Solaris 11.1: Encrypted Immutable Zones on (ZFS) Shared Storage
Posted
by darrenm
on Oracle Blogs
See other posts from Oracle Blogs
or by darrenm
Published on Mon, 29 Oct 2012 12:20:09 +0000
Indexed on
2012/10/29
17:13 UTC
Read the original article
Hit count: 297
/General
Solaris 11 brought both ZFS encryption and the Immutable Zones feature and I've talked about the combination in the past. Solaris 11.1 adds a fully supported method of storing zones in their own ZFS using shared storage so lets update things a little and put all three parts together.
When using an iSCSI (or other supported shared storage target) for a Zone we can either let the Zones framework setup the ZFS pool or we can do it manually before hand and tell the Zones framework to use the one we made earlier. To enable encryption we have to take the second path so that we can setup the pool with encryption before we start to install the zones on it.
We start by configuring the zone and specifying an rootzpool resource:
# zonecfg -z eizoss Use 'create' to begin configuring a new zone. zonecfg:eizoss> create create: Using system default template 'SYSdefault' zonecfg:eizoss> set zonepath=/zones/eizoss zonecfg:eizoss> set file-mac-profile=fixed-configuration zonecfg:eizoss> add rootzpool zonecfg:eizoss:rootzpool> add storage \ iscsi://zs7120-tvp540-c.uk.oracle.com/luname.naa.600144f09acaacd20000508e64a70001 zonecfg:eizoss:rootzpool> end zonecfg:eizoss> verify zonecfg:eizoss> commit zonecfg:eizoss>
Now lets create the pool and specify encryption:
# suriadm map \ iscsi://zs7120-tvp540-c.uk.oracle.com/luname.naa.600144f09acaacd20000508e64a70001 PROPERTY VALUE mapped-dev /dev/dsk/c10t600144F09ACAACD20000508E64A70001d0 # echo "zfscrypto" > /zones/p # zpool create -O encryption=on -O keysource=passphrase,file:///zones/p eizoss \ /dev/dsk/c10t600144F09ACAACD20000508E64A70001d0 # zpool export eizoss
Note that the keysource example above is just for this example, realistically you should probably use an Oracle Key Manager or some other better keystorage, but that isn't the purpose of this example. Note however that it does need to be one of file:// https:// pkcs11: and not prompt for the key location. Also note that we exported the newly created pool. The name we used here doesn't actually mater because it will get set properly on import anyway. So lets go ahead and do our install:
zoneadm -z eizoss install -x force-zpool-import Configured zone storage resource(s) from: iscsi://zs7120-tvp540-c.uk.oracle.com/luname.naa.600144f09acaacd20000508e64a70001 Imported zone zpool: eizoss_rpool Progress being logged to /var/log/zones/zoneadm.20121029T115231Z.eizoss.install Image: Preparing at /zones/eizoss/root. AI Manifest: /tmp/manifest.xml.ujaq54 SC Profile: /usr/share/auto_install/sc_profiles/enable_sci.xml Zonename: eizoss Installation: Starting ... Creating IPS image Startup linked: 1/1 done Installing packages from: solaris origin: http://pkg.us.oracle.com/solaris/release/ Please review the licenses for the following packages post-install: consolidation/osnet/osnet-incorporation (automatically accepted, not displayed) Package licenses may be viewed using the command: pkg info --license <pkg_fmri> DOWNLOAD PKGS FILES XFER (MB) SPEED Completed 187/187 33575/33575 227.0/227.0 384k/s PHASE ITEMS Installing new actions 47449/47449 Updating package state database Done Updating image state Done Creating fast lookup database Done Installation: Succeeded Note: Man pages can be obtained by installing pkg:/system/manual done. Done: Installation completed in 929.606 seconds. Next Steps: Boot the zone, then log into the zone console (zlogin -C) to complete the configuration process. Log saved in non-global zone as /zones/eizoss/root/var/log/zones/zoneadm.20121029T115231Z.eizoss.install
That was really all we had to do, when the install is done boot it up as normal.
The zone administrator has no direct access to the ZFS wrapping keys used for the encrypted pool zone is stored on. Due to how inheritance works in ZFS he can still create new encrypted datasets that use those wrapping keys (without them ever being inside a process in the zone) or he can create encrypted datasets inside the zone that use keys of his own choosing, the output below shows the two cases:
rpool is inheriting the key material from the global zone (note we can see the value of the keysource property but we don't use it inside the zone nor does that path need to be (or is) accessible inside the zone). Whereas rpool/export/home/bob has set keysource locally.
# zfs get encryption,keysource rpool rpool/export/home/bob NAME PROPERTY VALUE SOURCE rpool encryption on inherited from $globalzone rpool keysource passphrase,file:///zones/p inherited from $globalzone rpool/export/home/bob encryption on local rpool/export/home/bob keysource passphrase,prompt local
© Oracle Blogs or respective owner