Search Results

Search found 13 results on 1 pages for 'blackrabbitcoder'.

Page 1/1 | 1 

  • A Trio of Presentations: Little Wonders, StyleCop, and LINQ/Lambdas

    - by James Michael Hare
    This week is a busy week for me.  First of all I’m giving another presentation on a LINQ/Lambda primer for the rest of the developers in my company.  Of Lambdas and LINQ View more presentations from BlackRabbitCoder Then this Saturday the 25th of June I’ll be reprising my Little Wonders presentation for the Kansas City Developers Camp.  If you are in the area I highly recommend attending and seeing the other great presentations as well.  Their link is here. Little Wonders View more presentations from BlackRabbitCoder Finally, this Monday the 27th I’ll be speaking at the Saint Louis .NET Users group, giving my Automating Code Standards Using StyleCop and FxCop presentation.  If you are in the Saint Louis area stop by!  There’s two other simultaneous presentations as well if they’re more suited to your interests.  The link for the SLDNUG is here. Automating C# Coding Standards using StyleCop and FxCop View more presentations from BlackRabbitCoder Tweet Technorati Tags: C#,.NET,LINQ,Lambda,StyleCop,FxCop,Little Wonders

    Read the article

  • The Great Divorce

    - by BlackRabbitCoder
    I have a confession to make: I've been in an abusive relationship for more than 17 years now.  Yes, I am not ashamed to admit it, but I'm finally doing something about it. I met her in college, she was new and sexy and amazingly fast -- and I'd never met anything like her before.  Her style and her power captivated me and I couldn't wait to learn more about her.  I took a chance on her, and though I learned a lot from her -- and will always be grateful for my time with her -- I think it's time to move on. Her name was C++, and she so outshone my previous love, C, that any thoughts of going back evaporated in the heat of this new romance.  She promised me she'd be gentle and not hurt me the way C did.  She promised me she'd clean-up after herself better than C did.  She promised me she'd be less enigmatic and easier to keep happy than C was.  But I was deceived.  Oh sure, as far as truth goes, it wasn't a complete lie.  To some extent she was more fun, more powerful, safer, and easier to maintain.  But it just wasn't good enough -- or at least it's not good enough now. I loved C++, some part of me still does, it's my first-love of programming languages and I recognize its raw power, its blazing speed, and its improvements over its predecessor.  But with today's hardware, at speeds we could only dream to conceive of twenty years ago, that need for speed -- at the cost of all else -- has died, and that has left my feelings for C++ moribund. If I ever need to write an operating system or a device driver, then I might need that speed.  But 99% of the time I don't.  I'm a business-type programmer and chances are 90% of you are too, and even the ones who need speed at all costs may be surprised by how much you sacrifice for that.   That's not to say that I don't want my software to perform, and it's not to say that in the business world we don't care about speed or that our job is somehow less difficult or technical.  There's many times we write programs to handle millions of real-time updates or handle thousands of financial transactions or tracking trading algorithms where every second counts.  But if I choose to write my code in C++ purely for speed chances are I'll never notice the speed increase -- and equally true chances are it will be far more prone to crash and far less easy to maintain.  Nearly without fail, it's the macro-optimizations you need, not the micro-optimizations.  If I choose to write a O(n2) algorithm when I could have used a O(n) algorithm -- that can kill me.  If I choose to go to the database to load a piece of unchanging data every time instead of caching it on first load -- that too can kill me.  And if I cross the network multiple times for pieces of data instead of getting it all at once -- yes that can also kill me.  But choosing an overly powerful and dangerous mid-level language to squeeze out every last drop of performance will realistically not make stock orders process any faster, and more likely than not open up the system to more risk of crashes and resource leaks. And that's when my love for C++ began to die.  When I noticed that I didn't need that speed anymore.  That that speed was really kind of a lie.  Sure, I can be super efficient and pack bits in a byte instead of using separate boolean values.  Sure, I can use an unsigned char instead of an int.  But in the grand scheme of things it doesn't matter as much as you think it does.  The key is maintainability, and that's where C++ failed me.  I like to tell the other developers I work with that there's two levels of correctness in coding: Is it immediately correct? Will it stay correct? That is, you can hack together any piece of code and make it correct to satisfy a task at hand, but if a new developer can't come in tomorrow and make a fairly significant change to it without jeopardizing that correctness, it won't stay correct. Some people laugh at me when I say I now prefer maintainability over speed.  But that is exactly the point.  If you focus solely on speed you tend to produce code that is much harder to maintain over the long hall, and that's a load of technical debt most shops can't afford to carry and end up completely scrapping code before it's time.  When good code is written well for maintainability, though, it can be correct both now and in the future. And you know the best part is?  My new love is nearly as fast as C++, and in some cases even faster -- and better than that, I know C# will treat me right.  Her creators have poured hundreds of thousands of hours of time into making her the sexy beast she is today.  They made her easy to understand and not an enigmatic mess.  They made her consistent and not moody and amorphous.  And they made her perform as fast as I care to go by optimizing her both at compile time and a run-time. Her code is so elegant and easy on the eyes that I'm not worried where she will run to or what she'll pull behind my back.  She is powerful enough to handle all my tasks, fast enough to execute them with blazing speed, maintainable enough so that I can rely on even fairly new peers to modify my work, and rich enough to allow me to satisfy any need.  C# doesn't ask me to clean up her messes!  She cleans up after herself and she tries to make my life easier for me by taking on most of those optimization tasks C++ asked me to take upon myself.  Now, there are many of you who would say that I am the cause of my own grief, that it was my fault C++ didn't behave because I didn't pay enough attention to her.  That I alone caused the pain she inflicted on me.  And to some extent, you have a point.  But she was so high maintenance, requiring me to know every twist and turn of her vast and unrestrained power that any wrong term or bout of forgetfulness was met with painful reminders that she wasn't going to watch my back when I made a mistake.  But C#, she loves me when I'm good, and she loves me when I'm bad, and together we make beautiful code that is both fast and safe. So that's why I'm leaving C++ behind.  She says she's changing for me, but I have no interest in what C++0x may bring.  Oh, I'll still keep in touch, and maybe I'll see her now and again when she brings her problems to my door and asks for some attention -- for I always have a soft spot for her, you see.  But she's out of my house now.  I have three kids and a dog and a cat, and all require me to clean up after them, why should I have to clean up after my programming language as well?

    Read the article

  • GWB | 30 Posts in 60 Days Update

    - by Staff of Geeks
    One month after the contest started, we definitely have some leaders and one blogger who has reached the mark.  Keep up the good work guys, I have really enjoyed the content being produced by our bloggers. Current Winners: Enrique Lima (37 posts) - http://geekswithblogs.net/enriquelima Almost There: Stuart Brierley (28 posts) - http://geekswithblogs.net/StuartBrierley Dave Campbell (26 posts) - http://geekswithblogs.net/WynApseTechnicalMusings Eric Nelson (23 posts) - http://geekswithblogs.net/iupdateable Coming Along: Liam McLennan (17 posts) - http://geekswithblogs.net/liammclennan Christopher House (13 posts) - http://geekswithblogs.net/13DaysaWeek mbcrump (13 posts) - http://geekswithblogs.net/mbcrump Steve Michelotti (10 posts) - http://geekswithblogs.net/michelotti Michael Freidgeim (9 posts) - http://geekswithblogs.net/mnf MarkPearl (9 posts) - http://geekswithblogs.net/MarkPearl Brian Schroer (8 posts) - http://geekswithblogs.net/brians Chris Williams (8 posts) - http://geekswithblogs.net/cwilliams CatherineRussell (7 posts) - http://geekswithblogs.net/CatherineRussell Shawn Cicoria (7 posts) - http://geekswithblogs.net/cicorias Matt Christian (7 posts) - http://geekswithblogs.net/CodeBlog James Michael Hare (7 posts) - http://geekswithblogs.net/BlackRabbitCoder John Blumenauer (7 posts) - http://geekswithblogs.net/jblumenauer Scott Dorman (7 posts) - http://geekswithblogs.net/sdorman   Technorati Tags: Standings,Geekswithblogs,30 in 60

    Read the article

  • C#/.NET Little Wonders: Of LINQ and Lambdas - A Presentation

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Today I’m giving a brief beginner’s guide to LINQ and Lambdas at the St. Louis .NET User’s Group so I thought I’d post the presentation here as well.  I updated the presentation a bit as well as added some notes on the query syntax.  Enjoy! The C#/.NET Fundaments: Of Lambdas and LINQ Presentation Of Lambdas and LINQ View more presentations from BlackRabbitCoder   Technorati Tags: C#, CSharp, .NET, Little Wonders, LINQ, Lambdas

    Read the article

  • ANTS Memory Profiler 7.0

    - by Sam Abraham
    In the next few lines, I would like to briefly review ANTS Memory Profiler 7.0.  I was honored to be extended the opportunity to review this valuable tool as part of the GeeksWithBlogs influencers Program, a quarterly award providing its recipients access to valuable tools and enabling them with an opportunity to provide a brief write-up reviewing the complimentary tools they receive.   Typical Usage   ANTS Memory Profiler 7.0 is very intuitive and easy to use for any user be it novice or expert. A simple yet comprehensive menu screen enables the selection of the appropriate program type to profile as well as the executable or site for this program.   A typical use case starts with establishing a baseline memory snapshot, which tells us the initial memory cost used by the program under normal or low activity conditions. We would then take a second snapshot after the program has performed an activity which we want to investigate for memory leaks. We can then compare the initial baseline snapshot against the snapshot when the program has completed processing the activity in question to study anomalies in memory that did not get freed-up after the program has completed its performed function. The following are some screenshots outlining the selection of the program to profile (an executable for this demonstration’s purposes).   Figure 1 - Getting Started   Figure 2 - Selecting an Application to Profile     Features and Options   Right after the second snapshot is generated, Memory Profiler gives us immediate access to information on memory fragmentation, size differences between snapshots, unmanaged memory allocation and statistics on the largest classes taking up un-freed memory space.   We would also have the option to itemize objects held in memory grouped by object types within which we can study the instances allocated of each type. Filtering options enable us to quickly narrow object instances we are interested in.   Figure 3 - Easily accessible Execution Memory Information   Figure 4 - Class List   Figure 5 - Instance List   Figure 6-  Retention Graph for a Particular Instance   Conclusion I greatly enjoyed the opportunity to evaluate ANTS Memory Profiler 7.0. The tool's intuitive User Interface design and easily accessible menu options enabled me to quickly identify problem areas where memory was left unfreed in my code.     Tutorials and References  FInd out more About ANTS Memory Profiler 7.0 http://www.red-gate.com/supportcenter/Product?p=ANTS Memory Profiler   Checkout what other reviewers of this valuable tool have already shared: http://geekswithblogs.net/BlackRabbitCoder/archive/2011/03/10/ants-memory-profiler-7.0.aspx http://geekswithblogs.net/mikebmcl/archive/2011/02/28/ants-memory-profiler-7.0-review.aspx

    Read the article

  • C#/.NET Little Wonders: Getting Caller Information

    - by James Michael Hare
    Originally posted on: http://geekswithblogs.net/BlackRabbitCoder/archive/2013/07/25/c.net-little-wonders-getting-caller-information.aspx Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. There are times when it is desirable to know who called the method or property you are currently executing.  Some applications of this could include logging libraries, or possibly even something more advanced that may server up different objects depending on who called the method. In the past, we mostly relied on the System.Diagnostics namespace and its classes such as StackTrace and StackFrame to see who our caller was, but now in C# 5, we can also get much of this data at compile-time. Determining the caller using the stack One of the ways of doing this is to examine the call stack.  The classes that allow you to examine the call stack have been around for a long time and can give you a very deep view of the calling chain all the way back to the beginning for the thread that has called you. You can get caller information by either instantiating the StackTrace class (which will give you the complete stack trace, much like you see when an exception is generated), or by using StackFrame which gets a single frame of the stack trace.  Both involve examining the call stack, which is a non-trivial task, so care should be done not to do this in a performance-intensive situation. For our simple example let's say we are going to recreate the wheel and construct our own logging framework.  Perhaps we wish to create a simple method Log which will log the string-ified form of an object and some information about the caller.  We could easily do this as follows: 1: static void Log(object message) 2: { 3: // frame 1, true for source info 4: StackFrame frame = new StackFrame(1, true); 5: var method = frame.GetMethod(); 6: var fileName = frame.GetFileName(); 7: var lineNumber = frame.GetFileLineNumber(); 8: 9: // we'll just use a simple Console write for now 10: Console.WriteLine("{0}({1}):{2} - {3}", 11: fileName, lineNumber, method.Name, message); 12: } So, what we are doing here is grabbing the 2nd stack frame (the 1st is our current method) using a 2nd argument of true to specify we want source information (if available) and then taking the information from the frame.  This works fine, and if we tested it out by calling from a file such as this: 1: // File c:\projects\test\CallerInfo\CallerInfo.cs 2:  3: public class CallerInfo 4: { 5: Log("Hello Logger!"); 6: } We'd see this: 1: c:\projects\test\CallerInfo\CallerInfo.cs(5):Main - Hello Logger! This works well, and in fact CallStack and StackFrame are still the best ways to examine deeper into the call stack.  But if you only want to get information on the caller of your method, there is another option… Determining the caller at compile-time In C# 5 (.NET 4.5) they added some attributes that can be supplied to optional parameters on a method to receive caller information.  These attributes can only be applied to methods with optional parameters with explicit defaults.  Then, as the compiler determines who is calling your method with these attributes, it will fill in the values at compile-time. These are the currently supported attributes available in the  System.Runtime.CompilerServices namespace": CallerFilePathAttribute – The path and name of the file that is calling your method. CallerLineNumberAttribute – The line number in the file where your method is being called. CallerMemberName – The member that is calling your method. So let’s take a look at how our Log method would look using these attributes instead: 1: static int Log(object message, 2: [CallerMemberName] string memberName = "", 3: [CallerFilePath] string fileName = "", 4: [CallerLineNumber] int lineNumber = 0) 5: { 6: // we'll just use a simple Console write for now 7: Console.WriteLine("{0}({1}):{2} - {3}", 8: fileName, lineNumber, memberName, message); 9: } Again, calling this from our sample Main would give us the same result: 1: c:\projects\test\CallerInfo\CallerInfo.cs(5):Main - Hello Logger! However, though this seems the same, there are a few key differences. First of all, there are only 3 supported attributes (at this time) that give you the file path, line number, and calling member.  Thus, it does not give you as rich of detail as a StackFrame (which can give you the calling type as well and deeper frames, for example).  Also, these are supported through optional parameters, which means we could call our new Log method like this: 1: // They're defaults, why not fill 'em in 2: Log("My message.", "Some member", "Some file", -13); In addition, since these attributes require optional parameters, they cannot be used in properties, only in methods. These caveats aside, they do let you get similar information inside of methods at a much greater speed!  How much greater?  Well lets crank through 1,000,000 iterations of each.  instead of logging to console, I’ll return the formatted string length of each.  Doing this, we get: 1: Time for 1,000,000 iterations with StackTrace: 5096 ms 2: Time for 1,000,000 iterations with Attributes: 196 ms So you see, using the attributes is much, much faster!  Nearly 25x faster in fact.  Summary There are a few ways to get caller information for a method.  The StackFrame allows you to get a comprehensive set of information spanning the whole call stack, but at a heavier cost.  On the other hand, the attributes allow you to quickly get at caller information baked in at compile-time, but to do so you need to create optional parameters in your methods to support it. Technorati Tags: Little Wonders,CSharp,C#,.NET,StackFrame,CallStack,CallerFilePathAttribute,CallerLineNumberAttribute,CallerMemberName

    Read the article

  • C#/.NET Little Pitfalls: The Dangers of Casting Boxed Values

    - by James Michael Hare
    Starting a new series to parallel the Little Wonders series.  In this series, I will examine some of the small pitfalls that can occasionally trip up developers. Introduction: Of Casts and Conversions What happens when we try to assign from an int and a double and vice-versa? 1: double pi = 3.14; 2: int theAnswer = 42; 3:  4: // implicit widening conversion, compiles! 5: double doubleAnswer = theAnswer; 6:  7: // implicit narrowing conversion, compiler error! 8: int intPi = pi; As you can see from the comments above, a conversion from a value type where there is no potential data loss is can be done with an implicit conversion.  However, when converting from one value type to another may result in a loss of data, you must make the conversion explicit so the compiler knows you accept this risk.  That is why the conversion from double to int will not compile with an implicit conversion, we can make the conversion explicit by adding a cast: 1: // explicit narrowing conversion using a cast, compiler 2: // succeeds, but results may have data loss: 3: int intPi = (int)pi; So for value types, the conversions (implicit and explicit) both convert the original value to a new value of the given type.  With widening and narrowing references, however, this is not the case.  Converting reference types is a bit different from converting value types.  First of all when you perform a widening or narrowing you don’t really convert the instance of the object, you just convert the reference itself to the wider or narrower reference type, but both the original and new reference type both refer back to the same object. Secondly, widening and narrowing for reference types refers the going down and up the class hierarchy instead of referring to precision as in value types.  That is, a narrowing conversion for a reference type means you are going down the class hierarchy (for example from Shape to Square) whereas a widening conversion means you are going up the class hierarchy (from Square to Shape).  1: var square = new Square(); 2:  3: // implicitly convers because all squares are shapes 4: // (that is, all subclasses can be referenced by a superclass reference) 5: Shape myShape = square; 6:  7: // implicit conversion not possible, not all shapes are squares! 8: // (that is, not all superclasses can be referenced by a subclass reference) 9: Square mySquare = (Square) myShape; So we had to cast the Shape back to Square because at that point the compiler has no way of knowing until runtime whether the Shape in question is truly a Square.  But, because the compiler knows that it’s possible for a Shape to be a Square, it will compile.  However, if the object referenced by myShape is not truly a Square at runtime, you will get an invalid cast exception. Of course, there are other forms of conversions as well such as user-specified conversions and helper class conversions which are beyond the scope of this post.  The main thing we want to focus on is this seemingly innocuous casting method of widening and narrowing conversions that we come to depend on every day and, in some cases, can bite us if we don’t fully understand what is going on!  The Pitfall: Conversions on Boxed Value Types Can Fail What if you saw the following code and – knowing nothing else – you were asked if it was legal or not, what would you think: 1: // assuming x is defined above this and this 2: // assignment is syntactically legal. 3: x = 3.14; 4:  5: // convert 3.14 to int. 6: int truncated = (int)x; You may think that since x is obviously a double (can’t be a float) because 3.14 is a double literal, but this is inaccurate.  Our x could also be dynamic and this would work as well, or there could be user-defined conversions in play.  But there is another, even simpler option that can often bite us: what if x is object? 1: object x; 2:  3: x = 3.14; 4:  5: int truncated = (int) x; On the surface, this seems fine.  We have a double and we place it into an object which can be done implicitly through boxing (no cast) because all types inherit from object.  Then we cast it to int.  This theoretically should be possible because we know we can explicitly convert a double to an int through a conversion process which involves truncation. But here’s the pitfall: when casting an object to another type, we are casting a reference type, not a value type!  This means that it will attempt to see at runtime if the value boxed and referred to by x is of type int or derived from type int.  Since it obviously isn’t (it’s a double after all) we get an invalid cast exception! Now, you may say this looks awfully contrived, but in truth we can run into this a lot if we’re not careful.  Consider using an IDataReader to read from a database, and then attempting to select a result row of a particular column type: 1: using (var connection = new SqlConnection("some connection string")) 2: using (var command = new SqlCommand("select * from employee", connection)) 3: using (var reader = command.ExecuteReader()) 4: { 5: while (reader.Read()) 6: { 7: // if the salary is not an int32 in the SQL database, this is an error! 8: // doesn't matter if short, long, double, float, reader [] returns object! 9: total += (int) reader["annual_salary"]; 10: } 11: } Notice that since the reader indexer returns object, if we attempt to convert using a cast to a type, we have to make darn sure we use the true, actual type or this will fail!  If the SQL database column is a double, float, short, etc this will fail at runtime with an invalid cast exception because it attempts to convert the object reference! So, how do you get around this?  There are two ways, you could first cast the object to its actual type (double), and then do a narrowing cast to on the value to int.  Or you could use a helper class like Convert which analyzes the actual run-time type and will perform a conversion as long as the type implements IConvertible. 1: object x; 2:  3: x = 3.14; 4:  5: // if you want to cast, must cast out of object to double, then 6: // cast convert. 7: int truncated = (int)(double) x; 8:  9: // or you can call a helper class like Convert which examines runtime 10: // type of the value being converted 11: int anotherTruncated = Convert.ToInt32(x); Summary You should always be careful when performing a conversion cast from values boxed in object that you are actually casting to the true type (or a sub-type). Since casting from object is a widening of the reference, be careful that you either know the exact, explicit type you expect to be held in the object, or instead avoid the cast and use a helper class to perform a safe conversion to the type you desire. Technorati Tags: C#,.NET,Pitfalls,Little Pitfalls,BlackRabbitCoder

    Read the article

  • C#/.NET Little Wonders: Comparer<T>.Default

    - by James Michael Hare
    I’ve been working with a wonderful team on a major release where I work, which has had the side-effect of occupying most of my spare time preparing, testing, and monitoring.  However, I do have this Little Wonder tidbit to offer today. Introduction The IComparable<T> interface is great for implementing a natural order for a data type.  It’s a very simple interface with a single method: 1: public interface IComparer<in T> 2: { 3: // Compare two instances of same type. 4: int Compare(T x, T y); 5: }  So what do we expect for the integer return value?  It’s a pseudo-relative measure of the ordering of x and y, which returns an integer value in much the same way C++ returns an integer result from the strcmp() c-style string comparison function: If x == y, returns 0. If x > y, returns > 0 (often +1, but not guaranteed) If x < y, returns < 0 (often –1, but not guaranteed) Notice that the comparison operator used to evaluate against zero should be the same comparison operator you’d use as the comparison operator between x and y.  That is, if you want to see if x > y you’d see if the result > 0. The Problem: Comparing With null Can Be Messy This gets tricky though when you have null arguments.  According to the MSDN, a null value should be considered equal to a null value, and a null value should be less than a non-null value.  So taking this into account we’d expect this instead: If x == y (or both null), return 0. If x > y (or y only is null), return > 0. If x < y (or x only is null), return < 0. But here’s the problem – if x is null, what happens when we attempt to call CompareTo() off of x? 1: // what happens if x is null? 2: x.CompareTo(y); It’s pretty obvious we’ll get a NullReferenceException here.  Now, we could guard against this before calling CompareTo(): 1: int result; 2:  3: // first check to see if lhs is null. 4: if (x == null) 5: { 6: // if lhs null, check rhs to decide on return value. 7: if (y == null) 8: { 9: result = 0; 10: } 11: else 12: { 13: result = -1; 14: } 15: } 16: else 17: { 18: // CompareTo() should handle a null y correctly and return > 0 if so. 19: result = x.CompareTo(y); 20: } Of course, we could shorten this with the ternary operator (?:), but even then it’s ugly repetitive code: 1: int result = (x == null) 2: ? ((y == null) ? 0 : -1) 3: : x.CompareTo(y); Fortunately, the null issues can be cleaned up by drafting in an external Comparer.  The Soltuion: Comparer<T>.Default You can always develop your own instance of IComparer<T> for the job of comparing two items of the same type.  The nice thing about a IComparer is its is independent of the things you are comparing, so this makes it great for comparing in an alternative order to the natural order of items, or when one or both of the items may be null. 1: public class NullableIntComparer : IComparer<int?> 2: { 3: public int Compare(int? x, int? y) 4: { 5: return (x == null) 6: ? ((y == null) ? 0 : -1) 7: : x.Value.CompareTo(y); 8: } 9: }  Now, if you want a custom sort -- especially on large-grained objects with different possible sort fields -- this is the best option you have.  But if you just want to take advantage of the natural ordering of the type, there is an easier way.  If the type you want to compare already implements IComparable<T> or if the type is System.Nullable<T> where T implements IComparable, there is a class in the System.Collections.Generic namespace called Comparer<T> which exposes a property called Default that will create a singleton that represents the default comparer for items of that type.  For example: 1: // compares integers 2: var intComparer = Comparer<int>.Default; 3:  4: // compares DateTime values 5: var dateTimeComparer = Comparer<DateTime>.Default; 6:  7: // compares nullable doubles using the null rules! 8: var nullableDoubleComparer = Comparer<double?>.Default;  This helps you avoid having to remember the messy null logic and makes it to compare objects where you don’t know if one or more of the values is null. This works especially well when creating say an IComparer<T> implementation for a large-grained class that may or may not contain a field.  For example, let’s say you want to create a sorting comparer for a stock open price, but if the market the stock is trading in hasn’t opened yet, the open price will be null.  We could handle this (assuming a reasonable Quote definition) like: 1: public class Quote 2: { 3: // the opening price of the symbol quoted 4: public double? Open { get; set; } 5:  6: // ticker symbol 7: public string Symbol { get; set; } 8:  9: // etc. 10: } 11:  12: public class OpenPriceQuoteComparer : IComparer<Quote> 13: { 14: // Compares two quotes by opening price 15: public int Compare(Quote x, Quote y) 16: { 17: return Comparer<double?>.Default.Compare(x.Open, y.Open); 18: } 19: } Summary Defining a custom comparer is often needed for non-natural ordering or defining alternative orderings, but when you just want to compare two items that are IComparable<T> and account for null behavior, you can use the Comparer<T>.Default comparer generator and you’ll never have to worry about correct null value sorting again.     Technorati Tags: C#,.NET,Little Wonders,BlackRabbitCoder,IComparable,Comparer

    Read the article

  • C#/.NET Little Wonders: Fun With Enum Methods

    - by James Michael Hare
    Once again lets dive into the Little Wonders of .NET, those small things in the .NET languages and BCL classes that make development easier by increasing readability, maintainability, and/or performance. So probably every one of us has used an enumerated type at one time or another in a C# program.  The enumerated types we create are a great way to represent that a value can be one of a set of discrete values (or a combination of those values in the case of bit flags). But the power of enum types go far beyond simple assignment and comparison, there are many methods in the Enum class (that all enum types “inherit” from) that can give you even more power when dealing with them. IsDefined() – check if a given value exists in the enum Are you reading a value for an enum from a data source, but are unsure if it is actually a valid value or not?  Casting won’t tell you this, and Parse() isn’t guaranteed to balk either if you give it an int or a combination of flags.  So what can we do? Let’s assume we have a small enum like this for result codes we want to return back from our business logic layer: 1: public enum ResultCode 2: { 3: Success, 4: Warning, 5: Error 6: } In this enum, Success will be zero (unless given another value explicitly), Warning will be one, and Error will be two. So what happens if we have code like this where perhaps we’re getting the result code from another data source (could be database, could be web service, etc)? 1: public ResultCode PerformAction() 2: { 3: // set up and call some method that returns an int. 4: int result = ResultCodeFromDataSource(); 5:  6: // this will suceed even if result is < 0 or > 2. 7: return (ResultCode) result; 8: } So what happens if result is –1 or 4?  Well, the cast does not fail, so what we end up with would be an instance of a ResultCode that would have a value that’s outside of the bounds of the enum constants we defined. This means if you had a block of code like: 1: switch (result) 2: { 3: case ResultType.Success: 4: // do success stuff 5: break; 6:  7: case ResultType.Warning: 8: // do warning stuff 9: break; 10:  11: case ResultType.Error: 12: // do error stuff 13: break; 14: } That you would hit none of these blocks (which is a good argument for always having a default in a switch by the way). So what can you do?  Well, there is a handy static method called IsDefined() on the Enum class which will tell you if an enum value is defined.  1: public ResultCode PerformAction() 2: { 3: int result = ResultCodeFromDataSource(); 4:  5: if (!Enum.IsDefined(typeof(ResultCode), result)) 6: { 7: throw new InvalidOperationException("Enum out of range."); 8: } 9:  10: return (ResultCode) result; 11: } In fact, this is often recommended after you Parse() or cast a value to an enum as there are ways for values to get past these methods that may not be defined. If you don’t like the syntax of passing in the type of the enum, you could clean it up a bit by creating an extension method instead that would allow you to call IsDefined() off any isntance of the enum: 1: public static class EnumExtensions 2: { 3: // helper method that tells you if an enum value is defined for it's enumeration 4: public static bool IsDefined(this Enum value) 5: { 6: return Enum.IsDefined(value.GetType(), value); 7: } 8: }   HasFlag() – an easier way to see if a bit (or bits) are set Most of us who came from the land of C programming have had to deal extensively with bit flags many times in our lives.  As such, using bit flags may be almost second nature (for a quick refresher on bit flags in enum types see one of my old posts here). However, in higher-level languages like C#, the need to manipulate individual bit flags is somewhat diminished, and the code to check for bit flag enum values may be obvious to an advanced developer but cryptic to a novice developer. For example, let’s say you have an enum for a messaging platform that contains bit flags: 1: // usually, we pluralize flags enum type names 2: [Flags] 3: public enum MessagingOptions 4: { 5: None = 0, 6: Buffered = 0x01, 7: Persistent = 0x02, 8: Durable = 0x04, 9: Broadcast = 0x08 10: } We can combine these bit flags using the bitwise OR operator (the ‘|’ pipe character): 1: // combine bit flags using 2: var myMessenger = new Messenger(MessagingOptions.Buffered | MessagingOptions.Broadcast); Now, if we wanted to check the flags, we’d have to test then using the bit-wise AND operator (the ‘&’ character): 1: if ((options & MessagingOptions.Buffered) == MessagingOptions.Buffered) 2: { 3: // do code to set up buffering... 4: // ... 5: } While the ‘|’ for combining flags is easy enough to read for advanced developers, the ‘&’ test tends to be easy for novice developers to get wrong.  First of all you have to AND the flag combination with the value, and then typically you should test against the flag combination itself (and not just for a non-zero)!  This is because the flag combination you are testing with may combine multiple bits, in which case if only one bit is set, the result will be non-zero but not necessarily all desired bits! Thanks goodness in .NET 4.0 they gave us the HasFlag() method.  This method can be called from an enum instance to test to see if a flag is set, and best of all you can avoid writing the bit wise logic yourself.  Not to mention it will be more readable to a novice developer as well: 1: if (options.HasFlag(MessagingOptions.Buffered)) 2: { 3: // do code to set up buffering... 4: // ... 5: } It is much more concise and unambiguous, thus increasing your maintainability and readability. It would be nice to have a corresponding SetFlag() method, but unfortunately generic types don’t allow you to specialize on Enum, which makes it a bit more difficult.  It can be done but you have to do some conversions to numeric and then back to the enum which makes it less of a payoff than having the HasFlag() method.  But if you want to create it for symmetry, it would look something like this: 1: public static T SetFlag<T>(this Enum value, T flags) 2: { 3: if (!value.GetType().IsEquivalentTo(typeof(T))) 4: { 5: throw new ArgumentException("Enum value and flags types don't match."); 6: } 7:  8: // yes this is ugly, but unfortunately we need to use an intermediate boxing cast 9: return (T)Enum.ToObject(typeof (T), Convert.ToUInt64(value) | Convert.ToUInt64(flags)); 10: } Note that since the enum types are value types, we need to assign the result to something (much like string.Trim()).  Also, you could chain several SetFlag() operations together or create one that takes a variable arg list if desired. Parse() and ToString() – transitioning from string to enum and back Sometimes, you may want to be able to parse an enum from a string or convert it to a string - Enum has methods built in to let you do this.  Now, many may already know this, but may not appreciate how much power are in these two methods. For example, if you want to parse a string as an enum, it’s easy and works just like you’d expect from the numeric types: 1: string optionsString = "Persistent"; 2:  3: // can use Enum.Parse, which throws if finds something it doesn't like... 4: var result = (MessagingOptions)Enum.Parse(typeof (MessagingOptions), optionsString); 5:  6: if (result == MessagingOptions.Persistent) 7: { 8: Console.WriteLine("It worked!"); 9: } Note that Enum.Parse() will throw if it finds a value it doesn’t like.  But the values it likes are fairly flexible!  You can pass in a single value, or a comma separated list of values for flags and it will parse them all and set all bits: 1: // for string values, can have one, or comma separated. 2: string optionsString = "Persistent, Buffered"; 3:  4: var result = (MessagingOptions)Enum.Parse(typeof (MessagingOptions), optionsString); 5:  6: if (result.HasFlag(MessagingOptions.Persistent) && result.HasFlag(MessagingOptions.Buffered)) 7: { 8: Console.WriteLine("It worked!"); 9: } Or you can parse in a string containing a number that represents a single value or combination of values to set: 1: // 3 is the combination of Buffered (0x01) and Persistent (0x02) 2: var optionsString = "3"; 3:  4: var result = (MessagingOptions) Enum.Parse(typeof (MessagingOptions), optionsString); 5:  6: if (result.HasFlag(MessagingOptions.Persistent) && result.HasFlag(MessagingOptions.Buffered)) 7: { 8: Console.WriteLine("It worked again!"); 9: } And, if you really aren’t sure if the parse will work, and don’t want to handle an exception, you can use TryParse() instead: 1: string optionsString = "Persistent, Buffered"; 2: MessagingOptions result; 3:  4: // try parse returns true if successful, and takes an out parm for the result 5: if (Enum.TryParse(optionsString, out result)) 6: { 7: if (result.HasFlag(MessagingOptions.Persistent) && result.HasFlag(MessagingOptions.Buffered)) 8: { 9: Console.WriteLine("It worked!"); 10: } 11: } So we covered parsing a string to an enum, what about reversing that and converting an enum to a string?  The ToString() method is the obvious and most basic choice for most of us, but did you know you can pass a format string for enum types that dictate how they are written as a string?: 1: MessagingOptions value = MessagingOptions.Buffered | MessagingOptions.Persistent; 2:  3: // general format, which is the default, 4: Console.WriteLine("Default : " + value); 5: Console.WriteLine("G (default): " + value.ToString("G")); 6:  7: // Flags format, even if type does not have Flags attribute. 8: Console.WriteLine("F (flags) : " + value.ToString("F")); 9:  10: // integer format, value as number. 11: Console.WriteLine("D (num) : " + value.ToString("D")); 12:  13: // hex format, value as hex 14: Console.WriteLine("X (hex) : " + value.ToString("X")); Which displays: 1: Default : Buffered, Persistent 2: G (default): Buffered, Persistent 3: F (flags) : Buffered, Persistent 4: D (num) : 3 5: X (hex) : 00000003 Now, you may not really see a difference here between G and F because I used a [Flags] enum, the difference is that the “F” option treats the enum as if it were flags even if the [Flags] attribute is not present.  Let’s take a non-flags enum like the ResultCode used earlier: 1: // yes, we can do this even if it is not [Flags] enum. 2: ResultCode value = ResultCode.Warning | ResultCode.Error; And if we run that through the same formats again we get: 1: Default : 3 2: G (default): 3 3: F (flags) : Warning, Error 4: D (num) : 3 5: X (hex) : 00000003 Notice that since we had multiple values combined, but it was not a [Flags] marked enum, the G and default format gave us a number instead of a value name.  This is because the value was not a valid single-value constant of the enum.  However, using the F flags format string, it broke out the value into its component flags even though it wasn’t marked [Flags]. So, if you want to get an enum to display appropriately for whether or not it has the [Flags] attribute, use G which is the default.  If you always want it to attempt to break down the flags, use F.  For numeric output, obviously D or  X are the best choice depending on whether you want decimal or hex. Summary Hopefully, you learned a couple of new tricks with using the Enum class today!  I’ll add more little wonders as I think of them and thanks for all the invaluable input!   Technorati Tags: C#,.NET,Little Wonders,Enum,BlackRabbitCoder

    Read the article

  • C#/.NET &ndash; Finding an Item&rsquo;s Index in IEnumerable&lt;T&gt;

    - by James Michael Hare
    Sorry for the long blogging hiatus.  First it was, of course, the holidays hustle and bustle, then my brother and his wife gave birth to their son, so I’ve been away from my blogging for two weeks. Background: Finding an item’s index in List<T> is easy… Many times in our day to day programming activities, we want to find the index of an item in a collection.  Now, if we have a List<T> and we’re looking for the item itself this is trivial: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // can find the exact item using IndexOf() 5: var pos = list.IndexOf(64); This will return the position of the item if it’s found, or –1 if not.  It’s easy to see how this works for primitive types where equality is well defined.  For complex types, however, it will attempt to compare them using EqualityComparer<T>.Default which, in a nutshell, relies on the object’s Equals() method. So what if we want to search for a condition instead of equality?  That’s also easy in a List<T> with the FindIndex() method: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // finds index of first even number or -1 if not found. 5: var pos = list.FindIndex(i => i % 2 == 0);   Problem: Finding an item’s index in IEnumerable<T> is not so easy... This is all well and good for lists, but what if we want to do the same thing for IEnumerable<T>?  A collection of IEnumerable<T> has no indexing, so there’s no direct method to find an item’s index.  LINQ, as powerful as it is, gives us many tools to get us this information, but not in one step.  As with almost any problem involving collections, there are several ways to accomplish the same goal.  And once again as with almost any problem involving collections, the choice of the solution somewhat depends on the situation. So let’s look at a few possible alternatives.  I’m going to express each of these as extension methods for simplicity and consistency. Solution: The TakeWhile() and Count() combo One of the things you can do is to perform a TakeWhile() on the list as long as your find condition is not true, and then do a Count() of the items it took.  The only downside to this method is that if the item is not in the list, the index will be the full Count() of items, and not –1.  So if you don’t know the size of the list beforehand, this can be confusing. 1: // a collection of extra extension methods off IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // Finds an item in the collection, similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: // note if item not found, result is length and not -1! 8: return list.TakeWhile(i => !finder(i)).Count(); 9: } 10: } Personally, I don’t like switching the paradigm of not found away from –1, so this is one of my least favorites.  Solution: Select with index Many people don’t realize that there is an alternative form of the LINQ Select() method that will provide you an index of the item being selected: 1: list.Select( (item,index) => do something here with the item and/or index... ) This can come in handy, but must be treated with care.  This is because the index provided is only as pertains to the result of previous operations (if any).  For example: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // you'd hope this would give you the indexes of the even numbers 5: // which would be 2, 3, 8, but in reality it gives you 0, 1, 2 6: list.Where(item => item % 2 == 0).Select((item,index) => index); The reason the example gives you the collection { 0, 1, 2 } is because the where clause passes over any items that are odd, and therefore only the even items are given to the select and only they are given indexes. Conversely, we can’t select the index and then test the item in a Where() clause, because then the Where() clause would be operating on the index and not the item! So, what we have to do is to select the item and index and put them together in an anonymous type.  It looks ugly, but it works: 1: // extensions defined on IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // finds an item in a collection, similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: // if you don't name the anonymous properties they are the variable names 8: return list.Select((item, index) => new { item, index }) 9: .Where(p => finder(p.item)) 10: .Select(p => p.index + 1) 11: .FirstOrDefault() - 1; 12: } 13: }     So let’s look at this, because i know it’s convoluted: First Select() joins the items and their indexes into an anonymous type. Where() filters that list to only the ones matching the predicate. Second Select() picks the index of the matches and adds 1 – this is to distinguish between not found and first item. FirstOrDefault() returns the first item found from the previous clauses or default (zero) if not found. Subtract one so that not found (zero) will be –1, and first item (one) will be zero. The bad thing is, this is ugly as hell and creates anonymous objects for each item tested until it finds the match.  This concerns me a bit but we’ll defer judgment until compare the relative performances below. Solution: Convert ToList() and use FindIndex() This solution is easy enough.  We know any IEnumerable<T> can be converted to List<T> using the LINQ extension method ToList(), so we can easily convert the collection to a list and then just use the FindIndex() method baked into List<T>. 1: // a collection of extension methods for IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // find the index of an item in the collection similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: return list.ToList().FindIndex(finder); 8: } 9: } This solution is simplicity itself!  It is very concise and elegant and you need not worry about anyone misinterpreting what it’s trying to do (as opposed to the more convoluted LINQ methods above). But the main thing I’m concerned about here is the performance hit to allocate the List<T> in the ToList() call, but once again we’ll explore that in a second. Solution: Roll your own FindIndex() for IEnumerable<T> Of course, you can always roll your own FindIndex() method for IEnumerable<T>.  It would be a very simple for loop which scans for the item and counts as it goes.  There’s many ways to do this, but one such way might look like: 1: // extension methods for IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // Finds an item matching a predicate in the enumeration, much like List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: int index = 0; 8: foreach (var item in list) 9: { 10: if (finder(item)) 11: { 12: return index; 13: } 14:  15: index++; 16: } 17:  18: return -1; 19: } 20: } Well, it’s not quite simplicity, and those less familiar with LINQ may prefer it since it doesn’t include all of the lambdas and behind the scenes iterators that come with deferred execution.  But does having this long, blown out method really gain us much in performance? Comparison of Proposed Solutions So we’ve now seen four solutions, let’s analyze their collective performance.  I took each of the four methods described above and run them over 100,000 iterations of lists of size 10, 100, 1000, and 10000 and here’s the performance results.  Then I looked for targets at the begining of the list (best case), middle of the list (the average case) and not in the list (worst case as must scan all of the list). Each of the times below is the average time in milliseconds for one execution as computer over the 100,000 iterations: Searches Matching First Item (Best Case)   10 100 1000 10000 TakeWhile 0.0003 0.0003 0.0003 0.0003 Select 0.0005 0.0005 0.0005 0.0005 ToList 0.0002 0.0003 0.0013 0.0121 Manual 0.0001 0.0001 0.0001 0.0001   Searches Matching Middle Item (Average Case)   10 100 1000 10000 TakeWhile 0.0004 0.0020 0.0191 0.1889 Select 0.0008 0.0042 0.0387 0.3802 ToList 0.0002 0.0007 0.0057 0.0562 Manual 0.0002 0.0013 0.0129 0.1255   Searches Where Not Found (Worst Case)   10 100 1000 10000 TakeWhile 0.0006 0.0039 0.0381 0.3770 Select 0.0012 0.0081 0.0758 0.7583 ToList 0.0002 0.0012 0.0100 0.0996 Manual 0.0003 0.0026 0.0253 0.2514   Notice something interesting here, you’d think the “roll your own” loop would be the most efficient, but it only wins when the item is first (or very close to it) regardless of list size.  In almost all other cases though and in particular the average case and worst case, the ToList()/FindIndex() combo wins for performance, even though it is creating some temporary memory to hold the List<T>.  If you examine the algorithm, the reason why is most likely because once it’s in a ToList() form, internally FindIndex() scans the internal array which is much more efficient to iterate over.  Thus, it takes a one time performance hit (not including any GC impact) to create the List<T> but after that the performance is much better. Summary If you’re concerned about too many throw-away objects, you can always roll your own FindIndex() method, but for sheer simplicity and overall performance, using the ToList()/FindIndex() combo performs best on nearly all list sizes in the average and worst cases.    Technorati Tags: C#,.NET,Litte Wonders,BlackRabbitCoder,Software,LINQ,List

    Read the article

  • C#/.NET Little Wonders: Constraining Generics with Where Clause

    - by James Michael Hare
    Back when I was primarily a C++ developer, I loved C++ templates.  The power of writing very reusable generic classes brought the art of programming to a brand new level.  Unfortunately, when .NET 1.0 came about, they didn’t have a template equivalent.  With .NET 2.0 however, we finally got generics, which once again let us spread our wings and program more generically in the world of .NET However, C# generics behave in some ways very differently from their C++ template cousins.  There is a handy clause, however, that helps you navigate these waters to make your generics more powerful. The Problem – C# Assumes Lowest Common Denominator In C++, you can create a template and do nearly anything syntactically possible on the template parameter, and C++ will not check if the method/fields/operations invoked are valid until you declare a realization of the type.  Let me illustrate with a C++ example: 1: // compiles fine, C++ makes no assumptions as to T 2: template <typename T> 3: class ReverseComparer 4: { 5: public: 6: int Compare(const T& lhs, const T& rhs) 7: { 8: return rhs.CompareTo(lhs); 9: } 10: }; Notice that we are invoking a method CompareTo() off of template type T.  Because we don’t know at this point what type T is, C++ makes no assumptions and there are no errors. C++ tends to take the path of not checking the template type usage until the method is actually invoked with a specific type, which differs from the behavior of C#: 1: // this will NOT compile! C# assumes lowest common denominator. 2: public class ReverseComparer<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } So why does C# give us a compiler error even when we don’t yet know what type T is?  This is because C# took a different path in how they made generics.  Unless you specify otherwise, for the purposes of the code inside the generic method, T is basically treated like an object (notice I didn’t say T is an object). That means that any operations, fields, methods, properties, etc that you attempt to use of type T must be available at the lowest common denominator type: object.  Now, while object has the broadest applicability, it also has the fewest specific.  So how do we allow our generic type placeholder to do things more than just what object can do? Solution: Constraint the Type With Where Clause So how do we get around this in C#?  The answer is to constrain the generic type placeholder with the where clause.  Basically, the where clause allows you to specify additional constraints on what the actual type used to fill the generic type placeholder must support. You might think that narrowing the scope of a generic means a weaker generic.  In reality, though it limits the number of types that can be used with the generic, it also gives the generic more power to deal with those types.  In effect these constraints says that if the type meets the given constraint, you can perform the activities that pertain to that constraint with the generic placeholders. Constraining Generic Type to Interface or Superclass One of the handiest where clause constraints is the ability to specify the type generic type must implement a certain interface or be inherited from a certain base class. For example, you can’t call CompareTo() in our first C# generic without constraints, but if we constrain T to IComparable<T>, we can: 1: public class ReverseComparer<T> 2: where T : IComparable<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } Now that we’ve constrained T to an implementation of IComparable<T>, this means that our variables of generic type T may now call any members specified in IComparable<T> as well.  This means that the call to CompareTo() is now legal. If you constrain your type, also, you will get compiler warnings if you attempt to use a type that doesn’t meet the constraint.  This is much better than the syntax error you would get within C++ template code itself when you used a type not supported by a C++ template. Constraining Generic Type to Only Reference Types Sometimes, you want to assign an instance of a generic type to null, but you can’t do this without constraints, because you have no guarantee that the type used to realize the generic is not a value type, where null is meaningless. Well, we can fix this by specifying the class constraint in the where clause.  By declaring that a generic type must be a class, we are saying that it is a reference type, and this allows us to assign null to instances of that type: 1: public static class ObjectExtensions 2: { 3: public static TOut Maybe<TIn, TOut>(this TIn value, Func<TIn, TOut> accessor) 4: where TOut : class 5: where TIn : class 6: { 7: return (value != null) ? accessor(value) : null; 8: } 9: } In the example above, we want to be able to access a property off of a reference, and if that reference is null, pass the null on down the line.  To do this, both the input type and the output type must be reference types (yes, nullable value types could also be considered applicable at a logical level, but there’s not a direct constraint for those). Constraining Generic Type to only Value Types Similarly to constraining a generic type to be a reference type, you can also constrain a generic type to be a value type.  To do this you use the struct constraint which specifies that the generic type must be a value type (primitive, struct, enum, etc). Consider the following method, that will convert anything that is IConvertible (int, double, string, etc) to the value type you specify, or null if the instance is null. 1: public static T? ConvertToNullable<T>(IConvertible value) 2: where T : struct 3: { 4: T? result = null; 5:  6: if (value != null) 7: { 8: result = (T)Convert.ChangeType(value, typeof(T)); 9: } 10:  11: return result; 12: } Because T was constrained to be a value type, we can use T? (System.Nullable<T>) where we could not do this if T was a reference type. Constraining Generic Type to Require Default Constructor You can also constrain a type to require existence of a default constructor.  Because by default C# doesn’t know what constructors a generic type placeholder does or does not have available, it can’t typically allow you to call one.  That said, if you give it the new() constraint, it will mean that the type used to realize the generic type must have a default (no argument) constructor. Let’s assume you have a generic adapter class that, given some mappings, will adapt an item from type TFrom to type TTo.  Because it must create a new instance of type TTo in the process, we need to specify that TTo has a default constructor: 1: // Given a set of Action<TFrom,TTo> mappings will map TFrom to TTo 2: public class Adapter<TFrom, TTo> : IEnumerable<Action<TFrom, TTo>> 3: where TTo : class, new() 4: { 5: // The list of translations from TFrom to TTo 6: public List<Action<TFrom, TTo>> Translations { get; private set; } 7:  8: // Construct with empty translation and reverse translation sets. 9: public Adapter() 10: { 11: // did this instead of auto-properties to allow simple use of initializers 12: Translations = new List<Action<TFrom, TTo>>(); 13: } 14:  15: // Add a translator to the collection, useful for initializer list 16: public void Add(Action<TFrom, TTo> translation) 17: { 18: Translations.Add(translation); 19: } 20:  21: // Add a translator that first checks a predicate to determine if the translation 22: // should be performed, then translates if the predicate returns true 23: public void Add(Predicate<TFrom> conditional, Action<TFrom, TTo> translation) 24: { 25: Translations.Add((from, to) => 26: { 27: if (conditional(from)) 28: { 29: translation(from, to); 30: } 31: }); 32: } 33:  34: // Translates an object forward from TFrom object to TTo object. 35: public TTo Adapt(TFrom sourceObject) 36: { 37: var resultObject = new TTo(); 38:  39: // Process each translation 40: Translations.ForEach(t => t(sourceObject, resultObject)); 41:  42: return resultObject; 43: } 44:  45: // Returns an enumerator that iterates through the collection. 46: public IEnumerator<Action<TFrom, TTo>> GetEnumerator() 47: { 48: return Translations.GetEnumerator(); 49: } 50:  51: // Returns an enumerator that iterates through a collection. 52: IEnumerator IEnumerable.GetEnumerator() 53: { 54: return GetEnumerator(); 55: } 56: } Notice, however, you can’t specify any other constructor, you can only specify that the type has a default (no argument) constructor. Summary The where clause is an excellent tool that gives your .NET generics even more power to perform tasks higher than just the base "object level" behavior.  There are a few things you cannot specify with constraints (currently) though: Cannot specify the generic type must be an enum. Cannot specify the generic type must have a certain property or method without specifying a base class or interface – that is, you can’t say that the generic must have a Start() method. Cannot specify that the generic type allows arithmetic operations. Cannot specify that the generic type requires a specific non-default constructor. In addition, you cannot overload a template definition with different, opposing constraints.  For example you can’t define a Adapter<T> where T : struct and Adapter<T> where T : class.  Hopefully, in the future we will get some of these things to make the where clause even more useful, but until then what we have is extremely valuable in making our generics more user friendly and more powerful!   Technorati Tags: C#,.NET,Little Wonders,BlackRabbitCoder,where,generics

    Read the article

  • C#/.NET Little Wonders: The Useful But Overlooked Sets

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  Today we will be looking at two set implementations in the System.Collections.Generic namespace: HashSet<T> and SortedSet<T>.  Even though most people think of sets as mathematical constructs, they are actually very useful classes that can be used to help make your application more performant if used appropriately. A Background From Math In mathematical terms, a set is an unordered collection of unique items.  In other words, the set {2,3,5} is identical to the set {3,5,2}.  In addition, the set {2, 2, 4, 1} would be invalid because it would have a duplicate item (2).  In addition, you can perform set arithmetic on sets such as: Intersections: The intersection of two sets is the collection of elements common to both.  Example: The intersection of {1,2,5} and {2,4,9} is the set {2}. Unions: The union of two sets is the collection of unique items present in either or both set.  Example: The union of {1,2,5} and {2,4,9} is {1,2,4,5,9}. Differences: The difference of two sets is the removal of all items from the first set that are common between the sets.  Example: The difference of {1,2,5} and {2,4,9} is {1,5}. Supersets: One set is a superset of a second set if it contains all elements that are in the second set. Example: The set {1,2,5} is a superset of {1,5}. Subsets: One set is a subset of a second set if all the elements of that set are contained in the first set. Example: The set {1,5} is a subset of {1,2,5}. If We’re Not Doing Math, Why Do We Care? Now, you may be thinking: why bother with the set classes in C# if you have no need for mathematical set manipulation?  The answer is simple: they are extremely efficient ways to determine ownership in a collection. For example, let’s say you are designing an order system that tracks the price of a particular equity, and once it reaches a certain point will trigger an order.  Now, since there’s tens of thousands of equities on the markets, you don’t want to track market data for every ticker as that would be a waste of time and processing power for symbols you don’t have orders for.  Thus, we just want to subscribe to the stock symbol for an equity order only if it is a symbol we are not already subscribed to. Every time a new order comes in, we will check the list of subscriptions to see if the new order’s stock symbol is in that list.  If it is, great, we already have that market data feed!  If not, then and only then should we subscribe to the feed for that symbol. So far so good, we have a collection of symbols and we want to see if a symbol is present in that collection and if not, add it.  This really is the essence of set processing, but for the sake of comparison, let’s say you do a list instead: 1: // class that handles are order processing service 2: public sealed class OrderProcessor 3: { 4: // contains list of all symbols we are currently subscribed to 5: private readonly List<string> _subscriptions = new List<string>(); 6:  7: ... 8: } Now whenever you are adding a new order, it would look something like: 1: public PlaceOrderResponse PlaceOrder(Order newOrder) 2: { 3: // do some validation, of course... 4:  5: // check to see if already subscribed, if not add a subscription 6: if (!_subscriptions.Contains(newOrder.Symbol)) 7: { 8: // add the symbol to the list 9: _subscriptions.Add(newOrder.Symbol); 10: 11: // do whatever magic is needed to start a subscription for the symbol 12: } 13:  14: // place the order logic! 15: } What’s wrong with this?  In short: performance!  Finding an item inside a List<T> is a linear - O(n) – operation, which is not a very performant way to find if an item exists in a collection. (I used to teach algorithms and data structures in my spare time at a local university, and when you began talking about big-O notation you could immediately begin to see eyes glossing over as if it was pure, useless theory that would not apply in the real world, but I did and still do believe it is something worth understanding well to make the best choices in computer science). Let’s think about this: a linear operation means that as the number of items increases, the time that it takes to perform the operation tends to increase in a linear fashion.  Put crudely, this means if you double the collection size, you might expect the operation to take something like the order of twice as long.  Linear operations tend to be bad for performance because they mean that to perform some operation on a collection, you must potentially “visit” every item in the collection.  Consider finding an item in a List<T>: if you want to see if the list has an item, you must potentially check every item in the list before you find it or determine it’s not found. Now, we could of course sort our list and then perform a binary search on it, but sorting is typically a linear-logarithmic complexity – O(n * log n) - and could involve temporary storage.  So performing a sort after each add would probably add more time.  As an alternative, we could use a SortedList<TKey, TValue> which sorts the list on every Add(), but this has a similar level of complexity to move the items and also requires a key and value, and in our case the key is the value. This is why sets tend to be the best choice for this type of processing: they don’t rely on separate keys and values for ordering – so they save space – and they typically don’t care about ordering – so they tend to be extremely performant.  The .NET BCL (Base Class Library) has had the HashSet<T> since .NET 3.5, but at that time it did not implement the ISet<T> interface.  As of .NET 4.0, HashSet<T> implements ISet<T> and a new set, the SortedSet<T> was added that gives you a set with ordering. HashSet<T> – For Unordered Storage of Sets When used right, HashSet<T> is a beautiful collection, you can think of it as a simplified Dictionary<T,T>.  That is, a Dictionary where the TKey and TValue refer to the same object.  This is really an oversimplification, but logically it makes sense.  I’ve actually seen people code a Dictionary<T,T> where they store the same thing in the key and the value, and that’s just inefficient because of the extra storage to hold both the key and the value. As it’s name implies, the HashSet<T> uses a hashing algorithm to find the items in the set, which means it does take up some additional space, but it has lightning fast lookups!  Compare the times below between HashSet<T> and List<T>: Operation HashSet<T> List<T> Add() O(1) O(1) at end O(n) in middle Remove() O(1) O(n) Contains() O(1) O(n)   Now, these times are amortized and represent the typical case.  In the very worst case, the operations could be linear if they involve a resizing of the collection – but this is true for both the List and HashSet so that’s a less of an issue when comparing the two. The key thing to note is that in the general case, HashSet is constant time for adds, removes, and contains!  This means that no matter how large the collection is, it takes roughly the exact same amount of time to find an item or determine if it’s not in the collection.  Compare this to the List where almost any add or remove must rearrange potentially all the elements!  And to find an item in the list (if unsorted) you must search every item in the List. So as you can see, if you want to create an unordered collection and have very fast lookup and manipulation, the HashSet is a great collection. And since HashSet<T> implements ICollection<T> and IEnumerable<T>, it supports nearly all the same basic operations as the List<T> and can use the System.Linq extension methods as well. All we have to do to switch from a List<T> to a HashSet<T>  is change our declaration.  Since List and HashSet support many of the same members, chances are we won’t need to change much else. 1: public sealed class OrderProcessor 2: { 3: private readonly HashSet<string> _subscriptions = new HashSet<string>(); 4:  5: // ... 6:  7: public PlaceOrderResponse PlaceOrder(Order newOrder) 8: { 9: // do some validation, of course... 10: 11: // check to see if already subscribed, if not add a subscription 12: if (!_subscriptions.Contains(newOrder.Symbol)) 13: { 14: // add the symbol to the list 15: _subscriptions.Add(newOrder.Symbol); 16: 17: // do whatever magic is needed to start a subscription for the symbol 18: } 19: 20: // place the order logic! 21: } 22:  23: // ... 24: } 25: Notice, we didn’t change any code other than the declaration for _subscriptions to be a HashSet<T>.  Thus, we can pick up the performance improvements in this case with minimal code changes. SortedSet<T> – Ordered Storage of Sets Just like HashSet<T> is logically similar to Dictionary<T,T>, the SortedSet<T> is logically similar to the SortedDictionary<T,T>. The SortedSet can be used when you want to do set operations on a collection, but you want to maintain that collection in sorted order.  Now, this is not necessarily mathematically relevant, but if your collection needs do include order, this is the set to use. So the SortedSet seems to be implemented as a binary tree (possibly a red-black tree) internally.  Since binary trees are dynamic structures and non-contiguous (unlike List and SortedList) this means that inserts and deletes do not involve rearranging elements, or changing the linking of the nodes.  There is some overhead in keeping the nodes in order, but it is much smaller than a contiguous storage collection like a List<T>.  Let’s compare the three: Operation HashSet<T> SortedSet<T> List<T> Add() O(1) O(log n) O(1) at end O(n) in middle Remove() O(1) O(log n) O(n) Contains() O(1) O(log n) O(n)   The MSDN documentation seems to indicate that operations on SortedSet are O(1), but this seems to be inconsistent with its implementation and seems to be a documentation error.  There’s actually a separate MSDN document (here) on SortedSet that indicates that it is, in fact, logarithmic in complexity.  Let’s put it in layman’s terms: logarithmic means you can double the collection size and typically you only add a single extra “visit” to an item in the collection.  Take that in contrast to List<T>’s linear operation where if you double the size of the collection you double the “visits” to items in the collection.  This is very good performance!  It’s still not as performant as HashSet<T> where it always just visits one item (amortized), but for the addition of sorting this is a good thing. Consider the following table, now this is just illustrative data of the relative complexities, but it’s enough to get the point: Collection Size O(1) Visits O(log n) Visits O(n) Visits 1 1 1 1 10 1 4 10 100 1 7 100 1000 1 10 1000   Notice that the logarithmic – O(log n) – visit count goes up very slowly compare to the linear – O(n) – visit count.  This is because since the list is sorted, it can do one check in the middle of the list, determine which half of the collection the data is in, and discard the other half (binary search).  So, if you need your set to be sorted, you can use the SortedSet<T> just like the HashSet<T> and gain sorting for a small performance hit, but it’s still faster than a List<T>. Unique Set Operations Now, if you do want to perform more set-like operations, both implementations of ISet<T> support the following, which play back towards the mathematical set operations described before: IntersectWith() – Performs the set intersection of two sets.  Modifies the current set so that it only contains elements also in the second set. UnionWith() – Performs a set union of two sets.  Modifies the current set so it contains all elements present both in the current set and the second set. ExceptWith() – Performs a set difference of two sets.  Modifies the current set so that it removes all elements present in the second set. IsSupersetOf() – Checks if the current set is a superset of the second set. IsSubsetOf() – Checks if the current set is a subset of the second set. For more information on the set operations themselves, see the MSDN description of ISet<T> (here). What Sets Don’t Do Don’t get me wrong, sets are not silver bullets.  You don’t really want to use a set when you want separate key to value lookups, that’s what the IDictionary implementations are best for. Also sets don’t store temporal add-order.  That is, if you are adding items to the end of a list all the time, your list is ordered in terms of when items were added to it.  This is something the sets don’t do naturally (though you could use a SortedSet with an IComparer with a DateTime but that’s overkill) but List<T> can. Also, List<T> allows indexing which is a blazingly fast way to iterate through items in the collection.  Iterating over all the items in a List<T> is generally much, much faster than iterating over a set. Summary Sets are an excellent tool for maintaining a lookup table where the item is both the key and the value.  In addition, if you have need for the mathematical set operations, the C# sets support those as well.  The HashSet<T> is the set of choice if you want the fastest possible lookups but don’t care about order.  In contrast the SortedSet<T> will give you a sorted collection at a slight reduction in performance.   Technorati Tags: C#,.Net,Little Wonders,BlackRabbitCoder,ISet,HashSet,SortedSet

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

1