Integrating Coherence & Java EE 6 Applications using ActiveCache

Posted by Ricardo Ferreira on Oracle Blogs See other posts from Oracle Blogs or by Ricardo Ferreira
Published on Wed, 29 Aug 2012 16:29:30 +0000 Indexed on 2012/08/29 21:45 UTC
Read the original article Hit count: 489

Filed under:

OK, so you are a developer and are starting a new Java EE 6 application using the most wonderful features of the Java EE platform like Enterprise JavaBeans, JavaServer Faces, CDI, JPA e another cool stuff technologies. And your architecture need to hold piece of data into distributed caches to improve application's performance, scalability and reliability?

If this is your current facing scenario, maybe you should look closely in the solutions provided by Oracle WebLogic Server. Oracle had integrated WebLogic Server and its champion data caching technology called Oracle Coherence. This seamless integration between this two products provides a comprehensive environment to develop applications without the complexity of extra Java code to manage cache as a dependency, since Oracle provides an DI ("Dependency Injection") mechanism for Coherence, the same DI mechanism available in standard Java EE applications. This feature is called ActiveCache. In this article, I will show you how to configure ActiveCache in WebLogic and at your Java EE application.

Configuring WebLogic to manage Coherence

Before you start changing your application to use Coherence, you need to configure your Coherence distributed cache. The good news is, you can manage all this stuff without writing a single line of code of XML or even Java. This configuration can be done entirely in the WebLogic administration console. The first thing to do is the setup of a Coherence cluster. A Coherence cluster is a set of Coherence JVMs configured to form one single view of the cache. This means that you can insert or remove members of the cluster without the client application (the application that generates or consume data from the cache) knows about the changes. This concept allows your solution to scale-out without changing the application server JVMs. You can growth your application only in the data grid layer.

To start the configuration, you need to configure an machine that points to the server in which you want to execute the Coherence JVMs. WebLogic Server allows you to do this very easily using the Administration Console. In this example, I will call the machine as "coherence-server".

Remember that in order to the machine concept works, you need to ensure that the NodeManager are being executed in the target server that the machine points to. The NodeManager executable can be found in <WLS_HOME>/server/bin/startNodeManager.sh.

The next thing to do is to configure a Coherence cluster. In the WebLogic administration console, go to Environment > Coherence Clusters and click in "New".

Call this Coherence cluster of "my-coherence-cluster". Click in next.

Specify a valid cluster address and port. The Coherence members will communicate with each other through this address and port.

Our Coherence cluster are now configured. Now it is time to configure the Coherence members and add them to this cluster. In the WebLogic administration console, go to Environment > Coherence Servers and click in "New".

In the field "Name" set to "coh-server-1". In the field "Machine", associate this Coherence server to the machine "coherence-server". In the field "Cluster", associate this Coherence server to the cluster named "my-coherence-cluster". Click in "Finish".

Start the Coherence server using the "Control" tab of WebLogic administration console. This will instruct WebLogic to start a new JVM of Coherence in the target machine that should join the pre-defined Coherence cluster.

Configuring your Java EE Application to Access Coherence

Now lets pass to the funny part of the configuration. The first thing to do is to inform your Java EE application which Coherence cluster to join. Oracle had updated WebLogic server deployment descriptors so you will not have to change your code or the containers deployment descriptors like application.xml, ejb-jar.xml or web.xml.

In this example, I will show you how to enable DI ("Dependency Injection") to a Coherence cache from a Servlet 3.0 component. In the WEB-INF/weblogic.xml deployment descriptor, put the following metadata information:

<?xml version="1.0" encoding="UTF-8"?>
<wls:weblogic-web-app
	xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-app"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
	http://xmlns.oracle.com/weblogic/weblogic-web-app http://xmlns.oracle.com/weblogic/weblogic-web-app/1.4/weblogic-web-app.xsd">
	
	<wls:context-root>myWebApp</wls:context-root>
	
	<wls:coherence-cluster-ref>
		<wls:coherence-cluster-name>my-coherence-cluster</wls:coherence-cluster-name>
	</wls:coherence-cluster-ref>
	
</wls:weblogic-web-app>

As you can see, using the "coherence-cluster-name" tag, we are informing our Java EE application that it should join the "my-coherence-cluster" when it loads in the web container. Without this information, the application will not be able to access the predefined Coherence cluster. It will form its own Coherence cluster without any members. So never forget to put this information.

Now put the coherence.jar and active-cache-1.0.jar dependencies at your WEB-INF/lib application classpath. You need to deploy this dependencies so ActiveCache can automatically take care of the Coherence cluster join phase. This dependencies can be found in the following locations:

- <WLS_HOME>/common/deployable-libraries/active-cache-1.0.jar

- <COHERENCE_HOME>/lib/coherence.jar

Finally, you need to write down the access code to the Coherence cache at your Servlet. In the following example, we have a Servlet 3.0 component that access a Coherence cache named "transactions" and prints into the browser output the content (the ammount property) of one specific transaction.

package com.oracle.coherence.demo.activecache;

import java.io.IOException;

import javax.annotation.Resource;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.tangosol.net.NamedCache;

@WebServlet("/demo/specificTransaction")
public class TransactionServletExample extends HttpServlet {
	
	@Resource(mappedName = "transactions") NamedCache transactions;
	
	protected void doGet(HttpServletRequest request,
			HttpServletResponse response) throws ServletException, IOException {
		
		int transId = Integer.parseInt(request.getParameter("transId"));
		Transaction transaction = (Transaction) transactions.get(transId);
		response.getWriter().println("<center>" + transaction.getAmmount() + "</center>");
		
	}

}

Thats it! No more configuration is necessary and you have all set to start producing and getting data to/from Coherence. As you can see in the example code, the Coherence cache are treated as a normal dependency in the Java EE container. The magic happens behind the scenes when the ActiveCache allows your application to join the defined Coherence cluster.

The most interesting thing about this approach is, no matter which type of Coherence cache your are using (Distributed, Partitioned, Replicated, WAN-Remote) for the client application, it is just a simple attribute member of com.tangosol.net.NamedCache type. And its all managed by the Java EE container as an dependency. This means that if you inject the same dependency (the Coherence cache named "transactions") in another Java EE component (JSF managed-bean, Stateless EJB) the cache will be the same. Cool isn't it?

Thanks to the CDI technology, we can extend the same support for non-Java EE standards components like simple POJOs. This means that you are not forced to only use Servlets, EJBs or JSF in order to inject Coherence caches. You can do the same approach for regular POJOs created for you and managed by lightweight containers like Spring or Seam.

© Oracle Blogs or respective owner

Related posts about /Oracle