Distributed and/or Parallel SSIS processing
Posted
by
Jeff
on Server Fault
See other posts from Server Fault
or by Jeff
Published on 2012-02-17T20:29:16Z
Indexed on
2012/09/01
9:40 UTC
Read the original article
Hit count: 227
Background: Our company hosts SaaS DSS applications, where clients provide us data Daily and/or Weekly, which we process & merge into their existing database. During business hours, load in the servers are pretty minimal as it's mostly users running simple pre-defined queries via the website, or running drill-through reports that mostly hit the SSAS OLAP cube.
I manage the IT Operations Team, and so far this has presented an interesting "scaling" issue for us. For our daily-refreshed clients, the server is only "busy" for about 4-6 hrs at night. For our weekly-refresh clients, the server is only "busy" for maybe 8-10 hrs per week!
We've done our best to use some simple methods of distributing the load by spreading the daily clients evenly among the servers such that we're not trying to process daily clients back-to-back over night. But long-term this scaling strategy creates two notable issues. First, it's going to consume a pretty immense amount of hardware that sits idle for large periods of time. Second, it takes significant Production Support over-head to basically "schedule" the ETL such that they don't over-lap, and move clients/schedules around if they out-grow the resources on a particular server or allocated time-slot.
As the title would imply, one option we've tried is running multiple SSIS packages in parallel, but in most cases this has yielded VERY inconsistent results. The most common failures are DTExec, SQL, and SSAS fighting for physical memory and throwing out-of-memory errors, and ETLs running 3,4,5x longer than expected. So from my practical experience thus far, it seems like running multiple ETL packages on the same hardware isn't a good idea, but I can't be the first person that doesn't want to scale multiple ETLs around manual scheduling, and sequential processing.
One option we've considered is virtualizing the servers, which obviously doesn't give you any additional resources, but moves the resource contention onto the hypervisor, which (from my experience) seems to manage simultaneous CPU/RAM/Disk I/O a little more gracefully than letting DTExec, SQL, and SSAS battle it out within Windows.
Question to the forum: So my question to the forum is, are we missing something obvious here? Are there tools out there that can help manage running multiple SSIS packages on the same hardware? Would it be more "efficient" in terms of parallel execution if instead of running DTExec, SQL, and SSAS same machine (with every machine running that configuration), we run in pairs of three machines with SSIS running on one machine, SQL on another, and SSAS on a third? Obviously that would only make sense if we could process more than the three ETL we were able to process on the machine independently.
Another option we've considered is completely re-architecting our SSIS package to have one "master" package for all clients that attempts to intelligently chose a server based off how "busy" it already is in terms of CPU/Memory/Disk utilization, but that would be a herculean effort, and seems like we're trying to reinvent something that you would think someone would sell (although I haven't had any luck finding it).
So in summary, are we missing an obvious solution for this, and does anyone know if any tools (for free or for purchase, doesn't matter) that facilitate running multiple SSIS ETL packages in parallel and on multiple servers? (What I would call a "queue & node based" system, but that's not an official term). Ultimately VMWare's Distributed Resource Scheduler addresses this as you simply run a consistent number of clients per VM that you know will never conflict scheduleing-wise, then leave it up to VMWare to move the VMs around to balance out hardware usage. I'm definitely not against using VMWare to do this, but since we're a 100% Microsoft app stack, it seems like -someone- out there would have solved this problem at the application layer instead of the hypervisor layer by checking on resource utilization at the OS, SQL, SSAS levels.
I'm open to ANY discussion on this, and remember no suggestion is too crazy or radical! :-) Right now, VMWare is the only option we've found to get away from "manually" balancing our resources, so any suggestions that leave us on a pure Microsoft stack would be great.
Thanks guys,
- Jeff
© Server Fault or respective owner