Search Results

Search found 27890 results on 1116 pages for 'oracle retail documentation team'.

Page 546/1116 | < Previous Page | 542 543 544 545 546 547 548 549 550 551 552 553  | Next Page >

  • It has been a long time since last post

    - by The Official Microsoft IIS Site
    Wow, just realized that in the last 6 months I’ve only had a chance to post 2 items and I think it is about time to start this going again. So why this much silence? Well, About 8 months ago a couple of big changes happened at my division as described in this link . As part of that transition my responsibilities changed and I transitioned from being the Development Manager for the Web Platform (IIS, WebMatrix, WebDeploy, etc…) to take a new role and start a new team that we called Azure UX team....(read more)

    Read the article

  • What is the largest flatscreen monitor available for PC use?

    - by Avery Payne
    I'll qualify this specifically (by order of preference): must have the highest diagonal measurement, widescreen or "normal" aspect ratio doesn't matter here, just the diagonal. must have the highest resolution available, which means 72 inches of 1280x1024 won't cut it. must not have a TV tuner built into it, I'm not looking for a TV set, this is a monitor! must be available at a retail outlet that caters to the general public, i.e. Best Buy, Sears, Costco (all of these examples are in the U.S., although you can suggest something from whatever chain is in your area/nation/geography). Non-retail or non-physical venues like eBay, or businesses that only cater to other businesses, do not qualify under this requirement. I should be able to walk into this place and purchase it, not just whip up an order online. If you are unsure about this requirement, just ask yourself: can I physically see it before I open my wallet and purchase it?

    Read the article

  • What books would I recommend?

    - by user12277104
    One of my mentees (I have three right now) said he had some time on his hands this Summer and was looking for good UX books to read ... I sigh heavily, because there is no shortage of good UX books to read. My bookshelves have titles by well-read authors like Nielsen, Norman, Tufte, Dumas, Krug, Gladwell, Pink, Csikszentmihalyi, and Roam. I have titles buy lesser-known authors, many whom I call friends, and many others whom I'll likely never meet. I have books on Excel pivot tables, typography, mental models, culture, accessibility, surveys, checklists, prototyping, Agile, Java, sketching, project management, HTML, negotiation, statistics, user research methods, six sigma, usability guidelines, dashboards, the effects of aging on cognition, UI design, and learning styles, among others ... many others. So I feel the need to qualify any book recommendations with "it depends ...", because it depends on who I'm talking to, and what they are looking for.  It's probably best that I also mention that the views expressed in this blog are mine, and may not necessarily reflect the views of Oracle. There. I'm glad I got that off my chest. For that mentee, who will be graduating with his MS HFID + MBA from Bentley in the Fall, I'll recommend this book: Universal Principles of Design -- this is a great book, which in its first edition held "100  ways to enhance usability, influence perception, increase appeal, make better design decisions, and teach through design." Granted, the second edition expanded that number to 125, but when I first found this book, I felt like I'd discovered the Grail. Its research-based principles are all laid out in 2 pages each, with lots of pictures and good references. A must-have for the new grad. Do I have recommendations for a book that will teach you how to conduct a usability test? Yes, three of them. To communicate what we do to management? Yes. To create personas? Yep -- two or three. Help you with UX in an Agile environment? You bet, I've got two I'd recommend. Create an excellent presentation? Uh hunh. Get buy-in from your team? Of course. There are a plethora of excellent UX books out there. But which ones I recommend ... well ... it depends. 

    Read the article

  • How do you demonstrate performance in paired-programming environments?

    - by NT3RP
    Performance reviews have come up recently at my work, and I was put in an interesting position. Our team does a lot of pair programming, which has a tendency of averaging out the skill differences between team members (especially considering we rotate pairs). Generally, when doing performance reviews, you look back at the work you've done, and demonstrate what you've accomplished, and how you've exceeded expectations to try to negotiate a raise or other benefits. How do you demonstrate (or even measure) individual performance in an environment like this?

    Read the article

  • Visual Studio 2012 Update 1 now available for download

    - by Greg Low
    Good to see the Visual Studio 2012 team get update 1 out the door. I'm using it now and am pretty happy with it.I like the way that the tools are now being updated out of band. Hopefully, the SQL BI folk will get their templates updated to VS2012 soon too.You can get it here: http://www.microsoft.com/visualstudio/eng/downloads#d-visual-studio-2012-updateDetailed list of what's changed is here: http://blogs.msdn.com/b/visualstudioalm/archive/2012/11/26/visual-studio-and-team-foundation-server-2012-update-1-now-available.aspx 

    Read the article

  • The Connected Company: WebCenter Portal Activity Streams

    - by Michael Snow
    Guest post by Mitchell Palski, Oracle Staff Sales Consultant Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-ascii- mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi- mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Social media is sure to have made its way into your company or government organization. Whether its discussion threads, blog posts, Facebook-style profile-pages, or just a simple Instant Messenger application; in one way or another, your employees are connected. What are the objectives of leveraging social media in your organization? Facilitating knowledge transfer More effectively organizing team events Generating inter-community discussions to solve problems Improving resource management Increasing organizational awareness Creating an environment of accountability Do any of the business objectives above stand out to you as needs? If so, consider leveraging the WebCenter Portal Activity Stream as part of your solution. In WebCenter Portal, the Activity Stream feature provides a streaming view of the activities of your connections, actions taken in portals, and business activities that looks a lot like a combined Facebook and Twitter newsfeed. Activity Stream can note when a user: Posts feedback (comments) Uploads a document Creates a new blog, page, event, or announcement Starts a new discussion Streams messages and attachments entered through WebCenter Publisher (similar to Twitter) Through Activity Stream Preferences, you can select which of these activities to show or hide from your personal Activity Stream. Here’s what you get: Real-time stream of activities with in a Portal or sub-Portal increases awareness across your organization or within a working group Complete list of user actions reduces the time-to-find for users that need to interact with the latest activities in your portal Users can publish to their groups when tasks are finished for complete group traceability and accountability, as well as improved resource management. Project discussions and shared documents that require the expertise of someone outside of a working group now get increased visibility across your organization. There’s a reason that commercial Social Media tools like Facebook and Twitter have been so successful – they spread information in an aesthetically appealing and easy to read format.  Strategically placing an Activity Feed within your Portal is analogous to sending your employees a daily newsletter, events calendar, recent documents report, and list of announcements – BUT ALL IN ONE! 

    Read the article

  • "Expecting A Different Result?" (2 of 3 in 'No Customer Left Behind' Series)

    - by Kathryn Perry
    A guest post by David Vap, Group Vice President, Oracle Applications Product Development Many companies already have some type of customer experience initiative in process or one that could be framed as such. The challenge is that the initiatives too often are started in a department silo, don't have the right level of executive sponsorship, or have been initiated without the necessary insight and strategic business alignment. You can't keep doing the same things, give it a customer experience name, and expect a different result. You can't continue to just compete on price or features - that is not sustainable in commoditized markets. And ultimately, investing in technology alone doesn't solve customer experience problems; it just adds to the complexity of them. You need a customer experience strategy and approach on how to execute a customer-centric worldview within your business. To develop this, you must take an outside in journey on how your customers are interacting with your business to establish a benchmark of your customers' experiences. Then you must get cross-functional alignment on what you are trying to achieve, near, mid, and long term. Your execution of that strategy should be based on a customer experience approach: Understand your customer: You need to capture the insights across interactions, channels (including social), and personas to better understand whom to serve, how to serve them, and when to serve them. Not all experiences or customers are equal, so leverage this insight to understand the strategic business objectives you need to address. Then determine which experiences can be improved immediately and which over time to get the result you need. Empower your ecosystem: You need to align your front-line employees with your strategy and give them the power, insight, and tools that allow them to cultivate a culture around strengthening the relationships with your customers. You also need to provide the transparency, access, and collaboration that enable your customers and partners to self serve and self solve and to share with ease. Adapt your business: You need to enable the discipline of agility within your organization and infrastructure so that you can innovate, tailor, and personalize experiences. This needs to be done both reactively from insight and proactively in real time so you can stay ahead of shifting market trends and evolving consumer behaviors. No longer will the old approaches provide the same returns. To compete, differentiate, and win in a world where the customer has the power, you must execute a strategy that is sure to deliver a better brand experience for your customers. Note: This is Part 2 in a three-part series. Part 1 is here. Stop back for Part 3 on November 28.

    Read the article

  • Gerrit code review, or Github's fork and pull model?

    - by user1366476
    I am starting a software project that will be team AND community developed. I was previously sold on gerrit, but now github's fork and pull request model seem to almost provide more tools, ways to visualize commits, and ease of use. For someone who has at least a little experience with both, what are the pros/cons of each, and which would be better for a team based project which wants to leave open the possibility for community development?

    Read the article

  • Adobe Air Mobile AS3 app: challenges and how to overcome them?

    - by Arthur Wulf White
    I made a PC flash game for LD 26 - minimalism and I am working on porting it to Android. Some questions I'd like to ask: Is it bad to heavily use vector graphics (ie. this.graphics.lineTo()) in Mobile Air? Does Stencyl completely alleviate this issue? Are there any inherit disadvantages to using Air Mobile that I'm missing? Where is the documentation for Air mobile (I googled and found no recent books or documentation pdf so far)

    Read the article

  • Tutorial on OpenGL texture formats

    - by Cyan
    Looking at the documentation glGetTexImage(), one can see that there are plenty of available texture formats. GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_1D_ARRAY, GL_TEXTURE_2D_ARRAY, GL_TEXTURE_RECTANGLE, GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, and GL_TEXTURE_CUBE_MAP_NEGATIVE_Z I've only used GL_TEXTURE_2D for the time being. Is there any place / documentation where one can learn about these other formats ? PS : and yes, of course, i've googled for it, results are pretty poor

    Read the article

  • What is the preferred tool/approach to putting a SQL Server database under source control?

    - by msigman
    I've evaluated RedGate SQL Source Control tool (http://www.red-gate.com/products/sql-development/sql-source-control/), and I believe that Team Foundation Server 2010 offers a way to do this as well (as touched on here http://blog.discountasp.net/using-team-foundation-server-2010-source-control-from-sql-server-management-studio/). Are there alternatives, or is one of these considered the preferred/standard solution?

    Read the article

  • The 5 Worst Days in a DBAs Life: Day 2

    Steve and the rest of the DBA Team are back for round two. In this episode they have to restore all of a business' data using nothing but a set of off-site backups, kanban, and witty repartee. "A real time saver" Andy Doyle, Head of IT ServicesAndy and his team saved time by automating backup and restores with SQL Backup Pro. Find out how much time you could save. Download a free trial now.

    Read the article

  • SSMS Tools Pack 3.0 is out. Full SSMS 2014 support and improved features.

    - by Mladen Prajdic
    With version 3.0 the SSMS 2014 is fully supported. Since this is a new major version you'll eventually need a new license. Please check the EULA to see when. As a thank you for your patience with this release, everyone that bought the SSMS Tools Pack after April 1st, the release date of SQL Server 2014, will receive a free upgrade. You won't have to do anything for this to take effect. First thing you'll notice is that the UI has been completely changed. It's more in line with SSMS and looks less web-like. Also the core has been updated and rewritten in some places to be better suited for future features. Major improvements for this release are: Window Connection Coloring Something a lot of people have asked me over the last 2 years is if there's a way to color the tab of the window itself. I'm very glad to say that now it is. In SSMS 2012 and higher the actual query window tab is also colored at the top border with the same color as the already existing strip making it much easier to see to which server your query window is connected to even when a window is not focused. To make it even better, you can not also specify the desired color based on the database name and not just the server name. This makes is useful for production environments where you need to be careful in which database you run your queries in. Format SQL The format SQL core was rewritten so it'll be easier to improve it in future versions. New improvement is the ability to terminate SQL statements with semicolons. This is available only in SSMS 2012 and up. Execution Plan Analyzer A big request was to implement the Problems and Solutions tooltip as a window that you can copy the text from. This is now available. You can move the window around and copy text from it. It's a small improvement but better stuff will come. SQL History Current Window History has been improved with faster search and now also shows the color of the server/database it was ran against. This is very helpful if you change your connection in the same query window making it clear which server/database you ran query on. The option to Force Save the history has been added. This is a menu item that flushes the execution and tab content history save buffers to disk. SQL Snippets Added an option to generate snippet from selected SQL text on right click menu. Run script on multiple databases Configurable database groups that you can save and reuse were added. You can create groups of preselected databases to choose from for each server. This makes repetitive tasks much easier New small team licensing option A lot of requests came in for 1 computer, Unlimited VMs option so now it's here. Hope it serves you well.

    Read the article

  • Exchange 2010 SP3 announced!

    - by marc dekeyser
    The exchange team announced Service Pack 3 for exchange 2010 yesterday which will, amongst other things, supply coexistence between 2010 and 2013. It is still a bit away as it will be released somewhere in the first half of 2013 “The Exchange Team is pleased to announce that in the first half of calendar year 2013 we will be releasing Exchange Server 2010 Service Pack 3 (SP3) to our customers. “ Read more here

    Read the article

  • Information About Mambo and Joomla

    JOOMLA and MAMBO was originally developed by a team called Mambo. In 2005, the main developers of Mambo left the team and build the JOOMLA system. Regardless of the history of these two systems, they have turn into a leading hosting system in the industry. These two CMS platform software is the most easiest to use and manage content management that is why it is the most preferred CMS software by most web developer.

    Read the article

  • Nouveau forum sur gestionnaires de sources décentralisée (Distributed Version Control System). Posez

    Bonjour, Les DVCS sont en plein essor ces dernières années, et un forum leur est désormais dédié. Avant de poser votre question, n'oubliez pas de consulter les ressources documentaires :La documentation de Git La documentation de Mercurial La FAQ SCM Si vous souhaitez contribuer à la base documentaire francophone sur ce thème, n'hésitez pas à contacter les responsables bénévoles par mail sur conception [AT] redaction [DASH] developpez [DOT] com...

    Read the article

  • Can I move a copy of Windows 7 from one machine to another?

    - by Chopper3
    This is a pretty basic question sorry but I've looked in the 'related questions' and couldn't find an answer. When Windows 7 came out I bought a copy of Home Premium, the retail box with both 32 and 64 bit versions, to install via Boot Camp on my macbook. I've just got a retail (32 and 64 bit) copy of Windows 7 Ultimate that I'd like to install instead-of/over the Home Premium version and it struck me that I should, at least in principal be able to install the Home Premium version on my son's machine - is this the case and if so is there anything I should do first or once they're installed to let MS know I'm being a good guy about this? Sorry it's such a dim question but I'm a serverfault guy really and know very little about Windows. Thanks.

    Read the article

  • Games for software development teams? [closed]

    - by g.foley
    We have been running weekly meetings for the team in the interest of learning. I'd like to mix these up from sit and listen type exercises to something more engaging. So I'm looking for a fun games to play with a team of 10 developers. They are of ranging experience, and the games must provide some kind of insight to some fundamental concept of programming the developers tend to forget. All ideas welcome!

    Read the article

  • Information About Mambo and Joomla

    JOOMLA and MAMBO was originally developed by a team called Mambo. In 2005, the main developers of Mambo left the team and build the JOOMLA system. Regardless of the history of these two systems, they have turn into a leading hosting system in the industry. These two CMS platform software is the most easiest to use and manage content management that is why it is the most preferred CMS software by most web developer.

    Read the article

  • Understanding the value of Customer Experience & Loyalty for the Telecommunications Industry

    - by raul.goycoolea
    Worried by economic woes and market forces, especially in mature markets, communications service providers (CSPs) increasingly focus on improving customer experience. In fact, it seems difficult to find a major message by a C-level executive in the developed world that does not include something on "meeting and exceeding customers' needs". Frequently in customer satisfaction studies by prominent firms, CSPs fall short of the leadership demonstrated by other industries that take customer-centric approaches to their bottom-line strategies. Consider the following:Despite the continued impact of global economic crisis, in July 2010, Apple Computer posted record revenue and net quarterly profit. Those who attribute the results primarily to the iPhone 4 launch should note that Apple also shipped around 30% more Macintosh computers than the same period the previous year. Even sales of the iPod line increased by 8% in a highly commoditized, shrinking media player market. Finally, Apple began selling iPads during the quarter, with total sales of more than 3 million units. What does Apple have that the others lack? Well, some great products (and services) to be sure, but it also excels at customer service and support, marketing, and distribution, and has one of the strongest brands globally. Its products are useful, simple to use, easy to acquire and augment, high quality, and considered very cool. They also evoke such an emotional response from many of Apple's customers, which they turn up their noses at competitive products.In other words, Apple appears to have mastered virtually every aspect of customer experience and the resultant loyalty of its customer base - even in difficult financial times. Through that unwavering customer focus, Apple continues to drive its revenues and profits to new heights. Other customer loyalty leaders like Wal-Mart, Google, Toyota and Honda are also doing well by focusing on customer experience as an essential driver of profitability. Service providers should note this performance and ask themselves how they might leverage the same principles to increase their own profitability. After all, that is what customer experience and loyalty are all about: profitability.To successfully manage all the critical touch points of customer experience, CSPs must shun the one-size-fits-all approach. They can no longer afford to view customer service fundamentally as an act of altruism - which mentality dates back to the industry's civil service days, when CSPs were typically government organizations that were critical to economic development and public safety.As regulators and public officials have pushed, and continue to push, service providers to new heights of reliability - using incentives and punishments - most CSPs already have some of the fundamental building blocks of customer service in place. Yet despite that history and experience, service providers still lag other industries in providing what is seen as good customer service.As we observed in the TMF's 2009 Insights Research report, Customer Experience Management: Driving Loyalty & Profitability there has been resurgence in interest by CSPs. More and more of them have stated ambitions to catch up other industries, and they are realizing that good customer service is a powerful strategy for increasing business performance and profitability, not an act of good will.CSPs are recognizing the connection between customer experience and profitability, as demonstrated in many studies. For example, according to research by Bain & Company, a 5 percent improvement in customer retention rates can yield as much as a 75 percent increase in profits for companies across a range of industries.After decades of customer experience strategy formulation, Bain partner and business author, Frederick Reichheld, considers "would you recommend us to a friend?" as the ultimate question for a customer. How many times have you or your friends recommended an iPod, iPhone or a Mac? What do your children recommend to their peers? Their peers to them?There are certain steps service providers have to take to create more personalized relationships with their customers, as well as reduce churn and increase profitability, all while becoming leaner and more agile. First, they have to define customer experience, we define it as the result of the sum of observations, perceptions, thoughts and feelings arising from interactions and relationships between customers and their service provider(s). Virtually every customer touch point - whether directly or indirectly linked to service providers and their partners - contributes to customer perception, satisfaction, loyalty, and ultimately profitability. Gaining leadership in customer experience and satisfaction will not be a simple task, as it is affected by virtually every customer-facing aspect of the service provider, and in turn impacts the service provider deeply - especially on the all-important bottom line. The scope of issues affecting customer experience is complex and dynamic.With new services, devices and applications extending the basis of customer experience to domains beyond the direct control of the service provider, it is likely to increase in complexity and dynamism.Customer loyalty = increased profitsAs stated earlier, customer experience programs are not fundamentally altruistic exercises, but a strategic means of improving competitiveness and profitability in the short and long term. Loyalty is essential to deriving long term profits from customers.Some of the earliest loyalty programs date back to the 1930s, when packaged goods companies offered embedded coupons for rewards to buyers, and eventually retail chains began offering reward programs to frequent shoppers. These programs continued for decades but were leapfrogged in the 1980s by more aggressive programs from the airlines.This movement was led by American Airlines, which launched the first full-scale loyalty marketing program of the modern era with the AAdvantage frequent flyer scheme. It was the first to reward frequent fliers with notional air miles that could be accumulated and later redeemed for free travel. Figure 1: Opportunities example of Customer loyalty driven profitOther airlines and travel providers were quick to grasp the incredible value of providing customers with an incentive to use their company exclusively. Within a few years, dozens of travel industry companies launched similar initiatives and now loyalty programs are achieving near-ubiquity in many service industries, especially those in which it is difficult to differentiate offerings by product attributes.The belief is that increased profitability will result from customer retention efforts because:•    The cost of acquisition occurs only at the beginning of a relationship: the longer the relationship, the lower the amortized cost;•    Account maintenance costs decline as a percentage of total costs, or as a percentage of revenue, over the lifetime of the relationship;•    Long term customers tend to be less inclined to switch and less price sensitive which can result in stable unit sales volume and increases in dollar-sales volume;•    Long term customers may initiate word-of-mouth promotions and referrals, which cost the company nothing and arguably are the most effective form of advertising;•    Long-term customers are more likely to buy ancillary products and higher margin supplemental products;•    Long term customers tend to be satisfied with their relationship with the company and are less likely to switch to competitors, making market entry or competitors gaining market share difficult;•    Regular customers tend to be less expensive to service, as they are familiar with the processes involved, require less 'education', and are consistent in their order placement;•    Increased customer retention and loyalty makes the employees' jobs easier and more satisfying. In turn, happy employees feed back into higher customer satisfaction in a virtuous circle. Figure 2: The virtuous circle of customer loyaltyFigure 2 represents a high-level example of a virtuous cycle driven by customer satisfaction and loyalty, depicting how superiority in product and service offerings, as well as strong customer support by competent employees, lead to higher sales and ultimately profitability. As stated above, this is not a new concept, but succeeding with it is difficult. It has eluded many a company driven to achieve profitability goals. Of course, for this circle to be virtuous, the customer relationship(s) must be profitable.Trying to maintain the loyalty of unprofitable customers is not a viable business strategy. It is, therefore, important that marketers can assess the profitability of each customer (or customer segment), and either improve or terminate relationships that are not profitable. This means each customer's 'relationship costs' must be understood and compared to their 'relationship revenue'. Customer lifetime value (CLV) is the most commonly used metric here, as it is generally accepted as a representation of exactly how much each customer is worth in monetary terms, and therefore a determinant of exactly how much a service provider should be willing to spend to acquire or retain that customer.CLV models make several simplifying assumptions and often involve the following inputs:•    Churn rate represents the percentage of customers who end their relationship with a company in a given period;•    Retention rate is calculated by subtracting the churn rate percentage from 100;•    Period/horizon equates to the units of time into which a customer relationship can be divided for analysis. A year is the most commonly used period for this purpose. Customer lifetime value is a multi-period calculation, often projecting three to seven years into the future. In practice, analysis beyond this point is viewed as too speculative to be reliable. The model horizon is the number of periods used in the calculation;•    Periodic revenue is the amount of revenue collected from a customer in a given period (though this is often extended across multiple periods into the future to understand lifetime value), such as usage revenue, revenues anticipated from cross and upselling, and often some weighting for referrals by a loyal customer to others; •    Retention cost describes the amount of money the service provider must spend, in a given period, to retain an existing customer. Again, this is often forecast across multiple periods. Retention costs include customer support, billing, promotional incentives and so on;•    Discount rate means the cost of capital used to discount future revenue from a customer. Discounting is an advanced method used in more sophisticated CLV calculations;•    Profit margin is the projected profit as a percentage of revenue for the period. This may be reflected as a percentage of gross or net profit. Again, this is generally projected across the model horizon to understand lifetime value.A strong focus on managing these inputs can help service providers realize stronger customer relationships and profits, but there are some obstacles to overcome in achieving accurate calculations of CLV, such as the complexity of allocating costs across the customer base. There are many costs that serve all customers which must be properly allocated across the base, and often a simple proportional allocation across the whole base or a segment may not accurately reflect the true cost of serving that customer;  This is made worse by the fragmentation of customer information, which is likely to be across a variety of product or operations groups, and may be difficult to aggregate due to different representations.In addition, there is the complexity of account relationships and structures to take into consideration. Complex account structures may not be understood or properly represented. For example, a profitable customer may have a separate account for a second home or another family member, which may appear to be unprofitable. If the service provider cannot relate the two accounts, CLV is not properly represented and any resultant cancellation of the apparently unprofitable account may result in the customer churning from the profitable one.In summary, if service providers are to realize strong customer relationships and their attendant profits, there must be a very strong focus on data management. This needs to be coupled with analytics that help business managers and those who work in customer-facing functions offer highly personalized solutions to customers, while maintaining profitability for the service provider. It's clear that acquiring new customers is expensive. Advertising costs, campaign management expenses, promotional service pricing and discounting, and equipment subsidies make a serious dent in a new customer's profitability. That is especially true given the rising subsidies for Smartphone users, which service providers hope will result in greater profits from profits from data services profitability in future.  The situation is made worse by falling prices and greater competition in mature markets.Customer acquisition through industry consolidation isn't cheap either. A North American service provider spent about $2,000 per subscriber in its acquisition of a smaller company earlier this year. While this has allowed it to leapfrog to become the largest mobile service provider in the country, it required a total investment of more than $28 billion (including assumption of the acquiree's debt).While many operating cost synergies clearly made this deal more attractive to the acquiring company, this is certainly an expensive way to acquire customers: the cost per subscriber in this case is not out of line with the prices others have paid for acquisitions.While growth by acquisition certainly increases overall revenues, it often creates tremendous challenges for profitability. Organic growth through increased customer loyalty and retention is a more effective driver of profit, as well as a stronger predictor of future profitability. Service providers, especially those in mature markets, are increasingly recognizing this and taking steps toward a creating a more personalized, flexible and satisfying experience for their customers.In summary, the clearest path to profitability for companies in virtually all industries is through customer retention and maximization of lifetime value. Service providers would do well to recognize this and focus attention on profitable customer relationships.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

< Previous Page | 542 543 544 545 546 547 548 549 550 551 552 553  | Next Page >