Search Results

Search found 7672 results on 307 pages for 'compiler optimization'.

Page 1/307 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Can I get a C++ Compiler to instantiate objects at compile time

    - by gam3
    I am writing some code that has a very large number of reasonably simple objects and I would like them the be created at compile time. I would think that a compiler would be able to do this, but I have not been able to figure out how. In C I could do the the following: #include <stdio.h> typedef struct data_s { int a; int b; char *c; } info; info list[] = { 1, 2, "a", 3, 4, "b", }; main() { int i; for (i = 0; i < sizeof(list)/sizeof(*list); i++) { printf("%d %s\n", i, list[i].c); } } Using #C++* each object has it constructor called rather than just being layed out in memory. #include <iostream> using std::cout; using std::endl; class Info { const int a; const int b; const char *c; public: Info(const int, const int, const char *); const int get_a() { return a; }; const int get_b() { return b; }; const char *get_c() const { return c; }; }; Info::Info(const int a, const int b, const char *c) : a(a), b(b), c(c) {}; Info list[] = { Info(1, 2, "a"), Info(3, 4, "b"), }; main() { for (int i = 0; i < sizeof(list)/sizeof(*list); i++) { cout << i << " " << list[i].get_c() << endl; } } I just don't see what information is not available for the compiler to completely instantiate these objects at compile time, so I assume I am missing something.

    Read the article

  • Write a compiler for a language that looks ahead and multiple files?

    - by acidzombie24
    In my language I can use a class variable in my method when the definition appears below the method. It can also call methods below my method and etc. There are no 'headers'. Take this C# example. class A { public void callMethods() { print(); B b; b.notYetSeen(); public void print() { Console.Write("v = {0}", v); } int v=9; } class B { public void notYetSeen() { Console.Write("notYetSeen()\n"); } } How should I compile that? what i was thinking is: pass1: convert everything to an AST pass2: go through all classes and build a list of define classes/variable/etc pass3: go through code and check if there's any errors such as undefined variable, wrong use etc and create my output But it seems like for this to work I have to do pass 1 and 2 for ALL files before doing pass3. Also it feels like a lot of work to do until I find a syntax error (other than the obvious that can be done at parse time such as forgetting to close a brace or writing 0xLETTERS instead of a hex value). My gut says there is some other way. Note: I am using bison/flex to generate my compiler.

    Read the article

  • Search Engine Optimization - The Importance of Page Optimization in Search Engine Optimization

    In order for your website to rank well, your internal linking structure is critical to your success. This is covered some of the theory for this in various articles and blogs about Page Structure of a website, which said how you should map out the physical linking structure, but in this guide I will explain more about the importance of interlinking your pages, while using your targeted keyword in your anchor text.

    Read the article

  • Can compiler optimization introduce bugs ?

    - by ereOn
    Hi, Today I had a discussion with a friend of mine and we debated for a couple of hours about "compiler optimization". I defended the point that sometimes, a compiler optimization might introduce bugs or at least, undesired behavior. My friend totally disagreed, saying that "compiler are built by smart people and do smart things" and thus, can never go wrong. He didn't convinced my at all, but I have to admit I lack of real-life examples to strengthen my point. Who is right here ? If I am, do you have any real-life example where a compiler optimization produced a bug in the resulting software ? If I'm mistaking, should I stop programming and learn fishing instead ? Thank you !

    Read the article

  • Performance and Optimization Isn’t Evil

    - by Reed
    Donald Knuth is a fairly amazing guy.  I consider him one of the most influential contributors to computer science of all time.  Unfortunately, most of the time I hear his name, I cringe.  This is because it’s typically somebody quoting a small portion of one of his famous statements on optimization: “premature optimization is the root of all evil.” I mention that this is only a portion of the entire quote, and, as such, I feel that Knuth is being quoted out of context.  Optimization is important.  It is a critical part of every software development effort, and should never be ignored.  A developer who ignores optimization is not a professional.  Every developer should understand optimization – know what to optimize, when to optimize it, and how to think about code in a way that is intelligent and productive from day one. I want to start by discussing my own, personal motivation here.  I recently wrote about a performance issue I ran across, and was slammed by multiple comments and emails that effectively boiled down to: “You’re an idiot.  Premature optimization is the root of all evil.  This doesn’t matter.”  It didn’t matter that I discovered this while measuring in a profiler, and that it was a portion of my code base that can take “many hours to complete.”  Even so, multiple people instantly jump to “it’s premature – it doesn’t matter.” This is a common thread I see.  For example, StackOverflow has many pages of posts with answers that boil down to (mis)quoting Knuth.  In fact, just about any question relating to a performance related issue gets this quote thrown at it immediately – whether it deserves it or not.  That being said, I did receive some positive comments and emails as well.  Many people want to understand how to optimize their code, approaches to take, tools and techniques they can use, and any other advice they can discover. First, lets get back to Knuth – I mentioned before that Knuth is being quoted out of context.  Lets start by looking at the entire quote from his 1974 paper Structured Programming with go to Statements: “We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%. A good programmer will not be lulled into complacency by such reasoning, he will be wise to look carefully at the critical code; but only after that code has been identified.” Ironically, if you read Knuth’s original paper, this statement was made in the middle of a discussion of how Knuth himself had changed how he approaches optimization.  It was never a statement saying “don’t optimize”, but rather, “optimizing intelligently provides huge advantages.”  His approach had three benefits: “a) it doesn’t take long” … “b) the payoff is real”, c) you can “be less efficient in the other parts of my programs, which therefore are more readable and more easily written and debugged.” Looking at Knuth’s premise here, and reading that section of his paper, really leads to a few observations: Optimization is important  “he will be wise to look carefully at the critical code” Normally, 3% of your code – three lines out of every 100 you write, are “critical code” and will require some optimization: “we should not pass up our opportunities in that critical 3%” Optimization, if done well, should not be time consuming: “it doesn’t take long” Optimization, if done correctly, provides real benefits: “the payoff is real” None of this is new information.  People who care about optimization have been discussing this for years – for example, Rico Mariani’s Designing For Performance (a fantastic article) discusses many of the same issues very intelligently. That being said, many developers seem unable or unwilling to consider optimization.  Many others don’t seem to know where to start.  As such, I’m going to spend some time writing about optimization – what is it, how should we think about it, and what can we do to improve our own code.

    Read the article

  • Title Tag Optimization For SEO - (Search Engine Optimization)

    In this article we have discussed the importance of the title tag in search engine optimization and further we have discussed important techniques for the title tag optimization that can get good results for search engine optimization. Title tag optimization can play a dramatic role in increasing the ranking of a web page in search engine results pages.

    Read the article

  • Benchmark for website speed optimization

    - by gowri
    I working on website speed optimization. I mostly used 3 tools for analyzing speed of optimization. Speed analyzing Tools: Google pagespeed tool Yslow Firefox extenstion Web Page Performance Test I am measuring performance using above tool and benchmark result as below like before and after. Before optimization : Google PageSpeed Insights score : 53/100 Web Page Performance Test : 55/100 (First View : 10.710s, Repeat view : 6.387s ) Yahoo Overall performance score : 68 Stage 1 After optimization : Google PageSpeed Insights score : 88/100 Web Page Performance Test : 88/100 (First View : 6.733s, Repeat view : 1.908s ) Yahoo Overall performance score : 80 My question is ? Am i doing correct way ? What is the best way of benchmark for speed optimization ? Is there any standard ? Is there any much better tool for analyzing speed ?

    Read the article

  • Automatically find compiler options for fastest exe on given machine?

    - by dehmann
    Is there a method to automatically find the best compiler options (on a given machine), which result in the fastest possible executable? Naturally, I use g++ -O3, but there are additional flags that may make the code run faster, e.g. -ffast-math and others, some of which are hardware-dependent. Does anyone know some code I can put in my configure.ac file (GNU autotools), so that the flags will be added to the Makefile automatically by the ./configure command? In addition to automatically determining the best flags, I would be interested in some useful compiler flags that are good to use as a default for most optimized executables.

    Read the article

  • Is comparing an OO compiler to a SQL compiler/optimizer valid?

    - by Brad
    I'm now doing a lot of SQL development at my new job where as before I was doing Object Oriented desktop app stuff. I keep running across very large scripts (thousands of lines) and wanting to refactor in some way. I am seeing that SQL is a different sort of beast and it's probably fine to have these big scripts for the most part but while explaining this to me people are also insisting that the whole idea of refactoring is bad. That stuff like the .NET compiler are actually burdened by refactored code and that a big wall of code is more efficient and better design than code designed for reuse, readability and scalability. The other argument is that OO compilers are almost dangerously inefficient and don't have efficient memory management or runs too many CPU instructions compared to older "simpler" compilers and compared to SQL. Are these valid complaints? Even if some compiler like a C compiler is modestly more "efficient" (whatever that means on this high of a level without seeing code) would you want to write applications in C over C# or Java? Is comparing an OO compiler to a SQL compiler/optimizer even valid?

    Read the article

  • How to write a very basic compiler [closed]

    - by Ali
    Possible Duplicate: Best Online resources to learn about Compilers? What would be the best way to learn about compilers, and executable formats? Advanced compilers like gcc compile codes into machine readable files according to the language in which the code has been written (e.g. C, C++, etc). In fact, they interpret the meaning of each codes according to library and functions of the corresponding languages. Correct me if I'm wrong. I wish to better understand compilers by writing a very basic compiler (probably in C) to compile a static file (e.g. Hello World in a text file). I tried some tutorials and books, but all of them are for practical cases. They deal with compiling dynamic codes with meanings connected with the corresponding language. How can I write a basic compiler to convert a static text into a machine readable file? The next step will be introducing variables into the compiler; imagine that we want to write a compiler which compile only some functions of a language. Introducing practical tutorials and resources is highly appreciated :-)

    Read the article

  • Keywords Optimization For Website Optimization

    Saying that you need to do website optimization sounds like saying you need to get healthy. To get healthy we do 2 things: diet management and exercise. Lets start with diet management. Keywords are like food for your WebPages. This article explains the role of keywords in website optimization.

    Read the article

  • Learning to implement dynamic language compiler

    - by TriArc
    I'm interested in learning how to create a compiler for a dynamic language. Most compiler books, college courses and articles/tutorials I've come across are specifically for statically typed languages. I've thought of a few ways to do it, but I'd like to know how it's usually done. I know type inferencing is a pretty common strategy, but what about others? Where can I find out more about how to create a dynamically typed language?

    Read the article

  • Why would this Lua optimization hack help?

    - by Ian Boyd
    i'm looking over a document that describes various techniques to improve performance of Lua script code, and i'm shocked that such tricks would be required. (Although i'm quoting Lua, i've seen similar hacks in Javascript). Why would this optimization be required: For instance, the code for i = 1, 1000000 do local x = math.sin(i) end runs 30% slower than this one: local sin = math.sin for i = 1, 1000000 do local x = sin(i) end They're re-declaring sin function locally. Why would this be helpful? It's the job of the compiler to do that anyway. Why is the programmer having to do the compiler's job? i've seen similar things in Javascript; and so obviously there must be a very good reason why the interpreting compiler isn't doing its job. What is it? i see it repeatedly in the Lua environment i'm fiddling in; people redeclaring variables as local: local strfind = strfind local strlen = strlen local gsub = gsub local pairs = pairs local ipairs = ipairs local type = type local tinsert = tinsert local tremove = tremove local unpack = unpack local max = max local min = min local floor = floor local ceil = ceil local loadstring = loadstring local tostring = tostring local setmetatable = setmetatable local getmetatable = getmetatable local format = format local sin = math.sin What is going on here that people have to do the work of the compiler? Is the compiler confused by how to find format? Why is this an issue that a programmer has to deal with? Why would this not have been taken care of in 1993? i also seem to have hit a logical paradox: Optimizatin should not be done without profiling Lua has no ability to be profiled Lua should not be optimized

    Read the article

  • Learning to implement dynamically typed language compiler

    - by TriArc
    I'm interested in learning how to create a compiler for a dynamically typed language. Most compiler books, college courses and articles/tutorials I've come across are specifically for statically typed languages. I've thought of a few ways to do it, but I'd like to know how it's usually done. I know type inferencing is a pretty common strategy, but what about others? Where can I find out more about how to create a dynamically typed language? Edit 1: I meant dynamically typed. Sorry about the confusion. I've written toy compilers for statically typed languages and written some interpreters for dynamically typed languages. Now, I'm interested in learning more about creating compilers for a dynamically typed language. I'm specifically experimenting with LLVM and since I need to specify the type of every method and argument, I'm thinking of ways to implement a dynamically typed language on something like LLVM.

    Read the article

  • Compiler warning when passing NSError ** as a method parameter

    - by splicer
    I've been scratching my head about this for the last 4 hours, trying out all kinds of little experiments, but I can't seem to figure out what's going wrong. Could this be a compiler bug? Test.m: - (id)initWithContentsOfURL:(NSURL *)aURL error:(NSError **)error { if (!(self = [super init])) { return nil; } return self; } main.m: NSError *error; Test *t = [[Test alloc] initWithContentsOfURL:[NSURL fileURLWithPath:@"/"] error:&error]; Here's the compiler warning (from main.m): warning: incompatible Objective-C types 'struct NSError **', expected 'struct NSDictionary **' when passing argument 2 of 'initWithContentsOfURL:error:' from distinct Objective-C type I'm using the latest versions of Xcode and Snow Leopard.

    Read the article

  • Verifying compiler optimizations in gcc/g++ by analyzing assembly listings

    - by Victor Liu
    I just asked a question related to how the compiler optimizes certain C++ code, and I was looking around SO for any questions about how to verify that the compiler has performed certain optimizations. I was trying to look at the assembly listing generated with g++ (g++ -c -g -O2 -Wa,-ahl=file.s file.c) to possibly see what is going on under the hood, but the output is too cryptic to me. What techniques do people use to tackle this problem, and are there any good references on how to interpret the assembly listings of optimized code or articles specific to the GCC toolchain that talk about this problem?

    Read the article

  • Best open source Mixed Integer Optimization Solver

    - by Mark
    I am using CPLEX for solving huge optimization models (more than 100k variables) now I'd like to see if I can find an open source alternative, I solve mixed integer problems (MILP) and CPLEX works great but it is very expensive if we want to scale so I really need to find an alternative or start writing our own ad-hoc optimization library (which will be painful) Any suggestion/insight would be much appreciated

    Read the article

  • C# 'is' type check on struct - odd .NET 4.0 x86 optimization behavior

    - by Jacob Stanley
    Since upgrading to VS2010 I'm getting some very strange behavior with the 'is' keyword. The program below (test.cs) outputs True when compiled in debug mode (for x86) and False when compiled with optimizations on (for x86). Compiling all combinations in x64 or AnyCPU gives the expected result, True. All combinations of compiling under .NET 3.5 give the expected result, True. I'm using the batch file below (runtest.bat) to compile and test the code using various combinations of compiler .NET framework. Has anyone else seen these kind of problems under .NET 4.0? Does everyone else see the same behavior as me on their computer when running runtests.bat? #@$@#$?? Is there a fix for this? test.cs using System; public class Program { public static bool IsGuid(object item) { return item is Guid; } public static void Main() { Console.Write(IsGuid(Guid.NewGuid())); } } runtest.bat @echo off rem Usage: rem runtest -- runs with csc.exe x86 .NET 4.0 rem runtest 64 -- runs with csc.exe x64 .NET 4.0 rem runtest v3.5 -- runs with csc.exe x86 .NET 3.5 rem runtest v3.5 64 -- runs with csc.exe x64 .NET 3.5 set version=v4.0.30319 set platform=Framework for %%a in (%*) do ( if "%%a" == "64" (set platform=Framework64) if "%%a" == "v3.5" (set version=v3.5) ) echo Compiler: %platform%\%version%\csc.exe set csc="C:\Windows\Microsoft.NET\%platform%\%version%\csc.exe" set make=%csc% /nologo /nowarn:1607 test.cs rem CS1607: Referenced assembly targets a different processor rem This happens if you compile for x64 using csc32, or x86 using csc64 %make% /platform:x86 test.exe echo =^> x86 %make% /platform:x86 /optimize test.exe echo =^> x86 (Optimized) %make% /platform:x86 /debug test.exe echo =^> x86 (Debug) %make% /platform:x86 /debug /optimize test.exe echo =^> x86 (Debug + Optimized) %make% /platform:x64 test.exe echo =^> x64 %make% /platform:x64 /optimize test.exe echo =^> x64 (Optimized) %make% /platform:x64 /debug test.exe echo =^> x64 (Debug) %make% /platform:x64 /debug /optimize test.exe echo =^> x64 (Debug + Optimized) %make% /platform:AnyCPU test.exe echo =^> AnyCPU %make% /platform:AnyCPU /optimize test.exe echo =^> AnyCPU (Optimized) %make% /platform:AnyCPU /debug test.exe echo =^> AnyCPU (Debug) %make% /platform:AnyCPU /debug /optimize test.exe echo =^> AnyCPU (Debug + Optimized) Test Results When running the runtest.bat I get the following results on my Win7 x64 install. > runtest 32 v4.0 Compiler: Framework\v4.0.30319\csc.exe False => x86 False => x86 (Optimized) True => x86 (Debug) False => x86 (Debug + Optimized) True => x64 True => x64 (Optimized) True => x64 (Debug) True => x64 (Debug + Optimized) True => AnyCPU True => AnyCPU (Optimized) True => AnyCPU (Debug) True => AnyCPU (Debug + Optimized) > runtest 64 v4.0 Compiler: Framework64\v4.0.30319\csc.exe False => x86 False => x86 (Optimized) True => x86 (Debug) False => x86 (Debug + Optimized) True => x64 True => x64 (Optimized) True => x64 (Debug) True => x64 (Debug + Optimized) True => AnyCPU True => AnyCPU (Optimized) True => AnyCPU (Debug) True => AnyCPU (Debug + Optimized) > runtest 32 v3.5 Compiler: Framework\v3.5\csc.exe True => x86 True => x86 (Optimized) True => x86 (Debug) True => x86 (Debug + Optimized) True => x64 True => x64 (Optimized) True => x64 (Debug) True => x64 (Debug + Optimized) True => AnyCPU True => AnyCPU (Optimized) True => AnyCPU (Debug) True => AnyCPU (Debug + Optimized) > runtest 64 v3.5 Compiler: Framework64\v3.5\csc.exe True => x86 True => x86 (Optimized) True => x86 (Debug) True => x86 (Debug + Optimized) True => x64 True => x64 (Optimized) True => x64 (Debug) True => x64 (Debug + Optimized) True => AnyCPU True => AnyCPU (Optimized) True => AnyCPU (Debug) True => AnyCPU (Debug + Optimized) tl;dr

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >