Am I right about the differences between Floyd-Warshall, Dijkstra's and Bellman-Ford algorithms?
Posted
by
Programming Noob
on Programmers
See other posts from Programmers
or by Programming Noob
Published on 2012-07-28T21:05:28Z
Indexed on
2012/09/02
3:49 UTC
Read the original article
Hit count: 575
I've been studying the three and I'm stating my inferences from them below. Could someone tell me if I have understood them accurately enough or not? Thank you.
Dijkstra's algorithm is used only when you have a single source and you want to know the smallest path from one node to another, but fails in cases like this
Floyd-Warshall's algorithm is used when any of all the nodes can be a source, so you want the shortest distance to reach any destination node from any source node. This only fails when there are negative cycles
(this is the most important one. I mean, this is the one I'm least sure about:)
3.Bellman-Ford is used like Dijkstra's, when there is only one source. This can handle negative weights and its working is the same as Floyd-Warshall's except for one source, right?
If you need to have a look, the corresponding algorithms are (courtesy Wikipedia):
Bellman-Ford:
procedure BellmanFord(list vertices, list edges, vertex source)
// This implementation takes in a graph, represented as lists of vertices
// and edges, and modifies the vertices so that their distance and
// predecessor attributes store the shortest paths.
// Step 1: initialize graph
for each vertex v in vertices:
if v is source then v.distance := 0
else v.distance := infinity
v.predecessor := null
// Step 2: relax edges repeatedly
for i from 1 to size(vertices)-1:
for each edge uv in edges: // uv is the edge from u to v
u := uv.source
v := uv.destination
if u.distance + uv.weight < v.distance:
v.distance := u.distance + uv.weight
v.predecessor := u
// Step 3: check for negative-weight cycles
for each edge uv in edges:
u := uv.source
v := uv.destination
if u.distance + uv.weight < v.distance:
error "Graph contains a negative-weight cycle"
Dijkstra:
1 function Dijkstra(Graph, source):
2 for each vertex v in Graph: // Initializations
3 dist[v] := infinity ; // Unknown distance function from
4 // source to v
5 previous[v] := undefined ; // Previous node in optimal path
6 // from source
7
8 dist[source] := 0 ; // Distance from source to source
9 Q := the set of all nodes in Graph ; // All nodes in the graph are
10 // unoptimized - thus are in Q
11 while Q is not empty: // The main loop
12 u := vertex in Q with smallest distance in dist[] ; // Start node in first case
13 if dist[u] = infinity:
14 break ; // all remaining vertices are
15 // inaccessible from source
16
17 remove u from Q ;
18 for each neighbor v of u: // where v has not yet been
19 removed from Q.
20 alt := dist[u] + dist_between(u, v) ;
21 if alt < dist[v]: // Relax (u,v,a)
22 dist[v] := alt ;
23 previous[v] := u ;
24 decrease-key v in Q; // Reorder v in the Queue
25 return dist;
Floyd-Warshall:
1 /* Assume a function edgeCost(i,j) which returns the cost of the edge from i to j
2 (infinity if there is none).
3 Also assume that n is the number of vertices and edgeCost(i,i) = 0
4 */
5
6 int path[][];
7 /* A 2-dimensional matrix. At each step in the algorithm, path[i][j] is the shortest path
8 from i to j using intermediate vertices (1..k-1). Each path[i][j] is initialized to
9 edgeCost(i,j).
10 */
11
12 procedure FloydWarshall ()
13 for k := 1 to n
14 for i := 1 to n
15 for j := 1 to n
16 path[i][j] = min ( path[i][j], path[i][k]+path[k][j] );
© Programmers or respective owner