Signals and threads - good or bad design decision?

Posted by Jens on Stack Overflow See other posts from Stack Overflow or by Jens
Published on 2010-06-11T10:02:04Z Indexed on 2010/06/11 11:23 UTC
Read the original article Hit count: 411

I have to write a program that performs highly computationally intensive calculations. The program might run for several days. The calculation can be separated easily in different threads without the need of shared data. I want a GUI or a web service that informs me of the current status.

My current design uses BOOST::signals2 and BOOST::thread. It compiles and so far works as expected. If a thread finished one iteration and new data is available it calls a signal which is connected to a slot in the GUI class.

My question(s):

  • Is this combination of signals and threads a wise idea? I another forum somebody advised someone else not to "go down this road".
  • Are there potential deadly pitfalls nearby that I failed to see?
  • Is my expectation realistic that it will be "easy" to use my GUI class to provide a web interface or a QT, a VTK or a whatever window?
  • Is there a more clever alternative (like other boost libs) that I overlooked?

following code compiles with

g++ -Wall -o main -lboost_thread-mt <filename>.cpp

code follows:

#include <boost/signals2.hpp>
#include <boost/thread.hpp>
#include <boost/bind.hpp>

#include <iostream>
#include <iterator>
#include <string>

using std::cout;
using std::cerr;
using std::string;

/**
 * Called when a CalcThread finished a new bunch of data.
 */
boost::signals2::signal<void(string)> signal_new_data;

/**
 * The whole data will be stored here.
 */
class DataCollector
{
    typedef boost::mutex::scoped_lock scoped_lock;
    boost::mutex mutex;

public:
    /**
     * Called by CalcThreads call the to store their data.
     */
    void push(const string &s, const string &caller_name)
    {
        scoped_lock lock(mutex);
        _data.push_back(s);
        signal_new_data(caller_name);
    }

    /**
     * Output everything collected so far to std::out.
     */
    void out()
    {
        typedef std::vector<string>::const_iterator iter;
        for (iter i = _data.begin(); i != _data.end(); ++i)
            cout << " " << *i << "\n";
    }

private:
    std::vector<string> _data;
};

/**
 * Several of those can calculate stuff.
 * No data sharing needed.
 */
struct CalcThread
{
    CalcThread(string name, DataCollector &datcol) :
        _name(name), _datcol(datcol)
    {

    }

    /**
     * Expensive algorithms will be implemented here.
     * @param num_results how many data sets are to be calculated by this thread.
     */
    void operator()(int num_results)
    {
        for (int i = 1; i <= num_results; ++i)
        {
            std::stringstream s;
            s << "[";
            if (i == num_results)
                s << "LAST ";
            s << "DATA " << i << " from thread " << _name << "]";
            _datcol.push(s.str(), _name);
        }
    }

private:
    string _name;
    DataCollector &_datcol;
};

/**
 * Maybe some VTK or QT or both will be used someday.
 */
class GuiClass
{
public:
    GuiClass(DataCollector &datcol) :
        _datcol(datcol)
    {

    }

    /**
     * If the GUI wants to present or at least count the data collected so far.
     * @param caller_name is the name of the thread whose data is new.
     */
    void slot_data_changed(string caller_name) const
    {
        cout << "GuiClass knows: new data from " << caller_name << std::endl;
    }

private:
    DataCollector & _datcol;

};

int main()
{
    DataCollector datcol;

    GuiClass mc(datcol);
    signal_new_data.connect(boost::bind(&GuiClass::slot_data_changed, &mc, _1));

    CalcThread r1("A", datcol), r2("B", datcol), r3("C", datcol), r4("D",
            datcol), r5("E", datcol);

    boost::thread t1(r1, 3);
    boost::thread t2(r2, 1);
    boost::thread t3(r3, 2);
    boost::thread t4(r4, 2);
    boost::thread t5(r5, 3);

    t1.join();
    t2.join();
    t3.join();
    t4.join();
    t5.join();

    datcol.out();

    cout << "\nDone" << std::endl;
    return 0;
}

© Stack Overflow or respective owner

Related posts about c++

Related posts about boost-thread