Strange Map Reduce Behavior in CouchDB. Rereduce?

Posted by Tony on Stack Overflow See other posts from Stack Overflow or by Tony
Published on 2011-01-14T17:12:31Z Indexed on 2011/01/14 17:53 UTC
Read the original article Hit count: 275

Filed under:
|

I have a mapreduce issue with couchdb (both functions shown below): when I run it with grouplevel = 2 (exact) I get accurate output:

{"rows":[
 {"key":["2011-01-11","staff-1"],"value":{"total":895.72,"count":2,"services":6,"services_ignored":6,"services_liked":0,"services_disliked":0,"services_disliked_avg":0,"Revise":{"total":275.72,"count":1},"Review":{"total":620,"count":1}}},
 {"key":["2011-01-11","staff-2"],"value":{"total":8461.689999999999,"count":2,"services":41,"services_ignored":37,"services_liked":4,"services_disliked":0,"services_disliked_avg":0,"Revise":{"total":4432.4,"count":1},"Review":{"total":4029.29,"count":1}}},
 {"key":["2011-01-11","staff-3"],"value":{"total":2100.72,"count":1,"services":10,"services_ignored":4,"services_liked":3,"services_disliked":3,"services_disliked_avg":2.3333333333333335,"Revise":{"total":2100.72,"count":1}}},

However, changing to grouplevel=1 so the values for all the different staff keys should be all grouped by date no longer gives accurate output (notice the total is currect but all others are wrong):

{"rows":[
  {"key":["2011-01-11"],"value":{"total":11458.130000000001,"count":2,"services":0,"services_ignored":0,"services_liked":0,"services_disliked":0,"services_disliked_avg":0,"None":{"total":11458.130000000001,"count":2}}},

My only theory is this has something to do with rereduce, which I have not yet learned. Should I explore that option or am I missing something else here?

This is the Map function:

function(doc) {
if(doc.doc_type == 'Feedback') {
    emit([doc.date.split('T')[0], doc.staff_id], doc);
}
}

And this is the Reduce:

function(keys, vals) {
// sum all key points by status: total, count, services (liked, rejected, ignored)
var ret = {
    'total':0,
    'count':0, 
    'services': 0,
    'services_ignored': 0,
    'services_liked': 0,
    'services_disliked': 0,
    'services_disliked_avg': 0,
};

var total_disliked_score = 0;

// handle status
function handle_status(doc) {
    if(!doc.status || doc.status == '' || doc.status == undefined) {
        status = 'None';
    } else if (doc.status == 'Declined') {
        status = 'Rejected';
    } else {
        status = doc.status;
    }
    if(!ret[status]) ret[status] = {'total':0, 'count':0};
    ret[status]['total'] += doc.total;  
    ret[status]['count'] += 1;
};

// handle likes / dislikes
function handle_services(services) {
    ret.services += services.length;
    for(var a in services) {
        if (services[a].user_likes == 10) {
            ret.services_liked += 1;
        } else if (services[a].user_likes >= 1) {
            ret.services_disliked += 1;
            total_disliked_score += services[a].user_likes;
            if (total_disliked_score >= ret.services_disliked) {
                ret.services_disliked_avg = total_disliked_score / ret.services_disliked;
            }
        } else {
            ret.services_ignored += 1;
        }
    }
}

// loop thru docs 
for(var i in vals) {
    // increment the total $
    ret.total += vals[i].total;
    ret.count += 1;

    // update totals and sums for the status of this route
    handle_status(vals[i]);

    // do the likes / dislikes stats
    if(vals[i].groups) {
        for(var ii in vals[i].groups) {
            if(vals[i].groups[ii].services) {
                handle_services(vals[i].groups[ii].services); 
            }
        }
    }

    // handle deleted services
    if(vals[i].hidden_services) {
        if (vals[i].hidden_services) {
            handle_services(vals[i].hidden_services);
        }
    }
}

return ret;
}

© Stack Overflow or respective owner

Related posts about couchdb

Related posts about mapreduce