i khung ghi chú vu?t ra kh?i biên khi luu file. Luu ý:N?u không kh?i d?ng duoc chuong trình, b?n nên c?p nh?t driver card d? h?a phiên b?n m?i nh?t: AMD Graphics Drivers NVIDIA Driver Xem yêu c?u h? th?ngD3D9Client: D3D9Client R12 for Orbiter Beta: D3D9Client release for orbiter BetaVidCoder: 1.4.23: New in 1.4.23 Added French translation. Fixed non-x264 video encoders not sticking in video tab. New in 1.4 Updated HandBrake core to 0.9.9 Blu-ray subtitle (PGS) support Additional framerates: 30, 50, 59.94, 60 Additional sample rates: 8, 11.025, 12 and 16 kHz Additional higher bitrates for audio Same as Source Constant Framerate 24-bit FLAC encoding Added Windows Phone 8 and Apple TV 3 presets Introduced process isolation for encodes. Now if HandBrake crashes, VidCoder will ...Project Server 2013 Event Handler Admin Tool: PSI Event Admin Tool: Download & exract the File. Use LoggerAdmin to upload the event handlers in project server 2013. PSIEventLogger\LoggerAdmin\bin\DebugGherkin editor: Gherkin Editor Beta 2: Fix issue #7 and add some refactoring and code cleanupNew-NuGetPackage PowerShell Script: New-NuGetPackage.ps1 PowerShell Script v1.2: Show nuget gallery to push to when prompting user if they want to push their package.Site Templates By Steve: SharePoint 2010 CORE Site Theme By Steve WSP: Great Site Theme to start with from Steve. See project home page for install instructions. This is a nice centered, mega-menu, fixed width masterpage with styles. Remember to update the mega menu lists.SharePoint Solution Installer: SharePoint Solution Installer V1.2.8: setup2013.exe now supports CompatibilityLevel to target specific hive Use setup.exe for SP2007 & SP2010. Use setup2013.exe for SP2013.TBox - tool to make developer's life easier.: TBox 1.021: 1)Add console unit tests runner, to run unit tests in parallel from console. Also this new sub tool can save valid xml nunit report. It can help you in continuous integration. 2)Fix build scripts.LifeInSharepoint Modern UI Update: Version 2: Some minor improvements, including Audience Targeting support for quick launch links. Also removing all NextDocs references.Virtual Photonics: VTS MATLAB Package 1.0.13 Beta: This is the beta release of the MATLAB package with examples of using the VTS libraries within MATLAB. Changes for this release: Added two new examples to vts_solver_demo.m that: 1) generates and plots R(lambda) at a given rho, and chromophore concentrations assuming a power law for scattering, and 2) solves inverse problem for R(lambda) at given rho. This example solves for concentrations of HbO2, Hb and H20 given simulated measurements created using Nurbs scaled Monte Carlo and inverted u...Advanced Resource Tab for Blend: Advanced Resource Tab: This is the first alpha release of the advanced resource tab for Blend for Visual Studio 2012.Microsoft Ajax Minifier: Microsoft Ajax Minifier 4.96: Fix for issue #19957: EXE should output the name of the file(s) being minified. Discussion #449181: throw a Sev-2 warning when trailing commas are detected on an Array literal. Perfectly legal to do so, but the behavior ends up working differently on different browsers, so throw a cross-browser warning. Add a few more known global names for improved ES6 compatibility update Nuget package to version 2.5 and automatically add the AjaxMin.targets to your project when you update the package...Outlook 2013 Add-In: Categories and Colors: This new version has a major change in the drawing of the list items: - Using owner drawn code to format the appointments using GDI (some flickering may occur, but it looks a little bit better IMHO, with separate sections). - Added category color support (if more than one category, only one color will be shown). Here, the colors Outlook uses are slightly different than the ones available in System.Drawing, so I did a first approach matching. ;-) - Added appointment status support (to show fr...Columbus Remote Desktop: 2.0 Sapphire: Added configuration settings Added update notifications Added ability to disable GPU acceleration Fixed connection bugsLINQ to Twitter: LINQ to Twitter v2.1.07: Supports .NET 3.5, .NET 4.0, .NET 4.5, Silverlight 4.0, Windows Phone 7.1, Windows Phone 8, Client Profile, Windows 8, and Windows Azure. 100% Twitter API coverage. Also supports Twitter API v1.1! Also on NuGet.DotNetNuke® Community Edition CMS: 06.02.08: Major Highlights Fixed issue where the application throws an Unhandled Error and an HTTP Response Code of 200 when the connection to the database is lost. Security FixesNone Updated Modules/Providers ModulesNone ProvidersNoneNew Projects[.Net Intl] harroc_c;mallar_a;olouso_f: The goal of this project is to create a web crawler and a web front who allows you to search in your index. You will create a mini (or large!) search engine basButterfly Storage: Butterfly Storage is a data access technology based on object-oriented database model for Windows Store applications.KaveCompany: KaveCompleave that girl alone: a team project!MyClrProfiler: This project helps you learn about and develop your own CLR profiler.NETDeob: Deobfuscate obfuscated .NET files easilyProgram stomatologie: SummarySimple Graph Library: Simple portable class library for graphs data structures. .NET, Silverlight 4/5, Windows Phone, Windows RT, Xbox 360T6502 Emulator: T6502 is a 6502 emulator written in TypeScript using AngularJS. The goal is well-organized, readable code over performance.WP8 File Access Webserver: C# HTTP server and web application on Windows Phone 8. Implements file access, browsing and downloading.wpadk: wpadk????wp7?????? ?????????,?????、SDK、wpadk?????????????。??????????????????。??????????????????,????wpadk?????????????????????????????????????。xlmUnit: xlmUnit, Unit Testing

    Read the article

  • Fun with Aggregates

    - by Paul White
    There are interesting things to be learned from even the simplest queries.  For example, imagine you are given the task of writing a query to list AdventureWorks product names where the product has at least one entry in the transaction history table, but fewer than ten. One possible query to meet that specification is: SELECT p.Name FROM Production.Product AS p JOIN Production.TransactionHistory AS th ON p.ProductID = th.ProductID GROUP BY p.ProductID, p.Name HAVING COUNT_BIG(*) < 10; That query correctly returns 23 rows (execution plan and data sample shown below): The execution plan looks a bit different from the written form of the query: the base tables are accessed in reverse order, and the aggregation is performed before the join.  The general idea is to read all rows from the history table, compute the count of rows grouped by ProductID, merge join the results to the Product table on ProductID, and finally filter to only return rows where the count is less than ten. This ‘fully-optimized’ plan has an estimated cost of around 0.33 units.  The reason for the quote marks there is that this plan is not quite as optimal as it could be – surely it would make sense to push the Filter down past the join too?  To answer that, let’s look at some other ways to formulate this query.  This being SQL, there are any number of ways to write logically-equivalent query specifications, so we’ll just look at a couple of interesting ones.  The first query is an attempt to reverse-engineer T-SQL from the optimized query plan shown above.  It joins the result of pre-aggregating the history table to the Product table before filtering: SELECT p.Name FROM ( SELECT th.ProductID, cnt = COUNT_BIG(*) FROM Production.TransactionHistory AS th GROUP BY th.ProductID ) AS q1 JOIN Production.Product AS p ON p.ProductID = q1.ProductID WHERE q1.cnt < 10; Perhaps a little surprisingly, we get a slightly different execution plan: The results are the same (23 rows) but this time the Filter is pushed below the join!  The optimizer chooses nested loops for the join, because the cardinality estimate for rows passing the Filter is a bit low (estimate 1 versus 23 actual), though you can force a merge join with a hint and the Filter still appears below the join.  In yet another variation, the < 10 predicate can be ‘manually pushed’ by specifying it in a HAVING clause in the “q1” sub-query instead of in the WHERE clause as written above. The reason this predicate can be pushed past the join in this query form, but not in the original formulation is simply an optimizer limitation – it does make efforts (primarily during the simplification phase) to encourage logically-equivalent query specifications to produce the same execution plan, but the implementation is not completely comprehensive. Moving on to a second example, the following query specification results from phrasing the requirement as “list the products where there exists fewer than ten correlated rows in the history table”: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) < 10 ); Unfortunately, this query produces an incorrect result (86 rows): The problem is that it lists products with no history rows, though the reasons are interesting.  The COUNT_BIG(*) in the EXISTS clause is a scalar aggregate (meaning there is no GROUP BY clause) and scalar aggregates always produce a value, even when the input is an empty set.  In the case of the COUNT aggregate, the result of aggregating the empty set is zero (the other standard aggregates produce a NULL).  To make the point really clear, let’s look at product 709, which happens to be one for which no history rows exist: -- Scalar aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709;   -- Vector aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709 GROUP BY th.ProductID; The estimated execution plans for these two statements are almost identical: You might expect the Stream Aggregate to have a Group By for the second statement, but this is not the case.  The query includes an equality comparison to a constant value (709), so all qualified rows are guaranteed to have the same value for ProductID and the Group By is optimized away. In fact there are some minor differences between the two plans (the first is auto-parameterized and qualifies for trivial plan, whereas the second is not auto-parameterized and requires cost-based optimization), but there is nothing to indicate that one is a scalar aggregate and the other is a vector aggregate.  This is something I would like to see exposed in show plan so I suggested it on Connect.  Anyway, the results of running the two queries show the difference at runtime: The scalar aggregate (no GROUP BY) returns a result of zero, whereas the vector aggregate (with a GROUP BY clause) returns nothing at all.  Returning to our EXISTS query, we could ‘fix’ it by changing the HAVING clause to reject rows where the scalar aggregate returns zero: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) BETWEEN 1 AND 9 ); The query now returns the correct 23 rows: Unfortunately, the execution plan is less efficient now – it has an estimated cost of 0.78 compared to 0.33 for the earlier plans.  Let’s try adding a redundant GROUP BY instead of changing the HAVING clause: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY th.ProductID HAVING COUNT_BIG(*) < 10 ); Not only do we now get correct results (23 rows), this is the execution plan: I like to compare that plan to quantum physics: if you don’t find it shocking, you haven’t understood it properly :)  The simple addition of a redundant GROUP BY has resulted in the EXISTS form of the query being transformed into exactly the same optimal plan we found earlier.  What’s more, in SQL Server 2008 and later, we can replace the odd-looking GROUP BY with an explicit GROUP BY on the empty set: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ); I offer that as an alternative because some people find it more intuitive (and it perhaps has more geek value too).  Whichever way you prefer, it’s rather satisfying to note that the result of the sub-query does not exist for a particular correlated value where a vector aggregate is used (the scalar COUNT aggregate always returns a value, even if zero, so it always ‘EXISTS’ regardless which ProductID is logically being evaluated). The following query forms also produce the optimal plan and correct results, so long as a vector aggregate is used (you can probably find more equivalent query forms): WHERE Clause SELECT p.Name FROM Production.Product AS p WHERE ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) < 10; APPLY SELECT p.Name FROM Production.Product AS p CROSS APPLY ( SELECT NULL FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ) AS ca (dummy); FROM Clause SELECT q1.Name FROM ( SELECT p.Name, cnt = ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) FROM Production.Product AS p ) AS q1 WHERE q1.cnt < 10; This last example uses SUM(1) instead of COUNT and does not require a vector aggregate…you should be able to work out why :) SELECT q.Name FROM ( SELECT p.Name, cnt = ( SELECT SUM(1) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID ) FROM Production.Product AS p ) AS q WHERE q.cnt < 10; The semantics of SQL aggregates are rather odd in places.  It definitely pays to get to know the rules, and to be careful to check whether your queries are using scalar or vector aggregates.  As we have seen, query plans do not show in which ‘mode’ an aggregate is running and getting it wrong can cause poor performance, wrong results, or both. © 2012 Paul White Twitter: @SQL_Kiwi email: [email protected]

    Read the article

  • Goodbye my beloved Nexus One, hello Windows Phone 7

    - by George Clingerman
    Last night my wife’s Nexus One finally bit the dust. You may not know but I’ve been nursing her Nexus One one along for quite a while after her screen shattered. I was able to replace it on my own (go me!) but little quirks have been popping up and the phone was quickly deteriorating. Lately it’s been the power button. Wifey would often have to press the power button several times to get her phone to turn on and last night it just wouldn’t wake up again. I took it apart and tried my best to see if I could somehow make it live once again but no luck this time. It was finally ready to retire. We looked at first for a replacement phone for her but she wasn’t really seeing anything she liked. So I decided to make the ultimate sacrifice and offer up my much loved Nexus One and I would then get a new Windows Phone 7 device. I love T-Mobile for my service so my choices were immediately limited to basically just a single phone. The HTC HD7. I read reviews and they were all over the board from people loving to people hating the phone but I decided, hey, why not, let’s take this plunge. And I did. I’ve only had the phone for about two days now so below is my list of first reaction pros/cons. These are basically things I’ve missed or things I’ve noticed that I really like about my new Windows Phone. Cons: * No Google Talk – I used this a LOT on my Nexus. I’ve found an application called “Flory” but it’s just an ok substitute, not the same as the full featured GTalk I had on my Nexus. * Seesmic is limited– I loved the way Seesmic worked on my Nexus. It was my mobile twitter client of choice. Everything about it worked really well. On Windows Phone 7 it’s just ok. I don’t get notification of new tweets, it’s several clicks to even see a new tweet. It’s definitely got some more development before it has the same features as it did on my Nexus. * Buttons don’t give great feedback – I’d read this on the reviews about the HTC HD7 and I’m finding it true myself. Pressing the buttons on the side of the phone and the power button on the top is finicky and I have to be looking at my phone to make sure I actually got them to press. * Web browsing is slow – I’m not sure what’s up with this, I’m connected to my wireless network at my house but it’s noticeably slower on my WP7 device than my Nexus. I even switched back to verify and it’s definitely true. Retrieving tweets, hitting up the XNA forums and just general web activities are all much slower on my WP7. I can’t think of any reason this would be true but it almost seems like it’s not using my wireless for everything.   Pros: * It’s pretty – the phone is really gorgeous. I loved the form of my Nexus One by the HTC HD7 is just as pretty, maybe even prettier! It’s got a nice large, bright screen. It feels good in my hand. And it even has a little kickstand to set the phone up for movie watching. Definitely a gorgeous phone. * LIVE integration – I lost a lot of nice integration with Google services but I gained a lot of integration with LIVE services that I also use. Now I can see when I get new GMail messages AND Hotmail messages. And having the Xbox LIVE integration is admittedly cool as well. * Tile notification rock – The Windows Phone 7 commercials are TRYING to get this message out but they’re doing a really poor job of this. Tile notifications really do save you from your phone. I have a whole little mini-informational dashboard at a glance. I unlock my phone and at a glace I can see new IMs, new mail messages, software updates etc. All just letting me know in the tiles I have arranged. That’s pretty cool. * The interface works really well – I feel super hip and cool swiping and sliding things around on my Windows Phone 7. Everything works that way and it’s great and fast and really good looking. I’m all about me feeling cool. * I’m gaming more – I had gotten a few games on my Nexus One but there really weren’t a lot of good developers flocking to the service. Just browsing through the Windows Phone 7 marketplace I’m already seeing a ton of games I want to try and buy. And I sat down and bet Pixel Man 0 just yesterday on my phone. I’m already gaming more than I did on my Nexus One. * Netflix integration is fantastic - It works just like it does on my Xbox 360 and I love having this feature on my phone. * It’s basically a Zune – I’ve been taking my Zune to work and listening to music off of that while I code. I no longer need to take it with me, now I just sync songs onto my phone and it’s my new Zune. I freaking love that. One less device to carry around.   All in all my cons have really little to do with the phone (just the buttons and the web browsing) and more to do with the applications needing to catch up a bit to what I’m used to. And the Pros are things that ARE phone specific so I’m seeing that as a good sign that I’m going to be very happy with my Windows Phone 7. So Wifey is happy having her Nexus One again, I’m happy with my new Windows Phone 7. Life is good. Now I just need to make a game to pay for it….

    Read the article

  • Free Document/Content Management System Using SharePoint 2010

    - by KunaalKapoor
    That’s right, it’s true. You can use the free version of SharePoint 2010 to meet your document and content management needs and even run your public facing website or an internal knowledge bank.  SharePoint Foundation 2010 is free. It may not have all the features that you get in the enterprise license but it still has enough to cater to your needs to build a document management system and replace age old file shares or folders. I’ve built a dozen content management sites for internal and public use exploiting SharePoint. There are hundreds of web content management systems out there (see CMS Matrix).  On one hand we have commercial platforms like SharePoint, SiteCore, and Ektron etc. which are the most frequently used and on the other hand there are free options like WordPress, Drupal, Joomla, and Plone etc. which are pretty common popular as well. But I would be very surprised if anyone was able to find a single CMS platform that is all things to all people. Infact not a lot of people consider SharePoint’s free version under the free CMS side but its high time organizations benefit from this. Through this blog post I wanted to present SharePoint Foundation as an option for running a FREE CMS platform. Even if you knew that there is a free version of SharePoint, what most people don’t realize is that SharePoint Foundation is a great option for running web sites of all kinds – not just team sites. It is a great option for many reasons, but in reality it is supported by Microsoft, and above all it is FREE (yay!), and it is extremely easy to get started.  From a functionality perspective – it’s hard to beat SharePoint. Even the free version, SharePoint Foundation, offers simple data connectivity (through BCS), cross browser support, accessibility, support for Office Web Apps, blogs, wikis, templates, document support, health analyzer, support for presence, and MUCH more.I often get asked: “Can I use SharePoint 2010 as a document management system?” The answer really depends on ·          What are your specific requirements? ·          What systems you currently have in place for managing documents. ·          And of course how much money you have J Benefits? Not many large organizations have benefited from SharePoint yet. For some it has been an IT project to see what they can achieve with it, for others it has been used as a collaborative platform or in many cases an extended intranet. SharePoint 2010 has changed the game slightly as the improvements that Microsoft have made have been noted by organizations, and we are seeing a lot of companies starting to build specific business applications using SharePoint as the basis, and nearly every business process will require documents at some stage. If you require a document management system and have SharePoint in place then it can be a relatively straight forward decision to use SharePoint, as long as you have reviewed the considerations just discussed. The collaborative nature of SharePoint 2010 is also a massive advantage, as specific departmental or project sites can be created quickly and easily that allow workers to interact in a variety of different ways using one source of information.  This also benefits an organization with regards to how they manage the knowledge that they have, as if all of their information is in one source then it is naturally easier to search and manage. Is SharePoint right for your organization? As just discussed, this can only be determined after defining your requirements and also planning a longer term strategy for how you will manage your documents and information. A key factor to look at is how the users would interact with the system and how much value would it get for your organization. The amount of data and documents that organizations are creating is increasing rapidly each year. Therefore the ability to archive this information, whilst keeping the ability to know what you have and where it is, is vital to any organizations management of their information life cycle. SharePoint is best used for the initial life of business documents where they need to be referenced and accessed after time. It is often beneficial to archive these to overcome for storage and performance issues. FREE CMS – SharePoint, Really? In order to show some of the completely of what comes with this free version of SharePoint 2010, I thought it would make sense to use Wikipedia (since every one trusts it as a credible source). Wikipedia shows that a web content management system typically has the following components: Document Management:   -       CMS software may provide a means of managing the life cycle of a document from initial creation time, through revisions, publication, archive, and document destruction. SharePoint is king when it comes to document management.  Version history, exclusive check-out, security, publication, workflow, and so much more.  Content Virtualization:   -       CMS software may provide a means of allowing each user to work within a virtual copy of the entire Web site, document set, and/or code base. This enables changes to multiple interdependent resources to be viewed and/or executed in-context prior to submission. Through the use of versioning, each content manager can preview, publish, and roll-back content of pages, wiki entries, blog posts, documents, or any other type of content stored in SharePoint.  The idea of each user having an entire copy of the website virtualized is a bit odd to me – not sure why anyone would need that for anything but the simplest of websites. Automated Templates:   -       Create standard output templates that can be automatically applied to new and existing content, allowing the appearance of all content to be changed from one central place. Through the use of Master Pages and Themes, SharePoint provides the ability to change the entire look and feel of site.  Of course, the older brother version of SharePoint – SharePoint Server 2010 – also introduces the concept of Page Layouts which allows page template level customization and even switching the layout of an individual page using different page templates.  I think many organizations really think they want this but rarely end up using this bit of functionality.  Easy Edits:   -       Once content is separated from the visual presentation of a site, it usually becomes much easier and quicker to edit and manipulate. Most WCMS software includes WYSIWYG editing tools allowing non-technical individuals to create and edit content. This is probably easier described with a screen cap of a vanilla SharePoint Foundation page in edit mode.  Notice the page editing toolbar, the multiple layout options…  It’s actually easier to use than Microsoft Word. Workflow management: -       Workflow is the process of creating cycles of sequential and parallel tasks that must be accomplished in the CMS. For example, a content creator can submit a story, but it is not published until the copy editor cleans it up and the editor-in-chief approves it. Workflow, it’s in there. In fact, the same workflow engine is running under SharePoint Foundation that is running under the other versions of SharePoint.  The primary difference is that with SharePoint Foundation – you need to configure the workflows yourself.   Web Standards: -       Active WCMS software usually receives regular updates that include new feature sets and keep the system up to current web standards. SharePoint is in the fourth major iteration under Microsoft with the 2010 release.  In addition to the innovation that Microsoft continuously adds, you have the entire global ecosystem available. Scalable Expansion:   -       Available in most modern WCMSs is the ability to expand a single implementation (one installation on one server) across multiple domains. SharePoint Foundation can run multiple sites using multiple URLs on a single server install.  Even more powerful, SharePoint Foundation is scalable and can be part of a multi-server farm to ensure that it will handle any amount of traffic that can be thrown at it. Delegation & Security:  -       Some CMS software allows for various user groups to have limited privileges over specific content on the website, spreading out the responsibility of content management. SharePoint Foundation provides very granular security capabilities. Read @ http://msdn.microsoft.com/en-us/library/ee537811.aspx Content Syndication:  -       CMS software often assists in content distribution by generating RSS and Atom data feeds to other systems. They may also e-mail users when updates are available as part of the workflow process. SharePoint Foundation nails it.  With RSS syndication and email alerts available out of the box, content syndication is already in the platform. Multilingual Support: -       Ability to display content in multiple languages. SharePoint Foundation 2010 supports more than 40 languages. Read More Read more @ http://msdn.microsoft.com/en-us/library/dd776256(v=office.12).aspxYou can download the free version from http://www.microsoft.com/en-us/download/details.aspx?id=5970

    Read the article

  • ANTS CLR and Memory Profiler In Depth Review (Part 2 of 2 &ndash; Memory Profiler)

    - by ToStringTheory
    One of the things that people might not know about me, is my obsession to make my code as efficient as possible. Many people might not realize how much of a task or undertaking that this might be, but it is surely a task as monumental as climbing Mount Everest, except this time it is a challenge for the mind… In trying to make code efficient, there are many different factors that play a part – size of project or solution, tiers, language used, experience and training of the programmer, technologies used, maintainability of the code – the list can go on for quite some time. I spend quite a bit of time when developing trying to determine what is the best way to implement a feature to accomplish the efficiency that I look to achieve. One program that I have recently come to learn about – Red Gate ANTS Performance (CLR) and Memory profiler gives me tools to accomplish that job more efficiently as well. In this review, I am going to cover some of the features of the ANTS memory profiler set by compiling some hideous example code to test against. Notice As a member of the Geeks With Blogs Influencers program, one of the perks is the ability to review products, in exchange for a free license to the program. I have not let this affect my opinions of the product in any way, and Red Gate nor Geeks With Blogs has tried to influence my opinion regarding this product in any way. Introduction – Part 2 In my last post, I reviewed the feature packed Red Gate ANTS Performance Profiler.  Separate from the Red Gate Performance Profiler is the Red Gate ANTS Memory Profiler – a simple, easy to use utility for checking how your application is handling memory management…  A tool that I wish I had had many times in the past.  This post will be focusing on the ANTS Memory Profiler and its tool set. The memory profiler has a large assortment of features just like the Performance Profiler, with the new session looking nearly exactly alike: ANTS Memory Profiler Memory profiling is not something that I have to do very often…  In the past, the few cases I’ve had to find a memory leak in an application I have usually just had to trace the code of the operations being performed to look for oddities…  Sadly, I have come across more undisposed/non-using’ed IDisposable objects, usually from ADO.Net than I would like to ever see.  Support is not fun, however using ANTS Memory Profiler makes this task easier.  For this round of testing, I am going to use the same code from my previous example, using the WPF application. This time, I will choose the ‘Profile Memory’ option from the ANTS menu in Visual Studio, which launches the solution in its currently configured state/start-up project, and then launches the ANTS Memory Profiler to help.  It prepopulates all of the fields with the current project information, and all I have to do is select the ‘Start Profiling’ option. When the window comes up, it is actually quite barren, just giving ideas on how to work the profiler.  You start by getting to the point in your application that you want to profile, and then taking a ‘Memory Snapshot’.  This performs a full garbage collection, and snapshots the managed heap.  Using the same WPF app as before, I will go ahead and take a snapshot now. As you can see, ANTS is already giving me lots of information regarding the snapshot, however this is just a snapshot.  The whole point of the profiler is to perform an action, usually one where a memory problem is being noticed, and then take another snapshot and perform a diff between them to see what has changed.  I am going to go ahead and generate 5000 primes, and then take another snapshot: As you can see, ANTS is already giving me a lot of new information about this snapshot compared to the last.  Information such as difference in memory usage, fragmentation, class usage, etc…  If you take more snapshots, you can use the dropdown at the top to set your actual comparison snapshots. If you beneath the timeline, you will see a breadcrumb trail showing how best to approach profiling memory using ANTS.  When you first do the comparison, you start on the Summary screen.  You can either use the charts at the bottom, or switch to the class list screen to get to the next step.  Here is the class list screen: As you can see, it lists information about all of the instances between the snapshots, as well as at the bottom giving you a way to filter by telling ANTS what your problem is.  I am going to go ahead and select the Int16[] to look at the Instance Categorizer Using the instance categorizer, you can travel backwards to see where all of the instances are coming from.  It may be hard to see in this image, but hopefully the lightbox (click on it) will help: I can see that all of these instances are rooted to the application through the UI TextBlock control.  This image will probably be even harder to see, however using the ‘Instance Retention Graph’, you can trace an objects memory inheritance up the chain to see its roots as well.  This is a simple example, as this is simply a known element.  Usually you would be profiling an actual problem, and comparing those differences.  I know in the past, I have spotted a problem where a new context was created per page load, and it was rooted into the application through an event.  As the application began to grow, performance and reliability problems started to emerge.  A tool like this would have been a great way to identify the problem quickly. Overview Overall, I think that the Red Gate ANTS Memory Profiler is a great utility for debugging those pesky leaks.  3 Biggest Pros: Easy to use interface with lots of options for configuring profiling session Intuitive and helpful interface for drilling down from summary, to instance, to root graphs ANTS provides an API for controlling the profiler. Not many options, but still helpful. 2 Biggest Cons: Inability to automatically snapshot the memory by interval Lack of complete integration with Visual Studio via an extension panel Ratings Ease of Use (9/10) – I really do believe that they have brought simplicity to the once difficult task of memory profiling.  I especially liked how it stepped you further into the drilldown by directing you towards the best options. Effectiveness (10/10) – I believe that the profiler does EXACTLY what it purports to do.  Features (7/10) – A really great set of features all around in the application, however, I would like to see some ability for automatically triggering snapshots based on intervals or framework level items such as events. Customer Service (10/10) – My entire experience with Red Gate personnel has been nothing but good.  their people are friendly, helpful, and happy! UI / UX (9/10) – The interface is very easy to get around, and all of the options are easy to find.  With a little bit of poking around, you’ll be optimizing Hello World in no time flat! Overall (9/10) – Overall, I am happy with the Memory Profiler and its features, as well as with the service I received when working with the Red Gate personnel.  Thank you for reading up to here, or skipping ahead – I told you it would be shorter!  Please, if you do try the product, drop me a message and let me know what you think!  I would love to hear any opinions you may have on the product. Code Feel free to download the code I used above – download via DropBox

    Read the article

  • Restoring databases to a set drive and directory

    - by okeofs
     Restoring databases to a set drive and directory Introduction Often people say that necessity is the mother of invention. In this case I was faced with the dilemma of having to restore several databases, with multiple ‘ndf’ files, and having to restore them with different physical file names, drives and directories on servers other than the servers from which they originated. As most of us would do, I went to Google to see if I could find some code to achieve this task and found some interesting snippets on Pinal Dave’s website. Naturally, I had to take it further than the code snippet, HOWEVER it was a great place to start. Creating a temp table to hold database file details First off, I created a temp table which would hold the details of the individual data files within the database. Although there are a plethora of fields (within the temp table below), I utilize LogicalName only within this example. The temporary table structure may be seen below:   create table #tmp ( LogicalName nvarchar(128)  ,PhysicalName nvarchar(260)  ,Type char(1)  ,FileGroupName nvarchar(128)  ,Size numeric(20,0)  ,MaxSize numeric(20,0), Fileid tinyint, CreateLSN numeric(25,0), DropLSN numeric(25, 0), UniqueID uniqueidentifier, ReadOnlyLSN numeric(25,0), ReadWriteLSN numeric(25,0), BackupSizeInBytes bigint, SourceBlocSize int, FileGroupId int, LogGroupGUID uniqueidentifier, DifferentialBaseLSN numeric(25,0), DifferentialBaseGUID uniqueidentifier, IsReadOnly bit, IsPresent bit,  TDEThumbPrint varchar(50) )    We now declare and populate a variable(@path), setting the variable to the path to our SOURCE database backup. declare @path varchar(50) set @path = 'P:\DATA\MYDATABASE.bak'   From this point, we insert the file details of our database into the temp table. Note that we do so by utilizing a restore statement HOWEVER doing so in ‘filelistonly’ mode.   insert #tmp EXEC ('restore filelistonly from disk = ''' + @path + '''')   At this point, I depart from what I gleaned from Pinal Dave.   I now instantiate a few more local variables. The use of each variable will be evident within the cursor (which follows):   Declare @RestoreString as Varchar(max) Declare @NRestoreString as NVarchar(max) Declare @LogicalName  as varchar(75) Declare @counter as int Declare @rows as int set @counter = 1 select @rows = COUNT(*) from #tmp  -- Count the number of records in the temp                                    -- table   Declaring and populating the cursor At this point I do realize that many people are cringing about the use of a cursor. Being an Oracle professional as well, I have learnt that there is a time and place for cursors. I would remind the reader that the data that will be read into the cursor is from a local temp table and as such, any locking of the records (within the temp table) is not really an issue.   DECLARE MY_CURSOR Cursor  FOR  Select LogicalName  From #tmp   Parsing the logical names from within the cursor. A small caveat that works in our favour,  is that the first logical name (of our database) is the logical name of the primary data file (.mdf). Other files, except for the very last logical name, belong to secondary data files. The last logical name is that of our database log file.   I now open my cursor and populate the variable @RestoreString Open My_Cursor  set @RestoreString =  'RESTORE DATABASE [MYDATABASE] FROM DISK = N''P:\DATA\ MYDATABASE.bak''' + ' with  '   We now fetch the first record from the temp table.   Fetch NEXT FROM MY_Cursor INTO @LogicalName   While there are STILL records left within the cursor, we dynamically build our restore string. Note that we are using concatenation to create ‘one big restore executable string’.   Note also that the target physical file name is hardwired, as is the target directory.   While (@@FETCH_STATUS <> -1) BEGIN IF (@@FETCH_STATUS <> -2) -- As long as there are no rows missing select @RestoreString = case  when @counter = 1 then -- This is the mdf file    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.mdf' + '''' + ', '   -- OK, if it passes through here we are dealing with an .ndf file -- Note that Counter must be greater than 1 and less than the number of rows.   when @counter > 1 and @counter < @rows then -- These are the ndf file(s)    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.ndf' + '''' + ', '   -- OK, if it passes through here we are dealing with the log file When @LogicalName like '%log%' then    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.ldf' +'''' end --Increment the counter   set @counter = @counter + 1 FETCH NEXT FROM MY_CURSOR INTO @LogicalName END   At this point we have populated the varchar(max) variable @RestoreString with a concatenation of all the necessary file names. What we now need to do is to run the sp_executesql stored procedure, to effect the restore.   First, we must place our ‘concatenated string’ into an nvarchar based variable. Obviously this will only work as long as the length of @RestoreString is less than varchar(max) / 2.   set @NRestoreString = @RestoreString EXEC sp_executesql @NRestoreString   Upon completion of this step, the database should be restored to the server. I now close and deallocate the cursor, and to be clean, I would also drop my temp table.   CLOSE MY_CURSOR DEALLOCATE MY_CURSOR GO   Conclusion Restoration of databases on different servers with different physical names and on different drives are a fact of life. Through the use of a few variables and a simple cursor, we may achieve an efficient and effective way to achieve this task.

    Read the article

  • SSL connection errors from Apache

    - by Yang
    I'm running a (self-signed) SSL cert site on Apache/2.2.14 on Ubuntu 10.04, but various browsers are giving errors on half the connection attempts. Just now saw this transient error from Chrome: "Error 126 (net::ERR_SSL_BAD_RECORD_MAC_ALERT): Unknown error." Hit refresh and the problem goes away for a while. wget too: $ wget --no-check-certificate https://dev.foo.com/deps/ --2010-09-08 19:30:26-- https://dev.foo.com/deps/ Resolving dev.foo.com... 184.72.53.220 Connecting to dev.foo.com|184.72.53.220|:443... connected. OpenSSL: error:0407006A:rsa routines:RSA_padding_check_PKCS1_type_1:block type is not 01 OpenSSL: error:04067072:rsa routines:RSA_EAY_PUBLIC_DECRYPT:padding check failed OpenSSL: error:1408D07B:SSL routines:SSL3_GET_KEY_EXCHANGE:bad signature Unable to establish SSL connection. Run it right away again and it works: $ wget --no-check-certificate https://dev.foo.com/deps/ --2010-09-08 19:30:29-- https://dev.foo.com/deps/ Resolving dev.foo.com... 184.72.53.220 Connecting to dev.foo.com|184.72.53.220|:443... connected. WARNING: cannot verify dev.foo.com's certificate, issued by `/CN=dev.foo.com': Self-signed certificate encountered. HTTP request sent, awaiting response... 200 OK Length: 3157 (3.1K) [text/html] Saving to: `index.html' 100%[======================================>] 3,157 --.-K/s in 0s 2010-09-08 19:30:29 (48.6 MB/s) - `index.html' saved [3157/3157] In my sites-enabled/default-ssl: SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key The cert: -----BEGIN CERTIFICATE----- MIIBszCCARwCCQCa0TzNwqLgsTANBgkqhkiG9w0BAQUFADAeMRwwGgYDVQQDExNk ZXYucGFydHlvbmRhdGEuY29tMB4XDTEwMDgyNzA2MzA1N1oXDTIwMDgyNDA2MzA1 N1owHjEcMBoGA1UEAxMTZGV2LnBhcnR5b25kYXRhLmNvbTCBnzANBgkqhkiG9w0B AQEFAAOBjQAwgYkCgYEAzXDEULpCUqIc9hV/ESFapkckR2uoYINA81DvG2aQZ9Ot Q30OwX2ae2CC4bSzJEIVlahU8vjVrWpmpa28NEhQbqh4ywwbl1XDrEVYI6Gkfimf snJhOKyaVrEhlwutYtBjmsz3ZIqwymMPm/6smVcSS5dJIynlSmtltxX6ivPcO8UC AwEAATANBgkqhkiG9w0BAQUFAAOBgQBGxHVkpSSOnZjzuySRepjhAlV/yhe9Fx23 fh12WrjQMEi98B7JEuNSLXDWckUN7O6XRc3RzKmazcGHJqzhn0Ov6gAmAE2XjZ/x VW21xmaLwk+KgYKFJbJJaP3jMSpU7I3aa11wqAkR2Zd4Nkm9N0YXYIzcBdfztTVI Et8mEHBFdg== -----END CERTIFICATE----- The cert is in turn generated via: $ make-ssl-cert generate-default-snakeoil --force-overwrite Apache version. $ apache2 -V Server version: Apache/2.2.14 (Ubuntu) Server built: Apr 13 2010 20:22:19 Server's Module Magic Number: 20051115:23 Server loaded: APR 1.3.8, APR-Util 1.3.9 Compiled using: APR 1.3.8, APR-Util 1.3.9 Architecture: 64-bit Server MPM: Worker threaded: yes (fixed thread count) forked: yes (variable process count) Server compiled with.... -D APACHE_MPM_DIR="server/mpm/worker" -D APR_HAS_SENDFILE -D APR_HAS_MMAP -D APR_HAVE_IPV6 (IPv4-mapped addresses enabled) -D APR_USE_SYSVSEM_SERIALIZE -D APR_USE_PTHREAD_SERIALIZE -D SINGLE_LISTEN_UNSERIALIZED_ACCEPT -D APR_HAS_OTHER_CHILD -D AP_HAVE_RELIABLE_PIPED_LOGS -D DYNAMIC_MODULE_LIMIT=128 -D HTTPD_ROOT="" -D SUEXEC_BIN="/usr/lib/apache2/suexec" -D DEFAULT_PIDLOG="/var/run/apache2.pid" -D DEFAULT_SCOREBOARD="logs/apache_runtime_status" -D DEFAULT_ERRORLOG="logs/error_log" -D AP_TYPES_CONFIG_FILE="/etc/apache2/mime.types" -D SERVER_CONFIG_FILE="/etc/apache2/apache2.conf" I don't administer the network, hardware, etc. - this is all running on Amazon EC2. I'm not running a load-balancer or anything else in front of the server. I'm making direct TCP connections to that host (AFAIK). Any ideas? Thanks in advance for any help.

    Read the article

  • Internet Explorer keeps asking for NTLM credentials in Intranet zone

    - by Tomalak
    Long text, sorry for that. I'm trying to be as specific as possible. I'm on Windows 7 and I experience a very frustrating Internet Explorer 8 behavior. I'm in a company LAN with some intranet servers and a proxy for connecting with the outside world. On sites that are clearly recognized as being "Local Intranet" (as indicated in the IE status bar) I keep getting "Windows Security" dialog boxes that ask me to log in. These pages are served off an IIS6 with "Integrated Windows Security" enabled, NTFS permits Everyone:Read on the files themselves. If I enter my Windows credentials, the page loads fine. However, the dialog boxes will be popping up the next time, regardless if I ticked "Remember my credentials" or not. (Credentials are stored in the "Credential Manager" but that does not make any difference as to how often these login boxes appear.) If I click "Cancel", one of two things can happen: Either the page loads with certain resources missing (images, styleheets, etc), or it does not load at all and I get HTTP 401.2 (Unauthorized: Logon Failed Due to Server Configuration). This depends on whether the logon box was triggered by the page itself, or a referenced resource. The behavior appears to be completely erratic, sometimes the pages load smoothly, sometimes one resource triggers a logon message, sometimes it does not. Even simply re-loading the page can result in changed behavior. I'm using WPAD as my proxy detection mechanism. All Intranet hosts do bypass the proxy in the PAC file. I've checked every IE setting I can think of, entered host patterns, individual host names, IP ranges in every thinkable configuration to the "Local Intranet" zone, ticked "Include all sites that bypass the proxy server", you name it. It boils down to "sometimes it just does not work", and slowly I'm losing my mind. ;-) I'm aware that this is related to IE not automatically passing my NTLM credentials to the webserver but asking me instead. Usually this should only happen for NTLM-secured sites that are not recognized as being in the "Intranet" zone. As explained, this is not the case here. Especially since half of a page can load perfectly and without interruption and some page's resources (coming from the same server!) trigger the login message. I've looked at http://support.microsoft.com/kb/303650, which gives the impression of describing the problem, but nothing there seems to work. And frankly, I'm not certain if "manually editing the registry" is the right solution for this kind of problem. I'm not the only person in the world with an IE/intranet/IIS configuration, after all. I'm at a loss, can somebody give me a hint?

    Read the article

  • Using java to create a dynamic rich:panelMenu

    - by Mark Lewis
    Hail This attempt at using component libs to access a Map<String, ArrayList<String>> <rich:panelMenu style="width:35%" mode="ajax" iconExpandedTopGroup="/img/logListIcon.png" iconCollapsedTopGroup="/img/logListIcon.png" iconCollapsedGroup="/img/logListFolderIconClosed.png" iconExpandedGroup="/img/logListFolderIconOpen.png" iconGroupTopPosition="left" iconItem="/img/logFileIcon.png"> <!-- feed iteration --> <ui:repeat items="#{PanelMenu.panelNodes}" var="map"> <rich:panelMenuGroup label="#{map.key}" style="padding-left: 20px;"> <ui:repeat items="${map.value}" var="entry"> <rich:panelMenuItem label="#{entry}" action="#{PanelMenu.updateCurrent}"> <f:param name="current" value="#{entry}" /> </rich:panelMenuItem> </ui:repeat> </rich:panelMenuGroup> </ui:repeat> </rich:panelMenu> <rich:panel style="width:65%" bodyClass="rich-laguna-panel-no-header"> <a4j:outputPanel ajaxRendered="true"> <h:outputText value="#{PanelMenu.currentLog}" id="current" /> </a4j:outputPanel> </rich:panel> resulted in |STDOUT| 2010-03-06 22:46:22,212 | ERROR | [http-8181-2]: Exception in the filter chain javax.servlet.ServletException: com.sun.facelets.component.UIRepeat cannot be cast to org.richfaces.component.UIPanelMenuItem so I think I need to get onto a resource to use FacesContext context = FacesContext.getCurrentInstance(); but as I'm fairly new to both java and jsf I need a bit of help. Can anyone suggest either the (probably small) java method to represent this intention or a really good resource specifically about programming dynamic stuff in RichFaces using java? Naturally I've read the javadocs, but they don't give me a concrete example of some JSF, the associated backing bean java code, and a screen shot of the resulting component. It may be asking a bit much, but I'm sure I'm not alone in thinking that with these three, I'd be able to understand the idea and apply it to many other component types in this family. The RF demo doesn't include dynamic panelMenus or drop downs so I'm a bit stumped. Thanks IA EDIT @BalusC: Thanks for the response, here is complete stack trace: 07-Mar-2010 19:05:52 com.sun.facelets.FaceletViewHandler handleRenderException SEVERE: Error Rendering View[/index.xhtml] java.lang.ClassCastException: com.sun.facelets.component.UIRepeat cannot be cast to org.richfaces.component.UIPanelMenuItem at org.richfaces.renderkit.html.PanelMenuRenderer.insertScript(PanelMenuRenderer.java:141) at org.richfaces.renderkit.html.HtmlPanelMenuRenderer.doEncodeEnd(HtmlPanelMenuRenderer.java:260) at org.richfaces.renderkit.html.HtmlPanelMenuRenderer.doEncodeEnd(HtmlPanelMenuRenderer.java:271) at org.ajax4jsf.renderkit.RendererBase.encodeEnd(RendererBase.java:134) at javax.faces.component.UIComponentBase.encodeEnd(UIComponentBase.java:861) at org.ajax4jsf.renderkit.RendererBase.renderChild(RendererBase.java:281) at org.ajax4jsf.renderkit.RendererBase.renderChildren(RendererBase.java:258) at org.richfaces.renderkit.TabRendererBase.encodeChildren(TabRendererBase.java:113) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at org.ajax4jsf.renderkit.RendererBase.renderChild(RendererBase.java:277) at org.ajax4jsf.renderkit.RendererBase.renderChildren(RendererBase.java:258) at org.richfaces.renderkit.html.TabPanelRenderer.doEncodeChildren(TabPanelRenderer.java:266) at org.richfaces.renderkit.html.TabPanelRenderer.doEncodeChildren(TabPanelRenderer.java:261) at org.ajax4jsf.renderkit.RendererBase.encodeChildren(RendererBase.java:120) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at com.sun.faces.renderkit.html_basic.HtmlBasicRenderer.encodeRecursive(HtmlBasicRenderer.java:234) at com.sun.faces.renderkit.html_basic.GridRenderer.renderRow(GridRenderer.java:180) at com.sun.faces.renderkit.html_basic.GridRenderer.encodeChildren(GridRenderer.java:127) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at com.sun.faces.renderkit.html_basic.HtmlBasicRenderer.encodeRecursive(HtmlBasicRenderer.java:234) at com.sun.faces.renderkit.html_basic.HtmlBasicRenderer.encodeRecursive(HtmlBasicRenderer.java:239) at com.sun.faces.renderkit.html_basic.HtmlBasicRenderer.encodeRecursive(HtmlBasicRenderer.java:239) at com.sun.faces.renderkit.html_basic.GroupRenderer.encodeChildren(GroupRenderer.java:106) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at org.ajax4jsf.renderkit.RendererBase.renderChild(RendererBase.java:277) at org.ajax4jsf.renderkit.RendererBase.renderChildren(RendererBase.java:258) at org.richfaces.renderkit.html.PanelRenderer.doEncodeChildren(PanelRenderer.java:200) at org.richfaces.renderkit.html.PanelRenderer.doEncodeChildren(PanelRenderer.java:195) at org.ajax4jsf.renderkit.RendererBase.encodeChildren(RendererBase.java:120) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at org.ajax4jsf.renderkit.RendererBase.renderChild(RendererBase.java:277) at org.ajax4jsf.renderkit.RendererBase.renderChildren(RendererBase.java:258) at org.richfaces.renderkit.html.PageRenderer.doEncodeChildren(PageRenderer.java:265) at org.richfaces.renderkit.html.PageRenderer.doEncodeChildren(PageRenderer.java:254) at org.ajax4jsf.renderkit.RendererBase.encodeChildren(RendererBase.java:120) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at javax.faces.component.UIComponent.encodeAll(UIComponent.java:930) at javax.faces.component.UIComponent.encodeAll(UIComponent.java:933) at com.sun.facelets.FaceletViewHandler.renderView(FaceletViewHandler.java:594) at org.ajax4jsf.application.ViewHandlerWrapper.renderView(ViewHandlerWrapper.java:100) at org.ajax4jsf.application.AjaxViewHandler.renderView(AjaxViewHandler.java:176) at com.sun.faces.lifecycle.RenderResponsePhase.execute(RenderResponsePhase.java:110) at com.sun.faces.lifecycle.Phase.doPhase(Phase.java:100) at com.sun.faces.lifecycle.LifecycleImpl.render(LifecycleImpl.java:139) at javax.faces.webapp.FacesServlet.service(FacesServlet.java:266) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:290) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.ajax4jsf.webapp.BaseXMLFilter.doXmlFilter(BaseXMLFilter.java:178) at org.ajax4jsf.webapp.BaseFilter.handleRequest(BaseFilter.java:290) at org.ajax4jsf.webapp.BaseFilter.processUploadsAndHandleRequest(BaseFilter.java:388) at org.ajax4jsf.webapp.BaseFilter.doFilter(BaseFilter.java:515) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:233) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:191) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:298) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:852) at org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.process(Http11Protocol.java:588) at org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:489) at java.lang.Thread.run(Thread.java:619) 07-Mar-2010 19:05:52 com.sun.faces.lifecycle.Phase doPhase SEVERE: JSF1054: (Phase ID: RENDER_RESPONSE 6, View ID: /index.xhtml) Exception thrown during phase execution: javax.faces.event.PhaseEvent[source=com.sun.faces.lifecycle.LifecycleImpl@30f369] 07-Mar-2010 19:05:52 org.apache.catalina.core.StandardWrapperValve invoke SEVERE: Servlet.service() for servlet Faces Servlet threw exception java.lang.ClassCastException: com.sun.facelets.component.UIRepeat cannot be cast to org.richfaces.component.UIPanelMenuItem at org.richfaces.renderkit.html.PanelMenuRenderer.insertScript(PanelMenuRenderer.java:141) at org.richfaces.renderkit.html.HtmlPanelMenuRenderer.doEncodeEnd(HtmlPanelMenuRenderer.java:260) at org.richfaces.renderkit.html.HtmlPanelMenuRenderer.doEncodeEnd(HtmlPanelMenuRenderer.java:271) at org.ajax4jsf.renderkit.RendererBase.encodeEnd(RendererBase.java:134) at javax.faces.component.UIComponentBase.encodeEnd(UIComponentBase.java:861) at org.ajax4jsf.renderkit.RendererBase.renderChild(RendererBase.java:281) at org.ajax4jsf.renderkit.RendererBase.renderChildren(RendererBase.java:258) at org.richfaces.renderkit.TabRendererBase.encodeChildren(TabRendererBase.java:113) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at org.ajax4jsf.renderkit.RendererBase.renderChild(RendererBase.java:277) at org.ajax4jsf.renderkit.RendererBase.renderChildren(RendererBase.java:258) at org.richfaces.renderkit.html.TabPanelRenderer.doEncodeChildren(TabPanelRenderer.java:266) at org.richfaces.renderkit.html.TabPanelRenderer.doEncodeChildren(TabPanelRenderer.java:261) at org.ajax4jsf.renderkit.RendererBase.encodeChildren(RendererBase.java:120) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at com.sun.faces.renderkit.html_basic.HtmlBasicRenderer.encodeRecursive(HtmlBasicRenderer.java:234) at com.sun.faces.renderkit.html_basic.GridRenderer.renderRow(GridRenderer.java:180) at com.sun.faces.renderkit.html_basic.GridRenderer.encodeChildren(GridRenderer.java:127) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at com.sun.faces.renderkit.html_basic.HtmlBasicRenderer.encodeRecursive(HtmlBasicRenderer.java:234) at com.sun.faces.renderkit.html_basic.HtmlBasicRenderer.encodeRecursive(HtmlBasicRenderer.java:239) at com.sun.faces.renderkit.html_basic.HtmlBasicRenderer.encodeRecursive(HtmlBasicRenderer.java:239) at com.sun.faces.renderkit.html_basic.GroupRenderer.encodeChildren(GroupRenderer.java:106) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at org.ajax4jsf.renderkit.RendererBase.renderChild(RendererBase.java:277) at org.ajax4jsf.renderkit.RendererBase.renderChildren(RendererBase.java:258) at org.richfaces.renderkit.html.PanelRenderer.doEncodeChildren(PanelRenderer.java:200) at org.richfaces.renderkit.html.PanelRenderer.doEncodeChildren(PanelRenderer.java:195) at org.ajax4jsf.renderkit.RendererBase.encodeChildren(RendererBase.java:120) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at org.ajax4jsf.renderkit.RendererBase.renderChild(RendererBase.java:277) at org.ajax4jsf.renderkit.RendererBase.renderChildren(RendererBase.java:258) at org.richfaces.renderkit.html.PageRenderer.doEncodeChildren(PageRenderer.java:265) at org.richfaces.renderkit.html.PageRenderer.doEncodeChildren(PageRenderer.java:254) at org.ajax4jsf.renderkit.RendererBase.encodeChildren(RendererBase.java:120) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at javax.faces.component.UIComponent.encodeAll(UIComponent.java:930) at javax.faces.component.UIComponent.encodeAll(UIComponent.java:933) at com.sun.facelets.FaceletViewHandler.renderView(FaceletViewHandler.java:594) at org.ajax4jsf.application.ViewHandlerWrapper.renderView(ViewHandlerWrapper.java:100) at org.ajax4jsf.application.AjaxViewHandler.renderView(AjaxViewHandler.java:176) at com.sun.faces.lifecycle.RenderResponsePhase.execute(RenderResponsePhase.java:110) at com.sun.faces.lifecycle.Phase.doPhase(Phase.java:100) at com.sun.faces.lifecycle.LifecycleImpl.render(LifecycleImpl.java:139) at javax.faces.webapp.FacesServlet.service(FacesServlet.java:266) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:290) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.ajax4jsf.webapp.BaseXMLFilter.doXmlFilter(BaseXMLFilter.java:178) at org.ajax4jsf.webapp.BaseFilter.handleRequest(BaseFilter.java:290) at org.ajax4jsf.webapp.BaseFilter.processUploadsAndHandleRequest(BaseFilter.java:388) at org.ajax4jsf.webapp.BaseFilter.doFilter(BaseFilter.java:515) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:233) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:191) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:298) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:852) at org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.process(Http11Protocol.java:588) at org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:489) at java.lang.Thread.run(Thread.java:619) |STDOUT| 2010-03-07 19:05:52,683 | ERROR | [http-8181-1]: Exception in the filter chain javax.servlet.ServletException: com.sun.facelets.component.UIRepeat cannot be cast to org.richfaces.component.UIPanelMenuItem at javax.faces.webapp.FacesServlet.service(FacesServlet.java:277) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:290) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.ajax4jsf.webapp.BaseXMLFilter.doXmlFilter(BaseXMLFilter.java:178) at org.ajax4jsf.webapp.BaseFilter.handleRequest(BaseFilter.java:290) at org.ajax4jsf.webapp.BaseFilter.processUploadsAndHandleRequest(BaseFilter.java:388) at org.ajax4jsf.webapp.BaseFilter.doFilter(BaseFilter.java:515) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:233) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:191) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:298) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:852) at org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.process(Http11Protocol.java:588) at org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:489) at java.lang.Thread.run(Thread.java:619) Caused by: java.lang.ClassCastException: com.sun.facelets.component.UIRepeat cannot be cast to org.richfaces.component.UIPanelMenuItem at org.richfaces.renderkit.html.PanelMenuRenderer.insertScript(PanelMenuRenderer.java:141) at org.richfaces.renderkit.html.HtmlPanelMenuRenderer.doEncodeEnd(HtmlPanelMenuRenderer.java:260) at org.richfaces.renderkit.html.HtmlPanelMenuRenderer.doEncodeEnd(HtmlPanelMenuRenderer.java:271) at org.ajax4jsf.renderkit.RendererBase.encodeEnd(RendererBase.java:134) at javax.faces.component.UIComponentBase.encodeEnd(UIComponentBase.java:861) at org.ajax4jsf.renderkit.RendererBase.renderChild(RendererBase.java:281) at org.ajax4jsf.renderkit.RendererBase.renderChildren(RendererBase.java:258) at org.richfaces.renderkit.TabRendererBase.encodeChildren(TabRendererBase.java:113) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at org.ajax4jsf.renderkit.RendererBase.renderChild(RendererBase.java:277) at org.ajax4jsf.renderkit.RendererBase.renderChildren(RendererBase.java:258) at org.richfaces.renderkit.html.TabPanelRenderer.doEncodeChildren(TabPanelRenderer.java:266) at org.richfaces.renderkit.html.TabPanelRenderer.doEncodeChildren(TabPanelRenderer.java:261) at org.ajax4jsf.renderkit.RendererBase.encodeChildren(RendererBase.java:120) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at com.sun.faces.renderkit.html_basic.HtmlBasicRenderer.encodeRecursive(HtmlBasicRenderer.java:234) at com.sun.faces.renderkit.html_basic.GridRenderer.renderRow(GridRenderer.java:180) at com.sun.faces.renderkit.html_basic.GridRenderer.encodeChildren(GridRenderer.java:127) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at com.sun.faces.renderkit.html_basic.HtmlBasicRenderer.encodeRecursive(HtmlBasicRenderer.java:234) at com.sun.faces.renderkit.html_basic.HtmlBasicRenderer.encodeRecursive(HtmlBasicRenderer.java:239) at com.sun.faces.renderkit.html_basic.HtmlBasicRenderer.encodeRecursive(HtmlBasicRenderer.java:239) at com.sun.faces.renderkit.html_basic.GroupRenderer.encodeChildren(GroupRenderer.java:106) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at org.ajax4jsf.renderkit.RendererBase.renderChild(RendererBase.java:277) at org.ajax4jsf.renderkit.RendererBase.renderChildren(RendererBase.java:258) at org.richfaces.renderkit.html.PanelRenderer.doEncodeChildren(PanelRenderer.java:200) at org.richfaces.renderkit.html.PanelRenderer.doEncodeChildren(PanelRenderer.java:195) at org.ajax4jsf.renderkit.RendererBase.encodeChildren(RendererBase.java:120) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at org.ajax4jsf.renderkit.RendererBase.renderChild(RendererBase.java:277) at org.ajax4jsf.renderkit.RendererBase.renderChildren(RendererBase.java:258) at org.richfaces.renderkit.html.PageRenderer.doEncodeChildren(PageRenderer.java:265) at org.richfaces.renderkit.html.PageRenderer.doEncodeChildren(PageRenderer.java:254) at org.ajax4jsf.renderkit.RendererBase.encodeChildren(RendererBase.java:120) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:837) at javax.faces.component.UIComponent.encodeAll(UIComponent.java:930) at javax.faces.component.UIComponent.encodeAll(UIComponent.java:933) at com.sun.facelets.FaceletViewHandler.renderView(FaceletViewHandler.java:594) at org.ajax4jsf.application.ViewHandlerWrapper.renderView(ViewHandlerWrapper.java:100) at org.ajax4jsf.application.AjaxViewHandler.renderView(AjaxViewHandler.java:176) at com.sun.faces.lifecycle.RenderResponsePhase.execute(RenderResponsePhase.java:110) at com.sun.faces.lifecycle.Phase.doPhase(Phase.java:100) at com.sun.faces.lifecycle.LifecycleImpl.render(LifecycleImpl.java:139) at javax.faces.webapp.FacesServlet.service(FacesServlet.java:266) ... 18 more

    Read the article

  • How to set up Mod_WSGI for Python on Ubuntu

    - by AutomatedTester
    Hi, I am trying to setup MOD_WSGI on my Ubuntu box. I have found steps that said I needed to do the following steps I found at http://ubuntuforums.org/showthread.php?t=833766 sudo apt-get install libapache2-mod-wsgi sudo a2enmod mod-wsgi sudo /etc/init.d/apache2 restart sudo gedit /etc/apache2/sites-available/default and update the Directory <Directory /var/www/> Options Indexes FollowSymLinks MultiViews ExecCGI AddHandler cgi-script .cgi AddHandler wsgi-script .wsgi AllowOverride None Order allow,deny allow from all </Directory> sudo /etc/init.d/apache2 restart Created test.wsgi with def application(environ, start_response): status = '200 OK' output = 'Hello World!' response_headers = [('Content-type', 'text/plain'), ('Content-Length', str(len(output)))] start_response(status, response_headers) return [output] Step 2 fails because it says it can't find mod-wsgi even though the apt-get found it. If I carry on with the steps the python app just shows as plain text in a browser. Any ideas what I have done wrong? EDIT: Results for questions asked automatedtester@ubuntu:~$ dpkg -l libapache2-mod-wsgi Desired=Unknown/Install/Remove/Purge/Hold | Status=Not/Inst/Cfg-files/Unpacked/Failed-cfg/Half-inst/trig-aWait/Trig-pend |/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad) ||/ Name Version Description +++-======================================-======================================-============================================================================================ ii libapache2-mod-wsgi 2.5-1 Python WSGI adapter module for Apache automatedtester@ubuntu:~$ dpkg -s libapache2-mod-wsgi Package: libapache2-mod-wsgi Status: install ok installed Priority: optional Section: python Installed-Size: 376 Maintainer: Ubuntu MOTU Developers <[email protected]> Architecture: i386 Source: mod-wsgi Version: 2.5-1 Depends: apache2, apache2.2-common, libc6 (>= 2.4), libpython2.6 (>= 2.6), python (>= 2.5), python (<< 2.7) Suggests: apache2-mpm-worker | apache2-mpm-event Conffiles: /etc/apache2/mods-available/wsgi.load 06d2b4d2c95b28720f324bd650b7cbd6 /etc/apache2/mods-available/wsgi.conf 408487581dfe024e8475d2fbf993a15c Description: Python WSGI adapter module for Apache The mod_wsgi adapter is an Apache module that provides a WSGI (Web Server Gateway Interface, a standard interface between web server software and web applications written in Python) compliant interface for hosting Python based web applications within Apache. The adapter provides significantly better performance than using existing WSGI adapters for mod_python or CGI. Original-Maintainer: Debian Python Modules Team <[email protected]> Homepage: http://www.modwsgi.org/ automatedtester@ubuntu:~$ sudo a2enmod libapache2-mod-wsgi ERROR: Module libapache2-mod-wsgi does not exist! automatedtester@ubuntu:~$ sudo a2enmod mod-wsgi ERROR: Module mod-wsgi does not exist! FURTHER EDIT FOR RMYates automatedtester@ubuntu:~$ apache2ctl -t -D DUMP_MODULES apache2: Could not reliably determine the server's fully qualified domain name, using 127.0.1.1 for ServerName Loaded Modules: core_module (static) log_config_module (static) logio_module (static) mpm_worker_module (static) http_module (static) so_module (static) alias_module (shared) auth_basic_module (shared) authn_file_module (shared) authz_default_module (shared) authz_groupfile_module (shared) authz_host_module (shared) authz_user_module (shared) autoindex_module (shared) cgid_module (shared) deflate_module (shared) dir_module (shared) env_module (shared) mime_module (shared) negotiation_module (shared) python_module (shared) setenvif_module (shared) status_module (shared) Syntax OK automatedtester@ubuntu:~$

    Read the article

  • SSL connection errors from Apache

    - by Yang
    I'm running a (self-signed) SSL cert site on Apache/2.2.14 on Ubuntu 10.04, but various browsers are giving errors on half the connection attempts. Just now saw this transient error from Chrome: "Error 126 (net::ERR_SSL_BAD_RECORD_MAC_ALERT): Unknown error." Hit refresh and the problem goes away for a while. wget too: $ wget --no-check-certificate https://dev.partyondata.com/deps/ --2010-09-08 19:30:26-- https://dev.partyondata.com/deps/ Resolving dev.partyondata.com... 184.72.53.220 Connecting to dev.partyondata.com|184.72.53.220|:443... connected. OpenSSL: error:0407006A:rsa routines:RSA_padding_check_PKCS1_type_1:block type is not 01 OpenSSL: error:04067072:rsa routines:RSA_EAY_PUBLIC_DECRYPT:padding check failed OpenSSL: error:1408D07B:SSL routines:SSL3_GET_KEY_EXCHANGE:bad signature Unable to establish SSL connection. Run it right away again and it works: $ wget --no-check-certificate https://dev.partyondata.com/deps/ --2010-09-08 19:30:29-- https://dev.partyondata.com/deps/ Resolving dev.partyondata.com... 184.72.53.220 Connecting to dev.partyondata.com|184.72.53.220|:443... connected. WARNING: cannot verify dev.partyondata.com's certificate, issued by `/CN=dev.partyondata.com': Self-signed certificate encountered. HTTP request sent, awaiting response... 200 OK Length: 3157 (3.1K) [text/html] Saving to: `index.html' 100%[======================================>] 3,157 --.-K/s in 0s 2010-09-08 19:30:29 (48.6 MB/s) - `index.html' saved [3157/3157] In my sites-enabled/default-ssl: SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key The cert: -----BEGIN CERTIFICATE----- MIIBszCCARwCCQCa0TzNwqLgsTANBgkqhkiG9w0BAQUFADAeMRwwGgYDVQQDExNk ZXYucGFydHlvbmRhdGEuY29tMB4XDTEwMDgyNzA2MzA1N1oXDTIwMDgyNDA2MzA1 N1owHjEcMBoGA1UEAxMTZGV2LnBhcnR5b25kYXRhLmNvbTCBnzANBgkqhkiG9w0B AQEFAAOBjQAwgYkCgYEAzXDEULpCUqIc9hV/ESFapkckR2uoYINA81DvG2aQZ9Ot Q30OwX2ae2CC4bSzJEIVlahU8vjVrWpmpa28NEhQbqh4ywwbl1XDrEVYI6Gkfimf snJhOKyaVrEhlwutYtBjmsz3ZIqwymMPm/6smVcSS5dJIynlSmtltxX6ivPcO8UC AwEAATANBgkqhkiG9w0BAQUFAAOBgQBGxHVkpSSOnZjzuySRepjhAlV/yhe9Fx23 fh12WrjQMEi98B7JEuNSLXDWckUN7O6XRc3RzKmazcGHJqzhn0Ov6gAmAE2XjZ/x VW21xmaLwk+KgYKFJbJJaP3jMSpU7I3aa11wqAkR2Zd4Nkm9N0YXYIzcBdfztTVI Et8mEHBFdg== -----END CERTIFICATE----- The cert is in turn generated via: $ make-ssl-cert generate-default-snakeoil --force-overwrite Apache version. $ apache2 -V Server version: Apache/2.2.14 (Ubuntu) Server built: Apr 13 2010 20:22:19 Server's Module Magic Number: 20051115:23 Server loaded: APR 1.3.8, APR-Util 1.3.9 Compiled using: APR 1.3.8, APR-Util 1.3.9 Architecture: 64-bit Server MPM: Worker threaded: yes (fixed thread count) forked: yes (variable process count) Server compiled with.... -D APACHE_MPM_DIR="server/mpm/worker" -D APR_HAS_SENDFILE -D APR_HAS_MMAP -D APR_HAVE_IPV6 (IPv4-mapped addresses enabled) -D APR_USE_SYSVSEM_SERIALIZE -D APR_USE_PTHREAD_SERIALIZE -D SINGLE_LISTEN_UNSERIALIZED_ACCEPT -D APR_HAS_OTHER_CHILD -D AP_HAVE_RELIABLE_PIPED_LOGS -D DYNAMIC_MODULE_LIMIT=128 -D HTTPD_ROOT="" -D SUEXEC_BIN="/usr/lib/apache2/suexec" -D DEFAULT_PIDLOG="/var/run/apache2.pid" -D DEFAULT_SCOREBOARD="logs/apache_runtime_status" -D DEFAULT_ERRORLOG="logs/error_log" -D AP_TYPES_CONFIG_FILE="/etc/apache2/mime.types" -D SERVER_CONFIG_FILE="/etc/apache2/apache2.conf" Any ideas? Thanks in advance for any help.

    Read the article

< Previous Page | 407 408 409 410 411 412 413 414 415 416 417 418  | Next Page >