Optimizing python code performance when importing zipped csv to a mongo collection
Posted
by
mark
on Stack Overflow
See other posts from Stack Overflow
or by mark
Published on 2012-04-10T12:47:07Z
Indexed on
2012/04/13
11:30 UTC
Read the original article
Hit count: 236
I need to import a zipped csv into a mongo collection, but there is a catch - every record contains a timestamp in Pacific Time, which must be converted to the local time corresponding to the (longitude,latitude) pair found in the same record.
The code looks like so:
def read_csv_zip(path, timezones):
with ZipFile(path) as z, z.open(z.namelist()[0]) as input:
csv_rows = csv.reader(input)
header = csv_rows.next()
check,converters = get_aux_stuff(header)
for csv_row in csv_rows:
if check(csv_row):
row = {
converter[0]:converter[1](value)
for converter, value in zip(converters, csv_row)
if allow_field(converter)
}
ts = row['ts']
lng, lat = row['loc']
found_tz_entry = timezones.find_one(SON({'loc': {'$within': {'$box': [[lng-tz_lookup_radius, lat-tz_lookup_radius],[lng+tz_lookup_radius, lat+tz_lookup_radius]]}}}))
if found_tz_entry:
tz_name = found_tz_entry['tz']
local_ts = ts.astimezone(timezone(tz_name)).replace(tzinfo=None)
row['tz'] = tz_name
else:
local_ts = (ts.astimezone(utc) + timedelta(hours = int(lng/15))).replace(tzinfo = None)
row['local_ts'] = local_ts
yield row
def insert_documents(collection, source, batch_size):
while True:
items = list(itertools.islice(source, batch_size))
if len(items) == 0:
break;
try:
collection.insert(items)
except:
for item in items:
try:
collection.insert(item)
except Exception as exc:
print("Failed to insert record {0} - {1}".format(item['_id'], exc))
def main(zip_path):
with Connection() as connection:
data = connection.mydb.data
timezones = connection.timezones.data
insert_documents(data, read_csv_zip(zip_path, timezones), 1000)
The code proceeds as follows:
- Every record read from the csv is checked and converted to a dictionary, where some fields may be skipped, some titles be renamed (from those appearing in the csv header), some values may be converted (to datetime, to integers, to floats. etc ...)
- For each record read from the csv, a lookup is made into the timezones collection to map the record location to the respective time zone. If the mapping is successful - that timezone is used to convert the record timestamp (pacific time) to the respective local timestamp. If no mapping is found - a rough approximation is calculated.
The timezones collection is appropriately indexed, of course - calling explain()
confirms it.
The process is slow. Naturally, having to query the timezones collection for every record kills the performance. I am looking for advises on how to improve it.
Thanks.
EDIT
The timezones collection contains 8176040 records, each containing four values:
> db.data.findOne()
{ "_id" : 3038814, "loc" : [ 1.48333, 42.5 ], "tz" : "Europe/Andorra" }
EDIT2
OK, I have compiled a release build of http://toblerity.github.com/rtree/ and configured the rtree package. Then I have created an rtree dat/idx pair of files corresponding to my timezones collection. So, instead of calling collection.find_one
I call index.intersection
. Surprisingly, not only there is no improvement, but it works even more slowly now! May be rtree could be fine tuned to load the entire dat/idx pair into RAM (704M), but I do not know how to do it. Until then, it is not an alternative.
In general, I think the solution should involve parallelization of the task.
EDIT3
Profile output when using collection.find_one
:
>>> p.sort_stats('cumulative').print_stats(10)
Tue Apr 10 14:28:39 2012 ImportDataIntoMongo.profile
64549590 function calls (64549180 primitive calls) in 1231.257 seconds
Ordered by: cumulative time
List reduced from 730 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.012 0.012 1231.257 1231.257 ImportDataIntoMongo.py:1(<module>)
1 0.001 0.001 1230.959 1230.959 ImportDataIntoMongo.py:187(main)
1 853.558 853.558 853.558 853.558 {raw_input}
1 0.598 0.598 370.510 370.510 ImportDataIntoMongo.py:165(insert_documents)
343407 9.965 0.000 359.034 0.001 ImportDataIntoMongo.py:137(read_csv_zip)
343408 2.927 0.000 287.035 0.001 c:\python27\lib\site-packages\pymongo\collection.py:489(find_one)
343408 1.842 0.000 274.803 0.001 c:\python27\lib\site-packages\pymongo\cursor.py:699(next)
343408 2.542 0.000 271.212 0.001 c:\python27\lib\site-packages\pymongo\cursor.py:644(_refresh)
343408 4.512 0.000 253.673 0.001 c:\python27\lib\site-packages\pymongo\cursor.py:605(__send_message)
343408 0.971 0.000 242.078 0.001 c:\python27\lib\site-packages\pymongo\connection.py:871(_send_message_with_response)
Profile output when using index.intersection
:
>>> p.sort_stats('cumulative').print_stats(10)
Wed Apr 11 16:21:31 2012 ImportDataIntoMongo.profile
41542960 function calls (41542536 primitive calls) in 2889.164 seconds
Ordered by: cumulative time
List reduced from 778 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.028 0.028 2889.164 2889.164 ImportDataIntoMongo.py:1(<module>)
1 0.017 0.017 2888.679 2888.679 ImportDataIntoMongo.py:202(main)
1 2365.526 2365.526 2365.526 2365.526 {raw_input}
1 0.766 0.766 502.817 502.817 ImportDataIntoMongo.py:180(insert_documents)
343407 9.147 0.000 491.433 0.001 ImportDataIntoMongo.py:152(read_csv_zip)
343406 0.571 0.000 391.394 0.001 c:\python27\lib\site-packages\rtree-0.7.0-py2.7.egg\rtree\index.py:384(intersection)
343406 379.957 0.001 390.824 0.001 c:\python27\lib\site-packages\rtree-0.7.0-py2.7.egg\rtree\index.py:435(_intersection_obj)
686513 22.616 0.000 38.705 0.000 c:\python27\lib\site-packages\rtree-0.7.0-py2.7.egg\rtree\index.py:451(_get_objects)
343406 6.134 0.000 33.326 0.000 ImportDataIntoMongo.py:162(<dictcomp>)
346 0.396 0.001 30.665 0.089 c:\python27\lib\site-packages\pymongo\collection.py:240(insert)
EDIT4
I have parallelized the code, but the results are still not very encouraging. I am convinced it could be done better. See my own answer to this question for details.
© Stack Overflow or respective owner