Calculating confidence intervals for a non-normal distribution

Posted by Josiah on Stack Overflow See other posts from Stack Overflow or by Josiah
Published on 2010-12-20T20:20:45Z Indexed on 2010/12/21 5:54 UTC
Read the original article Hit count: 328

Hi all,

First, I should specify that my knowledge of statistics is fairly limited, so please forgive me if my question seems trivial or perhaps doesn't even make sense.

I have data that doesn't appear to be normally distributed. Typically, when I plot confidence intervals, I would use the mean +- 2 standard deviations, but I don't think that is acceptible for a non-uniform distribution. My sample size is currently set to 1000 samples, which would seem like enough to determine if it was a normal distribution or not.

I use Matlab for all my processing, so are there any functions in Matlab that would make it easy to calculate the confidence intervals (say 95%)?

I know there are the 'quantile' and 'prctile' functions, but I'm not sure if that's what I need to use. The function 'mle' also returns confidence intervals for normally distributed data, although you can also supply your own pdf.

Could I use ksdensity to create a pdf for my data, then feed that pdf into the mle function to give me confidence intervals?

Also, how would I go about determining if my data is normally distributed. I mean I can currently tell just by looking at the histogram or pdf from ksdensity, but is there a way to quantitatively measure it?

Thanks!

© Stack Overflow or respective owner

Related posts about matlab

Related posts about normal-distribution