Search Results

Search found 23613 results on 945 pages for 'query parameters'.

Page 536/945 | < Previous Page | 532 533 534 535 536 537 538 539 540 541 542 543  | Next Page >

  • Some OBI EE Tricks and Tips in the Admin Tool By Gerry Langton

    - by hamsun
    How to set the log level from a Session variable Initialization block As we know it is normal to set the log level non-zero for a particular user when we wish to debug problems. However sometimes it is inconvenient to go into each user’s properties in the Admin tool and update the log level. So I am showing a method which allows the log level to be set for all users via a session initialization block. This is particularly useful for anyone wanting an alternative way to set the log level. The screen shots shown are using the OBIEE 11g SampleApp demo but are applicable to any environment. Open the appropriate rpd in on-line mode and navigate to Manage Variables. Select Session Initialization Blocks, right click in the white space and create a New Initialization Block. I called the Initialization block Set_Loglevel . Now click on ‘Edit Data Source’ to enter the SQL. Chose the ‘Use OBI EE Server’ option for the SQL. This means that the SQL provided must use tables which have been defined in the Physical layer of the RPD, and whilst there is no need to provide a connection pool you must work in On-Line mode. The SQL can access any of the RPD tables and is purely used to return a value of 2. The ‘Test’ button confirms that the SQL is valid. Next, click on the ‘Edit Data Target’ button to add the LOGLEVEL variable to the initialization block. Check the ‘Enable any user to set the value’ option so that this will work for any user. Click OK and the following message will display as LOGLEVEL is a system session variable: Click ‘Yes’. Click ‘OK’ to save the Initialization block. Then check in the On-LIne changes. To test that LOGLEVEL has been set, log in to OBIEE using an administrative login (e.g. weblogic) and reload server metadata, either from the Analysis editor or from Administration > Reload Files and Metadata link. Run a query then navigate to Administration > Manage Sessions and click ‘View Log’ for the query just issued (which should be approximately the last in the list). A log file should exist and with LOGLEVEL set to 2 should include both logical and physical sql. If more diagnostic information is required then set LOGLEVEL to a higher value. If logging is required only for a particular analysis then an alternative method can be used directly from the Analysis editor. Edit the analysis for which debugging is required and click on the Advanced tab. Scroll down to the Advanced SQL clauses section and enter the following in the Prefix box: SET VARIABLE LOGLEVEL = 2; Click the ‘Apply SQL’ button. The SET VARIABLE statement will now prefix the Analysis’s logical SQL. So that any time this analysis is run it will produce a log. You can find information about training for Oracle BI EE products here or in the OU Learning Paths. Please send me an email at [email protected] if you have any further questions. About the Author: Gerry Langton started at Siebel Systems in 1999 working as a technical instructor teaching both Siebel application development and also Siebel Analytics (which subsequently became Oracle BI EE). From 2006 Gerry has worked as Senior Principal Instructor within Oracle University specialising in Oracle BI EE, Oracle BI Publisher and Oracle Data Warehouse development for BI.

    Read the article

  • MaxTotalSizeInBytes - Blind spots in Usage file and Web Analytics Reports

    - by Gino Abraham
    Originally posted on: http://geekswithblogs.net/GinoAbraham/archive/2013/10/28/maxtotalsizeinbytes---blind-spots-in-usage-file-and-web-analytics.aspx http://blogs.msdn.com/b/sharepoint_strategery/archive/2012/04/16/usage-file-and-web-analytics-reports-with-blind-spots.aspx In my previous post (Troubleshooting SharePoint 2010 Web Analytics), I referenced a problem that can occur when exceeding the daily partition size for the LoggingDB, which generates the ULS message “[Partition] has exceeded the max bytes”. Below, I wanted to provide some additional info on this particular issue and help identify some options if this occurs. As an aside, this post only applies if you are missing portions of Usage data - think blind spots on intermittent days or user activity regularly sparse for the afternoon/evening. If this fits your scenario - read on. But if Usage logs are outright missing, go check out my Troubleshooting post first.  Background on the problem:The LoggingDB database has a default maximum size of ~6GB. However, SharePoint evenly splits this total size into fixed sized logical partitions – and the number of partitions is defined by the number of days to retain Usage data (by default 14 days). In this case, 14 partitions would be created to account for the 14 days of retention. If the retention were halved to 7 days, the LoggingDBwould be split into 7 corresponding partitions at twice the size. In other words, the partition size is generally defined as [max size for DB] / [number of retention days].Going back to the default scenario, the “max size” for the LoggingDB is 6200000000 bytes (~6GB) and the retention period is 14 days. Using our formula, this would be [~6GB] / [14 days], which equates to 444858368 bytes (~425MB) per partition per day. Again, if the retention were halved to 7 days (which halves the number of partitions), the resulting partition size becomes [~6GB] / [7 days], or ~850MB per partition.From my experience, when the partition size for any given day is exceeded, the usage logging for the remainder of the day is essentially thrown away because SharePoint won’t allow any more to be written to that day’s partition. The only clue that this is occurring (beyond truncated usage data) is an error such as the following that gets reported in the ULS:04/08/2012 09:30:04.78    OWSTIMER.EXE (0x1E24)    0x2C98    SharePoint Foundation    Health    i0m6     High    Table RequestUsage_Partition12 has 444858368 bytes that has exceeded the max bytes 444858368It’s also worth noting that the exact bytes reported (e.g. ‘444858368’ above) may slightly vary among farms. For example, you may instead see 445226812, 439123456, or something else in the ballpark. The exact number itself doesn't matter, but this error message intends to indicates that the reporting usage has exceeded the partition size for the given day.What it means:The error itself is easy to miss, which can lead to substantial gaps in the reporting data (your mileage may vary) if not identified. At this point, I can only advise to periodically check the ULS logs for this message. Down the road, I plan to explore if [Developing a Custom Health Rule] could be leveraged to identify the issue (If you've ever built Custom Health Rules, I'd be interested to hear about your experiences). Overcoming this issue also poses a challenge, with workaround options including:Lower the retentionBecause the partition size is generally defined as [max size] / [number of retention days], the first option is to lower the number of days to retain the data – the lower the retention, the lower the divisor and thus a bigger partition. For example, halving the retention from 14 to 7 days would halve the number of partitions, but double the partition size to ~850MB (e.g. [6200000000 bytes] / [7 days] = ~850GB partitions). Lowering it to 2 days would result in two ~3GB partitions… and so on.Recreate the LoggingDB with an increased sizeThe property MaxTotalSizeInBytes is exposed by OM code for the SPUsageDefinition object and can be updated with the example PowerShell snippet below. However, updating this value has no immediate impact because this size only applies when creating a LoggingDB. Therefore, you must create a newLoggingDB for the Usage Service Application. The gotcha: this effectively deletes all prior Usage databecause the Usage Service Application can only have a single LoggingDB.Here is an example snippet to update the "Page Requests" Usage Definition:$def=Get-SPUsageDefinition -Identity "page requests" $def.MaxTotalSizeInBytes=12400000000 $def.update()Create a new Logging database and attach to the Usage Service Application using the following command: Get-spusageapplication | Set-SPUsageApplication -DatabaseServer <dbServer> -DatabaseName <newDBname> Updated (5/10/2012): Once the new database has been created, you can confirm the setting has truly taken by running the following SQL Query (be sure to replace the database name in the following query with the name provided in the PowerShell above)SELECT * FROM [WSS_UsageApplication].[dbo].[Configuration] WITH (nolock) WHERE ConfigName LIKE 'Max Total Bytes - RequestUsage'

    Read the article

  • Indexing data from multiple tables with Oracle Text

    - by Roger Ford
    It's well known that Oracle Text indexes perform best when all the data to be indexed is combined into a single index. The query select * from mytable where contains (title, 'dog') 0 or contains (body, 'cat') 0 will tend to perform much worse than select * from mytable where contains (text, 'dog WITHIN title OR cat WITHIN body') 0 For this reason, Oracle Text provides the MULTI_COLUMN_DATASTORE which will combine data from multiple columns into a single index. Effectively, it constructs a "virtual document" at indexing time, which might look something like: <title>the big dog</title> <body>the ginger cat smiles</body> This virtual document can be indexed using either AUTO_SECTION_GROUP, or by explicitly defining sections for title and body, allowing the query as expressed above. Note that we've used a column called "text" - this might have been a dummy column added to the table simply to allow us to create an index on it - or we could created the index on either of the "real" columns - title or body. It should be noted that MULTI_COLUMN_DATASTORE doesn't automatically handle updates to columns used by it - if you create the index on the column text, but specify that columns title and body are to be indexed, you will need to arrange triggers such that the text column is updated whenever title or body are altered. That works fine for single tables. But what if we actually want to combine data from multiple tables? In that case there are two approaches which work well: Create a real table which contains a summary of the information, and create the index on that using the MULTI_COLUMN_DATASTORE. This is simple, and effective, but it does use a lot of disk space as the information to be indexed has to be duplicated. Create our own "virtual" documents using the USER_DATASTORE. The user datastore allows us to specify a PL/SQL procedure which will be used to fetch the data to be indexed, returned in a CLOB, or occasionally in a BLOB or VARCHAR2. This PL/SQL procedure is called once for each row in the table to be indexed, and is passed the ROWID value of the current row being indexed. The actual contents of the procedure is entirely up to the owner, but it is normal to fetch data from one or more columns from database tables. In both cases, we still need to take care of updates - making sure that we have all the triggers necessary to update the indexed column (and, in case 1, the summary table) whenever any of the data to be indexed gets changed. I've written full examples of both these techniques, as SQL scripts to be run in the SQL*Plus tool. You will need to run them as a user who has CTXAPP role and CREATE DIRECTORY privilege. Part of the data to be indexed is a Microsoft Word file called "1.doc". You should create this file in Word, preferably containing the single line of text: "test document". This file can be saved anywhere, but the SQL scripts need to be changed so that the "create or replace directory" command refers to the right location. In the example, I've used C:\doc. multi_table_indexing_1.sql : creates a summary table containing all the data, and uses multi_column_datastore Download link / View in browser multi_table_indexing_2.sql : creates "virtual" documents using a procedure as a user_datastore Download link / View in browser

    Read the article

  • New features in TFS Demo Setup 1.0.0.2

    - by Tarun Arora
    Release Notes – http://tfsdemosetup.codeplex.com/ | Download | Source Code | Report a Bug | Ideas Just pushed out the 2nd release of the TFS Demo setup on CodePlex, below a quick look at some of the new features/improvements in the tool… Details of the existing features can be found here. Feature 1 – Set up Work Items Queries as Team Favorites The task board looks cooler when the team favourite work item queries show up on the task board. The demo setup console application now has the ability to set up the work item queries as team favorites for you. If you want to see how you can add Team Favorites programmatically, refer to this blogpost here. Image 1 – Task board without Team Favorites Let’s see how the TFS Demo Setup application sets-up team favorites as part of the run… Open up the DemoDictionary.xml and you should be able to see the new node <TeamFavorites> this accepts multiple <TeamFavorite>. You simply need to specify the <Type> as Query and in the <Name> specify the name of the work item query that you would like added as a favorite. Image 2 – Highlighting the TeamFavorites block in DemoDictionary.xml So, when the demo set up application is run with the above config, work item queries “Blocked Tasks” and “Open Impediments” are added as team favorites. They then show up on the task board, as highlighted in the screen shot below. Image 3 – Team Favorites setup during the TFS demo setup app execution Feature 2 – Choose what you want to setup and exclude the rest I had a great feature request come in requesting the ability to exclude parts of the setup at the sole discretion of the executioner. To accommodate this, I have added an attribute with each block, the attribute “Run” accepts “true” or “false”. If you set the flag to true then at the time of execution that block would be considered for setup and if you set the flag to false, the block will be ignored during the setup. So, lets look at an example below… The attribute "Run” is set to true for TeamSettings, Team Favorites, TeamMembers and WorkItems. So, all of these would be setup as part of the demo setup application execution. Image 4 – New Attribute Run added to all blocks in DemoDictionary.xml If I did not want to recreate the team and did not want to add new work items but only wanted to add favorites and team members to the existing team “AgileChamps1” then I could simple run the application with below DemoDictionary.xml. Note – TeamSettings Run=”false” and WorkItems Run=”false”. Image 5 – TeamFavorites and TeamMembers set as true and others set to false Feature 3 – Usability Improvement If you try and assign a work item to a team member that does not exist then the application throws a nasty exception. This behaviour has now been changed, upon adding such a work item, the work items will be created and not assigned to any user. The work item id will be printed to the console making it simple for you to assign the work item manually. As you can see in the screen shot below, I am trying to assign the work item to a user “Tarun” and a user “v2” both are *not valid users in my team project collection* so the tool creates the work items and provides me the work item id and lets me know that since the user is invalid the work item could not be assigned to the user. Better user experience ae Image 6 – Behaviour if work item assigned to users are in valid users in team project That’s about it for the current release. I have some new features planned for the next release. Mean while if you have any ideas/comments please feel free to leave a comment. Stay tuned for more… Enjoy! Other posts on TFS Demo Setup can be found here.

    Read the article

  • Essential Links for the SharePoint Client Side Developer

    - by Mark Rackley
    Front End Developer? Client Side Developer? Middle Tier??? I’m covering all my bases.  Regardless, I’m sick and tired of Googling with Bing when I forget where information that I need often is located. I was getting ready to bookmark some of them when it hit me… “Hey Mark… (I don’t actually refer to myself in the third person), Why don’t you put the links in a blog so that it looks like you are being helpful!” I can’t tell you how many times I’ve had to go back to some of my old blogs to remember how I did something. Seriously people, you need to start a blog, it’s the best way to remember how the frick you got something to work… and it looks like you are being helpful when in reality you are just forgetful.  So… where was I? Oh yeah.. essential information that I’ve needed from time to time when I was not using Visual Studio. All of this info has come in handy from time to time. Know about these things and keep them in your tool belt, it’s amazing the stuff you can accomplish with just knowing where to look. What Why SPServices Widely used library written by Marc Anderson used to call SharePoint Web Services with jQuery jQuery For SPServices and other cool stuff Easy Tabs Essential tool for quick page enhancements. This widely used too from Christophe Humbert groups multiple web parts into one tabbed display. Very quick and easy way to get oohs and ahs from End Users. Convert Calculated Columns to HTML Also from Christophe, I use this script all the time to convert html in my calculated columns to actually display as html and not with the tags. Unlocking the Mysteries of Data View Web Part XSL Tags This blog series from Marc Anderson makes it very easy to understand what’s going on with all those weird xsl tags in your data view web parts. Essential to make those things do what you want them to do. Creating Parent / Child list relationships (2007) Creating Parent / Child list relationships (2010) By far my most viewed blog posts (tens and tens of thousands).  I have posts for both 2007 and 2010 that walk you through automatically setting the lookup id on a list to its “parent”. Set SharePoint Form fields using Query String Variables Also widely read, this one walks you through taking a variable from your Query String and set a form field to that value.   Hmmm… I KNOW there are more, but I’m tired and drawing a blank.  I’ll try to add them when I remember them (or need them again and think “Oh, I forgot to add that one”) But it’s a start, and please feel free to add your own in the comments… So, it’s YOUR turn to be helpful. What little tip or trick do you find yourself using ALL the time that you think everyone should know about??

    Read the article

  • Restrict number of characters to be typed for af:autoSuggestBehavior

    - by Arunkumar Ramamoorthy
    When using AutoSuggestBehavior for a UI Component, the auto suggest list is displayed as soon as the user starts typing in the field. In this article, we will find how to restrict the autosuggest list to be displayed till the user types in couple of characters. This would be more useful in the low latency networks and also the autosuggest list is bigger. We could display a static message to let the user know that they need to type in more characters to get a list for picking a value from. Final output we would expect is like the below image Lets see how we can implement this. Assuming we have an input text for the users to enter the country name and an autosuggest behavior is added to it. <af:inputText label="Country" id="it1"> <af:autoSuggestBehavior /> </af:inputText> Also, assuming we have a VO (we'll name it as CountryView for this example), with a view criteria to filter out the VO based on the bind variable passed. Now, we would generate View Impl class from the java node (including bind variables) and then expose the setter method of the bind variable to client interface. In the View layer, we would create a tree binding for the VO and the method binding for the setter method of the bind variable exposed above, in the pagedef file As we've already added an input text and an autosuggestbehavior for the test, we would not need to build the suggested items for the autosuggest list.Let us add a method in the backing bean to return us List of select items to be bound to the autosuggest list. padding: 5px; background-color: #fbfbfb; min-height: 40px; width: 544px; height: 168px; overflow: auto;"> public List onSuggest(String searchTerm) { ArrayList<SelectItem> selectItems = new ArrayList<SelectItem>(); if(searchTerm.length()>1) { //get access to the binding context and binding container at runtime BindingContext bctx = BindingContext.getCurrent(); BindingContainer bindings = bctx.getCurrentBindingsEntry(); //set the bind variable value that is used to filter the View Object //query of the suggest list. The View Object instance has a View //Criteria assigned OperationBinding setVariable = (OperationBinding) bindings.get("setBind_CountryName"); setVariable.getParamsMap().put("value", searchTerm); setVariable.execute(); //the data in the suggest list is queried by a tree binding. JUCtrlHierBinding hierBinding = (JUCtrlHierBinding) bindings.get("CountryView1"); //re-query the list based on the new bind variable values hierBinding.executeQuery(); //The rangeSet, the list of queries entries, is of type //JUCtrlValueBndingRef. List<JUCtrlValueBindingRef> displayDataList = hierBinding.getRangeSet(); for (JUCtrlValueBindingRef displayData : displayDataList){ Row rw = displayData.getRow(); //populate the SelectItem list selectItems.add(new SelectItem( (String)rw.getAttribute("Name"), (String)rw.getAttribute("Name"))); } } else{ SelectItem a = new SelectItem("","Type in two or more characters..","",true); selectItems.add(a); } return selectItems; } So, what we are doing in the above method is, to check the length of the search term and if it is more than 1 (i.e 2 or more characters), the return the actual suggest list. Otherwise, create a read only select item new SelectItem("","Type in two or more characters..","",true); and add it to the list of suggested items to be displayed. The last parameter for the SelectItem (boolean) is to make it as readOnly, so that users would not be able to select this static message from the displayed list. Finally, bind this method to the input text's autosuggestbehavior's suggestedItems property. <af:inputText label="Country" id="it1"> <af:autoSuggestBehavior suggestedItems="#{AutoSuggestBean.onSuggest}"/> </af:inputText>

    Read the article

  • Session and Pop Up Window

    - by imran_ku07
     Introduction :        Session is the secure state management. It allows the user to store their information in one page and access in another page. Also it is so much powerful that store any type of object. Every user's session is identified by their cookie, which client presents to server. But unfortunately when you open a new pop up window, this cookie is not post to server with request, due to which server is unable to identify the session data for current user.         In this Article i will show you how to handle this situation,  Description :         During working in a application, i was getting an Exception saying that Session is null, when a pop window opens. After seeing the problem more closely i found that ASP.NET_SessionId cookie for parent page is not post in cookie header of child (popup) window.         Therefore for making session present in both parent and child (popup) window, you have to present same cookie. For cookie sharing i passed parent SessionID in query string,   window.open('http://abc.com/s.aspx?SASID=" & Session.SessionID &','V');           and in Application_PostMapRequestHandler application Event, check if the current request has no ASP.NET_SessionId cookie and SASID query string is not null then add this cookie to Request before Session is acquired, so that Session data remain same for both parent and popup window.    Private Sub Application_PostMapRequestHandler(ByVal sender As Object, ByVal e As EventArgs)           If (Request.Cookies("ASP.NET_SessionId") Is Nothing) AndAlso (Request.QueryString("SASID") IsNot Nothing) Then               Request.Cookies.Add(New HttpCookie("ASP.NET_SessionId", Request.QueryString("SASID")))           End If       End Sub           Now access Session in your parent and child window without any problem. How this works :          ASP.NET (both Web Form or MVC) uses a cookie (ASP.NET_SessionId) to identify the user who is requesting. Cookies are may be persistent (saved permanently in user cookies ) or non-persistent (saved temporary in browser memory). ASP.NET_SessionId cookie saved as non-persistent. This means that if the user closes the browser, the cookie is immediately removed. This is a sensible step that ensures security. That's why ASP.NET unable to identify that the request is coming from the same user. Therefore every browser instance get it's own ASP.NET_SessionId. To resolve this you need to present the same parent ASP.NET_SessionId cookie to the server when open a popup window.           You can confirm this situation by using some tools like Firebug, Fiddler,  Summary :          Hopefully you will enjoy after reading this article, by seeing that how to workaround the problem of sharing Session between different browser instances by sharing their Session identifier Cookie.

    Read the article

  • Columnstore Case Study #1: MSIT SONAR Aggregations

    - by aspiringgeek
    Preamble This is the first in a series of posts documenting big wins encountered using columnstore indexes in SQL Server 2012 & 2014.  Many of these can be found in this deck along with details such as internals, best practices, caveats, etc.  The purpose of sharing the case studies in this context is to provide an easy-to-consume quick-reference alternative. Why Columnstore? If we’re looking for a subset of columns from one or a few rows, given the right indexes, SQL Server can do a superlative job of providing an answer. If we’re asking a question which by design needs to hit lots of rows—DW, reporting, aggregations, grouping, scans, etc., SQL Server has never had a good mechanism—until columnstore. Columnstore indexes were introduced in SQL Server 2012. However, they're still largely unknown. Some adoption blockers existed; yet columnstore was nonetheless a game changer for many apps.  In SQL Server 2014, potential blockers have been largely removed & they're going to profoundly change the way we interact with our data.  The purpose of this series is to share the performance benefits of columnstore & documenting columnstore is a compelling reason to upgrade to SQL Server 2014. App: MSIT SONAR Aggregations At MSIT, performance & configuration data is captured by SCOM. We archive much of the data in a partitioned data warehouse table in SQL Server 2012 for reporting via an application called SONAR.  By definition, this is a primary use case for columnstore—report queries requiring aggregation over large numbers of rows.  New data is refreshed each night by an automated table partitioning mechanism—a best practices scenario for columnstore. The Win Compared to performance using classic indexing which resulted in the expected query plan selection including partition elimination vs. SQL Server 2012 nonclustered columnstore, query performance increased significantly.  Logical reads were reduced by over a factor of 50; both CPU & duration improved by factors of 20 or more.  Other than creating the columnstore index, no special modifications or tweaks to the app or databases schema were necessary to achieve the performance improvements.  Existing nonclustered indexes were rendered superfluous & were deleted, thus mitigating maintenance challenges such as defragging as well as conserving disk capacity. Details The table provides the raw data & summarizes the performance deltas. Logical Reads (8K pages) CPU (ms) Durn (ms) Columnstore 160,323 20,360 9,786 Conventional Table & Indexes 9,053,423 549,608 193,903 ? x56 x27 x20 The charts provide additional perspective of this data.  "Conventional vs. Columnstore Metrics" document the raw data.  Note on this linear display the magnitude of the conventional index performance vs. columnstore.  The “Metrics (?)” chart expresses these values as a ratio. Summary For DW, reports, & other BI workloads, columnstore often provides significant performance enhancements relative to conventional indexing.  I have documented here, the first in a series of reports on columnstore implementations, results from an initial implementation at MSIT in which logical reads were reduced by over a factor of 50; both CPU & duration improved by factors of 20 or more.  Subsequent features in this series document performance enhancements that are even more significant. 

    Read the article

  • PECL OCI8 2.0 Production Release Announcement

    - by cj
    The PHP OCI8 2.0.6 extension for Oracle Database is now "production" status. The source code is available on PECL. This can be used immediately to update your OCI8 extension in PHP 5.2 and later versions. The extension compiles with Oracle 10.2 or later client libraries. Oracle's standard cross-version database connectivity applies. OCI8 2.0 and PHP 5.5.5 RPMs for Oracle and Red Hat Linux are available from oss.oracle.com. Windows DLLs are available on PECL for PHP 5.3, PHP 5.4 and PHP 5.5. OCI8 2.0 source code will also be automatically included in the next major version of PHP. New Functionality Oracle Database 12c Implicit Result Set support. IRS's make it easy to pass query results back from stored PL/SQL procedures or anonymous PL/SQL blocks. Individual IRS statement resources, each corresponding to a single query, can be obtained with the new function oci_get_implicit_resultset(). These 'child' statement resources can be passed to any oci_fetch_* function. See Using PHP and Oracle Database 12c Implicit Result Sets and the PHP Manual: oci_get_implicit_resultset(). DTrace Dynamic Trace static probes. This well respected DTrace tracing framework is available on a number of platforms, including Oracle Linux. PHP OCI8 static user-space probes can be enabled with PHP's --enable-dtrace configuration option. See Using PHP DTrace on Oracle Linux. Documentation is also available in the PHP Manual OCI8 and DTrace Dynamic Tracing Improved Functionality Using oci_execute($s, OCI_NO_AUTO_COMMIT) for a SELECT no longer unnecessarily initiates an internal ROLLBACK during connection close. This can improve overall scalability by reducing "round trips" between PHP and the database. Changed Functionality PHP OCI8 2.0's minimum pre-requisites are now PHP 5.2 and Oracle client library 10.2. Later versions of both are usable and, in fact, recommended. Use the older PHP OCI8 1.4.10 extension when using PHP 4.3.9 through to PHP 5.1.x, or when only Oracle Database 9.2 client libraries are available. oci_set_*($connection, ...) meta data setting call error handling is fixed so that oci_error($connection) works for these calls. Note: The old, deprecated function aliases like ocilogon still exist but are not recommended for new applications. Phpinfo() Changes Some cosmetic changes were made to the output of php --ri oci8 and the phpinfo() function. The oci8.event and oci8.connection_class values are now shown only when the Oracle client libraries support the respective functionality. Connection statistics are now in a separate phpinfo() table. Temporary LOB and Collection support status lines in phpinfo() output were removed. These two features have always been enabled since 2007. Oci_internal_debug() Changes The oci_internal_debug() function is now a no-op. Use PHP's --enable-dtrace functionality with DTrace or SystemTap instead. References OCI8 Extension source code and Windows DLLs http://pecl.php.net/package/oci8 Oracle Linux RPMs oss.oracle.com PHP Manual for OCI8 OCI8 and DTrace Dynamic Tracing Oracle OpenWorld Conference paper What's New in Oracle Database 12c for PHP

    Read the article

  • Keeping an Eye on Your Storage

    - by Fatherjack
    There are plenty of resources that advise you about looking for signs that your storage hardware is having problems. SQL Server Alerts for 823, 824 and 825 are covered here by Paul Randall of SQL Skills: http://www.sqlskills.com/blogs/paul/a-little-known-sign-of-impending-doom-error-825/ and here by me: https://www.simple-talk.com/blogs/2011/06/27/alerts-are-good-arent-they/. Now until very recently I wasn’t aware that there was a different way to track the 823 + 824 errors. It was by complete chance that I happened to be searching about in the msdb database when I found the suspect_pages table. Running a query against it I got zero rows. This, as it turns out is a good thing. Highlighting the table name and pressing F1 got me nowhere – Is it just me or does Books Online fail to load properly for no obvious reason sometimes? So I typed the table name into the search bar and got my local version of http://msdn.microsoft.com/en-us/library/ms174425.aspx. From that we get the following description: Contains one row per page that failed with a minor 823 error or an 824 error. Pages are listed in this table because they are suspected of being bad, but they might actually be fine. When a suspect page is repaired, its status is updated in the event_type column. So, in the table we would, on healthy hardware, expect to see zero rows but on disks that are having problems the event_type column would show us what is going on. Where there are suspect pages on the disk the rows would have an event_type value of 1, 2 or 3, where those suspect pages have been restored, repaired or deallocated by DBCC then the value would be 4, 5 or 7. Having this table means that we can set up SQL Monitor to check the status of our hardware as we can create a custom metric based on the query below: USE [msdb] go SELECT COUNT(*) FROM [dbo].[suspect_pages] AS sp All we need to do is set the metric to collect this value and set an alert to email when the value is not 1 and we are then able to let SQL Monitor take care of our storage. Note that the suspect_pages table does not have any updates concerning Error 825 which the links at the top of the page cover in more detail. I would suggest that you set SQL Monitor to alert on the suspect_pages table in addition to other taking other measures to look after your storage hardware and not have it as your only precaution. Microsoft actually pass ownership and administration of the suspect_pages table over to the database administrator (Manage the suspect_pages Table (SQL Server)) and in a surprising move (to me at least) advise DBAs to actively update and archive data in it. The table will only ever contain a maximum of 1000 rows and once full, new rows will not be added. Keeping an eye on this table is pretty important, although In my opinion, if you get to 1000 rows in this table and are not already waiting for new disks to be added to your server you are doing something wrong but if you have 1000 rows in there then you need to move data out quickly because you may be missing some important events on your server.

    Read the article

  • Future Of F# At Jazoon 2011

    - by Alois Kraus
    I was at the Jazoon 2011 in Zurich (Switzerland). It was a really cool event and it had many top notch speaker not only from the Microsoft universe. One of the most interesting talks was from Don Syme with the title: F# Today/F# Tomorrow. He did show how to use F# scripting to browse through open databases/, OData Web Services, Sharepoint, …interactively. It looked really easy with the help of F# Type Providers which is the next big language feature in a future F# version. The object returned by a Type Provider is used to access the data like in usual strongly typed object model. No guessing how the property of an object is called. Intellisense will show it just as you expect. There exists a range of Type Providers for various data sources where the schema of the stored data can somehow be dynamically extracted. Lets use e.g. a free database it would be then let data = DbProvider(http://.....); data the object which contains all data from e.g. a chemical database. It has an elements collection which contains an element which has the properties: Name, AtomicMass, Picture, …. You can browse the object returned by the Type Provider with full Intellisense because the returned object is strongly typed which makes this happen. The same can be achieved of course with code generators that use an input the schema of the input data (OData Web Service, database, Sharepoint, JSON serialized data, …) and spit out the necessary strongly typed objects as an assembly. This does work but has the downside that if the schema of your data source is huge you will quickly run against a wall with traditional code generators since the generated “deserialization” assembly could easily become several hundred MB. *** The following part contains guessing how this exactly work by asking Don two questions **** Q: Can I use Type Providers within C#? D: No. Q: F# is after all a library. I can reference the F# assemblies and use the contained Type Providers? D: F# does annotate the generated types in a special way at runtime which is not a static type that C# could use. The F# type providers seem to use a hybrid approach. At compilation time the Type Provider is instantiated with the url of your input data. The obtained schema information is used by the compiler to generate static types as usual but only for a small subset (the top level classes up to certain nesting level would make sense to me). To make this work you need to access the actual data source at compile time which could be a problem if you want to keep the actual url in a config file. Ok so this explains why it does work at all. But in the demo we did see full intellisense support down to the deepest object level. It looks like if you navigate deeper into the object hierarchy the type provider is instantiated in the background and attach to a true static type the properties determined at run time while you were typing. So this type is not really static at all. It is static if you define as a static type that its properties shows up in intellisense. But since this type information is determined while you are typing and it is not used to generate a true static type and you cannot use these “intellistatic” types from C#. Nonetheless this is a very cool language feature. With the plotting libraries you can generate expressive charts from any datasource within seconds to get quickly an overview of any structured data storage. My favorite programming language C# will not get such features in the near future there is hope. If you restrict yourself to OData sources you can use LINQPad to query any OData enabled data source with LINQ with ease. There you can query Stackoverflow with The output is also nicely rendered which makes it a very good tool to explore OData sources today.

    Read the article

  • SSIS Debugging Tip: Using Data Viewers

    - by Jim Giercyk
    When you have an SSIS package error, it is often very helpful to see the data records that are causing the problem.  After all, if your input has 50,000 records and 1 of them has corrupt data, it can be a chore.  Your execution results will tell you which column contains the bad data, but not which record…..enter the Data Viewer. In this scenario I have created a truncation error.  The input length of [lastname] is 50, but the output table has a length of 15.  When it runs, at least one of the records causes the package to fail.     Now what?  We can tell from our execution results that there is a problem with [lastname], but we have no idea WHICH record?     Let’s identify the row that is actually causing the problem.  First, we grab the oft’ forgotten Row Count shape from our toolbar and connect it to the error output from our input query.  Remember that in order to intercept errors with the error output, you must redirect them.     The Row Count shape requires 1 integer variable.  For our purposes, we will not reference the variable, but it is still required in order for the package to run.  Typically we would use the variable to hold the number of rows in the table and refer back to it later in our process.  We are simply using the Row Count as a “Dead End” for errors.  I called my variable RowCounter.  To create a variable, with no shapes selected, right-click on the background and choose Variable.     Once we have setup the Row Count shape, we can right-click on the red line (error output) from the query, and select Data Viewers.  In the popup, we click the add button and we will see this:     There are other fancier options we can play with, but for now we just want to view the output in a grid.  WE select Grid, then click OK on all of the popup windows to shut them down.  We should now see a grid with a pair of glasses on the error output line.     So, we are ready to catch the error output in a grid and see that is causing the problem!  This time when we run the package, it does not fail because we directed the error to the Row Count.  We also get a popup window showing the error record in a grid.  If there were multiple errors we would see them all.     Indeed, the [lastname] column is longer than 15 characters.  Notice the last column in the grid, [Error Code – Description].  We knew this was a truncation error before we added the grid, but if you have worked with SSIS for any length of time, you know that some errors are much more obscure.  The description column can be very useful under those circumstances! Data viewers can be used any time we want to see the data that is actually in the pipeline;  they stop the package temporarily until we shut them.  Also remember that the Row Count shape can be used as a “Dead End”.  It is useful during development when we want to see the output from a dataflow, but don’t want to update a table or file with the data.  Data viewers are an invaluable tool for both development and debugging.  Just remember to REMOVE THEM before putting your package into production

    Read the article

  • NHibernate and Stored Procedures in C#

    - by Jess Nickson
    I was recently trying and failing to set up NHibernate (v1.2) in an ASP.NET project. The aim was to execute a stored procedure and return the results, but it took several iterations for me to end up with a working solution. In this post I am simply trying to put the required code in one place, in the hope that the snippets may be useful in guiding someone else through the same process. As it is kind’ve the first time I have had to play with NHibernate, there is a good chance that this solution is sub-optimal and, as such, I am open to suggestions on how it could be improved! There are four code snippets that I required: The stored procedure that I wanted to execute The C# class representation of the results of the procedure The XML mapping file that allows NHibernate to map from C# to the procedure and back again The C# code used to run the stored procedure The Stored Procedure The procedure was designed to take a UserId and, from this, go and grab some profile data for that user. Simple, right? We just need to do a join first, because the user’s site ID (the one we have access to) is not the same as the user’s forum ID. CREATE PROCEDURE [dbo].[GetForumProfileDetails] ( @userId INT ) AS BEGIN SELECT Users.UserID, forumUsers.Twitter, forumUsers.Facebook, forumUsers.GooglePlus, forumUsers.LinkedIn, forumUsers.PublicEmailAddress FROM Users INNER JOIN Forum_Users forumUsers ON forumUsers.UserSiteID = Users.UserID WHERE Users.UserID = @userId END I’d like to make a shout out to Format SQL for its help with, well, formatting the above SQL!   The C# Class This is just the class representation of the results we expect to get from the stored procedure. NHibernate requires a virtual property for each column of data, and these properties must be called the same as the column headers. You will also need to ensure that there is a public or protected parameterless constructor. public class ForumProfile : IForumProfile { public virtual int UserID { get; set; } public virtual string Twitter { get; set; } public virtual string Facebook { get; set; } public virtual string GooglePlus { get; set; } public virtual string LinkedIn { get; set; } public virtual string PublicEmailAddress { get; set; } public ForumProfile() { } }   The NHibernate Mapping File This is the XML I wrote in order to make NHibernate a) aware of the stored procedure, and b) aware of the expected results of the procedure. <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" namespace="[namespace]" assembly="[assembly]"> <sql-query name="GetForumProfileDetails"> <return-scalar column="UserID" type="Int32"/> <return-scalar column="Twitter" type="String"/> <return-scalar column="Facebook" type="String"/> <return-scalar column="GooglePlus" type="String"/> <return-scalar column="LinkedIn" type="String"/> <return-scalar column="PublicEmailAddress" type="String"/> exec GetForumProfileDetails :UserID </sql-query> </hibernate-mapping>   Calling the Stored Procedure Finally, to bring it all together, the C# code that I used in order to execute the stored procedure! public IForumProfile GetForumUserProfile(IUser user) { return NHibernateHelper .GetCurrentSession() .GetNamedQuery("GetForumProfileDetails") .SetInt32("UserID", user.UserID) .SetResultTransformer( Transformers.AliasToBean(typeof (ForumProfile))) .UniqueResult<ForumProfile>(); } There are a number of ‘Set’ methods (i.e. SetInt32) that allow you specify values for any parameters in the procedure. The AliasToBean method is then required to map the returned scalars (as specified in the XML) to the correct C# class.

    Read the article

  • PASS Summit 2012: keynote and Mobile BI announcements #sqlpass

    - by Marco Russo (SQLBI)
    Today at PASS Summit 2012 there have been several announcements during the keynote. Moreover, other news have not been highlighted in the keynote but are equally if not more important for the BI community. Let’s start from the big news in the keynote (other details on SQL Server Blog): Hekaton: this is the codename for in-memory OLTP technology that will appear (I suppose) in the next release of the SQL Server relational engine. The improvement in performance and scalability is impressive and it enables new scenarios. I’m curious to see whether it can be used also to improve ETL performance and how it differs from using SSD technology. Updates on Columnstore: In the next major release of SQL Server the columnstore indexes will be updatable and it will be possible to create a clustered index with Columnstore index. This is really a great news for near real-time reporting needs! Polybase: in 2013 it will debut SQL Server 2012 Parallel Data Warehouse (PDW), which will include the Polybase technology. By using Polybase a single T-SQL query will run queries across relational data and Hadoop data. A single query language for both. Sounds really interesting for using BigData in a more integrated way with existing relational databases. And, of course, to load a data warehouse using BigData, which is the ultimate goal that we all BI Pro have, right? SQL Server 2012 SP1: the Service Pack 1 for SQL Server 2012 is available now and it enable the use of PowerPivot for SharePoint and Power View on a SharePoint 2013 installation with Excel 2013. Power View works with Multidimensional cube: the long-awaited feature of being able to use PowerPivot with Multidimensional cubes has been shown by Amir Netz in an amazing demonstration during the keynote. The interesting thing is that the data model behind was based on a many-to-many relationship (something that is not fully supported by Power View with Tabular models). Another interesting aspect is that it is Analysis Services 2012 that supports DAX queries run on a Multidimensional model, enabling the use of any future tool generating DAX queries on top of a Multidimensional model. There are still no info about availability by now, but this is *not* included in SQL Server 2012 SP1. So what about Mobile BI? Well, even if not announced during the keynote, there is a dedicated session on this topic and there are very important news in this area: iOS, Android and Microsoft mobile platforms: the commitment is to get data exploration and visualization capabilities working within June 2013. This should impact at least Power View and SharePoint/Excel Services. This is the type of UI experience we are all waiting for, in order to satisfy the requests coming from users and customers. The important news here is that native applications will be available for both iOS and Windows 8 so it seems that Android will be supported initially only through the web. Unfortunately we haven’t seen any demo, so it’s not clear what will be the offline navigation experience (and whether there will be one). But at least we know that Microsoft is working on native applications in this area. I’m not too surprised that HTML5 is not the magic bullet for all the platforms. The next PASS Business Analytics conference in 2013 seems a good place to see this in action, even if I hope we don’t have to wait other six months before seeing some demo of native BI applications on mobile platforms! Viewing Reporting Services reports on iPad is supported starting with SQL Server 2012 SP1, which has been released today. This is another good reason to install SP1 on SQL Server 2012. If you are at PASS Summit 2012, come and join me, Alberto Ferrari and Chris Webb at our book signing event tomorrow, Thursday 8 2012, at the bookstore between 12:00pm and 12:30pm, or follow one of our sessions!

    Read the article

  • Good DBAs Do Baselines

    - by Louis Davidson
    One morning, you wake up and feel funny. You can’t quite put your finger on it, but something isn’t quite right. What now? Unless you happen to be a hypochondriac, you likely drag yourself out of bed, get on with the day and gather more “evidence”. You check your symptoms over the next few days; do you feel the same, better, worse? If better, then great, it was some temporal issue, perhaps caused by an allergic reaction to some suspiciously spicy chicken. If the same or worse then you go to the doctor for some health advice, but armed with some data to share, and having ruled out certain possible causes that are fixed with a bit of rest and perhaps an antacid. Whether you realize it or not, in comparing how you feel one day to the next, you have taken baseline measurements. In much the same way, a DBA uses baselines to gauge the gauge health of their database servers. Of course, while SQL Server is very willing to share data regarding its health and activities, it has almost no idea of the difference between good and bad. Over time, experienced DBAs develop “mental” baselines with which they can gauge the health of their servers almost as easily as their own body. They accumulate knowledge of the daily, natural state of each part of their database system, and so know instinctively when one of their databases “feels funny”. Equally, they know when an “issue” is just a passing tremor. They see their SQL Server with all of its four CPU cores running close 100% and don’t panic anymore. Why? It’s 5PM and every day the same thing occurs when the end-of-day reports, which are very CPU intensive, are running. Equally, they know when they need to respond in earnest when it is the first time they have heard about an issue, even if it has been happening every day. Nevertheless, no DBA can retain mental baselines for every characteristic of their systems, so we need to collect physical baselines too. In my experience, surprisingly few DBAs do this very well. Part of the problem is that SQL Server provides a lot of instrumentation. If you look, you will find an almost overwhelming amount of data regarding user activity on your SQL Server instances, and use and abuse of the available CPU, I/O and memory. It seems like a huge task even to work out which data you need to collect, let alone start collecting it on a regular basis, managing its storage over time, and performing detailed comparative analysis. However, without baselines, though, it is very difficult to pinpoint what ails a server, just by looking at a single snapshot of the data, or to spot retrospectively what caused the problem by examining aggregated data for the server, collected over many months. It isn’t as hard as you think to get started. You’ve probably already established some troubleshooting queries of the type SELECT Value FROM SomeSystemTableOrView. Capturing a set of baseline values for such a query can be as easy as changing it as follows: INSERT into BaseLine.SomeSystemTable (value, captureTime) SELECT Value, SYSDATETIME() FROM SomeSystemTableOrView; Of course, there are monitoring tools that will collect and manage this baseline data for you, automatically, and allow you to perform comparison of metrics over different periods. However, to get yourself started and to prove to yourself (or perhaps the person who writes the checks for tools) the value of baselines, stick something similar to the above query into an agent job, running every hour or so, and you are on your way with no excuses! Then, the next time you investigate a slow server, and see x open transactions, y users logged in, and z rows added per hour in the Orders table, compare to your baselines and see immediately what, if anything, has changed!

    Read the article

  • Building Tag Cloud Declarative ADF Component

    - by Arunkumar Ramamoorthy
    When building a website, there could a requirement to add a tag cloud to let the users know the popular tags (or terms) used in the site. In this blog, we would build a simple declarative component to be used as tag cloud in the page. To start with, we would first create the declarative component, which could display the tag cloud. We will do that by creating a new custom application from the new gallery. Give a name for the app and the project and from the new gallery, let us create a new ADF Declarative Component We need to specify the name for the declarative component, attributes in it etc. as follows For displaying the tags as cloud, we need to pass the content to this component. So, we will create an attribute to hold the values for the tag. Let us name it as "value" and make it as java.lang.String  type. Once after this, to hold the component, we need to create a tag library. This can be done by clicking on the Add Tag Library button. Clicking on OK buttons in all the open dialogs would create a declarative component for us. Now, we need to display the tag cloud based on the value passed to the component. To do that, we assume that the value is a Tree Binding and has two attributes in it, say "Name" and "Weight". To make a tag cloud, we would put together the "Name" in a loop and set it's font size based on the "Weight". After putting our logic to work, here is how the source look Attributes added to the declarative components can be retrieved by using #{attrs.<attribute_name>}. Now, we need to deploy this project as ADF Library Jar file, so that this can be distributed to the consuming applications. We'll select ADF Library Jar as type and create the profile. We would be getting the jar file after deployment. To test the functionality, we could create a simple Fusion Web Application. To add our custom component to the consuming application, we can create a file system connection pointing to the location where the jar file is and add it or, add through the project properties of the ViewController project. Now, our custom component has been added to the consuming application. We could test that by creating a VO in the model project with a query like, select 'Faces' as Name,25 as Weight from dual union all select 'ADF', 15 from dual  union all select 'ADFdi', 30 from dual union all select 'BC4J', 20 from dual union all select 'EJB', 40 from dual union all select 'WS', 35 from dual Add this VO to the AppModule, so that it would be exposed to the data control. Then, we could create a jspx page, and add a tree binding to the VO created. We can now see our Tag Cloud declarative component is available in the component palette.  It can be inserted from the component palette to our page and set it's value property to CollectionModel of the tree binding created. Now that we've created the Declarative component and added that to our page successfully, we can run the page to see how it looks. As per the query, the Tags are displayed in different fonts, based on their weight.

    Read the article

  • Consumer Oriented Search In Oracle Endeca Information Discovery – Part 1

    - by Bob Zurek
    Information Discovery, a core capability of Oracle Endeca Information Discovery, enables business users to rapidly search, discover and navigate through a wide variety of big data including structured, unstructured and semi-structured data. One of the key capabilities, among many, that differentiate our solution from others in the Information Discovery market is our deep support for search across this growing amount of varied big data. Our method and approach is very different than classic simple keyword search that is found in may information discovery solutions. In this first part of a series on the topic of search, I will walk you through many of the key capabilities that go beyond the simple search box that you might experience in products where search was clearly an afterthought or attempt to catch up to our core capabilities in this area. Lets explore. The core data management solution of Oracle Endeca Information Discovery is the Endeca Server, a hybrid search-analytical database that his highly scalable and column-oriented in nature. We will talk in more technical detail about the capabilities of the Endeca Server in future blog posts as this post is intended to give you a feel for the deep search capabilities that are an integral part of the Endeca Server. The Endeca Server provides best-of-breed search features aw well as a new class of features that are the first to be designed around the requirement to bridge structured, semi-structured and unstructured big data. Some of the key features of search include type a heads, automatic alphanumeric spell corrections, positional search, Booleans, wildcarding, natural language, and category search and query classification dialogs. This is just a subset of the advanced search capabilities found in Oracle Endeca Information Discovery. Search is an important feature that makes it possible for business users to explore on the diverse data sets the Endeca Server can hold at any one time. The search capabilities in the Endeca server differ from other Information Discovery products with simple “search boxes” in the following ways: The Endeca Server Supports Exploratory Search.  Enterprise data frequently requires the user to explore content through an ad hoc dialog, with guidance that helps them succeed. This has implications for how to design search features. Traditional search doesn’t assume a dialog, and so it uses relevance ranking to get its best guess to the top of the results list. It calculates many relevance factors for each query, like word frequency, distance, and meaning, and then reduces those many factors to a single score based on a proprietary “black box” formula. But how can a business users, searching, act on the information that the document is say only 38.1% relevant? In contrast, exploratory search gives users the opportunity to clarify what is relevant to them through refinements and summaries. This approach has received consumer endorsement through popular ecommerce sites where guided navigation across a broad range of products has helped consumers better discover choices that meet their, sometimes undetermined requirements. This same model exists in Oracle Endeca Information Discovery. In fact, the Endeca Server powers many of the most popular e-commerce sites in the world. The Endeca Server Supports Cascading Relevance. Traditional approaches of search reduce many relevance weights to a single score. This means that if a result with a good title match gets a similar score to one with an exact phrase match, they’ll appear next to each other in a list. But a user can’t deduce from their score why each got it’s ranking, even though that information could be valuable. Oracle Endeca Information Discovery takes a different approach. The Endeca Server stratifies results by a primary relevance strategy, and then breaks ties within a strata by ordering them with a secondary strategy, and so on. Application managers get the explicit means to compose these strategies based on their knowledge of their own domain. This approach gives both business users and managers a deterministic way to set and understand relevance. Now that you have an understanding of two of the core search capabilities in Oracle Endeca Information Discovery, our next blog post on this topic will discuss more advanced features including set search, second-order relevance as well as an understanding of faceted search mechanisms that include queries and filters.  

    Read the article

  • Columnstore Case Study #1: MSIT SONAR Aggregations

    - by aspiringgeek
    Preamble This is the first in a series of posts documenting big wins encountered using columnstore indexes in SQL Server 2012 & 2014.  Many of these can be found in this deck along with details such as internals, best practices, caveats, etc.  The purpose of sharing the case studies in this context is to provide an easy-to-consume quick-reference alternative. Why Columnstore? If we’re looking for a subset of columns from one or a few rows, given the right indexes, SQL Server can do a superlative job of providing an answer. If we’re asking a question which by design needs to hit lots of rows—DW, reporting, aggregations, grouping, scans, etc., SQL Server has never had a good mechanism—until columnstore. Columnstore indexes were introduced in SQL Server 2012. However, they're still largely unknown. Some adoption blockers existed; yet columnstore was nonetheless a game changer for many apps.  In SQL Server 2014, potential blockers have been largely removed & they're going to profoundly change the way we interact with our data.  The purpose of this series is to share the performance benefits of columnstore & documenting columnstore is a compelling reason to upgrade to SQL Server 2014. App: MSIT SONAR Aggregations At MSIT, performance & configuration data is captured by SCOM. We archive much of the data in a partitioned data warehouse table in SQL Server 2012 for reporting via an application called SONAR.  By definition, this is a primary use case for columnstore—report queries requiring aggregation over large numbers of rows.  New data is refreshed each night by an automated table partitioning mechanism—a best practices scenario for columnstore. The Win Compared to performance using classic indexing which resulted in the expected query plan selection including partition elimination vs. SQL Server 2012 nonclustered columnstore, query performance increased significantly.  Logical reads were reduced by over a factor of 50; both CPU & duration improved by factors of 20 or more.  Other than creating the columnstore index, no special modifications or tweaks to the app or databases schema were necessary to achieve the performance improvements.  Existing nonclustered indexes were rendered superfluous & were deleted, thus mitigating maintenance challenges such as defragging as well as conserving disk capacity. Details The table provides the raw data & summarizes the performance deltas. Logical Reads (8K pages) CPU (ms) Durn (ms) Columnstore 160,323 20,360 9,786 Conventional Table & Indexes 9,053,423 549,608 193,903 ? x56 x27 x20 The charts provide additional perspective of this data.  "Conventional vs. Columnstore Metrics" document the raw data.  Note on this linear display the magnitude of the conventional index performance vs. columnstore.  The “Metrics (?)” chart expresses these values as a ratio. Summary For DW, reports, & other BI workloads, columnstore often provides significant performance enhancements relative to conventional indexing.  I have documented here, the first in a series of reports on columnstore implementations, results from an initial implementation at MSIT in which logical reads were reduced by over a factor of 50; both CPU & duration improved by factors of 20 or more.  Subsequent features in this series document performance enhancements that are even more significant. 

    Read the article

  • Customizing the Test Status on the TFS 2010 SSRS Stories Overview Report

    - by Bob Hardister
    This post shows how to customize the SQL query used by the Team Foundation Server 2010 SQL Server Reporting Services (SSRS) Stories Overview Report. The objective is to show test status for the current version while including user story status of the current and prior versions.  Why? Because we don’t copy completed user stories into the next release. We only want one instance of a user story for the product because we believe copies can get out of sync when they are supposed to be the same. In the example below, work items for the current version are on the area path root and prior versions are not on the area path root. However, you can use area path or iteration path criteria in the query as suits your needs. In any case, here’s how you do it: 1. Download a copy of the report RDL file as a backup 2. Open the report by clicking the edit down arrow and selecting “Edit in Report Builder” 3. Right click on the dsOverview Dataset and select Dataset Properties 4. Update the following SQL per the comments in the code: Customization 1 of 3 … -- Get the list deliverable workitems that have Test Cases linked DECLARE @TestCases Table (DeliverableID int, TestCaseID int); INSERT @TestCases     SELECT h.ID, flh.TargetWorkItemID     FROM @Hierarchy h         JOIN FactWorkItemLinkHistory flh             ON flh.SourceWorkItemID = h.ID                 AND flh.WorkItemLinkTypeSK = @TestedByLinkTypeSK                 AND flh.RemovedDate = CONVERT(DATETIME, '9999', 126)                 AND flh.TeamProjectCollectionSK = @TeamProjectCollectionSK         JOIN [CurrentWorkItemView] wi ON flh.TargetWorkItemID = wi.[System_ID]                  AND wi.[System_WorkItemType] = @TestCase             AND wi.ProjectNodeGUID  = @ProjectGuid              --  Customization 1 of 3: only include test status information when test case area path = root. Added the following 2 statements              AND wi.AreaPath = '{the root area path of the team project}'  …          Customization 2 of 3 … -- Get the Bugs linked to the deliverable workitems directly DECLARE @Bugs Table (ID int, ActiveBugs int, ResolvedBugs int, ClosedBugs int, ProposedBugs int) INSERT @Bugs     SELECT h.ID,         SUM (CASE WHEN wi.[System_State] = @Active THEN 1 ELSE 0 END) Active,         SUM (CASE WHEN wi.[System_State] = @Resolved THEN 1 ELSE 0 END) Resolved,         SUM (CASE WHEN wi.[System_State] = @Closed THEN 1 ELSE 0 END) Closed,         SUM (CASE WHEN wi.[System_State] = @Proposed THEN 1 ELSE 0 END) Proposed     FROM @Hierarchy h         JOIN FactWorkItemLinkHistory flh             ON flh.SourceWorkItemID = h.ID             AND flh.TeamProjectCollectionSK = @TeamProjectCollectionSK         JOIN [CurrentWorkItemView] wi             ON wi.[System_WorkItemType] = @Bug             AND wi.[System_Id] = flh.TargetWorkItemID             AND flh.RemovedDate = CONVERT(DATETIME, '9999', 126)             AND wi.[ProjectNodeGUID] = @ProjectGuid              --  Customization 2 of 3: only include test status information when test case area path = root. Added the following statement              AND wi.AreaPath = '{the root area path of the team project}'       GROUP BY h.ID … Customization 2 of 3 … -- Add the Bugs linked to the Test Cases which are linked to the deliverable workitems -- Walks the links from the user stories to test cases (via the tested by link), and then to -- bugs that are linked to the test case. We don't need to join to the test case in the work -- item history view. -- --    [WIT:User Story/Requirement] --> [Link:Tested By]--> [Link:any type] --> [WIT:Bug] INSERT @Bugs SELECT tc.DeliverableID,     SUM (CASE WHEN wi.[System_State] = @Active THEN 1 ELSE 0 END) Active,     SUM (CASE WHEN wi.[System_State] = @Resolved THEN 1 ELSE 0 END) Resolved,     SUM (CASE WHEN wi.[System_State] = @Closed THEN 1 ELSE 0 END) Closed,     SUM (CASE WHEN wi.[System_State] = @Proposed THEN 1 ELSE 0 END) Proposed FROM @TestCases tc     JOIN FactWorkItemLinkHistory flh         ON flh.SourceWorkItemID = tc.TestCaseID         AND flh.RemovedDate = CONVERT(DATETIME, '9999', 126)         AND flh.TeamProjectCollectionSK = @TeamProjectCollectionSK     JOIN [CurrentWorkItemView] wi         ON wi.[System_Id] = flh.TargetWorkItemID         AND wi.[System_WorkItemType] = @Bug         AND wi.[ProjectNodeGUID] = @ProjectGuid         --  Customization 3 of 3: only include test status information when test case area path = root. Added the following statement         AND wi.AreaPath = '{the root area path of the team project}'     GROUP BY tc.DeliverableID … 5. Save the report and you’re all set. Note: you may need to re-apply custom parameter changes like pre-selected sprints.

    Read the article

  • Class design issue

    - by user2865206
    I'm new to OOP and a lot of times I become stumped in situations similar to this example: Task: Generate an XML document that contains information about a person. Assume the information is readily available in a database. Here is an example of the structure: <Person> <Name>John Doe</Name> <Age>21</Age> <Address> <Street>100 Main St.</Street> <City>Sylvania</City> <State>OH</State> </Address> <Relatives> <Parents> <Mother> <Name>Jane Doe</Name> </Mother> <Father> <Name>John Doe Sr.</Name> </Father> </Parents> <Siblings> <Brother> <Name>Jeff Doe</Name> </Brother> <Brother> <Name>Steven Doe</Name> </Brother> </Siblings> </Relatives> </Person> Ok lets create a class for each tag (ie: Person, Name, Age, Address) Lets assume each class is only responsible for itself and the elements directly contained Each class will know (have defined by default) the classes that are directly contained within them Each class will have a process() function that will add itself and its childeren to the XML document we are creating When a child is drawn, as in the previous line, we will have them call process() as well Now we are in a recursive loop where each object draws their childeren until all are drawn But what if only some of the tags need to be drawn, and the rest are optional? Some are optional based on if the data exists (if we have it, we must draw it), and some are optional based on the preferences of the user generating the document How do we make sure each object has the data it needs to draw itself and it's childeren? We can pass down a massive array through every object, but that seems shitty doesnt it? We could have each object query the database for it, but thats a lot of queries, and how does it know what it's query is? What if we want to get rid of a tag later? There is no way to reference them. I've been thinking about this for 20 hours now. I feel like I am misunderstanding a design principle or am just approaching this all wrong. How would you go about programming something like this? I suppose this problem could apply to any senario where there are classes that create other classes, but the classes created need information to run. How do I get the information to them in a way that doesn't seem fucky? Thanks for all of your time, this has been kicking my ass.

    Read the article

  • How to handle multi-processing of libraries which already spawn sub-processes?

    - by exhuma
    I am having some trouble coming up with a good solution to limit sub-processes in a script which uses a multi-processed library and the script itself is also multi-processed. Both, the library and script are modifiable by us. I believe the question is more about design than actual code, but for what it's worth, it's written in Python. The goal of the library is to hide implementation details of various internet routers. For that reason, the library has a "Proxy" factory method which takes the IP of a router as parameter. The factory then probes the device using a set of possible proxies. Usually, there is one proxy which immediately knows that is is able to send commands to this device. All others usually take some time to return (given a timeout). One thought was already to simply query the device for an identifier, and then select the proper proxy using that, but in order to do so, you would already need to know how to query the device. Abstracting this knowledge is one of the main purposes of the library, so that becomes a little bit of a "circular-requirement"/deadlock: To connect to a device, you need to know what proxy to use, and to know what proxy to create, you need to connect to a device. So probing the device is - as we can see - the best solution so far, apart from keeping a lookup-table somewhere. The library currently kills all remaining processes once a valid proxy has been found. And yes, there is always only one good proxy per device. Currently there are about 12 proxies. So if one create a proxy instance using the factory, 12 sub-processes are spawned. So far, this has been really useful and worked very well. But recently someone else wanted to use this library to "broadcast" a command to all devices. So he took the library, and wrote his own multi-processed script. This obviously spawned 12 * n processes where n is the number of IPs to which he broadcasted. This has given us two problems: The host on which the command was executed slowed down to a near halt. Aborting the script with CTRL+C ground the system to a total halt. Not even the hardware console responded anymore! This may be due to some Python strangeness which still needs to be investigated. Maybe related to http://bugs.python.org/issue8296 The big underlying question, is how to design a library which does multi-processing, so other applications which use this library and want to be multi-processed themselves do not run into system limitations. My first thought was to require a pool to be passed to the library, and execute all tasks in that pool. In that way, the person using the library has control over the usage of system resources. But my gut tells me that there must be a better solution. Disclaimer: My experience with multiprocessing is fairly limited. I have implemented a few straightforward which did not require access control to resources. So I have not yet any practical experience with semaphores or mutexes. p.s.: In the future, we may have enough information to do this without the probing. But the database which would contain the proper information is not yet operational. Also, the design about multiprocessing a multiprocessed library intrigues me :)

    Read the article

  • How do you go from a so so programmer to a great one? [closed]

    - by Cervo
    How do you go from being an okay programmer to being able to write maintainable clean code? For example David Hansson was writing Basecamp when in the process he created Rails as part of writing Basecamp in a clean/maintainable way. But how do you know when there is value in a side project like that? I have a bachelors in computer science, and I am about to get a masters and I will say that colleges teach you to write code to solve problems, not neatly or anything. Basically you think of a problem, come up with a solution, and write it down...not necessarily the most maintainable way in the world. Also my first job was in a startup, and now my third is in a small team in a large company where the attitude was/is get it done yesterday (also most of my jobs are mainly database development with SQL with a few ASP.NET web pages/.NET apps on the side). So of course cut/paste is more favored than making things more cleanly. And they would rather have something yesterday even if you have to rewrite it next month rather than to have something in a week that lasts for a year. Also spaghetti code turns up all over the place, and it takes very smart people to write/understand/maintain spaghetti code...However it would be better to do things so simple/clean that even a caveman/woman could do maintenance. Also I get very bored/unmotivated having to go modify the same things cut/pasted in a few locations. Is this the type of skill that you need to learn by working with a serious software organization that has an emphasis on maintenance and maybe even an architect who designs a system architecture and reviews code? Could you really learn it by volunteering on an open source project (it seems to me that a full time programmer job is way more practice than a few hours a week on an open source project)? Is there some course where you can learn this? I can attest that graduate school and undergraduate school do not really emphasize clean software at all. They just teach the structures/algorithms and then send you off into the world to solve problems. Overall I think the first thing is learning to write clean/maintainable code within the bounds of the project in order to become a good programmer. Then the next thing is learning when you need to do a side project (like a framework) to make things more maintainable/clean even while you still deliver things for the deadline in order to become a great programmer. For example, you are making an SQL report and someone gives you 100 calculations for individual columns. At what point does it make sense to construct a domain specific language to encode the rules in simply and then generate all the SQL as opposed to cut/pasting the query from the table a bunch of times and then adjusting each query to do the appropriate calculations. This is the type of thing I would say a great programmer would know. He/she would maybe even know ways to avoid the domain specific language and to still do all the calculations without creating an unmaintainable mess or a ton of repetitive code to cut/paste everywhere.

    Read the article

  • i want to access mysql database table on given conditions in drop down menu [on hold]

    - by user3909877
    as the code below is accesing the database table directly but i want it to display the table content on giving conditions in drop down menu like when i select islamabad in one drop down menu and lahore in other as given in code and press search buttonn then it display the table flights.but it is displaying it directly <p class="h2">Quick Search</p> <div class="sb2_opts"> <p> </p> <form method="post" action=""> <p>Enter your source and destination.</p> <p> From:</p> <select name="from"> <option value="Islamabad">Islamabad</option> <option value="Lahore">Lahore</option> <option value="murree">Murree</option> <option value="Muzaffarabad">Muzaffarabad</option> </select> <p> To:</p> <select name="To"> <option value="Islamabad">Islamabad</option> <option value="Lahore">Lahore</option> <option value="murree">Murree</option> <option value="Muzaffarabad">Muzaffarabad</option> </select> <input type="submit" value="search" /> </form> </form> </table> <?php $from = isset($_POST['from'])?$_POST['from']:''; $to = isset($_POST['to'])?$_POST['to']:''; if( $from =='Islamabad'){ if($to == 'Lahore'){ $db_host = 'localhost'; $db_user = 'root'; $database = 'homedb'; $table = 'flights'; if (!mysql_connect($db_host, $db_user)) die("Can't connect to database"); if (!mysql_select_db($database)) die("Can't select database"); $result = mysql_query("SELECT * FROM {$table}"); if (!$result) { die("Query to show fields from table failed"); } $result = mysql_query("SELECT * FROM {$table}"); if (!$result) { die("Query to show fields from table failed"); } $fields_num = mysql_num_fields($result); echo "<h1>Table: {$table}</h1>"; echo "<table border='1'><tr>"; while($row = mysql_fetch_row($result)) { echo "<tr>"; // $row is array... foreach( .. ) puts every element // of $row to $cell variable foreach($row as $cell) echo "<td>$cell</td>"; echo "</tr>\n"; } } } mysqli_close($con); ?>

    Read the article

  • ?12c database ????Adaptive Execution Plans ????????

    - by Liu Maclean(???)
    12c R1 ????SQL??????- Adaptive Execution Plans ????????,???????optimizer ??????(runtime)???????????????, ????????????????????? SQL???????? ????????????, ?????????????????????????????????????????????????????????????adaptive plan ????????????????????????????????????,?????subplan???????????????????? ??????, ???????? ???????????????,?????????, ?????? ???????????????”???”????, ???????????????????buffer ???????  ????????????,?????,??????????????????? ???optimizer ?????????????????????????,?????????????????????????????????????????plan???? ??12C?????????????, ???????????????????,?????? ???????????? ????????????2???: Dynamic Plans????: ???????????????????????;??????,???optimizer??????????subplans??????????????, ???????????????????,?????????????? Reoptimization????: ?Dynamic Plans????,Reoptimization??????????????????????Reoptimization??,?????????????????????????,??reoptimization????? OPTIMIZER_ADAPTIVE_REPORTING_ONLY ???? report-only????????????????TRUE,?????????report-only????,???????????????,??????????????? Dynamic Plans ??????????????,????????????????????????, ?????????????,???????????,????????????????????????????????????????? ?????????????final plan??????????????default plan, ??final plan?default plan???????,????????????? subplan ???????????????,???????????????????????? ??????,???????statistics collector ?buffer???????????statistics collector?????????????????,???????????????????????????? ?????????????????????????????????????????,??????????,?????????????? ???????????,???????buffer???? ???????????????,?????????????????????????????,??????buffer,??????final plan? ????????,???????????????????????,????????????????? ?V$SQL??????IS_RESOLVED_DYNAMIC_PLAN??????????final plan???default plan? ??????dynamic plan ???????SQL PLAN directives?????? declare cursor PLAN_DIRECTIVE_IDS is select directive_id from DBA_SQL_PLAN_DIRECTIVES; begin for z in PLAN_DIRECTIVE_IDS loop DBMS_SPD.DROP_SQL_PLAN_DIRECTIVE(z.directive_id); end loop; end; / explain plan for select /*MALCEAN*/ product_name from oe.order_items o, oe.product_information p where o.unit_price=15 and quantity>1 and p.product_id=o.product_id; select * from table(dbms_xplan.display()); Plan hash value: 1255158658 www.askmaclean.com ------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 4 | 128 | 7 (0)| 00:00:01 | | 1 | NESTED LOOPS | | | | | | | 2 | NESTED LOOPS | | 4 | 128 | 7 (0)| 00:00:01 | |* 3 | TABLE ACCESS FULL | ORDER_ITEMS | 4 | 48 | 3 (0)| 00:00:01 | |* 4 | INDEX UNIQUE SCAN | PRODUCT_INFORMATION_PK | 1 | | 0 (0)| 00:00:01 | | 5 | TABLE ACCESS BY INDEX ROWID| PRODUCT_INFORMATION | 1 | 20 | 1 (0)| 00:00:01 | ------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - filter("O"."UNIT_PRICE"=15 AND "QUANTITY">1) 4 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") alter session set events '10053 trace name context forever,level 1'; OR alter session set events 'trace[SQL_Plan_Directive] disk highest'; select /*MALCEAN*/ product_name from oe.order_items o, oe.product_information p where o.unit_price=15 and quantity>1 and p.product_id=o.product_id; ---------------------------------------------------------------+-----------------------------------+ | Id | Operation | Name | Rows | Bytes | Cost | Time | ---------------------------------------------------------------+-----------------------------------+ | 0 | SELECT STATEMENT | | | | 7 | | | 1 | HASH JOIN | | 4 | 128 | 7 | 00:00:01 | | 2 | NESTED LOOPS | | | | | | | 3 | NESTED LOOPS | | 4 | 128 | 7 | 00:00:01 | | 4 | STATISTICS COLLECTOR | | | | | | | 5 | TABLE ACCESS FULL | ORDER_ITEMS | 4 | 48 | 3 | 00:00:01 | | 6 | INDEX UNIQUE SCAN | PRODUCT_INFORMATION_PK| 1 | | 0 | | | 7 | TABLE ACCESS BY INDEX ROWID | PRODUCT_INFORMATION | 1 | 20 | 1 | 00:00:01 | | 8 | TABLE ACCESS FULL | PRODUCT_INFORMATION | 1 | 20 | 1 | 00:00:01 | ---------------------------------------------------------------+-----------------------------------+ Predicate Information: ---------------------- 1 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") 5 - filter(("O"."UNIT_PRICE"=15 AND "QUANTITY">1)) 6 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") ===================================== SPD: BEGIN context at statement level ===================================== Stmt: ******* UNPARSED QUERY IS ******* SELECT /*+ OPT_ESTIMATE (@"SEL$1" JOIN ("P"@"SEL$1" "O"@"SEL$1") ROWS=13.000000 ) OPT_ESTIMATE (@"SEL$1" TABLE "O"@"SEL$1" ROWS=13.000000 ) */ "P"."PRODUCT_NAME" "PRODUCT_NAME" FROM "OE"."ORDER_ITEMS" "O","OE"."PRODUCT_INFORMATION" "P" WHERE "O"."UNIT_PRICE"=15 AND "O"."QUANTITY">1 AND "P"."PRODUCT_ID"="O"."PRODUCT_ID" Objects referenced in the statement PRODUCT_INFORMATION[P] 92194, type = 1 ORDER_ITEMS[O] 92197, type = 1 Objects in the hash table Hash table Object 92197, type = 1, ownerid = 6573730143572393221: No Dynamic Sampling Directives for the object Hash table Object 92194, type = 1, ownerid = 17822962561575639002: No Dynamic Sampling Directives for the object Return code in qosdInitDirCtx: ENBLD =================================== SPD: END context at statement level =================================== ======================================= SPD: BEGIN context at query block level ======================================= Query Block SEL$1 (#0) Return code in qosdSetupDirCtx4QB: NOCTX ===================================== SPD: END context at query block level ===================================== SPD: Return code in qosdDSDirSetup: NOCTX, estType = TABLE SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92197, objtyp = 1, vecsize = 6, colvec = [4, 5, ], fid = 2896834833840853267 SPD: Inserted felem, fid=2896834833840853267, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = YES, keep = YES SPD: qosdCreateFindingSingTab retCode = CREATED, fid = 2896834833840853267 SPD: qosdCreateDirCmp retCode = CREATED, fid = 2896834833840853267 SPD: Return code in qosdDSDirSetup: NOCTX, estType = TABLE SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = JOIN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SKIP_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = JOIN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92197, objtyp = 1, vecsize = 6, colvec = [4, 5, ], fid = 2896834833840853267 SPD: Modified felem, fid=2896834833840853267, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = YES, keep = YES SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92194, objtyp = 1, vecsize = 2, colvec = [1, ], fid = 5618517328604016300 SPD: Modified felem, fid=5618517328604016300, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = NO, keep = NO SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92194, objtyp = 1, vecsize = 2, colvec = [1, ], fid = 1142802697078608149 SPD: Modified felem, fid=1142802697078608149, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = NO, keep = NO SPD: Generating finding id: type = 1, reason = 2, objcnt = 2, obItr = 0, objid = 92194, objtyp = 1, vecsize = 0, obItr = 1, objid = 92197, objtyp = 1, vecsize = 0, fid = 1437680122701058051 SPD: Modified felem, fid=1437680122701058051, ftype = 1, freason = 2, dtype = 0, dstate = 0, dflag = 0, ver = NO, keep = NO select * from table(dbms_xplan.display_cursor(format=>'report')) ; ????report????adaptive plan Adaptive plan: ------------- This cursor has an adaptive plan, but adaptive plans are enabled for reporting mode only.  The plan that would be executed if adaptive plans were enabled is displayed below. ------------------------------------------------------------------------------------------ | Id  | Operation          | Name                | Rows  | Bytes | Cost (%CPU)| Time     | ------------------------------------------------------------------------------------------ |   0 | SELECT STATEMENT   |                     |       |       |     7 (100)|          | |*  1 |  HASH JOIN         |                     |     4 |   128 |     7   (0)| 00:00:01 | |*  2 |   TABLE ACCESS FULL| ORDER_ITEMS         |     4 |    48 |     3   (0)| 00:00:01 | |   3 |   TABLE ACCESS FULL| PRODUCT_INFORMATION |     1 |    20 |     1   (0)| 00:00:01 | ------------------------------------------------------------------------------------------ SQL> select SQL_ID,IS_RESOLVED_DYNAMIC_PLAN,sql_text from v$SQL WHERE SQL_TEXT like '%MALCEAN%' and sql_text not like '%like%'; SQL_ID IS -------------------------- -- SQL_TEXT -------------------------------------------------------------------------------- 6ydj1bn1bng17 Y select /*MALCEAN*/ product_name from oe.order_items o, oe.product_information p where o.unit_price=15 and quantity>1 and p.product_id=o.product_id ???? explain plan for ????default plan, ??????optimizer???final plan,??V$SQL.IS_RESOLVED_DYNAMIC_PLAN???Y,????????????? DBA_SQL_PLAN_DIRECTIVES?????????????SQL PLAN DIRECTIVES, ???12c? ???MMON?????DML ???column usage??????????,????SMON??? MMON????SGA??PLAN DIRECTIVES??? ?????DBMS_SPD.flush_sql_plan_directive???? select directive_id,type,reason from DBA_SQL_PLAN_DIRECTIVES / DIRECTIVE_ID TYPE REASON ----------------------------------- -------------------------------- ----------------------------- 10321283028317893030 DYNAMIC_SAMPLING JOIN CARDINALITY MISESTIMATE 4757086536465754886 DYNAMIC_SAMPLING JOIN CARDINALITY MISESTIMATE 16085268038103121260 DYNAMIC_SAMPLING JOIN CARDINALITY MISESTIMATE SQL> set pages 9999 SQL> set lines 300 SQL> col state format a5 SQL> col subobject_name format a11 SQL> col col_name format a11 SQL> col object_name format a13 SQL> select d.directive_id, o.object_type, o.object_name, o.subobject_name col_name, d.type, d.state, d.reason 2 from dba_sql_plan_directives d, dba_sql_plan_dir_objects o 3 where d.DIRECTIVE_ID=o.DIRECTIVE_ID 4 and o.object_name in ('ORDER_ITEMS') 5 order by d.directive_id; DIRECTIVE_ID OBJECT_TYPE OBJECT_NAME COL_NAME TYPE STATE REASON ------------ ------------ ------------- ----------- -------------------------------- ----- ------------------------------------- --- 1.8156E+19 COLUMN ORDER_ITEMS UNIT_PRICE DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE 1.8156E+19 TABLE ORDER_ITEMS DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE 1.8156E+19 COLUMN ORDER_ITEMS QUANTITY DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE DBA_SQL_PLAN_DIRECTIVES????? _BASE_OPT_DIRECTIVE ? _BASE_OPT_FINDING SELECT d.dir_own#, d.dir_id, d.f_id, decode(type, 1, 'DYNAMIC_SAMPLING', 'UNKNOWN'), decode(state, 1, 'NEW', 2, 'MISSING_STATS', 3, 'HAS_STATS', 4, 'CANDIDATE', 5, 'PERMANENT', 6, 'DISABLED', 'UNKNOWN'), decode(bitand(flags, 1), 1, 'YES', 'NO'), cast(d.created as timestamp), cast(d.last_modified as timestamp), -- Please see QOSD_DAYS_TO_UPDATE and QOSD_PLUS_SECONDS for more details -- about 6.5 cast(d.last_used as timestamp) - NUMTODSINTERVAL(6.5, 'day') FROM sys.opt_directive$ d ??dbms_spd??? SQL PLAN DIRECTIVES, SQL PLAN DIRECTIVES???retention ???53?: Package: DBMS_SPD This package provides subprograms for managing Sql Plan Directives(SPD). SPD are objects generated automatically by Oracle server. For example, if server detects that the single table cardinality estimated by optimizer is off from the actual number of rows returned when accessing the table, it will automatically create a directive to do dynamic sampling for the table. When any Sql statement referencing the table is compiled, optimizer will perform dynamic sampling for the table to get more accurate estimate. Notes: DBMSL_SPD is a invoker-rights package. The invoker requires ADMINISTER SQL MANAGEMENT OBJECT privilege for executing most of the subprograms of this package. Also the subprograms commit the current transaction (if any), perform the operation and commit it again. DBA view dba_sql_plan_directives shows all the directives created in the system and the view dba_sql_plan_dir_objects displays the objects that are included in the directives. -- Default value for SPD_RETENTION_WEEKS SPD_RETENTION_WEEKS_DEFAULT CONSTANT varchar2(4) := '53'; | STATE : NEW : Newly created directive. | : MISSING_STATS : The directive objects do not | have relevant stats. | : HAS_STATS : The objects have stats. | : PERMANENT : A permanent directive. Server | evaluated effectiveness and these | directives are useful. | | AUTO_DROP : YES : Directive will be dropped | automatically if not | used for SPD_RETENTION_WEEKS. | This is the default behavior. | NO : Directive will not be dropped | automatically. Procedure: flush_sql_plan_directive This procedure allows manually flushing the Sql Plan directives that are automatically recorded in SGA memory while executing sql statements. The information recorded in SGA are periodically flushed by oracle background processes. This procedure just provides a way to flush the information manually. ????”_optimizer_dynamic_plans”(enable dynamic plans)????????,???TRUE??DYNAMIC PLAN? ???FALSE???????????? ????,Dynamic Plan????????????Nested Loop?Hash Join???case ,????????Nested loop???????????HASH JOIN,?HASH JOIN????????????????? ????????subplan?????,???? pass?? ?join method???,?????STATISTICS COLLECTOR???cardinality?,???????HASH JOIN?????Nested Loop,????????????subplan?????access path; ???????Sales??????????????????,????HASH JOIN,??SUBPLAN??customers?????????;?????Nested Loop,???????cust_id?????Range Scan+Access by Rowid? Cardinality feedback Cardinality feedback????????11.2????,????????re-optimization???;  ???????????,Cardinality feedback?????????????????????????? ???????????????????,?????????????????,??????????Cardinality feedback????????????? ????????????????????????? ??????????????Cardinality feedback ??: ????????,???????????,??????????,????????????????selectivity ??? ????????????: ??????,?????????????????????????????????,??????????????????? ????????????????????????????????????????,?????????????????????????? ?????????,???????????????,?????????? ??????????Cardinality ????,??????join Cardinality ????????? Cardinality feedback???????cursor?,?Cursor???aged out????? SELECT /*+ gather_plan_statistics */ product_name FROM order_items o, product_information p WHERE o.unit_price = 15 AND quantity > 1 AND p.product_id = o.product_id Plan hash value: 1553478007 ---------------------------------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads | OMem | 1Mem | Used-Mem | ---------------------------------------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 13 |00:00:00.01 | 24 | 20 | | | | |* 1 | HASH JOIN | | 1 | 4 | 13 |00:00:00.01 | 24 | 20 | 2061K| 2061K| 429K (0)| |* 2 | TABLE ACCESS FULL| ORDER_ITEMS | 1 | 4 | 13 |00:00:00.01 | 7 | 6 | | | | | 3 | TABLE ACCESS FULL| PRODUCT_INFORMATION | 1 | 1 | 288 |00:00:00.01 | 17 | 14 | | | | ---------------------------------------------------------------------------------------------------------------------------------------- SELECT /*+ gather_plan_statistics */ product_name FROM order_items o, product_information p WHERE o.unit_price = 15 AND quantity > 1 AND p.product_id = o.product_id Plan hash value: 1553478007 ------------------------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ------------------------------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 13 |00:00:00.01 | 24 | | | | |* 1 | HASH JOIN | | 1 | 13 | 13 |00:00:00.01 | 24 | 2061K| 2061K| 413K (0)| |* 2 | TABLE ACCESS FULL| ORDER_ITEMS | 1 | 13 | 13 |00:00:00.01 | 7 | | | | | 3 | TABLE ACCESS FULL| PRODUCT_INFORMATION | 1 | 288 | 288 |00:00:00.01 | 17 | | | | ------------------------------------------------------------------------------------------------------------------------------- Note ----- - statistics feedback used for this statement SQL> select count(*) from v$SQL where SQL_ID='cz0hg2zkvd10y'; COUNT(*) ---------- 2 SQL>select sql_ID,USE_FEEDBACK_STATS FROM V$SQL_SHARED_CURSOR where USE_FEEDBACK_STATS ='Y'; SQL_ID U ------------- - cz0hg2zkvd10y Y ????????Cardinality feedback????,???????????????????????????,????????????order_items???????? ????2??????plan hash value??(??????????),?????2????child cursor??????gather_plan_statistics???actual : A-ROWS  estimate :E-ROWS????????? Automatic Re-optimization ???dynamic plan, Re-optimization???????????????  ?  ??????????????? ????????????????????????????????  ???????????,??????????????, ???????????????????? ???????????  Re-optimization??, ????????????????????? Re-optimization????dynamic plan??????????  dynamic plan????????????????????, ???????????????????? ????,??????????join order ??????????????,?????????????join order????? ??????,????????Re-optimization, ??Re-optimization ??????????????????? ?Oracle database 12c?,join statistics?????????????????????,??????????????????????Re-optimization???????????adaptive cursor sharing????? ????????????????,???????????? ????? ???????statistics collectors ????????????????????Re-optimization??????2?????????????,???????????????? ??????????????Re-optimization?????,?????????????????????? ???v$SQL??????IS_REOPTIMIZABLE?????????????????????Re-optimization,??????????Re-optimization???,?????Re-optimization ,???????reporting????? IS_REOPTIMIZABLE VARCHAR2(1) This columns shows whether the next execution matching this child cursor will trigger a reoptimization. The values are:   Y: If the next execution will trigger a reoptimization R: If the child cursor contains reoptimization information, but will not trigger reoptimization because the cursor was compiled in reporting mode N: If the child cursor has no reoptimization information ??1: select plan_table_output from table (dbms_xplan.display_cursor('gwf99gfnm0t7g',NULL,'ALLSTATS LAST')); SQL_ID  gwf99gfnm0t7g, child number 0 ------------------------------------- SELECT /*+ SFTEST gather_plan_statistics */ o.order_id, v.product_name FROM  orders o,   ( SELECT order_id, product_name FROM order_items o, product_information p     WHERE  p.product_id = o.product_id AND list_price < 50 AND min_price < 40  ) v WHERE o.order_id = v.order_id Plan hash value: 1906736282 ------------------------------------------------------------------------------------------------------------------------------------------- | Id  | Operation             | Name                | Starts | E-Rows | A-Rows |   A-Time   | Buffers | Reads  |  OMem |  1Mem | Used-Mem | ------------------------------------------------------------------------------------------------------------------------------------------- |   0 | SELECT STATEMENT      |                     |      1 |        |    269 |00:00:00.02 |    1336 |     18 |       |       |          | |   1 |  NESTED LOOPS         |                     |      1 |      1 |    269 |00:00:00.02 |    1336 |     18 |       |       |          | |   2 |   MERGE JOIN CARTESIAN|                     |      1 |      4 |   9135 |00:00:00.02 |      34 |     15 |       |       |          | |*  3 |    TABLE ACCESS FULL  | PRODUCT_INFORMATION |      1 |      1 |     87 |00:00:00.01 |      33 |     14 |       |       |          | |   4 |    BUFFER SORT        |                     |     87 |    105 |   9135 |00:00:00.01 |       1 |      1 |  4096 |  4096 | 4096  (0)| |   5 |     INDEX FULL SCAN   | ORDER_PK            |      1 |    105 |    105 |00:00:00.01 |       1 |      1 |       |       |          | |*  6 |   INDEX UNIQUE SCAN   | ORDER_ITEMS_UK      |   9135 |      1 |    269 |00:00:00.01 |    1302 |      3 |       |       |          | ------------------------------------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): ---------------------------------------------------    3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50))    6 - access("O"."ORDER_ID"="ORDER_ID" AND "P"."PRODUCT_ID"="O"."PRODUCT_ID") SQL_ID  gwf99gfnm0t7g, child number 1 ------------------------------------- SELECT /*+ SFTEST gather_plan_statistics */ o.order_id, v.product_name FROM  orders o,   ( SELECT order_id, product_name FROM order_items o, product_information p     WHERE  p.product_id = o.product_id AND list_price < 50 AND min_price < 40  ) v WHERE o.order_id = v.order_id Plan hash value: 35479787 -------------------------------------------------------------------------------------------------------------------------------------------- | Id  | Operation              | Name                | Starts | E-Rows | A-Rows |   A-Time   | Buffers | Reads  |  OMem |  1Mem | Used-Mem | -------------------------------------------------------------------------------------------------------------------------------------------- |   0 | SELECT STATEMENT       |                     |      1 |        |    269 |00:00:00.01 |      63 |      3 |       |       |          | |   1 |  NESTED LOOPS          |                     |      1 |    269 |    269 |00:00:00.01 |      63 |      3 |       |       |          | |*  2 |   HASH JOIN            |                     |      1 |    313 |    269 |00:00:00.01 |      42 |      3 |  1321K|  1321K| 1234K (0)| |*  3 |    TABLE ACCESS FULL   | PRODUCT_INFORMATION |      1 |     87 |     87 |00:00:00.01 |      16 |      0 |       |       |          | |   4 |    INDEX FAST FULL SCAN| ORDER_ITEMS_UK      |      1 |    665 |    665 |00:00:00.01 |      26 |      3 |       |       |          | |*  5 |   INDEX UNIQUE SCAN    | ORDER_PK            |    269 |      1 |    269 |00:00:00.01 |      21 |      0 |       |       |          | -------------------------------------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): ---------------------------------------------------    2 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID")    3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50))    5 - access("O"."ORDER_ID"="ORDER_ID") Note -----    - statistics feedback used for this statement    SQL> select IS_REOPTIMIZABLE,child_number FROM V$SQL  A where A.SQL_ID='gwf99gfnm0t7g'; IS CHILD_NUMBER -- ------------ Y             0 N             1    1* select child_number,other_xml From v$SQL_PLAN  where SQL_ID='gwf99gfnm0t7g' and other_xml is not nul SQL> / CHILD_NUMBER OTHER_XML ------------ --------------------------------------------------------------------------------            1 <other_xml><info type="cardinality_feedback">yes</info><info type="db_version">1              2.1.0.1</info><info type="parse_schema"><![CDATA["OE"]]></info><info type="plan_              hash">35479787</info><info type="plan_hash_2">3382491761</info><outline_data><hi              nt><![CDATA[IGNORE_OPTIM_EMBEDDED_HINTS]]></hint><hint><![CDATA[OPTIMIZER_FEATUR              ES_ENABLE('12.1.0.1')]]></hint><hint><![CDATA[DB_VERSION('12.1.0.1')]]></hint><h              int><![CDATA[ALL_ROWS]]></hint><hint><![CDATA[OUTLINE_LEAF(@"SEL$F5BB74E1")]]></              hint><hint><![CDATA[MERGE(@"SEL$2")]]></hint><hint><![CDATA[OUTLINE(@"SEL$1")]]>              </hint><hint><![CDATA[OUTLINE(@"SEL$2")]]></hint><hint><![CDATA[FULL(@"SEL$F5BB7              4E1" "P"@"SEL$2")]]></hint><hint><![CDATA[INDEX_FFS(@"SEL$F5BB74E1" "O"@"SEL$2"              ("ORDER_ITEMS"."ORDER_ID" "ORDER_ITEMS"."PRODUCT_ID"))]]></hint><hint><![CDATA[I              NDEX(@"SEL$F5BB74E1" "O"@"SEL$1" ("ORDERS"."ORDER_ID"))]]></hint><hint><![CDATA[              LEADING(@"SEL$F5BB74E1" "P"@"SEL$2" "O"@"SEL$2" "O"@"SEL$1")]]></hint><hint><![C              DATA[USE_HASH(@"SEL$F5BB74E1" "O"@"SEL$2")]]></hint><hint><![CDATA[USE_NL(@"SEL$              F5BB74E1" "O"@"SEL$1")]]></hint></outline_data></other_xml>            0 <other_xml><info type="db_version">12.1.0.1</info><info type="parse_schema"><![C              DATA["OE"]]></info><info type="plan_hash">1906736282</info><info type="plan_hash              _2">2579473118</info><outline_data><hint><![CDATA[IGNORE_OPTIM_EMBEDDED_HINTS]]>              </hint><hint><![CDATA[OPTIMIZER_FEATURES_ENABLE('12.1.0.1')]]></hint><hint><![CD              ATA[DB_VERSION('12.1.0.1')]]></hint><hint><![CDATA[ALL_ROWS]]></hint><hint><![CD              ATA[OUTLINE_LEAF(@"SEL$F5BB74E1")]]></hint><hint><![CDATA[MERGE(@"SEL$2")]]></hi              nt><hint><![CDATA[OUTLINE(@"SEL$1")]]></hint><hint><![CDATA[OUTLINE(@"SEL$2")]]>              </hint><hint><![CDATA[FULL(@"SEL$F5BB74E1" "P"@"SEL$2")]]></hint><hint><![CDATA[              INDEX(@"SEL$F5BB74E1" "O"@"SEL$1" ("ORDERS"."ORDER_ID"))]]></hint><hint><![CDATA              [INDEX(@"SEL$F5BB74E1" "O"@"SEL$2" ("ORDER_ITEMS"."ORDER_ID" "ORDER_ITEMS"."PROD              UCT_ID"))]]></hint><hint><![CDATA[LEADING(@"SEL$F5BB74E1" "P"@"SEL$2" "O"@"SEL$1              " "O"@"SEL$2")]]></hint><hint><![CDATA[USE_MERGE_CARTESIAN(@"SEL$F5BB74E1" "O"@"              SEL$1")]]></hint><hint><![CDATA[USE_NL(@"SEL$F5BB74E1" "O"@"SEL$2")]]></hint></o              utline_data></other_xml> ??2: SELECT /*+gather_plan_statistics*/ * FROM customers WHERE cust_state_province='CA' AND country_id='US'; SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST')); PLAN_TABLE_OUTPUT ------------------------------------- SQL_ID b74nw722wjvy3, child number 0 ------------------------------------- select /*+gather_plan_statistics*/ * from customers where CUST_STATE_PROVINCE='CA' and country_id='US' Plan hash value: 1683234692 -------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads | -------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 29 |00:00:00.01 | 17 | 14 | |* 1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 8 | 29 |00:00:00.01 | 17 | 14 | -------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"='US')) SELECT SQL_ID, CHILD_NUMBER, SQL_TEXT, IS_REOPTIMIZABLE FROM V$SQL WHERE SQL_TEXT LIKE 'SELECT /*+gather_plan_statistics*/%'; SQL_ID CHILD_NUMBER SQL_TEXT I ------------- ------------ ----------- - b74nw722wjvy3 0 select /*+g Y ather_plan_ statistics* / * from cu stomers whe re CUST_STA TE_PROVINCE ='CA' and c ountry_id=' US' EXEC DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE; SELECT TO_CHAR(d.DIRECTIVE_ID) dir_id, o.OWNER, o.OBJECT_NAME, o.SUBOBJECT_NAME col_name, o.OBJECT_TYPE, d.TYPE, d.STATE, d.REASON FROM DBA_SQL_PLAN_DIRECTIVES d, DBA_SQL_PLAN_DIR_OBJECTS o WHERE d.DIRECTIVE_ID=o.DIRECTIVE_ID AND o.OWNER IN ('SH') ORDER BY 1,2,3,4,5; DIR_ID OWNER OBJECT_NAME COL_NAME OBJECT TYPE STATE REASON ----------------------- ----- ------------- ----------- ------ ---------------- ----- ------------------------ 1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUMN DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE 1484026771529551585 SH CUSTOMERS CUST_STATE_ COLUMN DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY PROVINCE MISESTIMATE 1484026771529551585 SH CUSTOMERS TABLE DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE SELECT /*+gather_plan_statistics*/ * FROM customers WHERE cust_state_province='CA' AND country_id='US'; ELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST')); PLAN_TABLE_OUTPUT ------------------------------------- SQL_ID b74nw722wjvy3, child number 1 ------------------------------------- select /*+gather_plan_statistics*/ * from customers where CUST_STATE_PROVINCE='CA' and country_id='US' Plan hash value: 1683234692 ----------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ----------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 29 |00:00:00.01 | 17 | |* 1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 29 | 29 |00:00:00.01 | 17 | ----------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"='US')) Note ----- - cardinality feedback used for this statement SELECT SQL_ID, CHILD_NUMBER, SQL_TEXT, IS_REOPTIMIZABLE FROM V$SQL WHERE SQL_TEXT LIKE 'SELECT /*+gather_plan_statistics*/%'; SQL_ID CHILD_NUMBER SQL_TEXT I ------------- ------------ ----------- - b74nw722wjvy3 0 select /*+g Y ather_plan_ statistics* / * from cu stomers whe re CUST_STA TE_PROVINCE ='CA' and c ountry_id=' US' b74nw722wjvy3 1 select /*+g N ather_plan_ statistics* / * from cu stomers whe re CUST_STA TE_PROVINCE ='CA' and c ountry_id=' US' SELECT /*+gather_plan_statistics*/ CUST_EMAIL FROM CUSTOMERS WHERE CUST_STATE_PROVINCE='MA' AND COUNTRY_ID='US'; SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST')); PLAN_TABLE_OUTPUT ------------------------------------- SQL_ID 3tk6hj3nkcs2u, child number 0 ------------------------------------- Select /*+gather_plan_statistics*/ cust_email From customers Where cust_state_province='MA' And country_id='US' Plan hash value: 1683234692 ------------------------------------------------------------------------------- |Id | Operation | Name | Starts|E-Rows|A-Rows| A-Time |Buffers| ------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 2 |00:00:00.01| 16 | |*1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 2| 2 |00:00:00.01| 16 | ----------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("CUST_STATE_PROVINCE"='MA' AND "COUNTRY_ID"='US')) Note ----- - dynamic sampling used for this statement (level=2) - 1 Sql Plan Directive used for this statement EXEC DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE; SELECT TO_CHAR(d.DIRECTIVE_ID) dir_id, o.OWNER, o.OBJECT_NAME, o.SUBOBJECT_NAME col_name, o.OBJECT_TYPE, d.TYPE, d.STATE, d.REASON FROM DBA_SQL_PLAN_DIRECTIVES d, DBA_SQL_PLAN_DIR_OBJECTS o WHERE d.DIRECTIVE_ID=o.DIRECTIVE_ID AND o.OWNER IN ('SH') ORDER BY 1,2,3,4,5; DIR_ID OW OBJECT_NA COL_NAME OBJECT TYPE STATE REASON ------------------- -- --------- ---------- ------- --------------- ------------- ------------------------ 1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUMN DYNAMIC_SAMPLING MISSING_STATS SINGLE TABLE CARDINALITY MISESTIMATE 1484026771529551585 SH CUSTOMERS CUST_STATE_ COLUMN DYNAMIC_SAMPLING MISSING_STATS SINGLE TABLE CARDINALITY PROVINCE MISESTIMATE 1484026771529551585 SH CUSTOMERS TABLE DYNAMIC_SAMPLING MISSING_STATS SINGLE TABLE CARDINALITY MISESTIMATE

    Read the article

  • FFSERVER - streaming an ASF video as Webm output

    - by Emmanuel Brunet
    I'm trying to stream an IP webcam ASF live stream to a ffserver to output a webm video format. The server starts successfully but the ffserver commands used to feed the ffserver fails and generates a core dump. Environment Debian 7.5 ffmpeg 2.2 Input stream $ ffprobe http://account:password@webcam/videostream.asf Input #0, asf, from 'http://admin:alpha1237@webcam/videostream.asf': Duration: N/A, start: 0.000000, bitrate: 32 kb/s Stream #0:0: Video: mjpeg (MJPG / 0x47504A4D), yuvj422p(pc), 640x480, 25 tbr, 1k tbn, 1k tbc Stream #0:1: Audio: adpcm_ima_wav ([17][0][0][0] / 0x0011), 8000 Hz, 1 channels, s16p, 32 kb/s ffserver configuration my ffserver configuration is : Port 8091 RTSPPort 554 BindAddress 192.168.1.62 MaxHTTPConnections 1000 MaxClients 100 MaxBandwidth 1000 CustomLog - <Feed webcam.ffm> File /tmp/webcam.ffm FileMaxSize 500M ACL allow localhost ACL allow 192.168.0.0 192.168.255.255 </Feed> <Stream webcam.webm> # Output stream URL definition Feed webcam.ffm # Feed from which to receive video Format webm # Audio settings AudioCodec vorbis AudioBitRate 64 # Audio bitrate # Video settings VideoCodec libvpx VideoSize 640x480 # Video resolution VideoFrameRate 25 # Video FPS AVOptionVideo flags +global_header # Parameters passed to encoder # (same as ffmpeg command-line parameters) AVOptionVideo cpu-used 0 AVOptionVideo qmin 10 AVOptionVideo qmax 42 AVOptionVideo quality good AVOptionAudio flags +global_header PreRoll 15 StartSendOnKey # VideoBitRate 32 # Video bitrate </Stream> <Stream status.html> Format status # Only allow local people to get the status ACL allow localhost ACL allow 192.168.0.0 192.168.255.255 </Stream> ffmpeg feed I run the following command that fails $ ffmpeg -i http://account:password@webcam/videostream.asf http://192.168.1.62:8091/webcam.ffm http://192.168.1.62:8091/webcam.ffm Input #0, asf, from 'http://account:password@webcam/videostream.asf': Duration: N/A, start: 0.000000, bitrate: 32 kb/s Stream #0:0: Video: mjpeg (MJPG / 0x47504A4D), yuvj422p(pc), 640x480, 25 tbr, 1k tbn, 1k tbc Stream #0:1: Audio: adpcm_ima_wav ([17][0][0][0] / 0x0011), 8000 Hz, mono, s16p, 32 kb/s [swscaler @ 0x36a80c0] deprecated pixel format used, make sure you did set range correctly Segmentation fault I tryed $ ffmpeg -i http://account:password@webcam/videostream.asf -pix_fmt yuv420p http://192.168.1.62:8091/webcam.ffm But it raises the same error. Thanks for your help Edit For an easy testing (I thought), I tried to publish the whole ASF stream as is, meaning connecting the ASF webcam output stream to the ffserver that outputs ASF format too. And thus with mirrored encoding so I changed the ffserver configuration to ... <Stream webcam.asf> Feed webcam.ffm Format asf VideoFrameRate 25 VideoSize 640X480 VideoBitRate 256 VideoBufferSize 1000 VideoGopSize 30 AudioBitRate 32 StartSendOnKey </Stream> ... And the output is now : Input #0, asf, from 'http://admin:alpha1237@webcam/videostream.asf': Duration: N/A, start: 0.000000, bitrate: 32 kb/s Stream #0:0: Video: mjpeg (MJPG / 0x47504A4D), yuvj422p(pc), 640x480, 1k tbr, 1k tbn, 1k tbc Stream #0:1: Audio: adpcm_ima_wav ([17][0][0][0] / 0x0011), 8000 Hz, mono, s16p, 32 kb/s [swscaler @ 0x3d620c0] deprecated pixel format used, make sure you did set range correctly Output #0, ffm, to 'http://192.168.1.62:8091/webcam.ffm': Metadata: creation_time : now encoder : Lavf55.40.100 Stream #0:0: Audio: wmav2, 22050 Hz, mono, fltp, 32 kb/s Metadata: encoder : Lavc55.64.100 wmav2 Stream #0:1: Video: msmpeg4v3 (msmpeg4), yuv420p, 640x480, q=2-31, 256 kb/s, 1k fps, 1000k tbn, 1k tbc Metadata: Stream mapping: Stream #0:1 -> #0:0 (adpcm_ima_wav -> wmav2) Stream #0:0 -> #0:1 (mjpeg -> msmpeg4) Press [q] to stop, [?] for help Segmentation fault I can't even forward the stream.

    Read the article

< Previous Page | 532 533 534 535 536 537 538 539 540 541 542 543  | Next Page >