Search Results

Search found 8 results on 1 pages for 'dsollen'.

Page 1/1 | 1 

  • unit level testing, agile, and refactoring

    - by dsollen
    I'm working on a very agile development system, a small number of people with my doing the vast majority of progaming myself. I've gotten to the testing phase and find myself writing mostly functional level testing, which I should in theory be leavning for our tester (in practice I don't entirely...trust our tester to detect and identify defects enough to leave him the sole writter of functional tests). In theory what I should be writing is Unit level tests. However, I'm not sure it's worth the expense. Unit testing takes some time to do, more then functional testing since I have to set up mocks and plugs into smaller units that weren't design to run in issolation. More importantly, I find I refactor and redesign heavily-part of this is due to my inherriting code that needed heavy redesign and is still being cleaned up, but even once I've finished removing parts that need work I'm sure in the act of expanding the code I'll still do a decent amount of refactoring and redesign. It feels as if I will break my unit tests, forcing wasted time to refactor them as well, often due to unit test, by definition, having to be coupled so closely to the code structure. So.is it worth all the wasted time when functional tests, that will never break when I refactor/redesign, should find most defects? Do unit tests really provide that much extra defect detetection over through functional? and how does one create good unit tests that work with very quick and agile code that is modified rapidly? ps, I would be fine/happy with links to anything one considers an excellent resource for how to 'do' unit testing in a highly changing enviroment. edit: to clarify I am doing a bit of very unoffical TDD, I just seem to be writing tests on what would be considered a functional level rather then unit level. I think part of this is becaus I own nearly all of the project I don't feel I need to limit the scope as much; and part of it is that it's daunting to think of trying to go back and retroactively add the unit tests needed to cover enough code that I can feel comfortable testing only a unit without the full functionality and trust that unit still works with the rest of the units.

    Read the article

  • Clean way to use mutable implementation of Immutable interfaces for encapsulation

    - by dsollen
    My code is working on some compost relationship which creates a tree structure, class A has many children of type B, which has many children of type C etc. The lowest level class, call it bar, also points to a connected bar class. This effectively makes nearly every object in my domain inter-connected. Immutable objects would be problematic due to the expense of rebuilding almost all of my domain to make a single change to one class. I chose to go with an interface approach. Every object has an Immutable interface which only publishes the getter methods. I have controller objects which constructs the domain objects and thus has reference to the full objects, thus capable of calling the setter methods; but only ever publishes the immutable interface. Any change requested will go through the controller. So something like this: public interface ImmutableFoo{ public Bar getBar(); public Location getLocation(); } public class Foo implements ImmutableFoo{ private Bar bar; private Location location; @Override public Bar getBar(){ return Bar; } public void setBar(Bar bar){ this.bar=bar; } @Override public Location getLocation(){ return Location; } } public class Controller{ Private Map<Location, Foo> fooMap; public ImmutableFoo addBar(Bar bar){ Foo foo=fooMap.get(bar.getLocation()); if(foo!=null) foo.addBar(bar); return foo; } } I felt the basic approach seems sensible, however, when I speak to others they always seem to have trouble envisioning what I'm describing, which leaves me concerned that I may have a larger design issue then I'm aware of. Is it problematic to have domain objects so tightly coupled, or to use the quasi-mutable approach to modifying them? Assuming that the design approach itself isn't inherently flawed the particular discussion which left me wondering about my approach had to do with the presence of business logic in the domain objects. Currently I have my setter methods in the mutable objects do error checking and all other logic required to verify and make a change to the object. It was suggested that this should be pulled out into a service class, which applies all the business logic, to simplify my domain objects. I understand the advantage in mocking/testing and general separation of logic into two classes. However, with a service method/object It seems I loose some of the advantage of polymorphism, I can't override a base class to add in new error checking or business logic. It seems, if my polymorphic classes were complicated enough, I would end up with a service method that has to check a dozen flags to decide what error checking and business logic applies. So, for example, if I wanted to have a childFoo which also had a size field which should be compared to bar before adding par my current approach would look something like this. public class Foo implements ImmutableFoo{ public void addBar(Bar bar){ if(!getLocation().equals(bar.getLocation()) throw new LocationException(); this.bar=bar; } } public interface ImmutableChildFoo extends ImmutableFoo{ public int getSize(); } public ChildFoo extends Foo implements ImmutableChildFoo{ private int size; @Override public int getSize(){ return size; } @Override public void addBar(Bar bar){ if(getSize()<bar.getSize()){ throw new LocationException(); super.addBar(bar); } My colleague was suggesting instead having a service object that looks something like this (over simplified, the 'service' object would likely be more complex). public interface ImmutableFoo{ ///original interface, presumably used in other methods public Location getLocation(); public boolean isChildFoo(); } public interface ImmutableSizedFoo implements ImmutableFoo{ public int getSize(); } public class Foo implements ImmutableSizedFoo{ public Bar bar; @Override public void addBar(Bar bar){ this.bar=bar; } @Override public int getSize(){ //default size if no size is known return 0; } @Override public boolean isChildFoo return false; } } public ChildFoo extends Foo{ private int size; @Override public int getSize(){ return size; } @Override public boolean isChildFoo(); return true; } } public class Controller{ Private Map<Location, Foo> fooMap; public ImmutableSizedFoo addBar(Bar bar){ Foo foo=fooMap.get(bar.getLocation()); service.addBarToFoo(foo, bar); returned foo; } public class Service{ public static void addBarToFoo(Foo foo, Bar bar){ if(foo==null) return; if(!foo.getLocation().equals(bar.getLocation())) throw new LocationException(); if(foo.isChildFoo() && foo.getSize()<bar.getSize()) throw new LocationException(); foo.setBar(bar); } } } Is the recommended approach of using services and inversion of control inherently superior, or superior in certain cases, to overriding methods directly? If so is there a good way to go with the service approach while not loosing the power of polymorphism to override some of the behavior?

    Read the article

  • More elegant way to avoid hard coding the format of a a CSV file?

    - by dsollen
    I know this is trivial issue, but I just feel this can be more elegant. So I need to write/read data files for my program, lets say they are CSV for now. I can implement the format as I see fit, but I may have need to change that format later. The simply thing to do is something like out.write(For.getValue()+","+bar.getMinValue()+","+fi.toString()); This is easy to write, but obviously is guilty of hard coding and the general 'magic number' issue. The format is hard-coded, requires parsing of the code to figure out the file format, and changing the format requires changing multiple methods. I could instead have my constants specifying the location that I want each variable to be saved in the CSV file to remove some of the 'magic numbers'; then save/load into the an array at the location specified by the constants: int FOO_LOCATION=0; int BAR_MIN_VAL_LOCATION=1; int FI_LOCATION=2 int NUM_ARGUMENTS=3; String[] outputArguments=new String[NUM_ARGUMENTS]; outputArguments[FOO_LOCATION] = foo.getValue(); outputArgumetns[BAR_MIN_VAL_LOCATION] = bar.getMinValue(); outptArguments[FI_LOCATOIN==fi.toString(); writeAsCSV(outputArguments); But this is...extremely verbose and still a bit ugly. It makes it easy to see the format of existing CSV and to swap the location of variables within the file easily. However, if I decide to add an extra value to the csv I need to not only add a new constant, but also modify the read and write methods to add the logic that actually saves/reads the argument from the array; I still have to hunt down every method using these variables and change them by hand! If I use Java enums I can clean this up slightly, but the real issue is still present. Short of some sort of functional programming (and java's inner classes are too ugly to be considered functional) I still have no obvious way of clearly expressing what variable is associated with each constant short of writing (and maintaining) it in the read/write methods. For instance I still need to write somewhere that the FOO_LOCATION specifies the location of foo.getValue(). It seems as if there should be a prettier, easier to maintain, manner for approaching this? Incidentally, I'm working in java at the moment, however, I am interested conceptually about the design approach regardless of language. Some library in java that does all the work for me is definitely welcome (though it may prove more hassle to get permission to add it to the codebase then to just write something by hand quickly), but what I'm really asking is more about how to write elegant code if you had to do this by hand.

    Read the article

  • Code Design question, circular reference across classes?

    - by dsollen
    I have no code here, as this is more of a design question (I assume this is still the best place to ask it). I have a very simple server in java which stores a mapping between certain values and UUID which are to be used by many systems across multiple platforms. It accepts a connection from a client and creates a clientSocket which stores the socket and all the other relevant data unique to that connection. Each clientSocket will run in their own thread and will block on the socket waiting for a read. I expect very little strain on this system, it will rarely get called, but when it does get a call it will need to respond quickly and due to the risk of it having a peak time with multiple calls coming in at once threaded is still better. Each thread has a reference to a Mapper class which stores the mapping of UUID which it's reporting to others (with proper synchronization of course). This all works until I have to add a new UUID to the list. When this happens I want to report to all clients that care about that particular UUID that a new one was added. I can't multicast (limitation of the system I'm running on) so I'm having each socket send the message to the client through the established socket. However, since each thread only knows about the socket it's waiting on I didn't have a clear method of looking up every thread/socket that cares about the data to inform them of the new UUID. Polling is out mostly because it seems a little too convoluted to try to maintain a list of newly added UUID. My solution as of now is to have the 'parent' class which creates the mapper class and spawns all the threads pass itself as an argument to the mapper. Then when the mapper creates a new UUID it can make a call to the parent class telling it to send out updates to all the other sockets that care about the change. I'm concerned that this may be a bad design due to the use of a circular reference; parent has a reference to mapper (to pass it to new ClientSocket threads) and mapper points to parent. It doesn't really feel like a bad design to me but I wanted to check since circular references are suppose to be bad. Note: I realize this means that the thread associated with whatever socket originally received the request that spawned the creation of a UUID is going to pay the 'cost' of outputting to all the other clients that care about the new UUID. I don't care about this; as I said I suspect the client to receive only intermittent messages. It's unlikely for one socket to receive multiple messages at one time, and there won't be that many sockets so it shouldn't take too long to send messages to each of them. Perhaps later I'll fix the fact that I'm saddling higher work load on whatever unfortunate thread gets the first request; but for now I think it's fine.

    Read the article

  • How best to look up objects by label?

    - by dsollen
    I am writing the server backed by a pre-written API. I'm going to get a number of strings representing ports, signals, paths, etc etc etc. I need to look up the object associated with a given label, these objects are all in memory (no sql magic to do this for me). My question is, how best do I associate a given unique label with the mutable object it represents? I have enough objects that looking through every signal or every port to find the one that matches is possible, but may be slightly too slow. To be honest the direct 'look at every object' method is probably good enough for so small a body of objects and anything else is premature optimization, but I still am curious what the proper solution would be if I thought my signals were going to grow a bit larger. As I see it there are two options available. First would be to to create a 'store' that is a simple map between object and label. I could have it so that every time I call addObject the object is automatically saved into a hashmap or the like. This works, but relies on my properly adding and deleting each object so the map doesn't grow indefinitely. The biggest issue to me is that this involves having some hidden static map in my ModelObject class that just feels...wrong somehow. The other option is to have some method that can interpret the labels. All of these labels are derived from the underlying objects. So I can look at the signal label, for instance, and say "these 20 characters are the port" to figure out what port I need. This would allow me to quickly figure out what I need. However, if the label method is changed the translateLabelToObject method needs to be updated as well or everything breaks. Which solution is cleaner, or possibly a cleaner solution than either of above? For the record I'm working with sufficient number of variables to make direct comparison a little slow, but not enough to be concerned about memory overhead, written in java. All objects that have labels I need to look up extend the same parent class.

    Read the article

  • Is there a factory pattern to prevent multiple instances for same object (instance that is Equal) good design?

    - by dsollen
    I have a number of objects storing state. There are essentially two types of fields. The ones that uniquely define what the object is (what node, what edge etc), and the others that store state describing how these things are connected (this node is connected to these edges, this edge is part of these paths) etc. My model is updating the state variables using package methods, so all these objects act as immutable to anyone not in Model scope. All Objects extend one base type. I've toyed with the idea of a Factory approach which accepts a Builder object and constructs the applicable object. However, if an instance of the object already exists (ie would return true if I created the object defined by the builder and passed it to the equal method for the existing instance) the factory returns the current object instead of creating a new instance. Because the Equal method would only compare what uniquely defines the type of object (this is node A to node B) but won't check the dynamic state stuff (node A is currently connected to nodes C and E) this would be a way of ensuring anyone that wants my Node A automatically knows its state connections. More importantly it would prevent aliasing nightmares of someone trying to pass an instance of node A with different state then the node A in my model has. I've never heard of this pattern before, and it's a bit odd. I would have to do some overriding of serialization methods to make it work (ensure that when I read in a serilized object I add it to my facotry list of known instances, and/or return an existing factory in its place), as well as using a weakHashMap as if it was a weakHashSet to know whether an instance exists without worrying about a quasi-memory leak occuring. I don't know if this is too confusing or prone to its own obscure bugs. One thing I know is that plugins interface with lowest level hardware. The plugins have to be able to return state that is different than my memory; to tell my memory when its own state is inconsistent. I believe this is possible despite their fetching objects that exist in my memory; we allow building of objects without checking their consistency with the model until the addToModel is called anyways; and the existing plugins design was written before all this extra state existed and worked fine without ever being aware of it. Should I just be using some other design to avoid this crazyness? (I have another question to that affect that I'm posting).

    Read the article

  • is a factory pattern to prevent multuple instances for same object (instance that is Equal) good design?

    - by dsollen
    I have a number of objects storing state. There are essentially two types of fields. The ones that uniquly define what the object is (what node, what edge etc), and the oens that store state describing how these things are connected (this node is connected to these edges, this edge is part of these paths) etc. My model is updating the state variables using package methdos, so these objects all act as immutable to anyone not in Model scope. All Objects extend one base type. I've toyed with the idea of a Factory approch which accepts a Builder object and construct the applicable object. However, if an instance of the object already exists (ie would return true if I created the object defined by the builder and passed it to the equal method for the existing instance) the factory returns the current object instead of creating a new instance. Because the Equal method would only compare what uniquly defines the type of object (this is node A nto node B) but won't check the dynamic state stuff (node A is currently connected to nodes C and E) this would be a way of ensuring anyone that wants my Node A automatically knows it's state connections. More importantly it would prevent aliasing nightmares of someone trying to pass an instance of node A with different state then the node A in my model has. I've never heard of this pattern before, and it's a bit odd. I would have to do some overiding of serlization methods to make it work (ensure when I read in a serilized object I add it to my facotry list of known instances, and/or return an existing factory in it's place), as well as using a weakHashMap as if it was a weakHashSet to know rather an instance exists without worrying about a quasi-memory leak occuring. I don't know if this is too confusing or prone to it's own obscure bugs. One thing I know is that plugins interface with lowest level hardware. The plugins have to be able to return state taht is different then my memory; to tell my memory when it's own state is inconsistent. I believe this is possible despit their fetching objects that exist in my memory; we allow building of objects without checking their consistency with the model until the addToModel is called anyways; and the existing plugins design was written before all this extra state existed and worked fine without ever being aware of it. Should I just be using some other design to avoid this crazyness? (I have another question to that affect I'm posting).

    Read the article

  • best way to quickly share multiple photos without permanently hosting them

    - by dsollen
    I find that I'm often asked to share lots of photos with someone, enough that uploading each one individually to them gets tedious when I would like to drag and drop the whole bunch. I could put them on photobucket, but some of them are semi-private; private enough that I don't want them to be easily found on image hosting sites. Are there any convenient ways of sharing these photos quickly but still being able to remove them from the inter-webs afterwards (without too much hassle)? I have found Yahoo Messenger complete version has great photo sharing options; but not everyone has it and I can't expect people to download it just to see some photos.

    Read the article

1