Search Results

Search found 3 results on 1 pages for 'browsercaps'.

Page 1/1 | 1 

  • Using the Ocean Browsercaps files with .NET 4

    - by Craig
    I have been trying to use the Ocean browsercaps files from http://owenbrady.net/browsercaps/ in a ASP.NET 4 application. When I drop the files into the App_Browsers folder I get the error The browser or gateway element with ID 'docomon505i' cannot be found. Are these files compatible with .NET4 or am I doing something wrong. The documentation is sparse.

    Read the article

  • Use ASP.NET 4 Browser Definitions with ASP.NET 3.5

    - by Stephen Walther
    We updated the browser definitions files included with ASP.NET 4 to include information on recent browsers and devices such as Google Chrome and the iPhone. You can use these browser definition files with earlier versions of ASP.NET such as ASP.NET 3.5. The updated browser definition files, and instructions for installing them, can be found here: http://aspnet.codeplex.com/releases/view/41420 The changes in the browser definition files can cause backwards compatibility issues when you upgrade an ASP.NET 3.5 web application to ASP.NET 4. If you encounter compatibility issues, you can install the old browser definition files in your ASP.NET 4 application. The old browser definition files are included in the download file referenced above. What’s New in the ASP.NET 4 Browser Definition Files The complete set of browsers supported by the new ASP.NET 4 browser definition files is represented by the following figure:     If you look carefully at the figure, you’ll notice that we added browser definitions for several types of recent browsers such as Internet Explorer 8, Firefox 3.5, Google Chrome, Opera 10, and Safari 4. Furthermore, notice that we now include browser definitions for several of the most popular mobile devices: BlackBerry, IPhone, IPod, and Windows Mobile (IEMobile). The mobile devices appear in the figure with a purple background color. To improve performance, we removed a whole lot of outdated browser definitions for old cell phones and mobile devices. We also cleaned up the information contained in the browser files. Here are some of the browser features that you can detect: Are you a mobile device? <%=Request.Browser.IsMobileDevice %> Are you an IPhone? <%=Request.Browser.MobileDeviceModel == "IPhone" %> What version of JavaScript do you support? <%=Request.Browser["javascriptversion"] %> What layout engine do you use? <%=Request.Browser["layoutEngine"] %>   Here’s what you would get if you displayed the value of these properties using Internet Explorer 8: Here’s what you get when you use Google Chrome: Testing Browser Settings When working with browser definition files, it is useful to have some way to test the capability information returned when you request a page with different browsers. You can use the following method to return the HttpBrowserCapabilities the corresponds to a particular user agent string and set of browser headers: public HttpBrowserCapabilities GetBrowserCapabilities(string userAgent, NameValueCollection headers) { HttpBrowserCapabilities browserCaps = new HttpBrowserCapabilities(); Hashtable hashtable = new Hashtable(180, StringComparer.OrdinalIgnoreCase); hashtable[string.Empty] = userAgent; // The actual method uses client target browserCaps.Capabilities = hashtable; var capsFactory = new System.Web.Configuration.BrowserCapabilitiesFactory(); capsFactory.ConfigureBrowserCapabilities(headers, browserCaps); capsFactory.ConfigureCustomCapabilities(headers, browserCaps); return browserCaps; } At the end of this blog entry, there is a link to download a simple Visual Studio 2008 project – named Browser Definition Test -- that uses this method to display capability information for arbitrary user agent strings. For example, if you enter the user agent string for an iPhone then you get the results in the following figure: The Browser Definition Test application enables you to submit a user-agent string and display a table of browser capabilities information. The browser definition files contain sample user-agent strings for each browser definition. I got the iPhone user-agent string from the comments in the iphone.browser file. Enumerating Browser Definitions Someone asked in the comments whether or not there is a way to enumerate all of the browser definitions. You can do this if you ware willing to use a little reflection and read a private property. The browser definition files in the config\browsers folder get parsed into a class named BrowserCapabilitesFactory. After you run the aspnet_regbrowsers tool, you can see the source for this class in the config\browser folder by opening a file named BrowserCapsFactory.cs. The BrowserCapabilitiesFactoryBase class has a protected property named BrowserElements that represents a Hashtable of all of the browser definitions. Here's how you can read this protected property and display the ID for all of the browser definitions: var propInfo = typeof(BrowserCapabilitiesFactory).GetProperty("BrowserElements", BindingFlags.NonPublic | BindingFlags.Instance); Hashtable browserDefinitions = (Hashtable)propInfo.GetValue(new BrowserCapabilitiesFactory(), null); foreach (var key in browserDefinitions.Keys) { Response.Write("" + key); } If you run this code using Visual Studio 2008 then you get the following results: You get a huge number of outdated browsers and devices. In all, 449 browser definitions are listed. If you run this code using Visual Studio 2010 then you get the following results: In the case of Visual Studio 2010, all the old browsers and devices have been removed and you get only 19 browser definitions. Conclusion The updated browser definition files included in ASP.NET 4 provide more accurate information for recent browsers and devices. If you would like to test the new browser definitions with different user-agent strings then I recommend that you download the Browser Definition Test project: Browser Definition Test Project

    Read the article

  • ASP.NET Web Forms Extensibility: Providers

    - by Ricardo Peres
    Introduction This will be the first of a number of posts on ASP.NET extensibility. At this moment I don’t know exactly how many will be and I only know a couple of subjects that I want to talk about, so more will come in the next days. I have the sensation that the providers offered by ASP.NET are not widely know, although everyone uses, for example, sessions, they may not be aware of the extensibility points that Microsoft included. This post won’t go into details of how to configure and extend each of the providers, but will hopefully give some pointers on that direction. Canonical These are the most widely known and used providers, coming from ASP.NET 1, chances are, you have used them already. Good support for invoking client side, either from a .NET application or from JavaScript. Lots of server-side controls use them, such as the Login control for example. Membership The Membership provider is responsible for managing registered users, including creating new ones, authenticating them, changing passwords, etc. ASP.NET comes with two implementations, one that uses a SQL Server database and another that uses the Active Directory. The base class is Membership and new providers are registered on the membership section on the Web.config file, as well as parameters for specifying minimum password lengths, complexities, maximum age, etc. One reason for creating a custom provider would be, for example, storing membership information in a different database engine. 1: <membership defaultProvider="MyProvider"> 2: <providers> 3: <add name="MyProvider" type="MyClass, MyAssembly"/> 4: </providers> 5: </membership> Role The Role provider assigns roles to authenticated users. The base class is Role and there are three out of the box implementations: XML-based, SQL Server and Windows-based. Also registered on Web.config through the roleManager section, where you can also say if your roles should be cached on a cookie. If you want your roles to come from a different place, implement a custom provider. 1: <roleManager defaultProvider="MyProvider"> 2: <providers> 3: <add name="MyProvider" type="MyClass, MyAssembly" /> 4: </providers> 5: </roleManager> Profile The Profile provider allows defining a set of properties that will be tied and made available to authenticated or even anonymous ones, which must be tracked by using anonymous authentication. The base class is Profile and the only included implementation stores these settings in a SQL Server database. Configured through profile section, where you also specify the properties to make available, a custom provider would allow storing these properties in different locations. 1: <profile defaultProvider="MyProvider"> 2: <providers> 3: <add name="MyProvider" type="MyClass, MyAssembly"/> 4: </providers> 5: </profile> Basic OK, I didn’t know what to call these, so Basic is probably as good as a name as anything else. Not supported client-side (doesn’t even make sense). Session The Session provider allows storing data tied to the current “session”, which is normally created when a user first accesses the site, even when it is not yet authenticated, and remains all the way. The base class and only included implementation is SessionStateStoreProviderBase and it is capable of storing data in one of three locations: In the process memory (default, not suitable for web farms or increased reliability); A SQL Server database (best for reliability and clustering); The ASP.NET State Service, which is a Windows Service that is installed with the .NET Framework (ok for clustering). The configuration is made through the sessionState section. By adding a custom Session provider, you can store the data in different locations – think for example of a distributed cache. 1: <sessionState customProvider=”MyProvider”> 2: <providers> 3: <add name=”MyProvider” type=”MyClass, MyAssembly” /> 4: </providers> 5: </sessionState> Resource A not so known provider, allows you to change the origin of localized resource elements. By default, these come from RESX files and are used whenever you use the Resources expression builder or the GetGlobalResourceObject and GetLocalResourceObject methods, but if you implement a custom provider, you can have these elements come from some place else, such as a database. The base class is ResourceProviderFactory and there’s only one internal implementation which uses these RESX files. Configuration is through the globalization section. 1: <globalization resourceProviderFactoryType="MyClass, MyAssembly" /> Health Monitoring Health Monitoring is also probably not so well known, and actually not a good name for it. First, in order to understand what it does, you have to know that ASP.NET fires “events” at specific times and when specific things happen, such as when logging in, an exception is raised. These are not user interface events and you can create your own and fire them, nothing will happen, but the Health Monitoring provider will detect it. You can configure it to do things when certain conditions are met, such as a number of events being fired in a certain amount of time. You define these rules and route them to a specific provider, which must inherit from WebEventProvider. Out of the box implementations include sending mails, logging to a SQL Server database, writing to the Windows Event Log, Windows Management Instrumentation, the IIS 7 Trace infrastructure or the debugger Trace. Its configuration is achieved by the healthMonitoring section and a reason for implementing a custom provider would be, for example, locking down a web application in the event of a significant number of failed login attempts occurring in a small period of time. 1: <healthMonitoring> 2: <providers> 3: <add name="MyProvider" type="MyClass, MyAssembly"/> 4: </providers> 5: </healthMonitoring> Sitemap The Sitemap provider allows defining the site’s navigation structure and associated required permissions for each node, in a tree-like fashion. Usually this is statically defined, and the included provider allows it, by supplying this structure in a Web.sitemap XML file. The base class is SiteMapProvider and you can extend it in order to supply you own source for the site’s structure, which may even be dynamic. Its configuration must be done through the siteMap section. 1: <siteMap defaultProvider="MyProvider"> 2: <providers><add name="MyProvider" type="MyClass, MyAssembly" /> 3: </providers> 4: </siteMap> Web Part Personalization Web Parts are better known by SharePoint users, but since ASP.NET 2.0 they are included in the core Framework. Web Parts are server-side controls that offer certain possibilities of configuration by clients visiting the page where they are located. The infrastructure handles this configuration per user or globally for all users and this provider is responsible for just that. The base class is PersonalizationProvider and the only included implementation stores settings on SQL Server. Add new providers through the personalization section. 1: <webParts> 2: <personalization defaultProvider="MyProvider"> 3: <providers> 4: <add name="MyProvider" type="MyClass, MyAssembly"/> 5: </providers> 6: </personalization> 7: </webParts> Build The Build provider is responsible for compiling whatever files are present on your web folder. There’s a base class, BuildProvider, and, as can be expected, internal implementations for building pages (ASPX), master pages (Master), user web controls (ASCX), handlers (ASHX), themes (Skin), XML Schemas (XSD), web services (ASMX, SVC), resources (RESX), browser capabilities files (Browser) and so on. You would write a build provider if you wanted to generate code from any kind of non-code file so that you have strong typing at development time. Configuration goes on the buildProviders section and it is per extension. 1: <buildProviders> 2: <add extension=".ext" type="MyClass, MyAssembly” /> 3: </buildProviders> New in ASP.NET 4 Not exactly new since they exist since 2010, but in ASP.NET terms, still new. Output Cache The Output Cache for ASPX pages and ASCX user controls is now extensible, through the Output Cache provider, which means you can implement a custom mechanism for storing and retrieving cached data, for example, in a distributed fashion. The base class is OutputCacheProvider and the only implementation is private. Configuration goes on the outputCache section and on each page and web user control you can choose the provider you want to use. 1: <caching> 2: <outputCache defaultProvider="MyProvider"> 3: <providers> 4: <add name="MyProvider" type="MyClass, MyAssembly"/> 5: </providers> 6: </outputCache> 7: </caching> Request Validation A big change introduced in ASP.NET 4 (and refined in 4.5, by the way) is the introduction of extensible request validation, by means of a Request Validation provider. This means we are not limited to either enabling or disabling event validation for all pages or for a specific page, but we now have fine control over each of the elements of the request, including cookies, headers, query string and form values. The base provider class is RequestValidator and the configuration goes on the httpRuntime section. 1: <httpRuntime requestValidationType="MyClass, MyAssembly" /> Browser Capabilities The Browser Capabilities provider is new in ASP.NET 4, although the concept exists from ASP.NET 2. The idea is to map a browser brand and version to its supported capabilities, such as JavaScript version, Flash support, ActiveX support, and so on. Previously, this was all hardcoded in .Browser files located in %WINDIR%\Microsoft.NET\Framework(64)\vXXXXX\Config\Browsers, but now you can have a class inherit from HttpCapabilitiesProvider and implement your own mechanism. Register in on the browserCaps section. 1: <browserCaps provider="MyClass, MyAssembly" /> Encoder The Encoder provider is responsible for encoding every string that is sent to the browser on a page or header. This includes for example converting special characters for their standard codes and is implemented by the base class HttpEncoder. Another implementation takes care of Anti Cross Site Scripting (XSS) attacks. Build your own by inheriting from one of these classes if you want to add some additional processing to these strings. The configuration will go on the httpRuntime section. 1: <httpRuntime encoderType="MyClass, MyAssembly" /> Conclusion That’s about it for ASP.NET providers. It was by no means a thorough description, but I hope I managed to raise your interest on this subject. There are lots of pointers on the Internet, so I only included direct references to the Framework classes and configuration sections. Stay tuned for more extensibility!

    Read the article

1