Search Results

Search found 31 results on 2 pages for 'binlog'.

Page 1/2 | 1 2  | Next Page >

  • MySQL binlogs seems incomplete?

    - by warl0ck
    I created a Database, a table and inserted some data, and found this binlog.0000001 in my log folder, but when I do mysqlbinlog binlog.0000001, it only shows stuff below, seems incomplete: (There's only two files in the log dir: binlog.000001 binlog.index) /*!40019 SET @@session.max_insert_delayed_threads=0*/; /*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/; DELIMITER /*!*/; # at 4 #120924 21:12:56 server id 1 end_log_pos 107 Start: binlog v 4, server v 5.5.24-0ubuntu0.12.04.1-log created 120924 21:12:56 at startup # Warning: this binlog is either in use or was not closed properly. ROLLBACK/*!*/; BINLOG ' GAVhUA8BAAAAZwAAAGsAAAABAAQANS41LjI0LTB1YnVudHUwLjEyLjA0LjEtbG9nAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAYBWFQEzgNAAgAEgAEBAQEEgAAVAAEGggAAAAICAgCAA== '/*!*/; DELIMITER ; # End of log file ROLLBACK /* added by mysqlbinlog */; /*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/; If this warning was the cause: Warning: this binlog is either in use or was not closed properly.. How do I force close the log? EDIT After flush logs command, I see "0 rows" affected, and a few new files, binlog.000001 binlog.000002 binlog.000003 binlog.000004 binlog.index, the contents are nearly the same as binlog.000001. Now I dropped the database, and try restore it with mysqlbinlog binlog.0* | mysql -u root -p, but the database wasn't recovered. EDIT 2 [mysqld] user = mysql pid-file = /var/run/mysqld/mysqld.pid socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp lc-messages-dir = /usr/share/mysql skip-external-locking log-bin=/var/log/mysql/binlog binlog-do-db=mydb bind-address = 127.0.0.1 key_buffer = 16M max_allowed_packet = 16M thread_stack = 192K thread_cache_size = 8 myisam-recover = BACKUP query_cache_limit = 1M query_cache_size = 16M expire_logs_days = 10 max_binlog_size = 100M P.S /var/log/mysql{.err,.log} are both empty

    Read the article

  • MySQL - Why would SHOW SLAVE HOSTS cause a binlog dump?

    - by Rory McCann
    We're getting loads of binlog files in our MySQL 5.0.x. We have a normal master/slave replication thing going with 1 master, 1 slave. Looking at /var/log/mysql.log, nearly 90% of the time the replicator connects and does a SHOW SLAVE HOSTS causes a bin log dump. For example: 7020 Query SHOW SLAVE HOSTS 7020 Binlog Dump Log: 'mysql-bin.029634' Pos: 13273 However when I do a SHOW SLAVE HOSTS on the mysql myself, I get no results. Occasionally when the replicator does a SHOW SLAVE HOSTS, mysql will hang for hours. I see nothing in the /var/log/syslog at the same time... What's going on here? How can I debug this more? For the record the MySQL master and slave servers are ubuntu dapper.

    Read the article

  • MySQL BinLog Statement Retrieval

    - by Jonathon
    I have seven 1G MySQL binlog files that I have to use to retrieve some "lost" information. I only need to get certain INSERT statements from the log (ex. where the statement starts with "INSERT INTO table SET field1="). If I just run a mysqlbinlog (even if per database and with using --short-form), I get a text file that is several hundred megabytes, which makes it almost impossible to then parse with any other program. Is there a way to just retrieve certain sql statements from the log? I don't need any of the ancillary information (timestamps, autoincrement #s, etc.). I just need a list of sql statements that match a certain string. Ideally, I would like to have a text file that just lists those sql statements, such as: INSERT INTO table SET field1='a'; INSERT INTO table SET field1='tommy'; INSERT INTO table SET field1='2'; I could get that by running mysqlbinlog to a text file and then parsing the results based upon a string, but the text file is way too big. It just times out any script I run and even makes it impossible to open in a text editor. Thanks for your help in advance.

    Read the article

  • New Enhancements for InnoDB Memcached

    - by Calvin Sun
    In MySQL 5.6, we continued our development on InnoDB Memcached and completed a few widely desirable features that make InnoDB Memcached a competitive feature in more scenario. Notablely, they are 1) Support multiple table mapping 2) Added background thread to auto-commit long running transactions 3) Enhancement in binlog performance  Let’s go over each of these features one by one. And in the last section, we will go over a couple of internally performed performance tests. Support multiple table mapping In our earlier release, all InnoDB Memcached operations are mapped to a single InnoDB table. In the real life, user might want to use this InnoDB Memcached features on different tables. Thus being able to support access to different table at run time, and having different mapping for different connections becomes a very desirable feature. And in this GA release, we allow user just be able to do both. We will discuss the key concepts and key steps in using this feature. 1) "mapping name" in the "get" and "set" command In order to allow InnoDB Memcached map to a new table, the user (DBA) would still require to "pre-register" table(s) in InnoDB Memcached “containers” table (there is security consideration for this requirement). If you would like to know about “containers” table, please refer to my earlier blogs in blogs.innodb.com. Once registered, the InnoDB Memcached will then be able to look for such table when they are referred. Each of such registered table will have a unique "registration name" (or mapping_name) corresponding to the “name” field in the “containers” table.. To access these tables, user will include such "registration name" in their get or set commands, in the form of "get @@new_mapping_name.key", prefix "@@" is required for signaling a mapped table change. The key and the "mapping name" are separated by a configurable delimiter, by default, it is ".". So the syntax is: get [@@mapping_name.]key_name set [@@mapping_name.]key_name  or  get @@mapping_name set @@mapping_name Here is an example: Let's set up three tables in the "containers" table: The first is a map to InnoDB table "test/demo_test" table with mapping name "setup_1" INSERT INTO containers VALUES ("setup_1", "test", "demo_test", "c1", "c2", "c3", "c4", "c5", "PRIMARY");  Similarly, we set up table mappings for table "test/new_demo" with name "setup_2" and that to table "mydatabase/my_demo" with name "setup_3": INSERT INTO containers VALUES ("setup_2", "test", "new_demo", "c1", "c2", "c3", "c4", "c5", "secondary_index_x"); INSERT INTO containers VALUES ("setup_3", "my_database", "my_demo", "c1", "c2", "c3", "c4", "c5", "idx"); To switch to table "my_database/my_demo", and get the value corresponding to “key_a”, user will do: get @@setup_3.key_a (this will also output the value that corresponding to key "key_a" or simply get @@setup_3 Once this is done, this connection will switch to "my_database/my_demo" table until another table mapping switch is requested. so it can continue issue regular command like: get key_b  set key_c 0 0 7 These DMLs will all be directed to "my_database/my_demo" table. And this also implies that different connections can have different bindings (to different table). 2) Delimiter: For the delimiter "." that separates the "mapping name" and key value, we also added a configure option in the "config_options" system table with name of "table_map_delimiter": INSERT INTO config_options VALUES("table_map_delimiter", "."); So if user wants to change to a different delimiter, they can change it in the config_option table. 3) Default mapping: Once we have multiple table mapping, there should be always a "default" map setting. For this, we decided if there exists a mapping name of "default", then this will be chosen as default mapping. Otherwise, the first row of the containers table will chosen as default setting. Please note, user tables can be repeated in the "containers" table (for example, user wants to access different columns of the table in different settings), as long as they are using different mapping/configure names in the first column, which is enforced by a unique index. 4) bind command In addition, we also extend the protocol and added a bind command, its usage is fairly straightforward. To switch to "setup_3" mapping above, you simply issue: bind setup_3 This will switch this connection's InnoDB table to "my_database/my_demo" In summary, with this feature, you now can direct access to difference tables with difference session. And even a single connection, you can query into difference tables. Background thread to auto-commit long running transactions This is a feature related to the “batch” concept we discussed in earlier blogs. This “batch” feature allows us batch the read and write operations, and commit them only after certain calls. The “batch” size is controlled by the configure parameter “daemon_memcached_w_batch_size” and “daemon_memcached_r_batch_size”. This could significantly boost performance. However, it also comes with some disadvantages, for example, you will not be able to view “uncommitted” operations from SQL end unless you set transaction isolation level to read_uncommitted, and in addition, this will held certain row locks for extend period of time that might reduce the concurrency. To deal with this, we introduce a background thread that “auto-commits” the transaction if they are idle for certain amount of time (default is 5 seconds). The background thread will wake up every second and loop through every “connections” opened by Memcached, and check for idle transactions. And if such transaction is idle longer than certain limit and not being used, it will commit such transactions. This limit is configurable by change “innodb_api_bk_commit_interval”. Its default value is 5 seconds, and minimum is 1 second, and maximum is 1073741824 seconds. With the help of such background thread, you will not need to worry about long running uncommitted transactions when set daemon_memcached_w_batch_size and daemon_memcached_r_batch_size to a large number. This also reduces the number of locks that could be held due to long running transactions, and thus further increase the concurrency. Enhancement in binlog performance As you might all know, binlog operation is not done by InnoDB storage engine, rather it is handled in the MySQL layer. In order to support binlog operation through InnoDB Memcached, we would have to artificially create some MySQL constructs in order to access binlog handler APIs. In previous lab release, for simplicity consideration, we open and destroy these MySQL constructs (such as THD) for each operations. This required us to set the “batch” size always to 1 when binlog is on, no matter what “daemon_memcached_w_batch_size” and “daemon_memcached_r_batch_size” are configured to. This put a big restriction on our capability to scale, and also there are quite a bit overhead in creating destroying such constructs that bogs the performance down. With this release, we made necessary change that would keep MySQL constructs as long as they are valid for a particular connection. So there will not be repeated and redundant open and close (table) calls. And now even with binlog option is enabled (with innodb_api_enable_binlog,), we still can batch the transactions with daemon_memcached_w_batch_size and daemon_memcached_r_batch_size, thus scale the write/read performance. Although there are still overheads that makes InnoDB Memcached cannot perform as fast as when binlog is turned off. It is much better off comparing to previous release. And we are continuing optimize the solution is this area to improve the performance as much as possible. Performance Study: Amerandra of our System QA team have conducted some performance studies on queries through our InnoDB Memcached connection and plain SQL end. And it shows some interesting results. The test is conducted on a “Linux 2.6.32-300.7.1.el6uek.x86_64 ix86 (64)” machine with 16 GB Memory, Intel Xeon 2.0 GHz CPU X86_64 2 CPUs- 4 Core Each, 2 RAID DISKS (1027 GB,733.9GB). Results are described in following tables: Table 1: Performance comparison on Set operations Connections 5.6.7-RC-Memcached-plugin ( TPS / Qps) with memcached-threads=8*** 5.6.7-RC* X faster Set (QPS) Set** 8 30,000 5,600 5.36 32 59,000 13,000 4.54 128 68,000 8,000 8.50 512 63,000 6.800 9.23 * mysql-5.6.7-rc-linux2.6-x86_64 ** The “set” operation when implemented in InnoDB Memcached involves a couple of DMLs: it first query the table to see whether the “key” exists, if it does not, the new key/value pair will be inserted. If it does exist, the “value” field of matching row (by key) will be updated. So when used in above query, it is a precompiled store procedure, and query will just execute such procedures. *** added “–daemon_memcached_option=-t8” (default is 4 threads) So we can see with this “set” query, InnoDB Memcached can run 4.5 to 9 time faster than MySQL server. Table 2: Performance comparison on Get operations Connections 5.6.7-RC-Memcached-plugin ( TPS / Qps) with memcached-threads=8 5.6.7-RC* X faster Get (QPS) Get 8 42,000 27,000 1.56 32 101,000 55.000 1.83 128 117,000 52,000 2.25 512 109,000 52,000 2.10 With the “get” query (or the select query), memcached performs 1.5 to 2 times faster than normal SQL. Summary: In summary, we added several much-desired features to InnoDB Memcached in this release, allowing user to operate on different tables with this Memcached interface. We also now provide a background commit thread to commit long running idle transactions, thus allow user to configure large batch write/read without worrying about large number of rows held or not being able to see (uncommit) data. We also greatly enhanced the performance when Binlog is enabled. We will continue making efforts in both performance enhancement and functionality areas to make InnoDB Memcached a good demo case for our InnoDB APIs. Jimmy Yang, September 29, 2012

    Read the article

  • MySQL: Replicating the MySQL database

    - by Lee
    Hi guys, I have a primary write server (server1) which replications to two servers (server2 and server3) which are query servers. I am replicating all databases to these servers including the MySQL database. When i execute a GRANT as follows replication works perfectly.. GRANT execute,select ON database1.* TO `user1`@`host` IDENTIFIED BY 'password'; However if i did the same GRANT to alter permissions on an existing user without IDENTIFIED clause replication breaks.. Error 'Can't find any matching row in the user table' on query. Default database: 'mysql'. Query: 'GRANT execute,select ON database1.* TO `user`@`host`' If I try and run the query manually i get the same error.. Server 1: mysql> SHOW VARIABLES LIKE "%version%"; +-------------------------+------------------------------------------------------------+ | Variable_name | Value | +-------------------------+------------------------------------------------------------+ | protocol_version | 10 | | version | 5.0.77-log | **my.cnf** [mysqld] datadir=/var/lib/mysql socket=/var/lib/mysql/mysql.sock user=mysql old_passwords=1 symbolic-links=0 max_allowed_packet = 100M log-bin = /var/lib/mysql/logs/borg-binlog.log max_binlog_size=50M expire_logs_days=7 [mysql.server] user=mysql basedir=/var/lib [mysqld_safe] log-error=/var/log/mysqld.log pid-file=/var/run/mysqld/mysqld.pid Server 2: mysql> SHOW VARIABLES LIKE "%version%"; +-------------------------+------------------------------------------------------------+ | Variable_name | Value | +-------------------------+------------------------------------------------------------+ | protocol_version | 10 | | version | 5.0.77-log | my.cnf server-id=12 master-host=x master-user=x master-password=x master-connect-retry=60 relay-log=/var/lib/mysql/borg-relay.log relay-log-index=/var/lib/mysql/borg-relay-log.index Thanks for taking a look Edit: Currently its running fine, until you do the grant which breaks it... mysql> show slave status\G *************************** 1. row *************************** Slave_IO_State: Waiting for master to send event Master_Host: 10.128.0.5 Master_User: repli-ragnarok Master_Port: 3306 Connect_Retry: 60 Master_Log_File: borg-binlog.002730 Read_Master_Log_Pos: 4375760 Relay_Log_File: borg-relay.005489 Relay_Log_Pos: 4375899 Relay_Master_Log_File: borg-binlog.002730 Slave_IO_Running: Yes Slave_SQL_Running: Yes Replicate_Do_DB: Replicate_Ignore_DB: Replicate_Do_Table: Replicate_Ignore_Table: Replicate_Wild_Do_Table: Replicate_Wild_Ignore_Table: Last_Errno: 0 Last_Error: Skip_Counter: 0 Exec_Master_Log_Pos: 4375760 Relay_Log_Space: 4375899 Until_Condition: None Until_Log_File: Until_Log_Pos: 0 Master_SSL_Allowed: No Master_SSL_CA_File: Master_SSL_CA_Path: Master_SSL_Cert: Master_SSL_Cipher: Master_SSL_Key: Seconds_Behind_Master: 0 1 row in set (0.00 sec) Edit: Broken show slave status from history +----------------------------------+-------------+----------------+-------------+---------------+--------------------+---------------------+-------------------+---------------+-----------------------+------------------+-------------------+-----------------+---------------------+--------------------+------------------------+-------------------------+-----------------------------+------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------+---------------------+-----------------+-----------------+----------------+---------------+--------------------+--------------------+--------------------+-----------------+-------------------+----------------+-----------------------+ | Slave_IO_State | Master_Host | Master_User | Master_Port | Connect_Retry | Master_Log_File | Read_Master_Log_Pos | Relay_Log_File | Relay_Log_Pos | Relay_Master_Log_File | Slave_IO_Running | Slave_SQL_Running | Replicate_Do_DB | Replicate_Ignore_DB | Replicate_Do_Table | Replicate_Ignore_Table | Replicate_Wild_Do_Table | Replicate_Wild_Ignore_Table | Last_Errno | Last_Error | Skip_Counter | Exec_Master_Log_Pos | Relay_Log_Space | Until_Condition | Until_Log_File | Until_Log_Pos | Master_SSL_Allowed | Master_SSL_CA_File | Master_SSL_CA_Path | Master_SSL_Cert | Master_SSL_Cipher | Master_SSL_Key | Seconds_Behind_Master | +----------------------------------+-------------+----------------+-------------+---------------+--------------------+---------------------+-------------------+---------------+-----------------------+------------------+-------------------+-----------------+---------------------+--------------------+------------------------+-------------------------+-----------------------------+------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------+---------------------+-----------------+-----------------+----------------+---------------+--------------------+--------------------+--------------------+-----------------+-------------------+----------------+-----------------------+ | Waiting for master to send event | 10.128.0.5 | repli-valhalla | 3306 | 60 | borg-binlog.002729 | 40429793 | borg-relay.005486 | 40311514 | borg-binlog.002729 | Yes | No | | | | | | | 1133 | Error 'Can't find any matching row in the user table' on query. Default database: 'mysql'. Query: 'GRANT execute,select ON auth_tracker.* TO `mail-sin1`@`%.sin1.netline.net.uk` IDENTIFIED BY 'mail-sin1666'' | 0 | 40311375 | 40429932 | None | | 0 | No | | | | | | NULL | +----------------------------------+-------------+----------------+-------------+---------------+--------------------+---------------------+-------------------+---------------+-----------------------+------------------+-------------------+-----------------+---------------------+--------------------+------------------------+-------------------------+-----------------------------+------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------+---------------------+-----------------+-----------------+----------------+---------------+--------------------+--------------------+--------------------+-----------------+-------------------+----------------+-----------------------+ 1 row in set (0.06 sec)

    Read the article

  • Benchmarking MySQL Replication with Multi-Threaded Slaves

    - by Mat Keep
    0 0 1 1145 6530 Homework 54 15 7660 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} The objective of this benchmark is to measure the performance improvement achieved when enabling the Multi-Threaded Slave enhancement delivered as a part MySQL 5.6. As the results demonstrate, Multi-Threaded Slaves delivers 5x higher replication performance based on a configuration with 10 databases/schemas. For real-world deployments, higher replication performance directly translates to: · Improved consistency of reads from slaves (i.e. reduced risk of reading "stale" data) · Reduced risk of data loss should the master fail before replicating all events in its binary log (binlog) The multi-threaded slave splits processing between worker threads based on schema, allowing updates to be applied in parallel, rather than sequentially. This delivers benefits to those workloads that isolate application data using databases - e.g. multi-tenant systems deployed in cloud environments. Multi-Threaded Slaves are just one of many enhancements to replication previewed as part of the MySQL 5.6 Development Release, which include: · Global Transaction Identifiers coupled with MySQL utilities for automatic failover / switchover and slave promotion · Crash Safe Slaves and Binlog · Optimized Row Based Replication · Replication Event Checksums · Time Delayed Replication These and many more are discussed in the “MySQL 5.6 Replication: Enabling the Next Generation of Web & Cloud Services” Developer Zone article  Back to the benchmark - details are as follows. Environment The test environment consisted of two Linux servers: · one running the replication master · one running the replication slave. Only the slave was involved in the actual measurements, and was based on the following configuration: - Hardware: Oracle Sun Fire X4170 M2 Server - CPU: 2 sockets, 6 cores with hyper-threading, 2930 MHz. - OS: 64-bit Oracle Enterprise Linux 6.1 - Memory: 48 GB Test Procedure Initial Setup: Two MySQL servers were started on two different hosts, configured as replication master and slave. 10 sysbench schemas were created, each with a single table: CREATE TABLE `sbtest` (    `id` int(10) unsigned NOT NULL AUTO_INCREMENT,    `k` int(10) unsigned NOT NULL DEFAULT '0',    `c` char(120) NOT NULL DEFAULT '',    `pad` char(60) NOT NULL DEFAULT '',    PRIMARY KEY (`id`),    KEY `k` (`k`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 10,000 rows were inserted in each of the 10 tables, for a total of 100,000 rows. When the inserts had replicated to the slave, the slave threads were stopped. The slave data directory was copied to a backup location and the slave threads position in the master binlog noted. 10 sysbench clients, each configured with 10 threads, were spawned at the same time to generate a random schema load against each of the 10 schemas on the master. Each sysbench client executed 10,000 "update key" statements: UPDATE sbtest set k=k+1 WHERE id = <random row> In total, this generated 100,000 update statements to later replicate during the test itself. Test Methodology: The number of slave workers to test with was configured using: SET GLOBAL slave_parallel_workers=<workers> Then the slave IO thread was started and the test waited for all the update queries to be copied over to the relay log on the slave. The benchmark clock was started and then the slave SQL thread was started. The test waited for the slave SQL thread to finish executing the 100k update queries, doing "select master_pos_wait()". When master_pos_wait() returned, the benchmark clock was stopped and the duration calculated. The calculated duration from the benchmark clock should be close to the time it took for the SQL thread to execute the 100,000 update queries. The 100k queries divided by this duration gave the benchmark metric, reported as Queries Per Second (QPS). Test Reset: The test-reset cycle was implemented as follows: · the slave was stopped · the slave data directory replaced with the previous backup · the slave restarted with the slave threads replication pointer repositioned to the point before the update queries in the binlog. The test could then be repeated with identical set of queries but a different number of slave worker threads, enabling a fair comparison. The Test-Reset cycle was repeated 3 times for 0-24 number of workers and the QPS metric calculated and averaged for each worker count. MySQL Configuration The relevant configuration settings used for MySQL are as follows: binlog-format=STATEMENT relay-log-info-repository=TABLE master-info-repository=TABLE As described in the test procedure, the slave_parallel_workers setting was modified as part of the test logic. The consequence of changing this setting is: 0 worker threads:    - current (i.e. single threaded) sequential mode    - 1 x IO thread and 1 x SQL thread    - SQL thread both reads and executes the events 1 worker thread:    - sequential mode    - 1 x IO thread, 1 x Coordinator SQL thread and 1 x Worker thread    - coordinator reads the event and hands it to the worker who executes 2+ worker threads:    - parallel execution    - 1 x IO thread, 1 x Coordinator SQL thread and 2+ Worker threads    - coordinator reads events and hands them to the workers who execute them Results Figure 1 below shows that Multi-Threaded Slaves deliver ~5x higher replication performance when configured with 10 worker threads, with the load evenly distributed across our 10 x schemas. This result is compared to the current replication implementation which is based on a single SQL thread only (i.e. zero worker threads). Figure 1: 5x Higher Performance with Multi-Threaded Slaves The following figure shows more detailed results, with QPS sampled and reported as the worker threads are incremented. The raw numbers behind this graph are reported in the Appendix section of this post. Figure 2: Detailed Results As the results above show, the configuration does not scale noticably from 5 to 9 worker threads. When configured with 10 worker threads however, scalability increases significantly. The conclusion therefore is that it is desirable to configure the same number of worker threads as schemas. Other conclusions from the results: · Running with 1 worker compared to zero workers just introduces overhead without the benefit of parallel execution. · As expected, having more workers than schemas adds no visible benefit. Aside from what is shown in the results above, testing also demonstrated that the following settings had a very positive effect on slave performance: relay-log-info-repository=TABLE master-info-repository=TABLE For 5+ workers, it was up to 2.3 times as fast to run with TABLE compared to FILE. Conclusion As the results demonstrate, Multi-Threaded Slaves deliver significant performance increases to MySQL replication when handling multiple schemas. This, and the other replication enhancements introduced in MySQL 5.6 are fully available for you to download and evaluate now from the MySQL Developer site (select Development Release tab). You can learn more about MySQL 5.6 from the documentation  Please don’t hesitate to comment on this or other replication blogs with feedback and questions. Appendix – Detailed Results

    Read the article

  • How to reset mysql's replication settings completely, without reinstalling it?

    - by user38060
    I set up mysql replication by adding references to binlogs, relay logs etc in my.cnf restarted mysql, it worked. I wanted to change it so I deleted all binlog related files including log-bin.index, removed binlog statements from my.cnf restarted server, works set master to '', purge master logs since now(), reset slave, stop slave, stop master. now, to set up replication again, I added binlog statements to the server. But then I hit this problem when restarting with: sudo mysqld (the only way to see mysql's startup errors) I get this error: /usr/sbin/mysqld: File '/etc/mysql/var/log-bin.index' not found (Errcode: 13) Because indeed, this file does not exist! (I deleted it, while trying to set up a new replication system) Hmm, if I change the config line to: log-bin-index = log-bin.index I get a different error: [ERROR] Can't generate a unique log-filename /etc/mysql/var/bin.(1-999) [ERROR] MSYQL_BIN_LOG::open failed to generate new file name. [ERROR] Aborting The first time I set up replication on this system, I didn't need to create this file. I did the same thing - added references to a previously non-existing file, and mysql created it. Same with relay logs, etc. I don't know why mysql insists on trying to read the old folder. Should I just reinstall the whole package again? That seems like overkill. my my.cnf: [client] port = 3306 socket = /var/run/mysqld/mysqld.sock [mysqld_safe] socket = /var/run/mysqld/mysqld.sock nice = 0 [mysqld] user = mysql socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp skip-external-locking bind-address = IP key_buffer = 16M max_allowed_packet = 16M thread_stack = 192K thread_cache_size = 8 myisam-recover = BACKUP table_cache = 64 sort_buffer =64K net_buffer_length =2K query_cache_limit = 1M query_cache_size = 16M slow_query_log_file = /etc/mysql/var/mysql-slow.log long_query_time = 1 log-queries-not-using-indexes expire_logs_days = 10 max_binlog_size = 100M server-id = 3 log-bin = /etc/mysql/var/bin.log log-slave-updates log-bin-index = /etc/mysql/var/log-bin.index log-error = /etc/mysql/var/error.log relay-log = /etc/mysql/var/relay.log relay-log-info-file = /etc/mysql/var/relay-log.info relay-log-index = /etc/mysql/var/relay-log.index auto_increment_increment = 10 auto_increment_offset = 3 master-host = HOST master-user = USER master-password=PWD replicate-do-db = DBNAME collation_server=utf8_unicode_ci character_set_server=utf8 skip-character-set-client-handshake [mysqldump] quick quote-names max_allowed_packet = 16M [mysql] #no-auto-rehash [myisamchk] key_buffer_size = 16M sort_buffer_size = 8M [mysqlhotcopy] interactive-timeout !includedir /etc/mysql/conf.d/ Update: Changing all the /etc/mysql/var/xxx paths in binlog & relay log statements to local has somehow solved the problem. I thought it was apparmor causing it at first, but when I added /etc/mysql/* rw, to apparmor's config and restarted it, it still couldn't read the full path.

    Read the article

  • Mysql master-master not replicating

    - by frankil
    I'm setting up a master-master mysql replication on two servers (db1 and db2). I started with setting up db2 as a slave to db1 and that works fine. But when I set up db1 as a slave to db2 it isn't replicating. On the face of it everything looks fine but the data isn't replicating. There are no errors in either of the error logs. The slave status is updating the bin log position. I have used mysqlbinlog to examine both the binlog on the db2 and the relay log on db1 and all of the queries are going in there, but not being executed to db1. "show slave status" on both servers shows that both the slave io and sql threads are "Yes" and that the relay log position is updated by the sql thread. Also on both servers: >echo "show processlist" | mysql | grep "system user" 166819 system user NULL Connect 3655 Waiting for master to send event NULL 166820 system user NULL Connect 3507 Has read all relay log; waiting for the slave I/O thread to update it NULL Relevant config for db1: server-id = 1 log-slave-updates replicate-same-server-id = 0 auto_increment_increment = 4 auto_increment_offset = 1 master-host = db2 master-port = 3306 master-user = slaveuser master-password = *** skip-slave-start sync_binlog = 1 binlog-ignore-db=mysql Config for db2 server-id = 2 log-slave-updates replicate-same-server-id = 0 auto_increment_increment = 4 auto_increment_offset = 2 master-host = db1 master-port = 3306 master-user = slaveuser master-password = *** sync_binlog = 1 relay-log=mysql-relay-bin binlog-ignore-db=mysql What else can I look for to make sure db1 executes the queries from db2?

    Read the article

  • GoldenGate 12c - MySQL Active-Active Replication Setup

    - by Jinyu Wang-Oracle
    Active-active  (also called Master-Master or Bi-Directional) replication captures data changes from two or more systems and replicat the changes to synchronize the data.  Active-Active replication is often needed for high availability, load balancing and scaling out purposes.   Oracle GoldenGate is known to be one of the first and the best replication tool handling active-active replications. As of Oracle GoldenGate 12c, it provides (Refer to Oracle GoldenGate 12.1.2 Documentation - Configuring Oracle GoldenGate for Active-Active High Availability for more information) the followings: Robust loop-back prevention Comprehensive conflict resolution and detection support Heterogeneous support across different database versions and operation systems.  Oracle GoldenGate supports active-active configurations for DB2 on z/OS, LUW, and IBM i, MySQL, Oracle, SQL/MX,SQL Server, Sybase, and Teradata. However, the setup is different from database to database. In this example, I will show you how to setup an active-active data replication between two MySQL database instances. The example setup below is to have active-active replication between MySQL 5.5 and MySQL 5.6 instances and is shown as follows: MySQL 5.5 (Manager Port: 15105)  Extract EXTRACT demoex01 SETENV (MYSQL_UNIX_PORT='/home/oracle/software/mysql_5.5.38/data/mysql.sock') DBOPTIONS CONNECTIONPORT 3305 DBOPTIONS HOST oraclelinux6.localdomain SOURCEDB test USERID root, PASSWORD mysql EXTTRAIL ./dirdat/extract/de TRANLOGOPTIONS ALTLOGDEST "/home/oracle/software/mysql_5.5.38/data/binlog/bin-log.index" FILTERTABLE test.checkpoint_tbl REPORTROLLOVER AT 05:30 ON saturday TABLE test.TCUSTMER; TABLE test.TCUSTORD; Pump EXTRACT demopm01 RMTHOST localhost, MGRPORT 15106, COMPRESS, TIMEOUT 30 RMTTRAIL ./dirdat/replicat/ps PASSTHRU TABLE test.TCUSTMER; TABLE test.TCUSTORD; Replicat replicat demorp01 setenv (MYSQL_UNIX_PORT='/home/oracle/software/mysql_5.5.38/data/mysql.sock') dboptions host oraclelinux6.localdomain, connectionport 3305 targetdb test, userid root, password mysql sourcedefs ./dirdat/replicat/democust.def discardfile ./dirrpt/demprp01.dsc, purge REPERROR (DEFAULT, ABEND) REPERROR(1062, IGNORE) map test.TCUSTMER, target test.TCUSTMER,colmap(usedefaults, region_code="region code"); map test.TCUSTORD, target test.TCUSTORD; MySQL 5.6 (Manager Port: 15106) Replicat replicat demorp01 setenv (MYSQL_UNIX_PORT='/home/oracle/software/mysql_5.6.19/data/mysql.sock') dboptions host oraclelinux6.localdomain, connectionport 3306 targetdb test, userid root, password mysql --assumetargetdefs sourcedefs ./dirdat/replicat/democust.def discardfile ./dirrpt/demprp01.dsc, purge map test.TCUSTMER, target test.TCUSTMER, colmap(usedefaults, "region code"=region_code); map test.TCUSTORD, target test.TCUSTORD; Extract EXTRACT demoex01 SETENV (MYSQL_UNIX_PORT='/home/oracle/software/mysql_5.6.19/data/mysql.sock') DBOPTIONS CONNECTIONPORT 3306 DBOPTIONS HOST oraclelinux6.localdomain SOURCEDB test USERID root, USERID mysql EXTTRAIL ./dirdat/extract/de TRANLOGOPTIONS ALTLOGDEST "/usr/local/mysql56/data/binlog/bin-log.index" FILTERTABLE test.checkpoint_tbl TABLE test.TCUSTMER; TABLE test.TCUSTORD; Pump EXTRACT demopm01 RMTHOST localhost, MGRPORT 15105, COMPRESS, TIMEOUT 30 RMTTRAIL ./dirdat/replicat/ps PASSTHRU TABLE test.TCUSTMER; TABLE test.TCUSTORD; The setup parameters are quite self-explanatory. The key setup is to avoid the replication data  looping. Oracle GoldenGate for MySQL uses the information in the replication checkpoint table to identify the transaction applied by replicats and thus avoid extracting those transactions by Oracle GoldenGate extracts. The example setup in the extract in MySQL 5.5 instance is shown as follows.  TRANLOGOPTIONS ALTLOGDEST "/home/oracle/software/mysql_5.5.38/data/binlog/bin-log.index" FILTERTABLE test.checkpoint_tbl Setting up an active-active replication is often more complicated than this and requires the following additional considerations. I would elaborate on this in the follow-up discussions. 

    Read the article

  • Update RDS db via mysqlbinlog: "you need (at least one of) the SUPER privilege(s)"

    - by timoxley
    We are moving a production site to EC2/RDS Followed these instructions: http://geehwan.posterous.com/moving-a-production-mysql-database-to-amazon I have set up row-based binary logging on the production server did a: mysqldump --single-transaction --master-data=2 -C -q -u root -p backup.sql then imported to RDS instance. No dramas. Due to the size of the db, and minimal downtime requirements, I've got to update the ec2 db to the latest datas via the binlogs, and it won't let me. mysqlbinlog mysql-bin.000004 --start-position=360812488 | mysql -uroot -p -h and it says: ERROR 1227 (42000) at line 6: Access denied; you need (at least one of) the SUPER privilege(s) for this operation My guess, based on what is on line 6 of the binlog, is that it's the 'write to the BINLOG' statements in the SQL backup, and because RDS doesn't support this, it can't run these statements, or something, I don't really know. Please help.

    Read the article

  • mysql spitting lots of "table marked as crashed" errors

    - by Shawn
    Hi, I have a mysql server(version: 5.5.3-m3-log Source distribution ) and it keeps showing lots of 110214 3:01:48 [ERROR] /usr/local/mysql/libexec/mysqld: Table './mydb/tablename' is marked as crashed and should be repaired 110214 3:01:48 [Warning] Checking table: './mydb/tablename' I'm wondering what can be the possible casues and how to fix it. Here is a full list mysql configuration : connect_errors = 6000 table_cache = 614 external-locking = FALSE max_allowed_packet = 32M sort_buffer_size = 2G max_length_for_sort_data = 2G join_buffer_size = 256M thread_cache_size = 300 #thread_concurrency = 8 query_cache_size = 512M query_cache_limit = 2M query_cache_min_res_unit = 2k default-storage-engine = MyISAM thread_stack = 192K transaction_isolation = READ-COMMITTED tmp_table_size = 246M max_heap_table_size = 246M long_query_time = 3 log-slave-updates = 1 log-bin = /data/mysql/3306/binlog/binlog binlog_cache_size = 4M binlog_format = MIXED max_binlog_cache_size = 8M max_binlog_si ze = 1G relay-log-index = /data/mysql/3306/relaylog/relaylog relay-log-info-file = /data/mysql/3306/relaylog/relaylog relay-log = /data/mysql/3306/relaylog/relaylog expire_logs_days = 30 key_buffer_size = 1G read_buffer_size = 1M read_rnd_buffer_size = 16M bulk_insert_buffer_size = 64M myisam_sort_buffer_size = 2G myisam_max_sort_file_size = 5G myisam_repair_threads = 1 max_binlog_size = 1G interactive_timeout = 64 wait_timeout = 64 skip-name-resolve slave-skip-errors = 1032,1062,126,1114,1146,1048,1396 The box is running on centos-5.5. Thanks for your help.

    Read the article

  • Can a MySQL slave be a master at the same time?

    - by mmattax
    I am in the process of migrating 2 DB servers (Master & Slave) to two new DB Servers (Master and Slave) DB1 - Master (production) DB2 - Slave (production) DB3 - New Master DB4 - New Slave Currently I have the replication set up as: DB1 -> DB2 DB3 -> DB4 To get the production data replicated to the new servers, I'd like to get it "daisy chained" so that it looks like this: DB1 -> DB2 -> DB3 -> DB4 Is this possible? When I run show master status; on DB2 (the production slave) the binlog possition never seems to change: +------------------+----------+--------------+------------------+ | File | Position | Binlog_Do_DB | Binlog_Ignore_DB | +------------------+----------+--------------+------------------+ | mysql-bin.000020 | 98 | | | +------------------+----------+--------------+------------------+ I'm a bit confused as to why the binlog position is not changing on DB2, Ideally it will be the master to DB3.

    Read the article

  • Problem setting up Master-Master Replication in MySQL

    - by Andrew
    I am attempting to setup Master-Master Replication on two MySQL database servers. I have followed the steps in this guide, but it fails in the middle of Step 4 with SHOW MASTER STATUS; It simply returns an empty set. I get the same 3 errors in both servers' logs. MySQL errors on SQL1: [ERROR] Failed to open the relay log './sql1-relay-bin.000001' (relay_log_pos 4) [ERROR] Could not find target log during relay log initialization [ERROR] Failed to initialize the master info structure MySQL Errors on SQL2: [ERROR] Failed to open the relay log './sql2-relay-bin.000001' (relay_log_pos 4) [ERROR] Could not find target log during relay log initialization [ERROR] Failed to initialize the master info structure The errors make no sense because I'm not referencing those files in any of my configurations. I'm using Ubuntu Server 10.04 x64 and my configuration files are copied below. I don't know where to go from here or how to troubleshoot this. Please help. Thanks. /etc/mysql/my.cnf on SQL1: # # The MySQL database server configuration file. # # You can copy this to one of: # - "/etc/mysql/my.cnf" to set global options, # - "~/.my.cnf" to set user-specific options. # # One can use all long options that the program supports. # Run program with --help to get a list of available options and with # --print-defaults to see which it would actually understand and use. # # For explanations see # http://dev.mysql.com/doc/mysql/en/server-system-variables.html # This will be passed to all mysql clients # It has been reported that passwords should be enclosed with ticks/quotes # escpecially if they contain "#" chars... # Remember to edit /etc/mysql/debian.cnf when changing the socket location. [client] port = 3306 socket = /var/run/mysqld/mysqld.sock # Here is entries for some specific programs # The following values assume you have at least 32M ram # This was formally known as [safe_mysqld]. Both versions are currently parsed. [mysqld_safe] socket = /var/run/mysqld/mysqld.sock nice = 0 [mysqld] # # * Basic Settings # # # * IMPORTANT # If you make changes to these settings and your system uses apparmor, you may # also need to also adjust /etc/apparmor.d/usr.sbin.mysqld. # user = mysql socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp skip-external-locking # # Instead of skip-networking the default is now to listen only on # localhost which is more compatible and is not less secure. bind-address = <SQL1's IP> # # * Fine Tuning # key_buffer = 16M max_allowed_packet = 16M thread_stack = 192K thread_cache_size = 8 # This replaces the startup script and checks MyISAM tables if needed # the first time they are touched myisam-recover = BACKUP #max_connections = 100 #table_cache = 64 #thread_concurrency = 10 # # * Query Cache Configuration # query_cache_limit = 1M query_cache_size = 16M # # * Logging and Replication # # Both location gets rotated by the cronjob. # Be aware that this log type is a performance killer. # As of 5.1 you can enable the log at runtime! #general_log_file = /var/log/mysql/mysql.log #general_log = 1 log_error = /var/log/mysql/error.log # Here you can see queries with especially long duration #log_slow_queries = /var/log/mysql/mysql-slow.log #long_query_time = 2 #log-queries-not-using-indexes # # The following can be used as easy to replay backup logs or for replication. # note: if you are setting up a replication slave, see README.Debian about # other settings you may need to change. server-id = 1 replicate-same-server-id = 0 auto-increment-increment = 2 auto-increment-offset = 1 master-host = <SQL2's IP> master-user = slave_user master-password = "slave_password" master-connect-retry = 60 replicate-do-db = db1 log-bin= /var/log/mysql/mysql-bin.log binlog-do-db = db1 binlog-ignore-db = mysql relay-log = /var/lib/mysql/slave-relay.log relay-log-index = /var/lib/mysql/slave-relay-log.index expire_logs_days = 10 max_binlog_size = 500M # # * InnoDB # # InnoDB is enabled by default with a 10MB datafile in /var/lib/mysql/. # Read the manual for more InnoDB related options. There are many! # # * Security Features # # Read the manual, too, if you want chroot! # chroot = /var/lib/mysql/ # # For generating SSL certificates I recommend the OpenSSL GUI "tinyca". # # ssl-ca=/etc/mysql/cacert.pem # ssl-cert=/etc/mysql/server-cert.pem # ssl-key=/etc/mysql/server-key.pem [mysqldump] quick quote-names max_allowed_packet = 16M [mysql] #no-auto-rehash # faster start of mysql but no tab completition [isamchk] key_buffer = 16M # # * IMPORTANT: Additional settings that can override those from this file! # The files must end with '.cnf', otherwise they'll be ignored. # !includedir /etc/mysql/conf.d/ /etc/mysql/my.cnf on SQL2: # # The MySQL database server configuration file. # # You can copy this to one of: # - "/etc/mysql/my.cnf" to set global options, # - "~/.my.cnf" to set user-specific options. # # One can use all long options that the program supports. # Run program with --help to get a list of available options and with # --print-defaults to see which it would actually understand and use. # # For explanations see # http://dev.mysql.com/doc/mysql/en/server-system-variables.html # This will be passed to all mysql clients # It has been reported that passwords should be enclosed with ticks/quotes # escpecially if they contain "#" chars... # Remember to edit /etc/mysql/debian.cnf when changing the socket location. [client] port = 3306 socket = /var/run/mysqld/mysqld.sock # Here is entries for some specific programs # The following values assume you have at least 32M ram # This was formally known as [safe_mysqld]. Both versions are currently parsed. [mysqld_safe] socket = /var/run/mysqld/mysqld.sock nice = 0 [mysqld] # # * Basic Settings # # # * IMPORTANT # If you make changes to these settings and your system uses apparmor, you may # also need to also adjust /etc/apparmor.d/usr.sbin.mysqld. # user = mysql socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp skip-external-locking # # Instead of skip-networking the default is now to listen only on # localhost which is more compatible and is not less secure. bind-address = <SQL2's IP> # # * Fine Tuning # key_buffer = 16M max_allowed_packet = 16M thread_stack = 192K thread_cache_size = 8 # This replaces the startup script and checks MyISAM tables if needed # the first time they are touched myisam-recover = BACKUP #max_connections = 100 #table_cache = 64 #thread_concurrency = 10 # # * Query Cache Configuration # query_cache_limit = 1M query_cache_size = 16M # # * Logging and Replication # # Both location gets rotated by the cronjob. # Be aware that this log type is a performance killer. # As of 5.1 you can enable the log at runtime! #general_log_file = /var/log/mysql/mysql.log #general_log = 1 log_error = /var/log/mysql/error.log # Here you can see queries with especially long duration #log_slow_queries = /var/log/mysql/mysql-slow.log #long_query_time = 2 #log-queries-not-using-indexes # # The following can be used as easy to replay backup logs or for replication. # note: if you are setting up a replication slave, see README.Debian about # other settings you may need to change. server-id = 2 replicate-same-server-id = 0 auto-increment-increment = 2 auto-increment-offset = 2 master-host = <SQL1's IP> master-user = slave_user master-password = "slave_password" master-connect-retry = 60 replicate-do-db = db1 log-bin= /var/log/mysql/mysql-bin.log binlog-do-db = db1 binlog-ignore-db = mysql relay-log = /var/lib/mysql/slave-relay.log relay-log-index = /var/lib/mysql/slave-relay-log.index expire_logs_days = 10 max_binlog_size = 500M # # * InnoDB # # InnoDB is enabled by default with a 10MB datafile in /var/lib/mysql/. # Read the manual for more InnoDB related options. There are many! # # * Security Features # # Read the manual, too, if you want chroot! # chroot = /var/lib/mysql/ # # For generating SSL certificates I recommend the OpenSSL GUI "tinyca". # # ssl-ca=/etc/mysql/cacert.pem # ssl-cert=/etc/mysql/server-cert.pem # ssl-key=/etc/mysql/server-key.pem [mysqldump] quick quote-names max_allowed_packet = 16M [mysql] #no-auto-rehash # faster start of mysql but no tab completition [isamchk] key_buffer = 16M # # * IMPORTANT: Additional settings that can override those from this file! # The files must end with '.cnf', otherwise they'll be ignored. # !includedir /etc/mysql/conf.d/

    Read the article

  • How do I allow mysqld to use more than 24.9% of my cpu?

    - by Joseph Yancey
    I have a Web server running on RHEL that is running Apache and MySQL. It has a Quad core 3.2Ghz Xeon CPU and 8 Gigs of RAM Most of the time, we don't have any issues at all. Our web application is very database intensive. When our usage gets pretty heavy MySQL will peg out at using 24.9% of the cpu. Most of the time, it hangs around below 5%. I have speculated that it is only using one core of the CPU and it is pegging out that core but TOP shows me in the cpu column that mysqld changes cores even while the usage stays at 24.9%. When it does this MySQL gets painfully slow as it is queuing up queries Is there some magic configuration that will tell mysql to use more cpu when it needs to? Also, any other advice on my configuration would be helpful. We run two applications on this server. One that runs Innodb but doesn't get much usage (it has been replaced by the other app), and one that runs MyIsam and gets lots of use. Overall, our whole mysql data directory is something like 13Gigs if that matters at all. Here is my config: [root@ProductionLinux root]# cat /etc/my.cnf [mysqld] server-id = 71 log-bin = /var/log/mysql/mysql-bin.log binlog-do-db = oldapplication binlog-do-db = newapplication binlog-do-db = support thread_cache_size = 30 key_buffer_size = 256M table_cache = 256 sort_buffer_size = 4M read_buffer_size = 1M skip-name-resolve innodb_data_home_dir = /usr/local/mysql/data/ innodb_data_file_path = InnoDB:100M:autoextend set-variable = innodb_buffer_pool_size=70M set-variable = innodb_additional_mem_pool_size=10M set-variable = max_connections=500 innodb_log_group_home_dir = /usr/local/mysql/data innodb_log_arch_dir = /usr/local/mysql/data set-variable = innodb_log_file_size=20M set-variable = innodb_log_buffer_size=8M innodb_flush_log_at_trx_commit = 1 log-queries-not-using-indexes log-error = /var/log/mysql/mysql-error.log mysql show variables; +---------------------------------+-----------------------------------------------------------------------------+ | Variable_name | Value | +---------------------------------+-----------------------------------------------------------------------------+ | auto_increment_increment | 1 | | auto_increment_offset | 1 | | automatic_sp_privileges | ON | | back_log | 50 | | basedir | /usr/local/mysql-standard-5.0.18-linux-x86_64-glibc23/ | | binlog_cache_size | 32768 | | bulk_insert_buffer_size | 8388608 | | character_set_client | latin1 | | character_set_connection | latin1 | | character_set_database | latin1 | | character_set_results | latin1 | | character_set_server | latin1 | | character_set_system | utf8 | | character_sets_dir | /usr/local/mysql-standard-5.0.18-linux-x86_64-glibc23/share/mysql/charsets/ | | collation_connection | latin1_swedish_ci | | collation_database | latin1_swedish_ci | | collation_server | latin1_swedish_ci | | completion_type | 0 | | concurrent_insert | 1 | | connect_timeout | 5 | | datadir | /usr/local/mysql/data/ | | date_format | %Y-%m-%d | | datetime_format | %Y-%m-%d %H:%i:%s | | default_week_format | 0 | | delay_key_write | ON | | delayed_insert_limit | 100 | | delayed_insert_timeout | 300 | | delayed_queue_size | 1000 | | div_precision_increment | 4 | | engine_condition_pushdown | OFF | | expire_logs_days | 0 | | flush | OFF | | flush_time | 0 | | | ft_max_word_len | 84 | | ft_min_word_len | 4 | | ft_query_expansion_limit | 20 | | ft_stopword_file | (built-in) | | group_concat_max_len | 1024 | | have_archive | YES | | have_bdb | NO | | have_blackhole_engine | NO | | have_compress | YES | | have_crypt | YES | | have_csv | NO | | have_example_engine | NO | | have_federated_engine | NO | | have_geometry | YES | | have_innodb | YES | | have_isam | NO | | have_ndbcluster | NO | | have_openssl | NO | | have_query_cache | YES | | have_raid | NO | | have_rtree_keys | YES | | have_symlink | YES | | init_connect | | | init_file | | | init_slave | | | innodb_additional_mem_pool_size | 10485760 | | innodb_autoextend_increment | 8 | | innodb_buffer_pool_awe_mem_mb | 0 | | innodb_buffer_pool_size | 73400320 | | innodb_checksums | ON | | innodb_commit_concurrency | 0 | | innodb_concurrency_tickets | 500 | | innodb_data_file_path | InnoDB:100M:autoextend | | innodb_data_home_dir | /usr/local/mysql/data/ | | innodb_doublewrite | ON | | innodb_fast_shutdown | 1 | | innodb_file_io_threads | 4 | | innodb_file_per_table | OFF | | innodb_flush_log_at_trx_commit | 1 | | innodb_flush_method | | | innodb_force_recovery | 0 | | innodb_lock_wait_timeout | 50 | | innodb_locks_unsafe_for_binlog | OFF | | innodb_log_arch_dir | /usr/local/mysql/data | | innodb_log_archive | OFF | | innodb_log_buffer_size | 8388608 | | innodb_log_file_size | 20971520 | | innodb_log_files_in_group | 2 | | innodb_log_group_home_dir | /usr/local/mysql/data | | innodb_max_dirty_pages_pct | 90 | | innodb_max_purge_lag | 0 | | innodb_mirrored_log_groups | 1 | | innodb_open_files | 300 | | innodb_support_xa | ON | | innodb_sync_spin_loops | 20 | | innodb_table_locks | ON | | innodb_thread_concurrency | 20 | | innodb_thread_sleep_delay | 10000 | | interactive_timeout | 28800 | | join_buffer_size | 131072 | | key_buffer_size | 268435456 | | key_cache_age_threshold | 300 | | key_cache_block_size | 1024 | | key_cache_division_limit | 100 | | language | /usr/local/mysql-standard-5.0.18-linux-x86_64-glibc23/share/mysql/english/ | | large_files_support | ON | | large_page_size | 0 | | large_pages | OFF | | license | GPL | | local_infile | ON | | locked_in_memory | OFF | | log | OFF | | log_bin | ON | | log_bin_trust_function_creators | OFF | | log_error | /var/log/mysql/mysql-error.log | | log_slave_updates | OFF | | log_slow_queries | OFF | | log_warnings | 1 | | long_query_time | 10 | | low_priority_updates | OFF | | lower_case_file_system | OFF | | lower_case_table_names | 0 | | max_allowed_packet | 1048576 | | max_binlog_cache_size | 18446744073709551615 | | max_binlog_size | 1073741824 | | max_connect_errors | 10 | | max_connections | 500 | | max_delayed_threads | 20 | | max_error_count | 64 | | max_heap_table_size | 16777216 | | max_insert_delayed_threads | 20 | | max_join_size | 18446744073709551615 | | max_length_for_sort_data | 1024 | | max_relay_log_size | 0 | | max_seeks_for_key | 18446744073709551615 | | max_sort_length | 1024 | | max_sp_recursion_depth | 0 | | max_tmp_tables | 32 | | max_user_connections | 0 | | max_write_lock_count | 18446744073709551615 | | multi_range_count | 256 | | myisam_data_pointer_size | 6 | | myisam_max_sort_file_size | 9223372036854775807 | | myisam_recover_options | OFF | | myisam_repair_threads | 1 | | myisam_sort_buffer_size | 8388608 | | myisam_stats_method | nulls_unequal | | net_buffer_length | 16384 | | net_read_timeout | 30 | | net_retry_count | 10 | | net_write_timeout | 60 | | new | OFF | | old_passwords | OFF | | open_files_limit | 2510 | | optimizer_prune_level | 1 | | optimizer_search_depth | 62 | | pid_file | /usr/local/mysql/data/ProductionLinux.pid | | port | 3306 | | preload_buffer_size | 32768 | | protocol_version | 10 | | query_alloc_block_size | 8192 | | query_cache_limit | 1048576 | | query_cache_min_res_unit | 4096 | | query_cache_size | 0 | | query_cache_type | ON | | query_cache_wlock_invalidate | OFF | | query_prealloc_size | 8192 | | range_alloc_block_size | 2048 | | read_buffer_size | 1044480 | | read_only | OFF | | read_rnd_buffer_size | 262144 | | relay_log_purge | ON | | relay_log_space_limit | 0 | | rpl_recovery_rank | 0 | | secure_auth | OFF | | server_id | 71 | | skip_external_locking | ON | | skip_networking | OFF | | skip_show_database | OFF | | slave_compressed_protocol | OFF | | slave_load_tmpdir | /tmp/ | | slave_net_timeout | 3600 | | slave_skip_errors | OFF | | slave_transaction_retries | 10 | | slow_launch_time | 2 | | socket | /tmp/mysql.sock | | sort_buffer_size | 4194296 | | sql_mode | | | sql_notes | ON | | sql_warnings | ON | | storage_engine | MyISAM | | sync_binlog | 0 | | sync_frm | ON | | sync_replication | 0 | | sync_replication_slave_id | 0 | | sync_replication_timeout | 10 | | system_time_zone | CST | | table_cache | 256 | | table_lock_wait_timeout | 50 | | table_type | MyISAM | | thread_cache_size | 30 | | thread_stack | 262144 | | time_format | %H:%i:%s | | time_zone | SYSTEM | | timed_mutexes | OFF | | tmp_table_size | 33554432 | | tmpdir | | | transaction_alloc_block_size | 8192 | | transaction_prealloc_size | 4096 | | tx_isolation | REPEATABLE-READ | | updatable_views_with_limit | YES | | version | 5.0.18-standard-log | | version_comment | MySQL Community Edition - Standard (GPL) | | version_compile_machine | x86_64 | | version_compile_os | unknown-linux-gnu | | wait_timeout | 28800 | +---------------------------------+-----------------------------------------------------------------------------+ 210 rows in set (0.00 sec)

    Read the article

  • MySQL replication - rapidly growing relay bin logs

    - by Rob Forrest
    Morning all, I've got a really strange situation here this morning much like a reportedly fixed MySQL bug. http://bugs.mysql.com/bug.php?id=28421 My relay bin logs are rapidly filling with an infinite loop of junk made of this sort of thing. #121018 5:40:04 server id 101 end_log_pos 15598207 #Append_block: file_id: 2244 block_len: 8192 # at 15598352 #121018 5:40:04 server id 101 end_log_pos 15606422 #Append_block: file_id: 2244 block_len: 8192 # at 15606567 ... # at 7163731 #121018 5:38:39 server id 101 end_log_pos 7171801 #Append_block: file_id: 2243 block_len: 8192 WARNING: Ignoring Append_block as there is no Create_file event for file_id: 2243 # at 7171946 #121018 5:38:39 server id 101 end_log_pos 7180016 #Append_block: file_id: 2243 block_len: 8192 WARNING: Ignoring Append_block as there is no Create_file event for file_id: 2243 These log files grow to 1Gb within about a minute before rotating and starting again. These big files are interspersed with 1 or 2 smaller files with just this in /*!40019 SET @@session.max_insert_delayed_threads=0*/; /*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/; DELIMITER /*!*/; # at 4 #121023 9:43:05 server id 100 end_log_pos 106 Start: binlog v 4, server v 5.1.61-log created 121023 9:43:05 BINLOG ' mViGUA9kAAAAZgAAAGoAAAAAAAQANS4xLjYxLWxvZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAEzgNAAgAEgAEBAQEEgAAUwAEGggAAAAICAgC '/*!*/; # at 106 #121023 9:43:05 server id 100 end_log_pos 156 Rotate to mysqld-relay-bin.000003 pos: 4 DELIMITER ; # End of log file ROLLBACK /* added by mysqlbinlog */; /*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/; We're running a master-master replication setup with the problematic server running mysql 5.1.61. The other server which is, for the moment, stable is running 5.1.58. Has anyone got any ideas what the solution is to this and moreover, what might have caused this?

    Read the article

  • MySQL Connect 8 Days Away - Replication Sessions

    - by Mat Keep
    Following on from my post about MySQL Cluster sessions at the forthcoming Connect conference, its now the turn of MySQL Replication - another technology at the heart of scaling and high availability for MySQL. Unless you've only just returned from a 6-month alien abduction, you will know that MySQL 5.6 includes the largest set of replication enhancements ever packaged into a single new release: - Global Transaction IDs + HA utilities for self-healing cluster..(yes both automatic failover and manual switchover available!) - Crash-safe slaves and binlog - Binlog Group Commit and Multi-Threaded Slaves for high performance - Replication Event Checksums and Time-Delayed replication - and many more There are a number of sessions dedicated to learn more about these important new enhancements, delivered by the same engineers who developed them. Here is a summary Saturday 29th, 13.00 Replication Tips and Tricks, Mats Kindahl In this session, the developers of MySQL Replication present a bag of useful tips and tricks related to the MySQL 5.5 GA and MySQL 5.6 development milestone releases, including multisource replication, using logs for auditing, handling filtering, examining the binary log, using relay slaves, splitting the replication stream, and handling failover. Saturday 29th, 17.30 Enabling the New Generation of Web and Cloud Services with MySQL 5.6 Replication, Lars Thalmann This session showcases the new replication features, including • High performance (group commit, multithreaded slave) • High availability (crash-safe slaves, failover utilities) • Flexibility and usability (global transaction identifiers, annotated row-based replication [RBR]) • Data integrity (event checksums) Saturday 29th, 1900 MySQL Replication Birds of a Feather In this session, the MySQL Replication engineers discuss all the goodies, including global transaction identifiers (GTIDs) with autofailover; multithreaded, crash-safe slaves; checksums; and more. The team discusses the design behind these enhancements and how to get started with them. You will get the opportunity to present your feedback on how these can be further enhanced and can share any additional replication requirements you have to further scale your critical MySQL-based workloads. Sunday 30th, 10.15 Hands-On Lab, MySQL Replication, Luis Soares and Sven Sandberg But how do you get started, how does it work, and what are the best practices and tools? During this hands-on lab, you will learn how to get started with replication, how it works, architecture, replication prerequisites, setting up a simple topology, and advanced replication configurations. The session also covers some of the new features in the MySQL 5.6 development milestone releases. Sunday 30th, 13.15 Hands-On Lab, MySQL Utilities, Chuck Bell Would you like to learn how to more effectively manage a host of MySQL servers and manage high-availability features such as replication? This hands-on lab addresses these areas and more. Participants will get familiar with all of the MySQL utilities, using each of them with a variety of options to configure and manage MySQL servers. Sunday 30th, 14.45 Eliminating Downtime with MySQL Replication, Luis Soares The presentation takes a deep dive into new replication features such as global transaction identifiers and crash-safe slaves. It also showcases a range of Python utilities that, combined with the Release 5.6 feature set, results in a self-healing data infrastructure. By the end of the session, attendees will be familiar with the new high-availability features in the whole MySQL 5.6 release and how to make use of them to protect and grow their business. Sunday 30th, 17.45 Scaling for the Web and the Cloud with MySQL Replication, Luis Soares In a Replication topology, high performance directly translates into improving read consistency from slaves and reducing the risk of data loss if a master fails. MySQL 5.6 introduces several new replication features to enhance performance. In this session, you will learn about these new features, how they work, and how you can leverage them in your applications. In addition, you will learn about some other best practices that can be used to improve performance. So how can you make sure you don't miss out - the good news is that registration is still open ;-) And just to whet your appetite, listen to the On-Demand webinar that presents an overview of MySQL 5.6 Replication.  

    Read the article

  • Steps for MySQL DB Replication

    - by Manish Agrawal
    Following are the steps for MySQL Replication implementation on Linux machine: Pre-implementation steps for DB Replication:   1.    Identify the databases to be replicated 2.    Identify the tables to be ignored during replication per database for example log tables 3.  Carefully identify and replace the variables and paths(locations) mentioned (in bold) in the commands given below with appropriate values 4.  Schedule the maintenance activity in odd hours as these activities will affect all the databases on Master database server       Implementation steps for DB Replication:     1.    Configure the /etc/my.cnf file on Master database server to enable Binary logging, setting of server id and configuring of dbnames for which logging should be done. [mysqld] log-bin=mysql-bin server-id=1 binlog-do-db = dbname   Note: You can specify multiple DB in binlog-do-db by using comma separated dbname values like: dbname1, dbname2, …, dbnameN   2.    On Master database, Grant Replication Slave Privileges, by executing following command on mysql prompt mysql> GRANT REPLICATION SLAVE ON *.* TO slaveuser@<hostname> identified by ‘slavepassword’;   3.    Stop the Master & Slave database by giving the command      mysqladmin shutdown   4.    Start the Master database by giving the command      /usr/local/mysql-5.0.22/bin/mysqld_safe --user=user&     5.    mysql> FLUSH TABLES WITH READ LOCK; Note: Leave the client (putty session) from which you issued the FLUSH TABLES statement running, so that the read lock remains in effect. If you exit the client, the lock is released. 6.    mysql > SHOW MASTER STATUS;          +---------------+----------+--------------+------------------+          | File          | Position | Binlog_Do_DB | Binlog_Ignore_DB |          +---------------+----------+--------------+------------------+          | mysql-bin.003 | 117       | dbname       |                  |          +---------------+----------+--------------+------------------+ Note: Note this information as this will be required while starting of Slave and replication in later steps   7.    Take MySQL dump by giving the following command, In another session window (putty window) run the following command: mysqldump –u user --ignore-table=dbname.tbl_name -–ignore-table=dbname.tbl_name2 --master-data dbname > dbname_dump.db Note: When choosing databases to include in the dump, remember that you will need to filter out databases on each slave that you do not want to include in the replication process.     8.    Unlock the tables on Master by giving following command: mysql> UNLOCK TABLES;   9.    Copy the dump file to Slave DB server   10.  Startup the Slave by using option --skip-slave      /usr/local/mysql-5.0.22/bin/mysqld_safe --user=user --skip-slave&   11.  Restore the dump file on Slave DB server      mysql –u user dbname < dbname_dump.db   12.  Stop the Slave database by giving the command      mysqladmin shutdown   13.  Configure the /etc/my.cnf file on the Slave database server [mysqld] server-id=2 replicate-ignore-table = dbname.tablename   14.  Start the Slave Mysql Server with 'replicate-do-db=DB name' option.      /usr/local/mysql-5.0.22/bin/mysqld_safe --user=user --replicate-do-db=dbname --skip-slave   15.  Configure the settings at Slave server for Master host name, log filename and position within the log file as shown in Step 6 above Use Change Master statement in the MySQL session mysql> CHANGE MASTER TO MASTER_HOST='<master_host_name>', MASTER_USER='<replication_user_name>', MASTER_PASSWORD='<replication_password>', MASTER_LOG_FILE='<recorded_log_file_name>', MASTER_LOG_POS=<recorded_log_position>;   16.  On Slave Servers mysql prompt give the following command: a.     mysql > START SLAVE; b.    mysql > SHOW SLAVE STATUS;         Note: To stop slave for backup or any other activity you can use the following command on the Slave Servers mysql prompt: mysql> STOP SLAVE     Refer following links for more information on MySQL DB Replication: http://dev.mysql.com/doc/refman/5.0/en/replication-options.html http://crazytoon.com/2008/04/21/mysql-replication-replicate-by-choice/ http://dev.mysql.com/doc/refman/5.0/en/mysqldump.html

    Read the article

  • MariaDB, Galera, xtrabackup - do I need the binary log?

    - by bernhardrusch
    We are using a MariaDB Galera Cluster with 3 nodes. For the state transfer we are using xtrabackup. We have some problems with the binary logs - they got too big and crashed the server. We can remove them manually with the purge binary logs command, another way would be to set the expire_logs_days so they would expire. I now that we could use xtrabackup to backup the DB and use the binlog to get to some point in time. But do we really need it for Galera to work ?

    Read the article

  • MySQL simple replication problem: 'show master status' produces 'Empty set'?

    - by simon
    I've been setting up MySQL master replication (on Debian 6.0.1) following these instructions faithfully: http://www.neocodesoftware.com/replication/ I've got as far as: mysql > show master status; but this is unfortunately producing the following, rather than any useful output: Empty set (0.00 sec) The error log at /var/log/mysql.err is just an empty file, so that's not giving me any clues. Any ideas? This is what I have put in /etc/mysql/my.cnf on one server (amended appropriately for the other server): server-id = 1 replicate-same-server-id = 0 auto-increment-increment = 2 auto-increment-offset = 1 master-host = 10.0.0.3 master-user = <myusername> master-password = <mypass> master-connect-retry = 60 replicate-do-db = fruit log-bin = /var/log/mysql-replication.log binlog-do-db = fruit And I have set up users and can connect from MySQL on Server A to the database on Server B using the username/password/ipaddress above.

    Read the article

  • How do I sync a subset of tables between two databases on the same mysql database server

    - by Mike
    would like to be able to sync a subset of tables between two mysql databases that are running on the same server. One of the databases acts as the master where inserts, updates and deletes can be made. The second database uses those same tables for read-only operations. I do not want to use federated tables to achieve this. The long term goal will be to separate the 2 databases to multiple servers, The second database that has the subset of tables as read-only may also be replicated a few times over to distribute geographically for load and performance purposes each with unqiue data.... Once that is achieved, I plan to use binlog to replicate those specific tables on the secondary databases. In the meantime, I'd like to keep these tables in sync. Is there a more elegant way to do this than other than using a cronjob and mysqldump?

    Read the article

  • Any way to select without causing locking in MySQL?

    - by Shore
    Query: SELECT COUNT(online.account_id) cnt from online; But online table is also modified by an event, so frequently I can see lock by running show processlist. Is there any grammar in MySQL that can make select statement not causing locks? And I've forgotten to mention above that it's on a MySQL slave database. After I added into my.cnf:transaction-isolation = READ-UNCOMMITTED the slave will meet with error: Error 'Binary logging not possible. Message: Transaction level 'READ-UNCOMMITTED' in InnoDB is not safe for binlog mode 'STATEMENT'' on query So, is there a compatible way to do this?

    Read the article

  • MySQL and Hadoop Integration - Unlocking New Insight

    - by Mat Keep
    “Big Data” offers the potential for organizations to revolutionize their operations. With the volume of business data doubling every 1.2 years, analysts and business users are discovering very real benefits when integrating and analyzing data from multiple sources, enabling deeper insight into their customers, partners, and business processes. As the world’s most popular open source database, and the most deployed database in the web and cloud, MySQL is a key component of many big data platforms, with Hadoop vendors estimating 80% of deployments are integrated with MySQL. The new Guide to MySQL and Hadoop presents the tools enabling integration between the two data platforms, supporting the data lifecycle from acquisition and organisation to analysis and visualisation / decision, as shown in the figure below The Guide details each of these stages and the technologies supporting them: Acquire: Through new NoSQL APIs, MySQL is able to ingest high volume, high velocity data, without sacrificing ACID guarantees, thereby ensuring data quality. Real-time analytics can also be run against newly acquired data, enabling immediate business insight, before data is loaded into Hadoop. In addition, sensitive data can be pre-processed, for example healthcare or financial services records can be anonymized, before transfer to Hadoop. Organize: Data is transferred from MySQL tables to Hadoop using Apache Sqoop. With the MySQL Binlog (Binary Log) API, users can also invoke real-time change data capture processes to stream updates to HDFS. Analyze: Multi-structured data ingested from multiple sources is consolidated and processed within the Hadoop platform. Decide: The results of the analysis are loaded back to MySQL via Apache Sqoop where they inform real-time operational processes or provide source data for BI analytics tools. So how are companies taking advantage of this today? As an example, on-line retailers can use big data from their web properties to better understand site visitors’ activities, such as paths through the site, pages viewed, and comments posted. This knowledge can be combined with user profiles and purchasing history to gain a better understanding of customers, and the delivery of highly targeted offers. Of course, it is not just in the web that big data can make a difference. Every business activity can benefit, with other common use cases including: - Sentiment analysis; - Marketing campaign analysis; - Customer churn modeling; - Fraud detection; - Research and Development; - Risk Modeling; - And more. As the guide discusses, Big Data is promising a significant transformation of the way organizations leverage data to run their businesses. MySQL can be seamlessly integrated within a Big Data lifecycle, enabling the unification of multi-structured data into common data platforms, taking advantage of all new data sources and yielding more insight than was ever previously imaginable. Download the guide to MySQL and Hadoop integration to learn more. I'd also be interested in hearing about how you are integrating MySQL with Hadoop today, and your requirements for the future, so please use the comments on this blog to share your insights.

    Read the article

  • High Load mysql on Debian server stops every day. Why?

    - by Oleg Abrazhaev
    I have Debian server with 32 gb memory. And there is apache2, memcached and nginx on this server. Memory load always on maximum. Only 500m free. Most memory leak do MySql. Apache only 70 clients configured, other services small memory usage. When mysql use all memory it stops. And nothing works, need mysql reboot. Mysql configured use maximum 24 gb memory. I have hight weight InnoDB bases. (400000 rows, 30 gb). And on server multithread daemon, that makes many inserts in this tables, thats why InnoDB. There is my mysql config. [mysqld] # # * Basic Settings # default-time-zone = "+04:00" user = mysql pid-file = /var/run/mysqld/mysqld.pid socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp language = /usr/share/mysql/english skip-external-locking default-time-zone='Europe/Moscow' # # Instead of skip-networking the default is now to listen only on # localhost which is more compatible and is not less secure. # # * Fine Tuning # #low_priority_updates = 1 concurrent_insert = ALWAYS wait_timeout = 600 interactive_timeout = 600 #normal key_buffer_size = 2024M #key_buffer_size = 1512M #70% hot cache key_cache_division_limit= 70 #16-32 max_allowed_packet = 32M #1-16M thread_stack = 8M #40-50 thread_cache_size = 50 #orderby groupby sort sort_buffer_size = 64M #same myisam_sort_buffer_size = 400M #temp table creates when group_by tmp_table_size = 3000M #tables in memory max_heap_table_size = 3000M #on disk open_files_limit = 10000 table_cache = 10000 join_buffer_size = 5M # This replaces the startup script and checks MyISAM tables if needed # the first time they are touched myisam-recover = BACKUP #myisam_use_mmap = 1 max_connections = 200 thread_concurrency = 8 # # * Query Cache Configuration # #more ignored query_cache_limit = 50M query_cache_size = 210M #on query cache query_cache_type = 1 # # * Logging and Replication # # Both location gets rotated by the cronjob. # Be aware that this log type is a performance killer. #log = /var/log/mysql/mysql.log # # Error logging goes to syslog. This is a Debian improvement :) # # Here you can see queries with especially long duration log_slow_queries = /var/log/mysql/mysql-slow.log long_query_time = 1 log-queries-not-using-indexes # # The following can be used as easy to replay backup logs or for replication. # note: if you are setting up a replication slave, see README.Debian about # other settings you may need to change. #server-id = 1 #log_bin = /var/log/mysql/mysql-bin.log server-id = 1 log-bin = /var/lib/mysql/mysql-bin #replicate-do-db = gate log-bin-index = /var/lib/mysql/mysql-bin.index log-error = /var/lib/mysql/mysql-bin.err relay-log = /var/lib/mysql/relay-bin relay-log-info-file = /var/lib/mysql/relay-bin.info relay-log-index = /var/lib/mysql/relay-bin.index binlog_do_db = 24avia expire_logs_days = 10 max_binlog_size = 100M read_buffer_size = 4024288 innodb_buffer_pool_size = 5000M innodb_flush_log_at_trx_commit = 2 innodb_thread_concurrency = 8 table_definition_cache = 2000 group_concat_max_len = 16M #binlog_do_db = gate #binlog_ignore_db = include_database_name # # * BerkeleyDB # # Using BerkeleyDB is now discouraged as its support will cease in 5.1.12. #skip-bdb # # * InnoDB # # InnoDB is enabled by default with a 10MB datafile in /var/lib/mysql/. # Read the manual for more InnoDB related options. There are many! # You might want to disable InnoDB to shrink the mysqld process by circa 100MB. #skip-innodb # # * Security Features # # Read the manual, too, if you want chroot! # chroot = /var/lib/mysql/ # # For generating SSL certificates I recommend the OpenSSL GUI "tinyca". # # ssl-ca=/etc/mysql/cacert.pem # ssl-cert=/etc/mysql/server-cert.pem # ssl-key=/etc/mysql/server-key.pem [mysqldump] quick quote-names max_allowed_packet = 500M [mysql] #no-auto-rehash # faster start of mysql but no tab completition [isamchk] key_buffer = 32M key_buffer_size = 512M # # * NDB Cluster # # See /usr/share/doc/mysql-server-*/README.Debian for more information. # # The following configuration is read by the NDB Data Nodes (ndbd processes) # not from the NDB Management Nodes (ndb_mgmd processes). # # [MYSQL_CLUSTER] # ndb-connectstring=127.0.0.1 # # * IMPORTANT: Additional settings that can override those from this file! # The files must end with '.cnf', otherwise they'll be ignored. # !includedir /etc/mysql/conf.d/ Please, help me make it stable. Memory used /etc/mysql # free total used free shared buffers cached Mem: 32930800 32766424 164376 0 139208 23829196 -/+ buffers/cache: 8798020 24132780 Swap: 33553328 44660 33508668 Maybe my problem not in memory, but MySQL stops every day. As you can see, cache memory free 24 gb. Thank to Michael Hampton? for correction. Load overage on server 3.5. Maybe hdd or another problem? Maybe my config not optimal for 30gb InnoDB ? I'm already try mysqltuner and tunung-primer.sh , but they marked all green. Mysqltuner output mysqltuner >> MySQLTuner 1.0.1 - Major Hayden <[email protected]> >> Bug reports, feature requests, and downloads at http://mysqltuner.com/ >> Run with '--help' for additional options and output filtering -------- General Statistics -------------------------------------------------- [--] Skipped version check for MySQLTuner script [OK] Currently running supported MySQL version 5.5.24-9-log [OK] Operating on 64-bit architecture -------- Storage Engine Statistics ------------------------------------------- [--] Status: -Archive -BDB -Federated +InnoDB -ISAM -NDBCluster [--] Data in MyISAM tables: 112G (Tables: 1528) [--] Data in InnoDB tables: 39G (Tables: 340) [--] Data in PERFORMANCE_SCHEMA tables: 0B (Tables: 17) [!!] Total fragmented tables: 344 -------- Performance Metrics ------------------------------------------------- [--] Up for: 8h 18m 33s (14M q [478.333 qps], 259K conn, TX: 9B, RX: 5B) [--] Reads / Writes: 84% / 16% [--] Total buffers: 10.5G global + 81.1M per thread (200 max threads) [OK] Maximum possible memory usage: 26.3G (83% of installed RAM) [OK] Slow queries: 1% (259K/14M) [!!] Highest connection usage: 100% (201/200) [OK] Key buffer size / total MyISAM indexes: 1.5G/5.6G [OK] Key buffer hit rate: 100.0% (6B cached / 1M reads) [OK] Query cache efficiency: 74.3% (8M cached / 11M selects) [OK] Query cache prunes per day: 0 [OK] Sorts requiring temporary tables: 0% (0 temp sorts / 247K sorts) [!!] Joins performed without indexes: 106025 [!!] Temporary tables created on disk: 49% (351K on disk / 715K total) [OK] Thread cache hit rate: 99% (249 created / 259K connections) [!!] Table cache hit rate: 15% (2K open / 13K opened) [OK] Open file limit used: 15% (3K/20K) [OK] Table locks acquired immediately: 99% (4M immediate / 4M locks) [!!] InnoDB data size / buffer pool: 39.4G/5.9G -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance MySQL started within last 24 hours - recommendations may be inaccurate Reduce or eliminate persistent connections to reduce connection usage Adjust your join queries to always utilize indexes Temporary table size is already large - reduce result set size Reduce your SELECT DISTINCT queries without LIMIT clauses Increase table_cache gradually to avoid file descriptor limits Variables to adjust: max_connections (> 200) wait_timeout (< 600) interactive_timeout (< 600) join_buffer_size (> 5.0M, or always use indexes with joins) table_cache (> 10000) innodb_buffer_pool_size (>= 39G) Mysql primer output -- MYSQL PERFORMANCE TUNING PRIMER -- - By: Matthew Montgomery - MySQL Version 5.5.24-9-log x86_64 Uptime = 0 days 8 hrs 20 min 50 sec Avg. qps = 478 Total Questions = 14369568 Threads Connected = 16 Warning: Server has not been running for at least 48hrs. It may not be safe to use these recommendations To find out more information on how each of these runtime variables effects performance visit: http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html Visit http://www.mysql.com/products/enterprise/advisors.html for info about MySQL's Enterprise Monitoring and Advisory Service SLOW QUERIES The slow query log is enabled. Current long_query_time = 1.000000 sec. You have 260626 out of 14369701 that take longer than 1.000000 sec. to complete Your long_query_time seems to be fine BINARY UPDATE LOG The binary update log is enabled Binlog sync is not enabled, you could loose binlog records during a server crash WORKER THREADS Current thread_cache_size = 50 Current threads_cached = 45 Current threads_per_sec = 0 Historic threads_per_sec = 0 Your thread_cache_size is fine MAX CONNECTIONS Current max_connections = 200 Current threads_connected = 11 Historic max_used_connections = 201 The number of used connections is 100% of the configured maximum. You should raise max_connections INNODB STATUS Current InnoDB index space = 214 M Current InnoDB data space = 39.40 G Current InnoDB buffer pool free = 0 % Current innodb_buffer_pool_size = 5.85 G Depending on how much space your innodb indexes take up it may be safe to increase this value to up to 2 / 3 of total system memory MEMORY USAGE Max Memory Ever Allocated : 23.46 G Configured Max Per-thread Buffers : 15.84 G Configured Max Global Buffers : 7.54 G Configured Max Memory Limit : 23.39 G Physical Memory : 31.40 G Max memory limit seem to be within acceptable norms KEY BUFFER Current MyISAM index space = 5.61 G Current key_buffer_size = 1.47 G Key cache miss rate is 1 : 5578 Key buffer free ratio = 77 % Your key_buffer_size seems to be fine QUERY CACHE Query cache is enabled Current query_cache_size = 200 M Current query_cache_used = 101 M Current query_cache_limit = 50 M Current Query cache Memory fill ratio = 50.59 % Current query_cache_min_res_unit = 4 K MySQL won't cache query results that are larger than query_cache_limit in size SORT OPERATIONS Current sort_buffer_size = 64 M Current read_rnd_buffer_size = 256 K Sort buffer seems to be fine JOINS Current join_buffer_size = 5.00 M You have had 106606 queries where a join could not use an index properly You have had 8 joins without keys that check for key usage after each row join_buffer_size >= 4 M This is not advised You should enable "log-queries-not-using-indexes" Then look for non indexed joins in the slow query log. OPEN FILES LIMIT Current open_files_limit = 20210 files The open_files_limit should typically be set to at least 2x-3x that of table_cache if you have heavy MyISAM usage. Your open_files_limit value seems to be fine TABLE CACHE Current table_open_cache = 10000 tables Current table_definition_cache = 2000 tables You have a total of 1910 tables You have 2151 open tables. The table_cache value seems to be fine TEMP TABLES Current max_heap_table_size = 2.92 G Current tmp_table_size = 2.92 G Of 366426 temp tables, 49% were created on disk Perhaps you should increase your tmp_table_size and/or max_heap_table_size to reduce the number of disk-based temporary tables Note! BLOB and TEXT columns are not allow in memory tables. If you are using these columns raising these values might not impact your ratio of on disk temp tables. TABLE SCANS Current read_buffer_size = 3 M Current table scan ratio = 2846 : 1 read_buffer_size seems to be fine TABLE LOCKING Current Lock Wait ratio = 1 : 185 You may benefit from selective use of InnoDB. If you have long running SELECT's against MyISAM tables and perform frequent updates consider setting 'low_priority_updates=1'

    Read the article

1 2  | Next Page >