Search Results

Search found 23 results on 1 pages for 'cots'.

Page 1/1 | 1 

  • Checking the configuration of two systems to determine changes

    - by None
    We are standing up a replicant data center at work and need to ensure that the new data center is configured (nearly) identically to the original. The new data center will be differently addressed and named than the original and will have differing user accounts, but all the COTS, patches, and configurations should be the same. We would normally ghost the original servers and install those images onto the new machines, however, we have a few problematic pieces of COTS that require we install them outside of an image due to how they capture the setup of the network during their installation and maintain it within their configuration information (in some cases storing it in various databases). We have tried multiple times and this piece of COTS cannot be captured within a ghost image unless the destination machine will have an identical network setup (all the same IPs, hostnames, user accounts, etc across the entire network) as the original. In truth, it is the setup of these special COTS that I want to audit the most because they are difficult to install and configure in the first place. In light of the fact that we can’t simply ghost, I’m trying to find a reasonable manner to audit the new data center and check to see if it is setup like the original (some sort of system wide configuration audit or integrity check). I’m considering using something like Tripwire for Servers to capture the configuration on the source machines and then run an audit on the destination machines. I understand that it will still show some differences due to the minor config changes, but I’m hoping that it will eliminate the majority of the work. Here are some of the constraints I’m working under: Data center is comprised of multiple Windows and Linux machines of differing versions (about 20 total) I absolutely cannot ghost or snap any other type of image of these machines … at least not in their final configuration I want to audit the final configuration to ensure all of the COTS, patches, configurations, etc are installed and setup properly (as compared to the original data center) I would rather not install any additional tools on these machines … I’d much rather run it from a standalone machine or off a DVD Price of tools is important but not an impossible burden, however, getting a solution soon is important (I can’t take the time to roll my own tools to do this) For the COTS that stores the network information, I don’t know all of the places it stores the network information … so it would be unlikely I could find a way in the near future to adjust its setup after the installation has occurred Anyone have any thoughts or alternate approaches? Can anyone recommend tools that would be usable for system wide configuration audits?

    Read the article

  • Figuring out the resource a lock in SQL Server 2000 affects

    - by Michael Lang
    I am adding a simple web-interface to show data from a commercial off the shelf (COTS) application. This COTS issues locks on any record the user is actively looking at (whether they intend to edit and update it or not). I have found sp_lock and the Microsoft sp_lock2 scripts and can see the locks, so that's all well and good. However, I cannot figure out how I can tell if a specific record I am about to update has been affected by one of these locks. If I submit the update request and there is in fact a lock, the web-interface will wait indefinitely until the user closes the window in the COTS. How can I either: a) determine before issuing an update that the record has been locked OR b) issue an update that will immediately return with a LOCKED status rather than indefinitely waiting on the COTS user to close their window on that record?

    Read the article

  • When should I use a Process Model versus a Use Case?

    - by Dave Burke
    This Blog entry is a follow on to https://blogs.oracle.com/oum/entry/oum_is_business_process_and and addresses a question I sometimes get asked…..i.e. “when I am gathering requirements on a Project, should I use a Process Modeling approach, or should I use a Use Case approach?” Not surprisingly, the short answer is “it depends”! Let’s take a scenario where you are working on a Sales Force Automation project. We’ll call the process that is being implemented “Lead-to-Order”. I would typically think of this type of project as being “Process Centric”. In other words, the focus will be on orchestrating a series of human and system related tasks that ultimately deliver value to the business in a cost effective way. Put in even simpler terms……implement an automated pre-sales system. For this type of (Process Centric) project, requirements would typically be gathered through a series of Workshops where the focal point will be on creating, or confirming, the Future-State (To-Be) business process. If pre-defined “best-practice” business process models exist, then of course they could and should be used during the Workshops, but even in their absence, the focus of the Workshops will be to define the optimum series of Tasks, their connections, sequence, and dependencies that will ultimately reflect a business process that meets the needs of the business. Now let’s take another scenario. Assume you are working on a Content Management project that involves automating the creation and management of content for User Manuals, Web Sites, Social Media publications etc. Would you call this type of project “Process Centric”?.......well you could, but it might also fall into the category of complex configuration, plus some custom extensions to a standard software application (COTS). For this type of project it would certainly be worth considering using a Use Case approach in order to 1) understand the requirements, and 2) to capture the functional requirements of the custom extensions. At this point you might be asking “why couldn’t I use a Process Modeling approach for my Content Management project?” Well, of course you could, but you just need to think about which approach is the most effective. Start by analyzing the types of Tasks that will eventually be automated by the system, for example: Best Suited To? Task Name Process Model Use Case Notes Manage outbound calls Ö A series of linked human and system tasks for calling and following up with prospects Manage content revision Ö Updating the content on a website Update User Preferences Ö Updating a users display preferences Assign Lead Ö Reviewing a lead, then assigning it to a sales person Convert Lead to Quote Ö Updating the status of a lead, and then converting it to a sales order As you can see, it’s not an exact science, and either approach is viable for the Tasks listed above. However, where you have a series of interconnected Tasks or Activities, than when combined, deliver value to the business, then that would be a good indicator to lead with a Process Modeling approach. On the other hand, when the Tasks or Activities in question are more isolated and/or do not cross traditional departmental boundaries, then a Use Case approach might be worth considering. Now let’s take one final scenario….. As you captured the To-Be Process flows for the Sales Force automation project, you discover a “Gap” in terms of what the client requires, and what the standard COTS application can provide. Let’s assume that the only way forward is to develop a Custom Extension. This would now be a perfect opportunity to document the functional requirements (behind the Gap) using a Use Case approach. After all, we will be developing some new software, and one of the most effective ways to begin the Software Development Lifecycle is to follow a Use Case approach. As always, your comments are most welcome.

    Read the article

  • Transformation of Product Management in Telecommunications for Rapid Launch of Next Generation Products

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }a:link, span.MsoHyperlink { color: blue; text-decoration: underline; }a:visited, span.MsoHyperlinkFollowed { color: purple; text-decoration: underline; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } The Telecom industry continues to evolve through disruptive products, uncertain markets, shorter product lifecycles and convergence of technologies. Today’s market has moved from network centric to consumer centric and focuses primarily on the customer experience. It has resulted in several product management challenges such as an increased complexity and volume of offerings, creating product variants, accelerating time-to-market, ability to provide multiple product views for varied stakeholders, leveraging OSS intelligence to BSS layer, product co-creation and increasing audit and security concerns for service providers. The document discusses how enterprise product management enabled by PLM-based product catalogue solutions helps to launch next generation products rapidly in the context of the Telecommunication Industry.   1.0.       Introduction   Figure 1: Business Scenario   Modern business demands the launch of complex products in a very short timeframe and effecting changes in the price plan faster without IT intervention. One of the key transformation initiatives companies are focusing on is in the area of product management transformation and operational efficiency improvement. As part of these initiatives, companies are investing in best- in-class COTs-based Product Management solutions developed on industry-wide standards.   The new COTs packages are planned to integrate with existing or new B/OSS systems to provide a strategic end-to-end agile solution for reduced time-to-market and order journey time. In addition, system rationalization is being undertaken to phase out legacy systems and migrate to strategic systems.   2.0.       An Overview of Product Management in Telecom   Product data in telecom is multi- dimensional and difficult to manage. It increased significantly due to the complexity of the product, product offerings on the converged network, increased volume of offerings, bundled offering structures and ever increasing regulatory requirements.   In addition, the shrinking product lifecycle in telecom makes it difficult to manage the dynamic product data. Mergers and acquisitions coupled with organic growth pose major challenges in product portfolio management. It is a roadblock in the journey towards becoming an agile organization.       Figure 2: Complexity in Product Management   Network Technology’ is the new dimension in telecom product management where the same products are realized through different networks i.e., Soiled network to Converged network. Consequently, the product solution is different.     Figure 3: Current Scenario - Pain Points in Product Management   The major business implications arising out of the current scenario are slow time-to-market and an inefficient process that affects innovation.   3.0. Transformation of Next Generation Product Management   Companies must focus on their Product Management Transformation Journey in the areas of:   ·       Management of single truth of product information across the organization/geographies which is currently managed in heterogeneous systems   ·       Management of the Intellectual Property (IP) on the product concept and partnership in the design of discrete components to integrate into the system   ·       Leveraging structured and unstructured product data within the extended enterprise to extract consumer insights and drive innovation   ·       Management of effective operational separation to comply with regulatory bodies   ·       Reuse of existing designs and add relevant features such as value-added services to enable effective product bundling     Figure 4: Next generation needs   PLM-based Enterprise Product Catalogue solutions efficiently address the above requirements and act as an enabler towards product management transformation and rapid product launch.   4.0. PLM-based Enterprise Product Management     Figure 5: PLM-based Enterprise Product Mastering   Enterprise Product Management (EPM) enables the business to manage complex product attributes of data in complex environments. Product Mastering helps create a 'single view' of the product by creating a business-driven, IT-supported environment where a global 'single truth record' is created, managed and reused.   4.1 The Business Case for Telco PLM-based solutions for Enterprise Product Management   ·       Telco PLM-based Product Mastering solutions provide a centralized authoring environment for product definition and control of all product data and rules   ·       PLM packages are designed to support multiple perspectives of product data (ordering perspective, billing perspective, provisioning perspective)   ·       Maintains relationships/links between different elements of the entire product definition   ·       Telco PLM packages are specialized in next generation lifecycle management requirements of products such as revision and state management, test and release management, role management and impact analysis)   ·       Takes into consideration all aspects of OSS product requirements compared to CRM product catalogue solutions where the product data managed is mostly order oriented and transactional     ·       New breed of Telco PLM packages are designed with 'open' standards such as SID and eTOM. They are interoperable, support integration frameworks such as subscription and notification.   ·       Telco PLM packages have developed good collaboration frameworks to integrate suppliers and partners into the product development value chain   4.2 Various Architectures/Approaches for Product Mastering using Telco PLM systems   4. 2.a Single Central Product Management (Mastering) Approach   Figure 6: Single Central Product Management (Master) Approach       This approach is implemented across verticals such as aerospace and automotive. It focuses on a physically centralized product master to which other sources are dependent on. The product definition data (Product bundles, service bundles, price plans, offers and discounts, product configuration rules and market campaigns) is created and maintained physically in a centralized environment. In addition, the product definition/authoring environment is centralized. The existing legacy product definition data available in CRM product catalogue, billing catalogue and the legacy product catalogue is migrated to the centralized PLM-based Enterprise Product Management solution.   Architectural changes must be made in the existing business landscape of applications to create and revise data because the applications have to refer to the central repository for approvals and validation of product configurations. It is achieved by modifying how the applications write data or how the applications can be adapted to use the rules to be managed and published.   Complete product configuration validation will be done in enterprise / central product catalogue and final configuration will be sent to the B/OSS system through the SOA compliant product distribution architecture. The approach/architecture enables greater control in terms of product data management and product data governance.   4.2.b Federated Product Management (Mastering) Architecture     Figure 7: Federated Product Management (Mastering) Architecture   In the federated product mastering approach, the basic unique product definition data (product id, description product hierarchy, basic price plans and simple product design rules) will be centrally created and will be maintained. And, the advanced product definition (Product bundling, promotions, offers & discount plans) will be created in respective down stream OSS systems. The advanced product definition (Product bundling, promotions, offers and discount plans) will be created in respective downstream OSS systems.   For example, basic product definitions such as attributes, product hierarchy and basic price plans will be created and maintained in Enterprise/Central product reference catalogue and distributed to downstream OSS systems. Respective downstream OSS systems build product bundles, promotions, advanced price plans over the basic product definition and master the advanced product definition. Central reference database accesses the respective other source product master data and assembles a point-in-time consolidated view of the product. The approach is typically adapted in some merger and acquisition scenarios where there is a low probability of a central physical authority managing the data. In addition, the migration effort in this case is minimal and there are no big architectural changes to the organization application landscape. However, this approach will not result in better product data management and data governance.   5.0 Customer Scenario – Before EPC deployment   A leading global telecommunications service provider wanted to launch a quad play and triple play service offering in the shortest possible lead time. The service provider was offering Broadband and VoIP services to customers. The company wanted to reuse a majority of the Broadband services and price plans and bundle them with new wireless and IPTV services for quad play and triple play. The challenges in launching the new service offerings were:       Figure 8: Triple Play Plan   ·       Broadband product data was stored in multiple product catalogues (CRM catalogue, Billing catalogue, spread sheets)   ·       Product managers spent a lot of time performing tasks involving duplication or re-keying of data. Manual effort caused errors, cost and time over-runs.   ·       No effective product and price data governance mechanism. Price change issues arising from the lack of data consistency across systems resulted in leakage of customer value and revenue.   ·       Product data had re-usability issues and was not in a structured format. It resulted in uncontrolled product portfolio creation and product management issues.   ·       Lack of enterprise product model resulted into product distribution challenges and thus delays in product launch.   ·       Designers are constrained by existing legacy product management solutions to model product/service requirements and product configuration rules such as upgrading, downgrading and cross selling.    5.1 Customer Scenario - After EPC deployment     Figure 9: SOA-based end-to-end EPC Solution   The company deployed PLM-based Enterprise Product Catalogue solutions to launch quad play service after evaluating various product catalogues. The broadband product offering, service and price data were migrated to the new system, and the product and price plan hierarchy for new offerings were created using the entities defined in the Enterprise Product Model. Supplier product catalogue data such as routers and set up boxes were loaded onto the new solution through SOA-based web service. Price plans and configuration rules were built in the new system. The validated final product configurations were extracted from the product catalogue in a SID format and were distributed to the downstream B/OSS systems through exposed SOA-based web services. The transformations required for the B/OSS system were handled using the transformation layer as part of the solution.   6.0 How PLM enabled Product Management Transformation         Figure 10: Product Management Transformation     PLM-based Product Catalogue Solution helped the customer reduce the product launch cycle time by 30% and enable transformation of Product Management for next generation services.   7.0 Conclusion   On the one hand, the telecom industry is undergoing changes due to disruptions, uncertain product markets and increased complexity of products. On the other hand, the ARPU is decreasing year-on-year. Communications Service Providers are embarking on convergence, bundled service offerings, flexibility to cross-sell and up-sell, introduce new value-added services, leverage Web 2.0 concepts and network capabilities. Consequently, large scale IT transformation initiatives to improve their ARPU supporting network and business transformations are a business imperative. Product Management has become a focus area. Companies are investing in best-in- class COTS solutions to reduce time-to-market, ensure rapid service delivery and improve operational efficiency. An efficient PLM-based enterprise product mastering solution plays a key role in achieving zero touch automation and rapid product launch.   References:   1.     Preston G.Smith, Donald G.Reineristsem, Van Nostrand Reinhold “Developing Products in Half the time”.   2.     John G. Innes, "Achieving Successful Product Change", Pitman Publishing.   3.     D T Pham and R M Setchi (16th Jan, 2001) "Authoring environment for documentation development" University of Wales Cardiff, U.K., Proceedings on Institution of Mechanical Engineers, Vol. 215, Part B.   4.     Oracle Product Hub for Communications:   http://www.oracle.com/us/products/applications/master-data-management/product-hub-082059.html  

    Read the article

  • How much it costs to tun own hosting server

    - by Mirage
    I currently have VPS in my company and there i host about 20 websites. My copany wants to set up server locally where they can host all websites rtaher using 3rd party VPS How it will cost e,g about upload ,download speed from data centre. Cpanels license IP registration, hardware , backups, electricity backups, Any other cots etc I would prefer centos

    Read the article

  • Letting users make their own dns changes? Any software available to manage this tricky situation?

    - by Jaredk
    I currently waste a lot of time making dns changes for my organization. DDNS of course helps for workstations, but we still have a few thousand unique servers with still more applications needing cname records that DHCP/DDNS alone will not support, so someone needs to make updates, but I'd like to see sysadmins make their own dns updates for their machines. I'm currently working on extending our asset database to support this functionality, but I hold out hope that there are COTS solutions available.

    Read the article

  • Cloud INaaS from Data Integration companies

    - by llaszews
    Traditional integration IT vendors are also starting to offer INaaS. Infomatica has been the most aggressive integration vendor when it comes to offering INaaS. Informatica has offered INaaS for over five years and continues to add capabilities, has a number of high profile references, and also continues to add out-of-the-box cloud integration with major COTS and SaaS providers. The Informatica Marketplace contains pre-packaged Informatica Cloud end-points and plug-ins. One such MarketPlace solution, is integration with Oracle E-Business Suite using Informatica integration. The Informatica E-Business Suite INaaS offering includes automatic loading and extraction of data between Salesforce CRM and on-premise systems, cloud-to-cloud, flat files, and relational database. The entire Informatica Cloud integration solution runs in an Informatica managed facility (PaaS). When running in a PaaS environment, Informatica offers an option to keep an exact copy of your cloud-based data on-premise for archival, compliance, and enterprise reporting requirements.

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Dealing with institutionalized programmers.

    - by Singleton
    Some times programmers who work in a project for long time tend to get institutionalized. It is difficult to convince them with reasoning. Even if we manage to convince them they will be adamant to take suggestion on board. How do we handle the situation without developing friction in team? Institutionalized in terms of practices. I recently joined in a project where build &release process was made so complicated with unnecessary roadblocks. My suggestion was we can get rid of some of the development overheads(like filling few spreadsheets) just by integrating defect management and version controlling tools (both are IBM-Rational tools integration can be very easy and one-off effort). Also by using tools like Maven & Ant (project involves java and some COTS products) build & release can be simplified and reduce manual errors& intervention. I managed to convince and ready to put efforts for developing proof of concept. But the ‘Senior’ developer is not willing to take it on board. One reason could be the current process makes him valuable in team.

    Read the article

  • help building a PC that can image a dozen hard drives simultaneously

    - by Bigbio2002
    Not sure if this belongs on here or SuperUser, but here goes... I'm trying to figure out how to make a mass hard drive imaging PC out of COTS parts. A dedicated imaging device can do 10 drives at a time, but costs several thousand dollars. So far, I'm thinking to use several 3-port PCI-E Firewire cards, and use some kind of Firewire-to-IDE adapter to connect the drives themselves. The "software" would consist of scripting diskpart, or some other imaging utility. The problem is that I can't seem to find any sort of adapter. I could use standard external hard drive bays, but then I'd have a dozen power cables that I need to plug in. Ugly, messy, and inefficient. I picked Firewire over USB not only for better transfer speeds, but also because FW can deliver power over the bus (and could theoretically power a hard drive). Does anyone have any input on this?

    Read the article

  • Dealing with inflexible programmers.

    - by Singleton
    Sometimes programmers who work on a project for long time get inflexible, and it becomes difficult to reason with them. Even if we do manage to convince them, they can be unlikely to implement our suggestions. For instance, I recently joined a project where the build & release process is too complicated and has unnecessary roadblocks. I suggested that we get rid of some of the development overhead (like filling a few spreadsheets) just by integrating defect management and version control tools (both are IBM-Rational tools so integration can be a very easy one-off effort). Also, if we use tools like Maven & Ant (the project involves Java and some COTS products) build & release can be simplified which should reduce manual errors & intervention. I managed to convince others and I'm ready to put in the effort to develop a proof of concept. But the ‘Senior’ developer is not willing, possibly because the current process makes him more valuable. How do we handle this situation without developing friction in the team?

    Read the article

  • Automated monitoring of a remote system that sends email alerts.

    - by user23105
    I need to monitor a remote system where the only access I have is that I can subscribe to email alerts of completed/failed jobs. I would like a system that can monitor these emails and provide an SMS or other alert when: An email indicates failure. A process that was expected to complete by a given time has not. A process that was expected to complete N minutes after completion of another process has not completed. Are there any existing tools that allow this? I'd consider any option - SaaS, open-source, COTS, as long as I don't have to write it myself! Cheers, Blake

    Read the article

  • Life Cycle Tools Suite

    - by pearcewg
    I am looking to replace the life cycle tools currently used by my development teams. Tools that I'm looking for: Version Control Defect/Issue Tracking Requirements Tracking Test Case Management (potentially) Project Management: Project Status, hours entry I have a new beefy server (Windows 2008 Server) to run all tools on. I'm looking at COTS and Open Source options, but haven't decided so far. Other factors: Distributed team (different physical sites) Some Windows Development, some Linux Development Software, Firmware, Technical Writing need to be able to use it Recommendations on a good suite that will work together? If Open Source, best approach to run on the Windows 2008 Server?

    Read the article

  • Can I use a serial port as TCP/IP interface on Red Hat Linux?

    - by ShaChris23
    Background We want to run an FTP server on a Red Hat Enterprise OS. The problem is, the machine we have does not have an Ethernet port/interface (please don't ask why; it's just a project requirement). We only have a serial port. Question Is there COTS / open source software that I can use to make serial port "look" like a an Ethernet port? My project is commercial. We run Red Hat Enterprise Linux 5.3. Note: Pardon me if my post title is unclear. If you can think of a better title, please suggest or simply change the title.

    Read the article

  • Websphere Java application startup

    - by Tom Barnett
    I have two Java applications running on a Websphere application server. The first application is COTS software (Plateau) I will call App1 and includes an API which can be used in custom applications to interact with App1. This app takes a couple minutes to start in Websphere. The second application is custom software I will call App2 and is deployed as a web service which utilizes the App1 API to interact with App1; so it is dependent on App1. This app takes just seconds to start in Websphere. I run into a problem in certain App1 functionality when we bounce Websphere and the App2 web service is called by a client before the App1 application has fully started. Is there a way I can delay App2 from starting until App1 is fully started in Websphere? Is there a way to design App2 to programmatically check that App1 is available before it attempts to use the API?

    Read the article

  • Cost-effective .Net solutions for report generation in Excel and PDF

    - by jamesaharvey
    I'm looking for some cost-effective solutions and/or open source options for generating reports in Excel and PDF format. I realize some of the open source options may have less in terms of functionality and flexibility than the COTS versions with all the bells and whistles, but are there any options out there that fall somewhere in between? EDIT: Essentially what I'll have are just some basic HTML reports of data in tables with some calculations/summary data but nothing fancy like graphs, etc. I'll then need the ability to export these HTML reports to Excel and/or PDF.

    Read the article

  • PERT shows relationships between defined tasks in a project without taking into consideration a time line

    The program evaluation and review technique (PERT) shows relationships between defined tasks in a project without taking into consideration a time line. This chart is an excellent way to identify dependencies of tasks based on other tasks. This chart allows project managers to identify the critical path of a project to minimize any time delays to the project. According to Craig Borysowich in his article “Pros & Cons of the PERT/CPM Method stated the following advantages and disadvantages: “PERT/CPM has the following advantages: A PERT/CPM chart explicitly defines and makes visible dependencies (precedence relationships) between the WBS elements, PERT/CPM facilitates identification of the critical path and makes this visible, PERT/CPM facilitates identification of early start, late start, and slack for each activity, PERT/CPM provides for potentially reduced project duration due to better understanding of dependencies leading to improved overlapping of activities and tasks where feasible.  PERT/CPM has the following disadvantages: There can be potentially hundreds or thousands of activities and individual dependency relationships, The network charts tend to be large and unwieldy requiring several pages to print and requiring special size paper, The lack of a timeframe on most PERT/CPM charts makes it harder to show status although colors can help (e.g., specific color for completed nodes), When the PERT/CPM charts become unwieldy, they are no longer used to manage the project.” (Borysowich, 2008) Traditionally PERT charts are used in the initial planning of a project like in a project that is utilizing the waterfall approach. Once the chart was created then project managers could further analyze this data to determine the earliest start time for each stage in the project. This is important because this information can be used to help forecast resource needs during a project and where in the project. However, the agile environment can approach this differently because of their constant need to be in contact with the client and the other stakeholders.  The PERT chart can also be used during project iteration to determine what is to be worked on next, such as a prioritized To-Do list a wife would give her husband at the start of a weekend. In my personal opinion, the COTS-centric environment would not really change how a company uses a PERT chart in their day to day work. The only thing I can is that there would be less tasks to include in the chart because the functionally milestones are already completed when the components are purchased. References: http://www.netmba.com/operations/project/pert/ http://web2.concordia.ca/Quality/tools/20pertchart.pdf http://it.toolbox.com/blogs/enterprise-solutions/pros-cons-of-the-pertcpm-method-22221

    Read the article

  • Do You Know How OUM defines the four, basic types of business system testing performed on a project? Why not test your knowledge?

    - by user713452
    Testing is perhaps the most important process in the Oracle® Unified Method (OUM). That makes it all the more important for practitioners to have a common understanding of the various types of functional testing referenced in the method, and to use the proper terminology when communicating with each other about testing activities. OUM identifies four basic types of functional testing, which is sometimes referred to as business system testing.  The basic functional testing types referenced by OUM include: Unit Testing Integration Testing System Testing, and  Systems Integration Testing See if you can match the following definitions with the appropriate type above? A.  This type of functional testing is focused on verifying that interfaces/integration between the system being implemented (i.e. System under Discussion (SuD)) and external systems functions as expected. B.     This type of functional testing is performed for custom software components only, is typically performed by the developer of the custom software, and is focused on verifying that the several custom components developed to satisfy a given requirement (e.g. screen, program, report, etc.) interact with one another as designed. C.  This type of functional testing is focused on verifying that the functionality within the system being implemented (i.e. System under Discussion (SuD)), functions as expected.  This includes out-of-the -box functionality delivered with Commercial Off-The-Shelf (COTS) applications, as well as, any custom components developed to address gaps in functionality.  D.  This type of functional testing is performed for custom software components only, is typically performed by the developer of the custom software, and is focused on verifying that the individual custom components developed to satisfy a given requirement  (e.g. screen, program, report, etc.) functions as designed.   Check your answers below: (D) (B) (C) (A) If you matched all of the functional testing types to their definitions correctly, then congratulations!  If not, you can find more information in the Testing Process Overview and Testing Task Overviews in the OUM Method Pack.

    Read the article

  • suggestions for firewall/router project using *BSD or Linux

    - by Adeodatus
    Hi All, I have a project in mind and I'd love to hear some ideas on some open source solutions with COTS hardware. I have a few 24 and/or 48 port managed layer2 switches with customers potentially on each port (though its usually about 20-30). Right now the switch has a bridged network and backhaul the traffic to our core to a centralized DHCP server. I need to move them to a NAT solution and, while doing this, I'd like to protect the customers on each port from the customer traffic on the other ports. I also need to be able to port forward from the public side of the firewall/nat box to specific hardware on the inside of the nat machine (easy enough, I know). My first thoughts are to build an appliance-like box (the fewer moving parts the better) that can do filtering and NAT with rfc1918 an address range being handed out via a DHCP server on the appliance. A caching DNS server on the appliance would be a plus since we backhaul everything to the core. I'd like to run FreeBSD but I'm open. Now, to try to limit the broadcast traffic thats visible I was thinking of doing each port on the switch as a different vlan and have the switch do trunking to the private NIC on the FreeBSD/appliance. I'd probably need to do some magic on the freebsd NIC to get this working but it should. We have the parts to build these systems. So, does this make sense? Are there any other solutions out there that we don't have to spend money on but can use our parts to create something? Are there any good distros that could do this already (monowall)?? I may or may not admin this solution so a secure web configuration and management tool would be a plus in the other admins' minds. Thoughts?

    Read the article

  • How does one skip "Windows did not shut down successfully" in Win7-64?

    - by XenonofArcticus
    Migrating an app from an expensive and unreliable dedicated embedded x86 box running WinXP-embedded to COTS hardware (Dell E6410 laptop) running normal Win7-64. At this time, it's not feasible to deploy using Windows 7 embedded. The problem is, that the system is still sort of "embedded". The power could shut off at virtually any time without prior warning. We've stripped the OS down and removed the battery capability so that it will power down as desired. The app never writes to the disk, so it's not like we're going to corrupt anything terribly. The system is essentially idle after our app is up and running (with the exception of some computation, graphics, and TCP/IP and serial communications) so the OS enters a pretty stable state rather quickly. After a power-loss however, it rightly complains that Windows did not shut down successfully and presents the user with the Windows Error Recovery text screen. If left alone, it does eventually move on booting just fine, but we'd like to skip that step if possible. WinXP-embedded is designed to do this automatically, so I know it's possible. I've looked at the Kernel Switches but I didn't see anything documented for "Skip Windows Error Recovery". I've also read extensively on the startup process: http://homepage.ntlworld.com./jonathan.deboynepollard/FGA/windows-nt-6-boot-process.html I know I can disable the auto chkdsk in the registry, but that's not the same thing either. So, how do I streamline the boot process to not hassle the user about a situation that will be the regular normal situation?

    Read the article

  • How does one skip “Windows did not shut down successfully” in Win7-64?

    - by XenonofArcticus
    Migrating an app from an expensive and unreliable dedicated embedded x86 box running WinXP-embedded to COTS hardware (Dell E6410 laptop) running normal Win7-64. At this time, it's not feasible to deploy using Windows 7 embedded. The problem is, that the system is still sort of "embedded". The power could shut off at virtually any time without prior warning. We've stripped the OS down and removed the battery capability so that it will power down as desired. The app never writes to the disk, so it's not like we're going to corrupt anything terribly. The system is essentially idle after our app is up and running (with the exception of some computation, graphics, and TCP/IP and serial communications) so the OS enters a pretty stable state rather quickly. After a power-loss however, it rightly complains that Windows did not shut down successfully and presents the user with the Windows Error Recovery text screen. If left alone, it does eventually move on booting just fine, but we'd like to skip that step if possible. WinXP-embedded is designed to do this automatically, so I know it's possible. I've looked at the Kernel Switches but I didn't see anything documented for "Skip Windows Error Recovery". I've also read extensively on the startup process: http://homepage.ntlworld.com./jonathan.deboynepollard/FGA/windows-nt-6-boot-process.html I know I can disable the auto chkdsk in the registry, but that's not the same thing either. So, how do I streamline the boot process to not hassle the user about a situation that will be the regular normal situation?

    Read the article

  • "log on as a batch job" user rights removed by what GPO?

    - by LarsH
    I am not much of a server administrator, but get my feet wet when I have to. Right now I'm running some COTS software on a Windows 2008 Server machine. The software installer creates a few user accounts for running its processes, and then gives those users the right to "log on as a batch job". Every so often (e.g. yesterday at 2:52pm and this morning at 7:50am), those rights disappear. The software then stops working. I can verify that the user rights are gone by using secedit /export /cfg e:\temp\uraExp.inf /areas USER_RIGHTS and I have a script that does this every 30 seconds and logs the results with a timestamp, so I know when the rights disappear. What I see from the export is that in the "good" state, i.e. after I install the software and it's working correctly, the line for SeBatchLogonRight from the secedit export includes the user accounts created by the software. But every few hours (sometimes more), those user accounts are removed from that line. The same thing can be seen by using the GUI tool Local Security Policy > Security Settings > Local Policies > User Rights Assignment > Log on as a batch job: in the "good" state, that policy includes the needed user accounts, and in the bad state, the policy does not. Based on the above-mentioned logging script and the timestamps at which the user rights are being removed, I can see clearly that some GPOs are causing the change. The GPO Operational log shows GPOs being processed at exactly the right times. E.g.: Starting Registry Extension Processing. List of applicable GPOs: (Changes were detected.) Local Group Policy I have run GPOs on demand using gpupdate /force, and was able to verify that this caused the User Rights to be removed. We have looked over local group policies till our eyes are crossed, trying to figure out which one might be stripping these User Rights to "log on as a batch job." We have not configured any local group policies on this machine, that we know of; so is there a default local group policy that might typically do such a thing? Are there typical domain policies that would do this? I have been working with our IT staff colleagues to troubleshoot the problem, but none of them are really GPO experts... They wear many hats, and they do what they need to do in order to keep most things running. Any suggestions would be greatly appreciated!

    Read the article

  • The Application Architecture Domain

    - by Michael Glas
    I have been spending a lot of time thinking about Application Architecture in the context of EA. More specifically, as an Enterprise Architect, what do I need to consider when looking at/defining/designing the Application Architecture Domain?There are several definitions of Application Architecture. TOGAF says “The objective here [in Application Architecture] is to define the major kinds of application system necessary to process the data and support the business”. FEA says the Application Architecture “Defines the applications needed to manage the data and support the business functions”.I agree with these definitions. They reflect what the Application Architecture domain does. However, they need to be decomposed to be practical.I find it useful to define a set of views into the Application Architecture domain. These views reflect what an EA needs to consider when working with/in the Applications Architecture domain. These viewpoints are, at a high level:Capability View: This view reflects how applications alignment with business capabilities. It is a super set of the following views when viewed in aggregate. By looking at the Application Architecture domain in terms of the business capabilities it supports, you get a good perspective on how those applications are directly supporting the business.Technology View: The technology view reflects the underlying technology that makes up the applications. Based on the number of rationalization activities I have seen (more specifically application rationalization), the phrase “complexity equals cost” drives the importance of the technology view, especially when attempting to reduce that complexity through standardization type activities. Some of the technology components to be considered are: Software: The application itself as well as the software the application relies on to function (web servers, application servers). Infrastructure: The underlying hardware and network components required by the application and supporting application software. Development: How the application is created and maintained. This encompasses development components that are part of the application itself (i.e. customizable functions), as well as bolt on development through web services, API’s, etc. The maintenance process itself also falls under this view. Integration: The interfaces that the application provides for integration as well as the integrations to other applications and data sources the application requires to function. Type: Reflects the kind of application (mash-up, 3 tiered, etc). (Note: functional type [CRM, HCM, etc.] are reflected under the capability view). Organization View: Organizations are comprised of people and those people use applications to do their jobs. Trying to define the application architecture domain without taking the organization that will use/fund/change it into consideration is like trying to design a car without thinking about who will drive it (i.e. you may end up building a formula 1 car for a family of 5 that is really looking for a minivan). This view reflects the people aspect of the application. It includes: Ownership: Who ‘owns’ the application? This will usually reflect primary funding and utilization but not always. Funding: Who funds both the acquisition/creation as well as the on-going maintenance (funding to create/change/operate)? Change: Who can/does request changes to the application and what process to the follow? Utilization: Who uses the application, how often do they use it, and how do they use it? Support: Which organization is responsible for the on-going support of the application? Information View: Whether or not you subscribe to the view that “information drives the enterprise”, it is a fact that information is critical. The management, creation, and organization of that information are primary functions of enterprise applications. This view reflects how the applications are tied to information (or at a higher level – how the Application Architecture domain relates to the Information Architecture domain). It includes: Access: The application is the mechanism by which end users access information. This could be through a primary application (i.e. CRM application), or through an information access type application (a BI application as an example). Creation: Applications create data in order to provide information to end-users. (I.e. an application creates an order to be used by an end-user as part of the fulfillment process). Consumption: Describes the data required by applications to function (i.e. a product id is required by a purchasing application to create an order. Application Service View: Organizations today are striving to be more agile. As an EA, I need to provide an architecture that supports this agility. One of the primary ways to achieve the required agility in the application architecture domain is through the use of ‘services’ (think SOA, web services, etc.). Whether it is through building applications from the ground up utilizing services, service enabling an existing application, or buying applications that are already ‘service enabled’, compartmentalizing application functions for re-use helps enable flexibility in the use of those applications in support of the required business agility. The applications service view consists of: Services: Here, I refer to the generic definition of a service “a set of related software functionalities that can be reused for different purposes, together with the policies that should control its usage”. Functions: The activities within an application that are not available / applicable for re-use. This view is helpful when identifying duplication functions between applications that are not service enabled. Delivery Model View: It is hard to talk about EA today without hearing the terms ‘cloud’ or shared services.  Organizations are looking at the ways their applications are delivered for several reasons, to reduce cost (both CAPEX and OPEX), to improve agility (time to market as an example), etc.  From an EA perspective, where/how an application is deployed has impacts on the overall enterprise architecture. From integration concerns to SLA requirements to security and compliance issues, the Enterprise Architect needs to factor in how applications are delivered when designing the Enterprise Architecture. This view reflects how applications are delivered to end-users. The delivery model view consists of different types of delivery mechanisms/deployment options for applications: Traditional: Reflects non-cloud type delivery options. The most prevalent consists of an application running on dedicated hardware (usually specific to an environment) for a single consumer. Private Cloud: The application runs on infrastructure provisioned for exclusive use by a single organization comprising multiple consumers. Public Cloud: The application runs on infrastructure provisioned for open use by the general public. Hybrid: The application is deployed on two or more distinct cloud infrastructures (private, community, or public) that remain unique entities, but are bound together by standardized or proprietary technology that enables data and application portability. While by no means comprehensive, I find that applying these views to the application domain gives a good understanding of what an EA needs to consider when effecting changes to the Application Architecture domain.Finally, the application architecture domain is one of several architecture domains that an EA must consider when developing an overall Enterprise Architecture. The Oracle Enterprise Architecture Framework defines four Primary domains: Business Architecture, Application Architecture, Information Architecture, and Technology Architecture. Each domain links to the others either directly or indirectly at some point. Oracle links them at a high level as follows:Business Capabilities and/or Business Processes (Business Architecture), links to the Applications that enable the capability/process (Applications Architecture – COTS, Custom), links to the Information Assets managed/maintained by the Applications (Information Architecture), links to the technology infrastructure upon which all this runs (Technology Architecture - integration, security, BI/DW, DB infrastructure, deployment model). There are however, times when the EA needs to narrow focus to a particular domain for some period of time. These views help me to do just that.

    Read the article

1