Numpy/Python performing terribly vs. Matlab

Posted by Nissl on Stack Overflow See other posts from Stack Overflow or by Nissl
Published on 2010-09-28T17:19:23Z Indexed on 2011/01/15 7:53 UTC
Read the original article Hit count: 185

Filed under:
|
|

Novice programmer here. I'm writing a program that analyzes the relative spatial locations of points (cells). The program gets boundaries and cell type off an array with the x coordinate in column 1, y coordinate in column 2, and cell type in column 3. It then checks each cell for cell type and appropriate distance from the bounds. If it passes, it then calculates its distance from each other cell in the array and if the distance is within a specified analysis range it adds it to an output array at that distance.

My cell marking program is in wxpython so I was hoping to develop this program in python as well and eventually stick it into the GUI. Unfortunately right now python takes ~20 seconds to run the core loop on my machine while MATLAB can do ~15 loops/second. Since I'm planning on doing 1000 loops (with a randomized comparison condition) on ~30 cases times several exploratory analysis types this is not a trivial difference.

I tried running a profiler and array calls are 1/4 of the time, almost all of the rest is unspecified loop time.

Here is the python code for the main loop:

for basecell in range (0, cellnumber-1):
    if firstcelltype == np.array((cellrecord[basecell,2])):
        xloc=np.array((cellrecord[basecell,0]))
        yloc=np.array((cellrecord[basecell,1]))
        xedgedist=(xbound-xloc)
        yedgedist=(ybound-yloc)
        if xloc>excludedist and xedgedist>excludedist and yloc>excludedist and    yedgedist>excludedist:
            for comparecell in range (0, cellnumber-1):
                if secondcelltype==np.array((cellrecord[comparecell,2])):
                    xcomploc=np.array((cellrecord[comparecell,0]))
                    ycomploc=np.array((cellrecord[comparecell,1]))
                    dist=math.sqrt((xcomploc-xloc)**2+(ycomploc-yloc)**2)
                    dist=round(dist)
                    if dist>=1 and dist<=analysisdist:
                         arraytarget=round(dist*analysisdist/intervalnumber)
                         addone=np.array((spatialraw[arraytarget-1]))
                         addone=addone+1
                         targetcell=arraytarget-1
                         np.put(spatialraw,[targetcell,targetcell],addone)

Here is the matlab code for the main loop:

for basecell = 1:cellnumber;
    if firstcelltype==cellrecord(basecell,3);
         xloc=cellrecord(basecell,1);
         yloc=cellrecord(basecell,2);
         xedgedist=(xbound-xloc);
         yedgedist=(ybound-yloc);
         if (xloc>excludedist) && (yloc>excludedist) && (xedgedist>excludedist) && (yedgedist>excludedist);
             for comparecell = 1:cellnumber;
                 if secondcelltype==cellrecord(comparecell,3);
                     xcomploc=cellrecord(comparecell,1);
                     ycomploc=cellrecord(comparecell,2);
                     dist=sqrt((xcomploc-xloc)^2+(ycomploc-yloc)^2);
                     if (dist>=1) && (dist<=100.4999);
                         arraytarget=round(dist*analysisdist/intervalnumber);
                         spatialsum(1,arraytarget)=spatialsum(1,arraytarget)+1;
                    end
                end
            end            
        end
    end
end

Thanks!

© Stack Overflow or respective owner

Related posts about python

Related posts about matlab