Search Results

Search found 4 results on 1 pages for 'ccat'.

Page 1/1 | 1 

  • Moving a window that can't be dragged by the title bar?

    - by ccat
    I have Fallout Collection and I am trying to run it windowed because of the low resolution. When I change the mode to windowed via the .ini file, however, it starts the game with the window shoved into the upper left corner of my screen. Clicking the title bar of the window just clicks back into the game program. So how can I move it to the center of my screen? I am using Windows 7 professional 64-bit.

    Read the article

  • Moving a game in windowed mode that can't be dragged by the title bar.

    - by ccat
    I have Fallout Collection and I am trying to run it windowed because of the low resolution. When I change the mode to windowed via the .ini file, however, it boots the game window shoved into the upper left corner of my screen. I can't click the title bar of the window because it just clicks back into the game program. So how can I move it to the center of my screen? I am using Windows 7 professional 64-bit.

    Read the article

  • Python: (sampling with replacement): efficient algorithm to extract the set of UNIQUE N-tuples from a set

    - by Homunculus Reticulli
    I have a set of items, from which I want to select DISSIMILAR tuples (more on the definition of dissimilar touples later). The set could contain potentially several thousand items, although typically, it would contain only a few hundreds. I am trying to write a generic algorithm that will allow me to select N items to form an N-tuple, from the original set. The new set of selected N-tuples should be DISSIMILAR. A N-tuple A is said to be DISSIMILAR to another N-tuple B if and only if: Every pair (2-tuple) that occurs in A DOES NOT appear in B Note: For this algorithm, A 2-tuple (pair) is considered SIMILAR/IDENTICAL if it contains the same elements, i.e. (x,y) is considered the same as (y,x). This is a (possible variation on the) classic Urn Problem. A trivial (pseudocode) implementation of this algorithm would be something along the lines of def fetch_unique_tuples(original_set, tuple_size): while True: # randomly select [tuple_size] items from the set to create first set # create a key or hash from the N elements and store in a set # store selected N-tuple in a container if end_condition_met: break I don't think this is the most efficient way of doing this - and though I am no algorithm theorist, I suspect that the time for this algorithm to run is NOT O(n) - in fact, its probably more likely to be O(n!). I am wondering if there is a more efficient way of implementing such an algo, and preferably, reducing the time to O(n). Actually, as Mark Byers pointed out there is a second variable m, which is the size of the number of elements being selected. This (i.e. m) will typically be between 2 and 5. Regarding examples, here would be a typical (albeit shortened) example: original_list = ['CAGG', 'CTTC', 'ACCT', 'TGCA', 'CCTG', 'CAAA', 'TGCC', 'ACTT', 'TAAT', 'CTTG', 'CGGC', 'GGCC', 'TCCT', 'ATCC', 'ACAG', 'TGAA', 'TTTG', 'ACAA', 'TGTC', 'TGGA', 'CTGC', 'GCTC', 'AGGA', 'TGCT', 'GCGC', 'GCGG', 'AAAG', 'GCTG', 'GCCG', 'ACCA', 'CTCC', 'CACG', 'CATA', 'GGGA', 'CGAG', 'CCCC', 'GGTG', 'AAGT', 'CCAC', 'AACA', 'AATA', 'CGAC', 'GGAA', 'TACC', 'AGTT', 'GTGG', 'CGCA', 'GGGG', 'GAGA', 'AGCC', 'ACCG', 'CCAT', 'AGAC', 'GGGT', 'CAGC', 'GATG', 'TTCG'] Select 3-tuples from the original list should produce a list (or set) similar to: [('CAGG', 'CTTC', 'ACCT') ('CAGG', 'TGCA', 'CCTG') ('CAGG', 'CAAA', 'TGCC') ('CAGG', 'ACTT', 'ACCT') ('CAGG', 'CTTG', 'CGGC') .... ('CTTC', 'TGCA', 'CAAA') ] [[Edit]] Actually, in constructing the example output, I have realized that the earlier definition I gave for UNIQUENESS was incorrect. I have updated my definition and have introduced a new metric of DISSIMILARITY instead, as a result of this finding.

    Read the article

  • Python: (sampling with replacement): efficient algorithm to extract the set of DISSIMILAR N-tuples from a set

    - by Homunculus Reticulli
    I have a set of items, from which I want to select DISSIMILAR tuples (more on the definition of dissimilar touples later). The set could contain potentially several thousand items, although typically, it would contain only a few hundreds. I am trying to write a generic algorithm that will allow me to select N items to form an N-tuple, from the original set. The new set of selected N-tuples should be DISSIMILAR. A N-tuple A is said to be DISSIMILAR to another N-tuple B if and only if: Every pair (2-tuple) that occurs in A DOES NOT appear in B Note: For this algorithm, A 2-tuple (pair) is considered SIMILAR/IDENTICAL if it contains the same elements, i.e. (x,y) is considered the same as (y,x). This is a (possible variation on the) classic Urn Problem. A trivial (pseudocode) implementation of this algorithm would be something along the lines of def fetch_unique_tuples(original_set, tuple_size): while True: # randomly select [tuple_size] items from the set to create first set # create a key or hash from the N elements and store in a set # store selected N-tuple in a container if end_condition_met: break I don't think this is the most efficient way of doing this - and though I am no algorithm theorist, I suspect that the time for this algorithm to run is NOT O(n) - in fact, its probably more likely to be O(n!). I am wondering if there is a more efficient way of implementing such an algo, and preferably, reducing the time to O(n). Actually, as Mark Byers pointed out there is a second variable m, which is the size of the number of elements being selected. This (i.e. m) will typically be between 2 and 5. Regarding examples, here would be a typical (albeit shortened) example: original_list = ['CAGG', 'CTTC', 'ACCT', 'TGCA', 'CCTG', 'CAAA', 'TGCC', 'ACTT', 'TAAT', 'CTTG', 'CGGC', 'GGCC', 'TCCT', 'ATCC', 'ACAG', 'TGAA', 'TTTG', 'ACAA', 'TGTC', 'TGGA', 'CTGC', 'GCTC', 'AGGA', 'TGCT', 'GCGC', 'GCGG', 'AAAG', 'GCTG', 'GCCG', 'ACCA', 'CTCC', 'CACG', 'CATA', 'GGGA', 'CGAG', 'CCCC', 'GGTG', 'AAGT', 'CCAC', 'AACA', 'AATA', 'CGAC', 'GGAA', 'TACC', 'AGTT', 'GTGG', 'CGCA', 'GGGG', 'GAGA', 'AGCC', 'ACCG', 'CCAT', 'AGAC', 'GGGT', 'CAGC', 'GATG', 'TTCG'] # Select 3-tuples from the original list should produce a list (or set) similar to: [('CAGG', 'CTTC', 'ACCT') ('CAGG', 'TGCA', 'CCTG') ('CAGG', 'CAAA', 'TGCC') ('CAGG', 'ACTT', 'ACCT') ('CAGG', 'CTTG', 'CGGC') .... ('CTTC', 'TGCA', 'CAAA') ] [[Edit]] Actually, in constructing the example output, I have realized that the earlier definition I gave for UNIQUENESS was incorrect. I have updated my definition and have introduced a new metric of DISSIMILARITY instead, as a result of this finding.

    Read the article

1