Memory efficient import many data files into panda DataFrame in Python
Posted
by
richardh
on Stack Overflow
See other posts from Stack Overflow
or by richardh
Published on 2012-09-12T15:36:01Z
Indexed on
2012/09/12
15:38 UTC
Read the original article
Hit count: 459
I import into a panda DataFrame
a directory of |
-delimited.dat files. The following code works, but I eventually run out of RAM with a MemoryError:
.
import pandas as pd
import glob
temp = []
dataDir = 'C:/users/richard/research/data/edgar/masterfiles'
for dataFile in glob.glob(dataDir + '/master_*.dat'):
print dataFile
temp.append(pd.read_table(dataFile, delimiter='|', header=0))
masterAll = pd.concat(temp)
Is there a more memory efficient approach? Or should I go whole hog to a database? (I will move to a database eventually, but I am baby stepping my move to pandas.) Thanks!
FWIW, here is the head of an example .dat file:
cik|cname|ftype|date|fileloc
1000032|BINCH JAMES G|4|2011-03-08|edgar/data/1000032/0001181431-11-016512.txt
1000045|NICHOLAS FINANCIAL INC|10-Q|2011-02-11|edgar/data/1000045/0001193125-11-031933.txt
1000045|NICHOLAS FINANCIAL INC|8-K|2011-01-11|edgar/data/1000045/0001193125-11-005531.txt
1000045|NICHOLAS FINANCIAL INC|8-K|2011-01-27|edgar/data/1000045/0001193125-11-015631.txt
1000045|NICHOLAS FINANCIAL INC|SC 13G/A|2011-02-14|edgar/data/1000045/0000929638-11-00151.txt
© Stack Overflow or respective owner