Search Results

Search found 24 results on 1 pages for 'divisors'.

Page 1/1 | 1 

  • Python: divisors of a number [closed]

    - by kame
    Possible Duplicate: What is the best way to get all the divisors of a number? The most part of this code was written by an other programmer, but I cant run his code. Please show me where the mistake is. I was searching a long time. I get the error 'NoneType' object is not iterable (in divisorGen(n)). from __future__ import division #calculate the divisors #this is fast-working-code from: #http://stackoverflow.com/questions/171765/what-is-the-best-way-to-get-all-the-divisors-of-a-number def factorGenerator(n): for x in range(1,n): n = n * 1.0 r = n / x if r % 1 == 0: yield x # edited def divisorGen(n): factors = list(factorGenerator(n)) nfactors = len(factors) f = [0] * nfactors while True: yield reduce(lambda x, y: x*y, [factors[x][0]**f[x] for x in range(nfactors)], 1) i = 0 while True: f[i] += 1 if f[i] <= factors[i][1]: break f[i] = 0 i += 1 if i >= nfactors: return for n in range(100): for i in divisorGen(n): print i

    Read the article

  • List of divisors of an integer n (Haskell)

    - by Code-Guru
    I currently have the following function to get the divisors of an integer: -- All divisors of a number divisors :: Integer -> [Integer] divisors 1 = [1] divisors n = firstHalf ++ secondHalf where firstHalf = filter (divides n) (candidates n) secondHalf = filter (\d -> n `div` d /= d) (map (n `div`) (reverse firstHalf)) candidates n = takeWhile (\d -> d * d <= n) [1..n] I ended up adding the filter to secondHalf because a divisor was repeating when n is a square of a prime number. This seems like a very inefficient way to solve this problem. So I have two questions: How do I measure if this really is a bottle neck in my algorithm? And if it is, how do I go about finding a better way to avoid repetitions when n is a square of a prime?

    Read the article

  • Algorithm to calculate the number of divisors of a given number

    - by sker
    What would be the most optimal algorithm (performance-wise) to calculate the number of divisors of a given number? It'll be great if you could provide pseudocode or a link to some example. EDIT: All the answers have been very helpful, thank you. I'm implementing the Sieve of Atkin and then I'm going to use something similar to what Jonathan Leffler indicated. The link posted by Justin Bozonier has further information on what I wanted.

    Read the article

  • Parallel Haskell in order to find the divisors of a huge number

    - by Dragno
    I have written the following program using Parallel Haskell to find the divisors of 1 billion. import Control.Parallel parfindDivisors :: Integer->[Integer] parfindDivisors n = f1 `par` (f2 `par` (f1 ++ f2)) where f1=filter g [1..(quot n 4)] f2=filter g [(quot n 4)+1..(quot n 2)] g z = n `rem` z == 0 main = print (parfindDivisors 1000000000) I've compiled the program with ghc -rtsopts -threaded findDivisors.hs and I run it with: findDivisors.exe +RTS -s -N2 -RTS I have found a 50% speedup compared to the simple version which is this: findDivisors :: Integer->[Integer] findDivisors n = filter g [1..(quot n 2)] where g z = n `rem` z == 0 My processor is a dual core 2 duo from Intel. I was wondering if there can be any improvement in above code. Because in the statistics that program prints says: Parallel GC work balance: 1.01 (16940708 / 16772868, ideal 2) and SPARKS: 2 (1 converted, 0 overflowed, 0 dud, 0 GC'd, 1 fizzled) What are these converted , overflowed , dud, GC'd, fizzled and how can help to improve the time.

    Read the article

  • Finding perfect numbers in C# (optimization)

    - by paradox
    I coded up a program in C# to find perfect numbers within a certain range as part of a programming challenge . However, I realized it is very slow when calculating perfect numbers upwards of 10000. Are there any methods of optimization that exist for finding perfect numbers? My code is as follows: using System; using System.Collections.Generic; using System.Linq; namespace ConsoleTest { class Program { public static List<int> FindDivisors(int inputNo) { List<int> Divisors = new List<int>(); for (int i = 1; i<inputNo; i++) { if (inputNo%i==0) Divisors.Add(i); } return Divisors; } public static void Main(string[] args) { const int limit = 100000; List<int> PerfectNumbers = new List<int>(); List<int> Divisors=new List<int>(); for (int i=1; i<limit; i++) { Divisors = FindDivisors(i); if (i==Divisors.Sum()) PerfectNumbers.Add(i); } Console.Write("Output ="); for (int i=0; i<PerfectNumbers.Count; i++) { Console.Write(" {0} ",PerfectNumbers[i]); } Console.Write("\n\n\nPress any key to continue . . . "); Console.ReadKey(true); } } }

    Read the article

  • Project Euler 12: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 12.  As always, any feedback is welcome. # Euler 12 # http://projecteuler.net/index.php?section=problems&id=12 # The sequence of triangle numbers is generated by adding # the natural numbers. So the 7th triangle number would be # 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms # would be: # 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... # Let us list the factors of the first seven triangle # numbers: # 1: 1 # 3: 1,3 # 6: 1,2,3,6 # 10: 1,2,5,10 # 15: 1,3,5,15 # 21: 1,3,7,21 # 28: 1,2,4,7,14,28 # We can see that 28 is the first triangle number to have # over five divisors. What is the value of the first # triangle number to have over five hundred divisors? import time start = time.time() from math import sqrt def divisor_count(x): count = 2 # itself and 1 for i in xrange(2, int(sqrt(x)) + 1): if ((x % i) == 0): if (i != sqrt(x)): count += 2 else: count += 1 return count def triangle_generator(): i = 1 while True: yield int(0.5 * i * (i + 1)) i += 1 triangles = triangle_generator() answer = 0 while True: num = triangles.next() if (divisor_count(num) >= 501): answer = num break; print answer print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Fan not working on thinkpad L430, laptop overheating

    - by Dirk B.
    I'm having problems controlling the fan of my Lenovo Thinkpad L430. The fan doesn't start. Without any fan control installed the fan just doesn't run. If I run stress, it does run a little, but it's nowhere near the speed it should be. After a while, the laptop just overheats and stops. I Tried to install tp-fancontrol, and enabled thinkpad_acpi fancontrol=1, but to no avail. If I try to set the fan speed manually, it doesn't start up. In windows, there's a program called TPFanControl. It turns out that this laptop uses a different scheme to control the fan than other thinkpads. The level runs from 0 to 255, and max = 0 and min=255. Now I'm looking for a fan control program that works for linux. Does anyone know if it actually exists? Anyone with any experience on fan control on a L430? Update: sudo pwmconfig gives the following output: # pwmconfig revision 5857 (2010-08-22) This program will search your sensors for pulse width modulation (pwm) controls, and test each one to see if it controls a fan on your motherboard. Note that many motherboards do not have pwm circuitry installed, even if your sensor chip supports pwm. We will attempt to briefly stop each fan using the pwm controls. The program will attempt to restore each fan to full speed after testing. However, it is ** very important ** that you physically verify that the fans have been to full speed after the program has completed. Found the following devices: hwmon0 is acpitz hwmon1/device is coretemp hwmon2/device is thinkpad Found the following PWM controls: hwmon2/device/pwm1 hwmon2/device/pwm1 is currently setup for automatic speed control. In general, automatic mode is preferred over manual mode, as it is more efficient and it reacts faster. Are you sure that you want to setup this output for manual control? (n) y Giving the fans some time to reach full speed... Found the following fan sensors: hwmon2/device/fan1_input current speed: 0 ... skipping! There are no working fan sensors, all readings are 0. Make sure you have a 3-wire fan connected. You may also need to increase the fan divisors. See doc/fan-divisors for more information. regards, Dirk

    Read the article

  • Lenovo Thinkpad L430 overheating due to fan problems

    - by Dirk B.
    This is the same question as Fan not working on thinkpad L430, laptop overheating, but that question has been marked as a duplicate, which it is not, and I cannot reopen it. I'm having problems controlling the fan of my Lenovo Thinkpad L430. The fan doesn't start. Without any fan control installed the fan just doesn't run. If I run stress, it does run a little, but it's nowhere near the speed it should be. After a while, the laptop just overheats and stops. I Tried to install tp-fancontrol, and enabled thinkpad_acpi fancontrol=1, but to no avail. If I try to set the fan speed manually, it doesn't start up. In windows, there's a program called TPFanControl. It turns out that this laptop uses a different scheme to control the fan than other thinkpads. The level runs from 0 to 255, and max = 0 and min=255. Now I'm looking for a fan control program that works for linux. Does anyone know if it actually exists? Anyone with any experience on fan control on a L430? Update: sudo pwmconfig gives the following output: # pwmconfig revision 5857 (2010-08-22) This program will search your sensors for pulse width modulation (pwm) controls, and test each one to see if it controls a fan on your motherboard. Note that many motherboards do not have pwm circuitry installed, even if your sensor chip supports pwm. We will attempt to briefly stop each fan using the pwm controls. The program will attempt to restore each fan to full speed after testing. However, it is ** very important ** that you physically verify that the fans have been to full speed after the program has completed. Found the following devices: hwmon0 is acpitz hwmon1/device is coretemp hwmon2/device is thinkpad Found the following PWM controls: hwmon2/device/pwm1 hwmon2/device/pwm1 is currently setup for automatic speed control. In general, automatic mode is preferred over manual mode, as it is more efficient and it reacts faster. Are you sure that you want to setup this output for manual control? (n) y Giving the fans some time to reach full speed... Found the following fan sensors: hwmon2/device/fan1_input current speed: 0 ... skipping! There are no working fan sensors, all readings are 0. Make sure you have a 3-wire fan connected. You may also need to increase the fan divisors. See doc/fan-divisors for more information. update: If you need it, lspci is available here

    Read the article

  • Triangle numbers problem....show within 4 seconds

    - by Daredevil
    The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... Let us list the factors of the first seven triangle numbers: 1: 1 3: 1,3 6: 1,2,3,6 10: 1,2,5,10 15: 1,3,5,15 21: 1,3,7,21 28: 1,2,4,7,14,28 We can see that 28 is the first triangle number to have over five divisors. Given an integer n, display the first triangle number having at least n divisors. Sample Input: 5 Output 28 Input Constraints: 1<=n<=320 I was obviously able to do this question, but I used a naive algorithm: Get n. Find triangle numbers and check their number of factors using the mod operator. But the challenge was to show the output within 4 seconds of input. On high inputs like 190 and above it took almost 15-16 seconds. Then I tried to put the triangle numbers and their number of factors in a 2d array first and then get the input from the user and search the array. But somehow I couldn't do it: I got a lot of processor faults. Please try doing it with this method and paste the code. Or if there are any better ways, please tell me.

    Read the article

  • Problem with python !!

    - by the-ifl
    Well I Have a little problem , i want to Get the sum of all numbers below to 1000000 , and who has 4 Divisors... I Try but i have a problem : http://pastebin.com/bhiDb5fe

    Read the article

  • Problem with a Python function

    - by the-ifl
    Well I have a little problem. I want to get the sum of all numbers below to 1000000, and who has 4 divisors... I try, but i have a problem because the GetTheSum(n) function always returns the number "6"... This is my Code : http://pastebin.com/bhiDb5fe

    Read the article

  • Interesting interview question. .Net

    - by rahul
    Coding Problem NumTrans There is an integer K. You are allowed to add to K any of its divisors not equal to 1and K. The same operation can be applied to the resulting number and so on. Notice that starting from the number 4, we can reach any composite number by applying several such operations. For example, the number 24 can be reached starting from 4 using 5 operations: 468121824 You will solve a more general problem. Given integers n and m, return the minimal number of the described operations necessary to transform n into m. Return -1 if m can't be obtained from n. Definition Method signature: int GetLeastCount (int n, int m) Constraints N will be between 4 and 100000, inclusive. M will be between N and 100000, inclusive. Examples 1) 4 576 Returns: 14 The shortest order of operations is: 468121827365481108162243324432576 2) 8748 83462 Returns: 10 The shortest order of operations is: 874813122196832624439366590497873283106834488346083462 3) 4 99991 Returns: -1 The number 99991 can't be obtained because it’s prime!

    Read the article

  • Handling "Big" Integers in C#

    - by priyanka.sarkar
    How do I handle big integers in C#? I have a function that will give me the product of divisors: private static int GetDivisorProduct(int N, int product) { for (int i = 1; i < N; i++) { if (N % i == 0) { Console.WriteLine(i.ToString()); product *= i; } } return product; } The calling function is GetDivisorProduct(N, 1) If the result is bigger than 4 digits , I should obtain only the last 4 digits. ( E.g. If I give an input of 957, the output is 7493 after trimming out only the last four values. The actual result is 876467493.). Other sample inputs: If I give 10000, the output is 0. The BigInteger class has been removed from the C# library! How can I get the last four digits?

    Read the article

  • More ruby-like solution to this problem?

    - by RaouL
    I am learning ruby and practicing it by solving problems from Project Euler. This is my solution for problem 12. # Project Euler problem: 12 # What is the value of the first triangle number to have over five hundred divisors? require 'prime' triangle_number = ->(num){ (num *(num + 1)) / 2 } factor_count = ->(num) do prime_fac = Prime.prime_division(num) exponents = prime_fac.collect { |item| item.last + 1 } fac_count = exponents.inject(:*) end n = 2 loop do tn = triangle_number.(n) if factor_count.(tn) >= 500 puts tn break end n += 1 end Any improvements that can be made to this piece of code?

    Read the article

  • What Precalculus knowledge is required before learning Discrete Math Computer Science topics?

    - by Ein Doofus
    Below I've listed the chapters from a Precalculus book as well as the author recommended Computer Science chapters from a Discrete Mathematics book. Although these chapters are from two specific books on these subjects I believe the topics are generally the same between any Precalc or Discrete Math book. What Precalculus topics should one know before starting these Discrete Math Computer Science topics?: Discrete Mathematics CS Chapters 1.1 Propositional Logic 1.2 Propositional Equivalences 1.3 Predicates and Quantifiers 1.4 Nested Quantifiers 1.5 Rules of Inference 1.6 Introduction to Proofs 1.7 Proof Methods and Strategy 2.1 Sets 2.2 Set Operations 2.3 Functions 2.4 Sequences and Summations 3.1 Algorithms 3.2 The Growths of Functions 3.3 Complexity of Algorithms 3.4 The Integers and Division 3.5 Primes and Greatest Common Divisors 3.6 Integers and Algorithms 3.8 Matrices 4.1 Mathematical Induction 4.2 Strong Induction and Well-Ordering 4.3 Recursive Definitions and Structural Induction 4.4 Recursive Algorithms 4.5 Program Correctness 5.1 The Basics of Counting 5.2 The Pigeonhole Principle 5.3 Permutations and Combinations 5.6 Generating Permutations and Combinations 6.1 An Introduction to Discrete Probability 6.4 Expected Value and Variance 7.1 Recurrence Relations 7.3 Divide-and-Conquer Algorithms and Recurrence Relations 7.5 Inclusion-Exclusion 8.1 Relations and Their Properties 8.2 n-ary Relations and Their Applications 8.3 Representing Relations 8.5 Equivalence Relations 9.1 Graphs and Graph Models 9.2 Graph Terminology and Special Types of Graphs 9.3 Representing Graphs and Graph Isomorphism 9.4 Connectivity 9.5 Euler and Hamilton Ptahs 10.1 Introduction to Trees 10.2 Application of Trees 10.3 Tree Traversal 11.1 Boolean Functions 11.2 Representing Boolean Functions 11.3 Logic Gates 11.4 Minimization of Circuits 12.1 Language and Grammars 12.2 Finite-State Machines with Output 12.3 Finite-State Machines with No Output 12.4 Language Recognition 12.5 Turing Machines Precalculus Chapters R.1 The Real-Number System R.2 Integer Exponents, Scientific Notation, and Order of Operations R.3 Addition, Subtraction, and Multiplication of Polynomials R.4 Factoring R.5 Rational Expressions R.6 Radical Notation and Rational Exponents R.7 The Basics of Equation Solving 1.1 Functions, Graphs, Graphers 1.2 Linear Functions, Slope, and Applications 1.3 Modeling: Data Analysis, Curve Fitting, and Linear Regression 1.4 More on Functions 1.5 Symmetry and Transformations 1.6 Variation and Applications 1.7 Distance, Midpoints, and Circles 2.1 Zeros of Linear Functions and Models 2.2 The Complex Numbers 2.3 Zeros of Quadratic Functions and Models 2.4 Analyzing Graphs of Quadratic Functions 2.5 Modeling: Data Analysis, Curve Fitting, and Quadratic Regression 2.6 Zeros and More Equation Solving 2.7 Solving Inequalities 3.1 Polynomial Functions and Modeling 3.2 Polynomial Division; The Remainder and Factor Theorems 3.3 Theorems about Zeros of Polynomial Functions 3.4 Rational Functions 3.5 Polynomial and Rational Inequalities 4.1 Composite and Inverse Functions 4.2 Exponential Functions and Graphs 4.3 Logarithmic Functions and Graphs 4.4 Properties of Logarithmic Functions 4.5 Solving Exponential and Logarithmic Equations 4.6 Applications and Models: Growth and Decay 5.1 Systems of Equations in Two Variables 5.2 System of Equations in Three Variables 5.3 Matrices and Systems of Equations 5.4 Matrix Operations 5.5 Inverses of Matrices 5.6 System of Inequalities and Linear Programming 5.7 Partial Fractions 6.1 The Parabola 6.2 The Circle and Ellipse 6.3 The Hyperbola 6.4 Nonlinear Systems of Equations

    Read the article

  • How to code a URL shortener?

    - by marco92w
    I want to create a URL shortener service where you can write a long URL into an input field and the service shortens the URL to "http://www.example.org/abcdef". Instead of "abcdef" there can be any other string with six characters containing a-z, A-Z and 0-9. That makes 56 trillion possible strings. My approach: I have a database table with three columns: id, integer, auto-increment long, string, the long URL the user entered short, string, the shortened URL (or just the six characters) I would then insert the long URL into the table. Then I would select the auto-increment value for "id" and build a hash of it. This hash should then be inserted as "short". But what sort of hash should I build? Hash algorithms like MD5 create too long strings. I don't use these algorithms, I think. A self-built algorithm will work, too. My idea: For "http://www.google.de/" I get the auto-increment id 239472. Then I do the following steps: short = ''; if divisible by 2, add "a"+the result to short if divisible by 3, add "b"+the result to short ... until I have divisors for a-z and A-Z. That could be repeated until the number isn't divisible any more. Do you think this is a good approach? Do you have a better idea?

    Read the article

  • Does isEmpty method in Stream evaluate the whole Stream?

    - by abhin4v
    In Scala, does calling isEmtpy method on an instance of Stream class cause the stream to be evaluated completely? My code is like this: import Stream.cons private val odds: Stream[Int] = cons(3, odds.map(_ + 2)) private val primes: Stream[Int] = cons(2, odds filter isPrime) private def isPrime(n: Int): Boolean = n match { case 1 => false case 2 => true case 3 => true case 5 => true case 7 => true case x if n % 3 == 0 => false case x if n % 5 == 0 => false case x if n % 7 == 0 => false case x if (x + 1) % 6 == 0 || (x - 1) % 6 == 0 => true case x => primeDivisors(x) isEmpty } import Math.{sqrt, ceil} private def primeDivisors(n: Int) = primes takeWhile { _ <= ceil(sqrt(n))} filter {n % _ == 0 } So, does the call to isEmpty on the line case x => primeDivisors(x) isEmpty cause all the prime divisors to be evaluated or only the first one?

    Read the article

  • C++ Perfect Number. Need some help revising.

    - by user278330
    I need some help revising this. It keeps only displaying 0s as the temp. Thank you. // A program to determine whether the input number is a perfect number // A perfect number is defined by the sum of all its positive divisors excluding itself // 28: 1+2+3+7+14 = 28. int perfect, limit, divisor; cout << "Please enter a positive integer in order to define whether it is a perfect integer or not: " ; cin >> perfect; cout << endl; int temp = 0; int prevtemp = 0; limit = 1; divisor = 1; while (limit < perfect) { if ((perfect % divisor) == 0) divisor = prevtemp; limit++; divisor++; temp = prevtemp + temp; cout << temp << endl; } if (perfect == temp) cout << "Your number is a perfect number!" << endl; else cout << "Your number is not a perfect number" << endl; return 0;

    Read the article

  • C++ question on prime numbers.

    - by user278330
    Hello. I am trying to make a program that determines if the number is prime or composite. I have gotten thus far. Could you give me any ideas so that it will work? All primes will , however, because composites have values that are both r0 and r==0, they will always be classified as prime. How can I fix this? int main() { int pNumber, limit, x, r; limit = 0; x = 2; cout << "Please enter any positive integer: " ; cin >> pNumber; if (pNumber < 0) { cout << "Invalid. Negative Number. " << endl; return 0; } else if (pNumber == 0) { cout << "Invalid. Zero has an infinite number of divisors, and therefore neither composite nor prime." << endl; return 0; } else if (pNumber == 1) { cout << "Valid. However, one is neither prime nor composite" << endl; return 0; } else { while (limit < pNumber) { r = pNumber % x; x++; limit++; } if (r == 0) cout << "Your number is composite" << endl; else cout << "Your number is prime" << endl; } return 0; }

    Read the article

  • C++ question on prime numbers.

    - by user278330
    Hello. I am trying to make a program that determines if the number is prime or composite. I have gotten thus far. Could you give me any ideas so that it will work? All primes will , however, because composites have values that are both r0 and r==0, they will always be classified as prime. How can I fix this? int main() { int pNumber, limit, x, r; limit = 0; x = 2; cout << "Please enter any positive integer: " ; cin >> pNumber; if (pNumber < 0) { cout << "Invalid. Negative Number. " << endl; return 0; } else if (pNumber == 0) { cout << "Invalid. Zero has an infinite number of divisors, and therefore neither composite nor prime." << endl; return 0; } else if (pNumber == 1) { cout << "Valid. However, one is neither prime nor composite" << endl; return 0; } else { while (limit < pNumber) { r = pNumber % x; x++; limit++; } if (r == 0) cout << "Your number is composite" << endl; else cout << "Your number is prime" << endl; } return 0; }

    Read the article

  • Strange performance behaviour for 64 bit modulo operation

    - by codymanix
    The last three of these method calls take approx. double the time than the first four. The only difference is that their arguments doesn't fit in integer anymore. But should this matter? The parameter is declared to be long, so it should use long for calculation anyway. Does the modulo operation use another algorithm for numbersmaxint? I am using amd athlon64 3200+, winxp sp3 and vs2008. Stopwatch sw = new Stopwatch(); TestLong(sw, int.MaxValue - 3l); TestLong(sw, int.MaxValue - 2l); TestLong(sw, int.MaxValue - 1l); TestLong(sw, int.MaxValue); TestLong(sw, int.MaxValue + 1l); TestLong(sw, int.MaxValue + 2l); TestLong(sw, int.MaxValue + 3l); Console.ReadLine(); static void TestLong(Stopwatch sw, long num) { long n = 0; sw.Reset(); sw.Start(); for (long i = 3; i < 20000000; i++) { n += num % i; } sw.Stop(); Console.WriteLine(sw.Elapsed); } EDIT: I now tried the same with C and the issue does not occur here, all modulo operations take the same time, in release and in debug mode with and without optimizations turned on: #include "stdafx.h" #include "time.h" #include "limits.h" static void TestLong(long long num) { long long n = 0; clock_t t = clock(); for (long long i = 3; i < 20000000LL*100; i++) { n += num % i; } printf("%d - %lld\n", clock()-t, n); } int main() { printf("%i %i %i %i\n\n", sizeof (int), sizeof(long), sizeof(long long), sizeof(void*)); TestLong(3); TestLong(10); TestLong(131); TestLong(INT_MAX - 1L); TestLong(UINT_MAX +1LL); TestLong(INT_MAX + 1LL); TestLong(LLONG_MAX-1LL); getchar(); return 0; } EDIT2: Thanks for the great suggestions. I found that both .net and c (in debug as well as in release mode) does't not use atomically cpu instructions to calculate the remainder but they call a function that does. In the c program I could get the name of it which is "_allrem". It also displayed full source comments for this file so I found the information that this algorithm special cases the 32bit divisors instead of dividends which was the case in the .net application. I also found out that the performance of the c program really is only affected by the value of the divisor but not the dividend. Another test showed that the performance of the remainder function in the .net program depends on both the dividend and divisor. BTW: Even simple additions of long long values are calculated by a consecutive add and adc instructions. So even if my processor calls itself 64bit, it really isn't :( EDIT3: I now ran the c app on a windows 7 x64 edition, compiled with visual studio 2010. The funny thing is, the performance behavior stays the same, although now (I checked the assembly source) true 64 bit instructions are used.

    Read the article

  • CodePlex Daily Summary for Sunday, April 08, 2012

    CodePlex Daily Summary for Sunday, April 08, 2012Popular ReleasesExtAspNet: ExtAspNet v3.1.3: ExtAspNet - ?? ExtJS ??? ASP.NET 2.0 ???,????? AJAX ?????????? ExtAspNet ????? ExtJS ??? ASP.NET 2.0 ???,????? AJAX ??????????。 ExtAspNet ??????? JavaScript,?? CSS,?? UpdatePanel,?? ViewState,?? WebServices ???????。 ??????: IE 7.0, Firefox 3.6, Chrome 3.0, Opera 10.5, Safari 3.0+ ????:Apache License 2.0 (Apache) ??:http://extasp.net/ ??:http://bbs.extasp.net/ ??:http://extaspnet.codeplex.com/ ??:http://sanshi.cnblogs.com/ ????: +2012-04-08 v3.1.3 -??Language="zh_TW"?JS???BUG(??)。 +?D...Coding4Fun Tools: Coding4Fun.Phone.Toolkit v1.5.5: New Controls ChatBubble ChatBubbleTextBox OpacityToggleButton New Stuff TimeSpan languages added: RU, SK, CS Expose the physics math from TimeSpanPicker Image Stretch now on buttons Bug Fixes Layout fix so RoundToggleButton and RoundButton are exactly the same Fix for ColorPicker when set via code behind ToastPrompt bug fix with OnNavigatedTo Toast now adjusts its layout if the SIP is up Fixed some issues with Expression Blend supportHarness - Internet Explorer Automation: Harness 2.0.3: support the operation fo frameset, frame and iframe Add commands SwitchFrame GetUrl GoBack GoForward Refresh SetTimeout GetTimeout Rename commands GetActiveWindow to GetActiveBrowser SetActiveWindow to SetActiveBrowser FindWindowAll to FindBrowser NewWindow to NewBrowser GetMajorVersion to GetVersionBetter Explorer: Better Explorer 2.0.0.861 Alpha: - fixed new folder button operation not work well in some situations - removed some unnecessary code like subclassing that is not needed anymore - Added option to make Better Exlorer default (at least for WIN+E operations) - Added option to enable file operation replacements (like Terracopy) to work with Better Explorer - Added some basic usability to "Share" button - Other fixesText Designer Outline Text: Version 2 Preview 2: Added Fake 3D demos for C++ MFC, C# Winform and C# WPFLightFarsiDictionary - ??????? ??? ?????/???????: LightFarsiDictionary - v1: LightFarsiDictionary - v1WPF Application Framework (WAF): WPF Application Framework (WAF) 2.5.0.3: Version: 2.5.0.3 (Milestone 3): This release contains the source code of the WPF Application Framework (WAF) and the sample applications. Requirements .NET Framework 4.0 (The package contains a solution file for Visual Studio 2010) The unit test projects require Visual Studio 2010 Professional Changelog Legend: [B] Breaking change; [O] Marked member as obsolete [O] WAF: Mark the StringBuilderExtensions class as obsolete because the AppendInNewLine method can be replaced with string.Jo...GeoMedia PostGIS data server: PostGIS GDO 1.0.1.2: This is a new version of GeoMeda PostGIS data server which supports user rights. It means that only those feature classes, which the current user has rights to select, are visible in GeoMedia. Issues fixed in this release Fixed problem with renaming and deleting feature classes - IMPORTANT! - the gfeatures view must be recreated so that this issue is completely fixed. The attached script "GFeaturesView2.sql" can be used to accomplish this task. Another way is to drop and recreate the metadat...SkyDrive Connector for SharePoint: SkyDrive Connector for SharePoint: Fixed a few bugs pertaining to live authentication Removed dependency on Shared Documents Removed CallBack web part propertyClosedXML - The easy way to OpenXML: ClosedXML 0.65.2: Aside from many bug fixes we now have Conditional Formatting The conditional formatting was sponsored by http://www.bewing.nl (big thanks) New on v0.65.1 Fixed issue when loading conditional formatting with default values for icon sets New on v0.65.2 Fixed issue loading conditional formatting Improved inserts performanceLiberty: v3.2.0.0 Release 4th April 2012: Change Log-Added -Halo 3 support (invincibility, ammo editing) -Halo 3: ODST support (invincibility, ammo editing) -The file transfer page now shows its progress in the Windows 7 taskbar -"About this build" settings page -Reach Change what an object is carrying -Reach Change which node a carried object is attached to -Reach Object node viewer and exporter -Reach Change which weapons you are carrying from the object editor -Reach Edit the weapon controller of vehicles and turrets -An error dia...MSBuild Extension Pack: April 2012: Release Blog Post The MSBuild Extension Pack April 2012 release provides a collection of over 435 MSBuild tasks. A high level summary of what the tasks currently cover includes the following: System Items: Active Directory, Certificates, COM+, Console, Date and Time, Drives, Environment Variables, Event Logs, Files and Folders, FTP, GAC, Network, Performance Counters, Registry, Services, Sound Code: Assemblies, AsyncExec, CAB Files, Code Signing, DynamicExecute, File Detokenisation, GUID’...DotNetNuke® Community Edition CMS: 06.01.05: Major Highlights Fixed issue that stopped users from creating vocabularies when the portal ID was not zero Fixed issue that caused modules configured to be displayed on all pages to be added to the wrong container in new pages Fixed page quota restriction issue in the Ribbon Bar Removed restriction that would not allow users to use a dash in page names. Now users can create pages with names like "site-map" Fixed issue that was causing the wrong container to be loaded in modules wh...51Degrees.mobi - Mobile Device Detection and Redirection: 2.1.3.1: One Click Install from NuGet Changes to Version 2.1.3.11. [assembly: AllowPartiallyTrustedCallers] has been added back into the AssemblyInfo.cs file to prevent failures with other assemblies in Medium trust environments. 2. The Lite data embedded into the assembly has been updated to include devices from December 2011. The 42 new RingMark properties will return Unknown if RingMark data is not available. Changes to Version 2.1.2.11Code Changes 1. The project is now licenced under the Mozilla...MVC Controls Toolkit: Mvc Controls Toolkit 2.0.0: Added Support for Mvc4 beta and WebApi The SafeqQuery and HttpSafeQuery IQueryable implementations that works as wrappers aroung any IQueryable to protect it from unwished queries. "Client Side" pager specialized in paging javascript data coming either from a remote data source, or from local data. LinQ like fluent javascript api to build queries either against remote data sources, or against local javascript data, with exactly the same interface. There are 3 different query objects exp...nopCommerce. Open source shopping cart (ASP.NET MVC): nopcommerce 2.50: Highlight features & improvements: • Significant performance optimization. • Allow store owners to create several shipments per order. Added a new shipping status: “Partially shipped”. • Pre-order support added. Enables your customers to place a Pre-Order and pay for the item in advance. Displays “Pre-order” button instead of “Buy Now” on the appropriate pages. Makes it possible for customer to buy available goods and Pre-Order items during one session. It can be managed on a product variant ...WiX Toolset: WiX v3.6 RC0: WiX v3.6 RC0 (3.6.2803.0) provides support for VS11 and a more stable Burn engine. For more information see Rob's blog post about the release: http://robmensching.com/blog/posts/2012/4/3/WiX-v3.6-Release-Candidate-Zero-availableSageFrame: SageFrame 2.0: Sageframe is an open source ASP.NET web development framework developed using ASP.NET 3.5 with service pack 1 (sp1) technology. It is designed specifically to help developers build dynamic website by providing core functionality common to most web applications.iTuner - The iTunes Companion: iTuner 1.5.4475: Fix to parse empty playlists in iTunes LibraryDocument.Editor: 2012.2: Whats New for Document.Editor 2012.2: New Save Copy support New Page Setup support Minor Bug Fix's, improvements and speed upsNew ProjectsCameraSudokuSolver: Sudoku solver through camera for AndroidCardboardBox: This is a WPF based client application for the danbooru.donmai.us image board.Cloud in Net: Cloud in NetDataStoreCleaner: DataStoreCleaner clears "DataStore" folder which manages Windows Update History. It is useful for fixing WU error, or tune up Windows start-up. It's developed in C#.E-Ticaret - Sanal Magaza: Temel olarak gelismis e-ticaret sistemlerinin temel özelliklerini bulundurucak ve yönetecek bir sistem olacaktir. Sonrasinda ek gelistirmeler için özel çalismalar yapilacaktir.Finding all factors: this is a simple Winform application for finding all factors or divisors of a given number. i think is a simple example for learning how to work with essential backgroundWorker class .FlashGraphicBuilder: Simple graphic builder on AS3IpPbxImportRR: Command-line tool to import or export routing records to/from a SwyxWare VoIP PBX. This is a sample application showing how to use the SwyxWare Configuration API (CDS API). Use it at your own risk.KNX.net: KNX.net provides a KNX API for C#LevelDesigner: LevelDesignerN2F Yverdon Sanitizers: A system to help ease the pain of sanitizing data. The system comes with some basic sanitizers as well as the framework necessary to enable easy development of custom sanitizers.nAPI for Windows Phone: Windows Phone library for using Naver(R)'s open API service. (This project is 3rd party library project, NOT a NHN/Naver's official project) For more info about Naver Open API: http://dev.naver.com/openapi/NJena (Semantic Web Framework for .NET): A .NET source-level port of the Jena frameworkNWTCompiler: NWTCompiler is for those interested in creating their own compiled database of the New World Translation of the Holy Scriptures from the watchtower.org sources. Formats such as e-Sword are supported.Odin Game Engine: Odin is an attempt at mixing Windows Forms and XNA in the goal of making a game engine.qq: qqRanmal MVC Work: It is my Knowledge Exchange projectRichCode: RichCode is a UserControl that is easy to use, allows the custom syntax highlighting without much effortRUPSY Download manager: RUPSY Download managerSDCBCWEB: This is a web application for a class project. The goal is to create a content management system to be used for educational purposes by a nonprofit.Snake Game: Kursinis darbasSpec Pattern: Spec Pattern is a simple yet powerful implementation of specification pattern in C#. Relying in IQueryable it covers the three requirements this patterns aims to solve - Validation - Querying - BuildingSteel Brain: An open source project which aims to implement a neural net framework in unmanaged C++. The longer term describes why I chose C++ over the phenomenal C# which is creating a neural net that can harness the power of GPGPU's by using the OpenCL library. (I'm not a beleiver of projects that tries to provide solutions to developers who dont want to come out of the managed, cozy C# context) Sunday: Another Web Content Management System.TO7 License Plate Recognition: This project is part of a college assignment.ts: tsUnofficial RunUO: This project is a fork of the popular Ultima Online emulation software RunUO ( http://www.runuo.com ) The main difference between this repository and the official RunUO is that this project is fully set up and ready to launch in Visual Studio 2010, with full .NET 4.0 support!VibroStudio: Application for edit, view and process vibrosignalsWindows Phone AR.Drone controller: The Windows Phone AR.Drone controller is a controller library and client application for Windows Phone 7.1. It is written in C#.XamlImageConverter: A tool to convert Xaml to images. - It implements an MSBuild task that can be imported in any project to convert xaml to images in a project - It implements a HttpHandler that converts xaml to images on the fly. XEFFEX: XEFFEX is a play off the piano gadget. The shapes were manipulated and the sounds are set to different effects. The end goal was too have the pads play a sound and execute a program the user can pre-choose. The options menu allows quit access to your files. XiaMiRingtone: ?????windows phone??。 ???????,????????,???????????。

    Read the article

  • Help with Java Program for Prime numbers

    - by Ben
    Hello everyone, I was wondering if you can help me with this program. I have been struggling with it for hours and have just trashed my code because the TA doesn't like how I executed it. I am completely hopeless and if anyone can help me out step by step, I would greatly appreciate it. In this project you will write a Java program that reads a positive integer n from standard input, then prints out the first n prime numbers. We say that an integer m is divisible by a non-zero integer d if there exists an integer k such that m = k d , i.e. if d divides evenly into m. Equivalently, m is divisible by d if the remainder of m upon (integer) division by d is zero. We would also express this by saying that d is a divisor of m. A positive integer p is called prime if its only positive divisors are 1 and p. The one exception to this rule is the number 1 itself, which is considered to be non-prime. A positive integer that is not prime is called composite. Euclid showed that there are infinitely many prime numbers. The prime and composite sequences begin as follows: Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, … Composites: 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, … There are many ways to test a number for primality, but perhaps the simplest is to simply do trial divisions. Begin by dividing m by 2, and if it divides evenly, then m is not prime. Otherwise, divide by 3, then 4, then 5, etc. If at any point m is found to be divisible by a number d in the range 2 d m-1, then halt, and conclude that m is composite. Otherwise, conclude that m is prime. A moment’s thought shows that one need not do any trial divisions by numbers d which are themselves composite. For instance, if a trial division by 2 fails (i.e. has non-zero remainder, so m is odd), then a trial division by 4, 6, or 8, or any even number, must also fail. Thus to test a number m for primality, one need only do trial divisions by prime numbers less than m. Furthermore, it is not necessary to go all the way up to m-1. One need only do trial divisions of m by primes p in the range 2 p m . To see this, suppose m 1 is composite. Then there exist positive integers a and b such that 1 < a < m, 1 < b < m, and m = ab . But if both a m and b m , then ab m, contradicting that m = ab . Hence one of a or b must be less than or equal to m . To implement this process in java you will write a function called isPrime() with the following signature: static boolean isPrime(int m, int[] P) This function will return true or false according to whether m is prime or composite. The array argument P will contain a sufficient number of primes to do the testing. Specifically, at the time isPrime() is called, array P must contain (at least) all primes p in the range 2 p m . For instance, to test m = 53 for primality, one must do successive trial divisions by 2, 3, 5, and 7. We go no further since 11 53 . Thus a precondition for the function call isPrime(53, P) is that P[0] = 2 , P[1] = 3 , P[2] = 5, and P[3] = 7 . The return value in this case would be true since all these divisions fail. Similarly to test m =143 , one must do trial divisions by 2, 3, 5, 7, and 11 (since 13 143 ). The precondition for the function call isPrime(143, P) is therefore P[0] = 2 , P[1] = 3 , P[2] = 5, P[3] = 7 , and P[4] =11. The return value in this case would be false since 11 divides 143. Function isPrime() should contain a loop that steps through array P, doing trial divisions. This loop should terminate when 2 either a trial division succeeds, in which case false is returned, or until the next prime in P is greater than m , in which case true is returned. Function main() in this project will read the command line argument n, allocate an int array of length n, fill the array with primes, then print the contents of the array to stdout according to the format described below. In the context of function main(), we will refer to this array as Primes[]. Thus array Primes[] plays a dual role in this project. On the one hand, it is used to collect, store, and print the output data. On the other hand, it is passed to function isPrime() to test new integers for primality. Whenever isPrime() returns true, the newly discovered prime will be placed at the appropriate position in array Primes[]. This process works since, as explained above, the primes needed to test an integer m range only up to m , and all of these primes (and more) will already be stored in array Primes[] when m is tested. Of course it will be necessary to initialize Primes[0] = 2 manually, then proceed to test 3, 4, … for primality using function isPrime(). The following is an outline of the steps to be performed in function main(). • Check that the user supplied exactly one command line argument which can be interpreted as a positive integer n. If the command line argument is not a single positive integer, your program will print a usage message as specified in the examples below, then exit. • Allocate array Primes[] of length n and initialize Primes[0] = 2 . • Enter a loop which will discover subsequent primes and store them as Primes[1] , Primes[2], Primes[3] , ……, Primes[n -1] . This loop should contain an inner loop which walks through successive integers and tests them for primality by calling function isPrime() with appropriate arguments. • Print the contents of array Primes[] to stdout, 10 to a line separated by single spaces. In other words Primes[0] through Primes[9] will go on line 1, Primes[10] though Primes[19] will go on line 2, and so on. Note that if n is not a multiple of 10, then the last line of output will contain fewer than 10 primes. Your program, which will be called Prime.java, will produce output identical to that of the sample runs below. (As usual % signifies the unix prompt.) % java Prime Usage: java Prime [PositiveInteger] % java Prime xyz Usage: java Prime [PositiveInteger] % java Prime 10 20 Usage: java Prime [PositiveInteger] % java Prime 75 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 % 3 As you can see, inappropriate command line argument(s) generate a usage message which is similar to that of many unix commands. (Try doing the more command with no arguments to see such a message.) Your program will include a function called Usage() having signature static void Usage() that prints this message to stderr, then exits. Thus your program will contain three functions in all: main(), isPrime(), and Usage(). Each should be preceded by a comment block giving it’s name, a short description of it’s operation, and any necessary preconditions (such as those for isPrime().) See examples on the webpage.

    Read the article

1