Memory efficient import many data files into panda DataFrame in Python

Posted by richardh on Stack Overflow See other posts from Stack Overflow or by richardh
Published on 2012-09-12T15:36:01Z Indexed on 2012/09/12 15:38 UTC
Read the original article Hit count: 459

Filed under:
|

I import into a panda DataFrame a directory of |-delimited.dat files. The following code works, but I eventually run out of RAM with a MemoryError:.

import pandas as pd
import glob

temp = []
dataDir = 'C:/users/richard/research/data/edgar/masterfiles'
for dataFile in glob.glob(dataDir + '/master_*.dat'):
    print dataFile
    temp.append(pd.read_table(dataFile, delimiter='|', header=0))

masterAll = pd.concat(temp)

Is there a more memory efficient approach? Or should I go whole hog to a database? (I will move to a database eventually, but I am baby stepping my move to pandas.) Thanks!

FWIW, here is the head of an example .dat file:

cik|cname|ftype|date|fileloc
1000032|BINCH JAMES G|4|2011-03-08|edgar/data/1000032/0001181431-11-016512.txt
1000045|NICHOLAS FINANCIAL INC|10-Q|2011-02-11|edgar/data/1000045/0001193125-11-031933.txt
1000045|NICHOLAS FINANCIAL INC|8-K|2011-01-11|edgar/data/1000045/0001193125-11-005531.txt
1000045|NICHOLAS FINANCIAL INC|8-K|2011-01-27|edgar/data/1000045/0001193125-11-015631.txt
1000045|NICHOLAS FINANCIAL INC|SC 13G/A|2011-02-14|edgar/data/1000045/0000929638-11-00151.txt

© Stack Overflow or respective owner

Related posts about python

Related posts about pandas