Resilient backpropagation neural network - question about gradient

Posted by Raf on Stack Overflow See other posts from Stack Overflow or by Raf
Published on 2010-05-19T11:34:54Z Indexed on 2010/05/19 14:40 UTC
Read the original article Hit count: 500

Hello Guys,

First I want to say that I'm really new to neural networks and I don't understand it very good ;)

I've made my first C# implementation of the backpropagation neural network. I've tested it using XOR and it looks it work.

Now I would like change my implementation to use resilient backpropagation (Rprop - http://en.wikipedia.org/wiki/Rprop).

The definition says: "Rprop takes into account only the sign of the partial derivative over all patterns (not the magnitude), and acts independently on each "weight".

Could somebody tell me what partial derivative over all patterns is? And how should I compute this partial derivative for a neuron in hidden layer.

Thanks a lot

UPDATE:

My implementation base on this Java code: www_.dia.fi.upm.es/~jamartin/downloads/bpnn.java

My backPropagate method looks like this:

public double backPropagate(double[] targets)
    {
        double error, change;

        // calculate error terms for output
        double[] output_deltas = new double[outputsNumber];

        for (int k = 0; k < outputsNumber; k++)
        {

            error = targets[k] - activationsOutputs[k];
            output_deltas[k] = Dsigmoid(activationsOutputs[k]) * error;
        }

        // calculate error terms for hidden
        double[] hidden_deltas = new double[hiddenNumber];

        for (int j = 0; j < hiddenNumber; j++)
        {
            error = 0.0;

            for (int k = 0; k < outputsNumber; k++)
            {
                error = error + output_deltas[k] * weightsOutputs[j, k];
            }

            hidden_deltas[j] = Dsigmoid(activationsHidden[j]) * error;
        }

        //update output weights
        for (int j = 0; j < hiddenNumber; j++)
        {
            for (int k = 0; k < outputsNumber; k++)
            {
                change = output_deltas[k] * activationsHidden[j];
                weightsOutputs[j, k] = weightsOutputs[j, k] + learningRate * change + momentumFactor * lastChangeWeightsForMomentumOutpus[j, k];
                lastChangeWeightsForMomentumOutpus[j, k] = change;

            }
        }

        // update input weights
        for (int i = 0; i < inputsNumber; i++)
        {
            for (int j = 0; j < hiddenNumber; j++)
            {
                change = hidden_deltas[j] * activationsInputs[i];
                weightsInputs[i, j] = weightsInputs[i, j] + learningRate * change + momentumFactor * lastChangeWeightsForMomentumInputs[i, j];
                lastChangeWeightsForMomentumInputs[i, j] = change;
            }
        }

        // calculate error
        error = 0.0;

        for (int k = 0; k < outputsNumber; k++)
        {
            error = error + 0.5 * (targets[k] - activationsOutputs[k]) * (targets[k] - activationsOutputs[k]);
        }

        return error;
    }

So can I use change = hidden_deltas[j] * activationsInputs[i] variable as a gradient (partial derivative) for checking the sing?

© Stack Overflow or respective owner

Related posts about neural-network

Related posts about artificial-neural-network