Search Results

Search found 19 results on 1 pages for 'electro'.

Page 1/1 | 1 

  • Finite state machine in C++

    - by Electro
    So, I've read a lot about using FSMs to do game state management, things like what and FSM is, and using a stack or set of states for building one. I've gone through all that. But I'm stuck at writing an actual, well-designed implementation of an FSM for that purpose. Specifically, how does one cleanly resolve the problem of transitioning between states, (how) should a state be able to use data from other states, and so on. Does anyone have any tips on designing and writing a implementation in C++, or better yet, code examples?

    Read the article

  • Custom mesh format - yea or nay?

    - by Electro
    In the process of writing my game prototype, I have found the OBJ format to be insufficient for my needs - it does not support any sort of animation, it doesn't support triangle strips (I'm targeting my ancient hardware). MD2 wouldn't fit the bill because it doesn't have support for named model pieces. MD3 would probably work, but like OBJ, it doesn't have support for triangle strips. Considering the limitations of the formats above, I've come to the conclusion that it may be necessary to write my own format to accommodate my requirements, but that feels like reinventing the wheel. So, I need a format which can specify indexed tri-strips, supports textures, UV-mapping, collision data, can have multiple named segments and supports animations (have I forgotten anything?). Is there any format like that which already exists, or do I have to write my own?

    Read the article

  • Counting number of children in hierarchical SQL data

    - by moontear
    Hello, for a simple data structure such as so: ID parentID Text Price 1 Root 2 1 Flowers 3 1 Electro 4 2 Rose 10 5 2 Violet 5 6 4 Red Rose 12 7 3 Television 100 8 3 Radio 70 9 8 Webradio 90 For reference, the hierarchy tree looks like this: ID Text Price 1 Root |2 Flowers |-4 Rose 10 | |-6 Red Rose 12 |-5 Violet 5 |3 Electro |-7 Television 100 |-8 Radio 70 |-9 Webradio 90 I'd like to count the number of children per level. So I would get a new column "NoOfChildren" like so: ID parentID Text Price NoOfChildren 1 Root 8 2 1 Flowers 3 3 1 Electro 3 4 2 Rose 10 1 5 2 Violet 5 0 6 4 Red Rose 12 0 7 3 Television 100 0 8 3 Radio 70 1 9 8 Webradio 90 0 I read a few things about hierarchical data, but I somehow get stuck on the multiple inner joins on the parentIDs. Maybe someone could help me out here. moon

    Read the article

  • Counting number of children in hierarchical SQL data

    - by moontear
    for a simple data structure such as so: ID parentID Text Price 1 Root 2 1 Flowers 3 1 Electro 4 2 Rose 10 5 2 Violet 5 6 4 Red Rose 12 7 3 Television 100 8 3 Radio 70 9 8 Webradio 90 For reference, the hierarchy tree looks like this: ID Text Price 1 Root |2 Flowers |-4 Rose 10 | |-6 Red Rose 12 |-5 Violet 5 |3 Electro |-7 Television 100 |-8 Radio 70 |-9 Webradio 90 I'd like to count the number of children per level. So I would get a new column "NoOfChildren" like so: ID parentID Text Price NoOfChildren 1 Root 8 2 1 Flowers 3 3 1 Electro 3 4 2 Rose 10 1 5 2 Violet 5 0 6 4 Red Rose 12 0 7 3 Television 100 0 8 3 Radio 70 1 9 8 Webradio 90 0 I read a few things about hierarchical data, but I somehow get stuck on the multiple inner joins on the parentIDs. Maybe someone could help me out here. moon

    Read the article

  • Alkan Improves Aeronautical-Equipment Product Collaboration, Design Processes, and Government Compliance

    - by Gerald Fauteux
    Alkan S.A. a leading aeronautical equipment manufacturer in France, specializing in carriage-release and ejection systems for various types of military aircraft utilize Oracle’s AutoVue Electro-Mechanical Professional for Agile as part of its Agile Product Lifecycle Management solution. AutoVue Electro-Mechanical Professional for Agile enables multiformat 3-D viewing of engineering designs, leading to deeper analysis of component and product functionality and allows all teams to easily participate and contribute to product data early in the development cycle. Alkan S.A.’s equipment is used in more than 65 countries and is certified for more than 60 types of aircraft, worldwide. Click here to read the complete story. French version.

    Read the article

  • Logitech M515 does not work after upgrade to 12.04

    - by user877329
    After upgrading to 12.04, my Logitech M515 does not work here is some output from the terminal: lsusb Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 001 Device 003: ID 0411:002a BUFFALO INC. (formerly MelCo., Inc.) Bus 001 Device 004: ID 055d:3021 Samsung Electro-Mechanics Co. Bus 002 Device 002: ID 413c:2005 Dell Computer Corp. RT7D50 Keyboard Bus 004 Device 002: ID 0582:0074 Roland Corp. EDIROL UA-25 Bus 005 Device 002: ID 046d:c52b Logitech, Inc. Unifying Receiver dmesg | grep Logitech [ 30.470528] logitech-djreceiver 0003:046D:C52B.0004: hiddev0,hidraw1: USB HID v1.11 Device [Logitech USB Receiver] on usb-0000:00:1d.3-2/input2 The cursor does not move. Also the mouse was working in 11.10 and is working in Windows NT 5.1.2600.

    Read the article

  • New AutoVue for Agile Data Sheet & Solution Brief

    - by Pam Petropoulos
    AutoVue for Agile visualization solutions deliver best-in-class document and CAD (MCAD and ECAD) visualization and collaboration capabilities directly within Oracle Agile PLM. With AutoVue for Agile solutions, companies can enable visual decision-making across the product lifecycle and simplify end-to-end design to manufacturing. They can also optimize new product development and introduction, as well as change management processes, and enable more efficient collaboration with global supply chain partners without jeopardizing critical intellectual property. Check out the latest AutoVue for Agile materials which outline the capabilities of the AutoVue 2D Professional for Agile and AutoVue Electro-Mechanical Professional for Agile solutions and their corresponding benefits. Click here for the data sheet. Click here for the solution brief.

    Read the article

  • Minty Bug: Build an FM Bug Inside a Mint Container

    - by ETC
    Electronics projects that have real world (and showing off to your friends) potential are the most fun; today we take a look at a clever FM bug design hidden in a mint container. At PyroElectro Projects they wanted to try something new with the whole electronics-in-mint-container genre. They opted to turn a container of Ice Breakers Frost mints (the Ice Breakers response to Altoid Mints, presumably) into a small FM bug. The most clever part of the design is that the container still holds mints. Aside from a small black dot on the back of the case you’d have little reason to believe it was anything buy a box of mints. Check out the video below to see the mint container unpacked and the hidden electronics payload revealed: If you’re interested in the project hit up the link below for additional information. FM Bug Transmitter Mint Box [Pyro Electro Projects via Hack A Day] Latest Features How-To Geek ETC How to Get Amazing Color from Photos in Photoshop, GIMP, and Paint.NET Learn To Adjust Contrast Like a Pro in Photoshop, GIMP, and Paint.NET Have You Ever Wondered How Your Operating System Got Its Name? Should You Delete Windows 7 Service Pack Backup Files to Save Space? What Can Super Mario Teach Us About Graphics Technology? Windows 7 Service Pack 1 is Released: But Should You Install It? Get the MakeUseOf eBook Guide to Hacker Proofing Your PC Sync Your Windows Computer with Your Ubuntu One Account [Desktop Client] Awesome 10 Meter Curved Touchscreen at the University of Groningen [Video] TV Antenna Helper Makes HDTV Antenna Calibration a Snap Turn a Green Laser into a Microscope Projector [Science] The Open Road Awaits [Wallpaper]

    Read the article

  • RPi and Java Embedded GPIO: Using Java to read input

    - by hinkmond
    Now that we've learned about using Java code to control the output of the Raspberry Pi GPIO ports (by lighting up LEDs from a Java app on the RPi for now and noting in the future the same Java code can be used to drive industrial automation or medical equipment, etc.), let's move on to learn about reading input from the RPi GPIO using Java code. As before, we need to start out with the necessary hardware. For this exercise we will connect a Static Electricity Detector to the RPi GPIO port and read the value of that sensor using Java code. The circuit we'll use is from William J. Beaty and is described at this Web link. See: Static Electricity Detector He calls it an "Electric Charge" detector, which is a bit misleading. A Field Effect Transistor is subject to nearby electro-magnetic fields, such as a static charge on a nearby object, not really an electric charge. So, this sensor will detect static electricity (or ghosts if you are into paranormal activity ). Take a look at the circuit and in the next blog posts we'll step through how to connect it to the GPIO port of your RPi and then how to write Java code to access this fun sensor. Hinkmond

    Read the article

  • Are there design patterns or generalised approaches for particle simulations?

    - by romeovs
    I'm working on a project (for college) in C++. The goal is to write a program that can more or less simulate a beam of particles flying trough the LHC synchrotron. Not wanting to rush into things, me and my team are thinking about how to implement this and I was wondering if there are general design patterns that are used to solve this kind of problem. The general approach we came up with so far is the following: there is a World that holds all objects you can add objects to this world such as Particle, Dipole and Quadrupole time is cut up into discrete steps, and at each point in time, for each Particle the magnetic and electric forces that each object in the World generates are calculated and summed up (luckily electro-magnetism is linear). each Particle moves accordingly (using a simple estimation approach to solve the differential movement equations) save the Particle positions repeat This seems a good approach but, for instance, it is hard to take into account symmetries that might be present (such as the magnetic field of each Quadrupole) and is this thus suboptimal. To take into account such symmetries as that of the Quadrupole field, it would be much easier to (also) make space discrete and somehow store form of the Quadrupole field somewhere. (Since 2532 or so Quadrupoles are stored this should lead to a massive gain of performance, not having to recalculate each Quadrupole field) So, are there any design patterns? Is the World-approach feasible or is it old-fashioned, bad programming? What about symmetry, how is that generally taken into acount?

    Read the article

  • How can I get Windows 8 to automatically disable touch when I am using my Wacom pen and turn it back on when I am not

    - by Robert
    I have an HP convertible tablet computer which I just upgraded to Windows 8. The problem (which existed under Windows 7 as well) is that this tablet has both a capacitive touch screen (with multi-touch) AND a wacom-type tablet built in to the screen that works using electro-magnetic resonance with the provided stylus. My Use Case: Most of the time I am happy using my fingers and the touch interface for navigation and whatnot. However, when I want to get down to serious note-taking/drawing, I want to use the wacom functionality. The problem is that any comfortable writing position has me resting my arm/hand on the screen, which activates the touch technology (despite supposed palm-detection algorithms) and completely screws up my input paradigm. My Ideal Solution: Ideallly, since wacom technology senses when the pen is "close" to the screen, I would love to have touch be automatically disabled whenever the wacom pen is detected, and turned back on when it is out of range. this would allow me to seamless switch between the two input methods, and since I NEVER want to use both at once would work perfectly for me. An acceptable alternative: As a next best option, It would be great to be able to turn off the touch functionality (leaving the wacom in place) whenever I entered specific apps (e.g. OneNote, Photoshop, Gimp, Pencil, etc.) and then have it turn back on when I left that app.... As a worst case at least lets me use my PC option: If I could create a shortcut (tile or otherwise) that flips the touch on and off without going all the way through the nested computer settings, that would be better than nothing. Thanks in advance for the help with 1 or more of the above.

    Read the article

  • Plug-in device to front USB computer *sometimes* restarts

    - by Mark A. Nicolosi
    I've got a strange problem that very occasionally (maybe once a month) when I plug-in something to the front USB on my computer, the computer suddently restarts. This also happens when I touch the front USB ports sometimes. This has been going on for a few years and a lot of the components in my PC have changed. I thought it was my home wiring, but I moved last year and it still happened. I thought maybe it was the motherboard, but that was upgraded 9 months ago and it still happens. I thought it was my case, but I changed that recently and it still happens. I thought maybe it was my PSU, but I upgraded that yesterday and it still happens. I'm pretty sure this is an electro-static thing, but I thought that modern computers have protection against this sort of thing. Maybe I should move my case off the floor (carpet) and stop wearing songs all the time. Edit: Just to clarify this is a computer that I built. The components have been upgraded throughout the years and it's not much the same computer anymore. This doesn't happen very often, but it is annoying, because I don't know what the cause is. Anyone have any ideas?

    Read the article

  • Retrofit Certification

    - by Bill Evjen
    Impact of Regulations on Cabin Systems Installation John Courtright, Structural Integrity Engineering There are “heightened” FAA attention to technical issues related to IFE and Wi-Fi Systems Installations The Aging Aircraft Safety Rule – EWIS & Damage Tolerance Analysis The Challenge: Maximize Flight Safety While Minimizing Costs Issue Papers & Testing, Testing, Testing The role of Airworthiness Directives (ADs) on the design of many IFE systems and all antenna systems. Goal is safety AND cost-effective maintenance intervals and inspection techniques The STC Process Briefly Stated Type Certifications (TC) Supplemental Type Certifications (STC) The STC Process Project Specific Certification Plan (PSCP) Managed by FAA Aircraft Certification Office (ACO) Type of Project (Electrical/Mechanical Systems or Structural) Specific Type of Aircraft Being Modified Schedule Design & Installation Location What does the STC Plan (PSCP) Cover? System Description – What does the system do? System qualification – Are the components qualified? Certification requirements – What FARs are applicable? Installation detail – what is being modified? Prototype installation – What is new? Functional hazard Assessment (FHA) – is it safe? EZAP-EWIS Requirements – Any aging aircraft issues? Certification Data – How is compliance achieved? Delegation and FAA involvement – Who is doing the work? Proposed certification schedule – When is the installation? Certification documentation – What the FAA Expects to see Cabin Systems Certification Concerns In addition to meeting the requirements for DO-160, Cabin System Certification needs to address issues related to: Power management: Generally, IFE and Wi-Fi Systems are classified as “Non-Essential Equipment” from a certification viewpoint. Connected to “non-essential” power buses Must be able to shed IFE & Wi-Fi Systems in a smoke/fire event or Other electrical emergency (FAA Policy 00-111-160) FAA is more relaxed with testing wi-fi. It used to be that you had to have 150 seats with laptops running wi-fi, but now it is down to around 50. Aging aircraft concerns – electrical and structural Issue papers addressing technical concerns involving: “Structural Certification Criteria for Large Antenna Installations” Antenna “Vibration/Buffeting Compliance Criteria” DO-160 : Environmental Test Procedures DO 160 – “Environmental Conditions and Test Procedures for Airborne Equipment”, Issued by RTCA Provides guidance to equipment manufacturers as to testing requirements Temperature: –40C to +55C Vibration and Shock Contaminant susceptibility – fluids and dust Electro-magnetic Interference Cabin systems are generally classified as “non-essential” Swissair 111 crashed (in part) due to non-standard wiring practices. EWIS Design Implications Installation design must take EWIS Requirements into account. This generally means: Aircraft surveys are needed to identify proper wire routing Ensure existing wiring diagrams are correct Identify primary/Secondary/Tertiary bus locations Verify proper separation of wire bundles exist Required separation from fuel quantity indicator system (FQIS) to prevent fuel tang ignition Enhanced Zonal Analysis Procedure (EZAP) Performed EZAP was developed by the Aging Transport Systems Rulemaking Advisory Committee (ATSRAC) EZAP is the method for analyzing airplane zones with an emphasis on evaluating wiring systems and the existence of combustibles  in the cabin. Certification Considerations for Wi-Fi Systems Electrical – All existing DO 160 testing required Issue papers required Onboard EMI testing – any interference with aircraft systems when multiple wi-fi users are logged on? Vibration/Buffeting compliance criteria – what is the effect of the antenna on aircraft flight characteristics? Structural certification criteria – what are the stress loads on the aircraft at the antenna location and what is the impact on maintenance inspection criteria for the airline? Damage tolerance analysis required Goal – minimize maintenance inspection intervals

    Read the article

  • javascript scope problem when lambda function refers to a variable in enclosing loop

    - by Stefan Blixt
    First question on stackoverflow :) Hope I won't embarrass myself... I have a javascript function that loads a list of albums and then it creates a list item for each album. The list item should be clickable, so I call jQuery's click() with a function that does stuff. I do this in a loop. My problem is that all items seem to get the same click function, even though I try to make a new one that does different stuff in each iteration. Another possibility is that the iteration variable is global somehow, and the function refers to it. Code below. debug() is just an encapsulation of Firebug's console.debug(). function processAlbumList(data, c) { for (var album in data) { var newAlbum = $('<li class="albumLoader">' + data[album].title + '</li>').clone(); var clickAlbum = function() { debug("contents: " + album); }; debug("Album: " + album + "/" + data[album].title); $('.albumlist').append(newAlbum); $(newAlbum).click(clickAlbum); } } Here is a transcript of what it prints when the above function runs, after that are some debug lines caused by me clicking on different items. It always prints "10", which is the last value that the album variable takes (there are 10 albums). Album: 0/Live on radio.electro-music.com Album: 1/Doodles Album: 2/Misc Stuff Album: 3/Drawer Collection Album: 4/Misc Electronic Stuff Album: 5/Odds & Ends Album: 6/Tumbler Album: 7/Bakelit 32 Album: 8/Film Album: 9/Bakelit Album: 10/Slow Zoom/Atomic Heart contents: 10 contents: 10 contents: 10 contents: 10 contents: 10 Any ideas? Driving me up the wall, this is. :) /Stefan

    Read the article

  • Organizations &amp; Architecture UNISA Studies &ndash; Chap 7

    - by MarkPearl
    Learning Outcomes Name different device categories Discuss the functions and structure of I/.O modules Describe the principles of Programmed I/O Describe the principles of Interrupt-driven I/O Describe the principles of DMA Discuss the evolution characteristic of I/O channels Describe different types of I/O interface Explain the principles of point-to-point and multipoint configurations Discuss the way in which a FireWire serial bus functions Discuss the principles of InfiniBand architecture External Devices An external device attaches to the computer by a link to an I/O module. The link is used to exchange control, status, and data between the I/O module and the external device. External devices can be classified into 3 categories… Human readable – e.g. video display Machine readable – e.g. magnetic disk Communications – e.g. wifi card I/O Modules An I/O module has two major functions… Interface to the processor and memory via the system bus or central switch Interface to one or more peripheral devices by tailored data links Module Functions The major functions or requirements for an I/O module fall into the following categories… Control and timing Processor communication Device communication Data buffering Error detection I/O function includes a control and timing requirement, to coordinate the flow of traffic between internal resources and external devices. Processor communication involves the following… Command decoding Data Status reporting Address recognition The I/O device must be able to perform device communication. This communication involves commands, status information, and data. An essential task of an I/O module is data buffering due to the relative slow speeds of most external devices. An I/O module is often responsible for error detection and for subsequently reporting errors to the processor. I/O Module Structure An I/O module functions to allow the processor to view a wide range of devices in a simple minded way. The I/O module may hide the details of timing, formats, and the electro mechanics of an external device so that the processor can function in terms of simple reads and write commands. An I/O channel/processor is an I/O module that takes on most of the detailed processing burden, presenting a high-level interface to the processor. There are 3 techniques are possible for I/O operations Programmed I/O Interrupt[t I/O DMA Access Programmed I/O When a processor is executing a program and encounters an instruction relating to I/O it executes that instruction by issuing a command to the appropriate I/O module. With programmed I/O, the I/O module will perform the requested action and then set the appropriate bits in the I/O status register. The I/O module takes no further actions to alert the processor. I/O Commands To execute an I/O related instruction, the processor issues an address, specifying the particular I/O module and external device, and an I/O command. There are four types of I/O commands that an I/O module may receive when it is addressed by a processor… Control – used to activate a peripheral and tell it what to do Test – Used to test various status conditions associated with an I/O module and its peripherals Read – Causes the I/O module to obtain an item of data from the peripheral and place it in an internal buffer Write – Causes the I/O module to take an item of data form the data bus and subsequently transmit that data item to the peripheral The main disadvantage of this technique is it is a time consuming process that keeps the processor busy needlessly I/O Instructions With programmed I/O there is a close correspondence between the I/O related instructions that the processor fetches from memory and the I/O commands that the processor issues to an I/O module to execute the instructions. Typically there will be many I/O devices connected through I/O modules to the system – each device is given a unique identifier or address – when the processor issues an I/O command, the command contains the address of the address of the desired device, thus each I/O module must interpret the address lines to determine if the command is for itself. When the processor, main memory and I/O share a common bus, two modes of addressing are possible… Memory mapped I/O Isolated I/O (for a detailed explanation read page 245 of book) The advantage of memory mapped I/O over isolated I/O is that it has a large repertoire of instructions that can be used, allowing more efficient programming. The disadvantage of memory mapped I/O over isolated I/O is that valuable memory address space is sued up. Interrupts driven I/O Interrupt driven I/O works as follows… The processor issues an I/O command to a module and then goes on to do some other useful work The I/O module will then interrupts the processor to request service when is is ready to exchange data with the processor The processor then executes the data transfer and then resumes its former processing Interrupt Processing The occurrence of an interrupt triggers a number of events, both in the processor hardware and in software. When an I/O device completes an I/O operations the following sequence of hardware events occurs… The device issues an interrupt signal to the processor The processor finishes execution of the current instruction before responding to the interrupt The processor tests for an interrupt – determines that there is one – and sends an acknowledgement signal to the device that issues the interrupt. The acknowledgement allows the device to remove its interrupt signal The processor now needs to prepare to transfer control to the interrupt routine. To begin, it needs to save information needed to resume the current program at the point of interrupt. The minimum information required is the status of the processor and the location of the next instruction to be executed. The processor now loads the program counter with the entry location of the interrupt-handling program that will respond to this interrupt. It also saves the values of the process registers because the Interrupt operation may modify these The interrupt handler processes the interrupt – this includes examination of status information relating to the I/O operation or other event that caused an interrupt When interrupt processing is complete, the saved register values are retrieved from the stack and restored to the registers Finally, the PSW and program counter values from the stack are restored. Design Issues Two design issues arise in implementing interrupt I/O Because there will be multiple I/O modules, how does the processor determine which device issued the interrupt? If multiple interrupts have occurred, how does the processor decide which one to process? Addressing device recognition, 4 general categories of techniques are in common use… Multiple interrupt lines Software poll Daisy chain Bus arbitration For a detailed explanation of these approaches read page 250 of the textbook. Interrupt driven I/O while more efficient than simple programmed I/O still requires the active intervention of the processor to transfer data between memory and an I/O module, and any data transfer must traverse a path through the processor. Thus is suffers from two inherent drawbacks… The I/O transfer rate is limited by the speed with which the processor can test and service a device The processor is tied up in managing an I/O transfer; a number of instructions must be executed for each I/O transfer Direct Memory Access When large volumes of data are to be moved, an efficient technique is direct memory access (DMA) DMA Function DMA involves an additional module on the system bus. The DMA module is capable of mimicking the processor and taking over control of the system from the processor. It needs to do this to transfer data to and from memory over the system bus. DMA must the bus only when the processor does not need it, or it must force the processor to suspend operation temporarily (most common – referred to as cycle stealing). When the processor wishes to read or write a block of data, it issues a command to the DMA module by sending to the DMA module the following information… Whether a read or write is requested using the read or write control line between the processor and the DMA module The address of the I/O device involved, communicated on the data lines The starting location in memory to read from or write to, communicated on the data lines and stored by the DMA module in its address register The number of words to be read or written, communicated via the data lines and stored in the data count register The processor then continues with other work, it delegates the I/O operation to the DMA module which transfers the entire block of data, one word at a time, directly to or from memory without going through the processor. When the transfer is complete, the DMA module sends an interrupt signal to the processor, this the processor is involved only at the beginning and end of the transfer. I/O Channels and Processors Characteristics of I/O Channels As one proceeds along the evolutionary path, more and more of the I/O function is performed without CPU involvement. The I/O channel represents an extension of the DMA concept. An I/O channel ahs the ability to execute I/O instructions, which gives it complete control over I/O operations. In a computer system with such devices, the CPU does not execute I/O instructions – such instructions are stored in main memory to be executed by a special purpose processor in the I/O channel itself. Two types of I/O channels are common A selector channel controls multiple high-speed devices. A multiplexor channel can handle I/O with multiple characters as fast as possible to multiple devices. The external interface: FireWire and InfiniBand Types of Interfaces One major characteristic of the interface is whether it is serial or parallel parallel interface – there are multiple lines connecting the I/O module and the peripheral, and multiple bits are transferred simultaneously serial interface – there is only one line used to transmit data, and bits must be transmitted one at a time With new generation serial interfaces, parallel interfaces are becoming less common. In either case, the I/O module must engage in a dialogue with the peripheral. In general terms the dialog may look as follows… The I/O module sends a control signal requesting permission to send data The peripheral acknowledges the request The I/O module transfers data The peripheral acknowledges receipt of data For a detailed explanation of FireWire and InfiniBand technology read page 264 – 270 of the textbook

    Read the article

1