Search Results

Search found 11 results on 1 pages for 'euclid'.

Page 1/1 | 1 

  • [Python] Tips for making a fraction calculator code more optimized (faster and using less memory)

    - by Logic Named Joe
    Hello Everyone, Basicly, what I need for the program to do is to act a as simple fraction calculator (for addition, subtraction, multiplication and division) for the a single line of input, for example: -input: 1/7 + 3/5 -output: 26/35 My initial code: import sys def euclid(numA, numB): while numB != 0: numRem = numA % numB numA = numB numB = numRem return numA for wejscie in sys.stdin: wyjscie = wejscie.split(' ') a, b = [int(x) for x in wyjscie[0].split("/")] c, d = [int(x) for x in wyjscie[2].split("/")] if wyjscie[1] == '+': licz = a * d + b * c mian= b * d nwd = euclid(licz, mian) konA = licz/nwd konB = mian/nwd wynik = str(konA) + '/' + str(konB) print(wynik) elif wyjscie[1] == '-': licz= a * d - b * c mian= b * d nwd = euclid(licz, mian) konA = licz/nwd konB = mian/nwd wynik = str(konA) + '/' + str(konB) print(wynik) elif wyjscie[1] == '*': licz= a * c mian= b * d nwd = euclid(licz, mian) konA = licz/nwd konB = mian/nwd wynik = str(konA) + '/' + str(konB) print(wynik) else: licz= a * d mian= b * c nwd = euclid(licz, mian) konA = licz/nwd konB = mian/nwd wynik = str(konA) + '/' + str(konB) print(wynik) Which I reduced to: import sys def euclid(numA, numB): while numB != 0: numRem = numA % numB numA = numB numB = numRem return numA for wejscie in sys.stdin: wyjscie = wejscie.split(' ') a, b = [int(x) for x in wyjscie[0].split("/")] c, d = [int(x) for x in wyjscie[2].split("/")] if wyjscie[1] == '+': print("/".join([str((a * d + b * c)/euclid(a * d + b * c, b * d)),str((b * d)/euclid(a * d + b * c, b * d))])) elif wyjscie[1] == '-': print("/".join([str((a * d - b * c)/euclid(a * d - b * c, b * d)),str((b * d)/euclid(a * d - b * c, b * d))])) elif wyjscie[1] == '*': print("/".join([str((a * c)/euclid(a * c, b * d)),str((b * d)/euclid(a * c, b * d))])) else: print("/".join([str((a * d)/euclid(a * d, b * c)),str((b * c)/euclid(a * d, b * c))])) Any advice on how to improve this futher is welcome. Edit: one more thing that I forgot to mention - the code can not make use of any libraries apart from sys.

    Read the article

  • moving in the wrong direction

    - by Will
    Solution: To move a unit forward: forward = Quaternion(0,0,0,1) rotation.normalize() # ocassionally ... pos += ((rotation * forward) * rotation.conjugated()).xyz().normalized() * speed I think the trouble stemmed from how the Euclid math library was doing Quaternion*Vector3 multiplication, although I can't see it. I have a vec3 position, a quaternion for rotation and a speed. I compute the player position like this: rot *= Quaternion().rotate_euler(0.,roll_speed,pitch_speed) rot.normalize() pos += rot.conjugated() * Vector3(0.,0.,-speed) However, printing the pos to console, I can see that I only ever seem to travel on the x-axis. When I draw the scene using the rot quaternion to rotate my camera, it shows a proper orientation. What am I doing wrong? Here's an example: You start off with rotation being an identity quaternion: w=1,x=0,y=0,z=0 You move forward; the code correctly decrements the Z You then pitch right over to face the other way; if you spin only 175deg it'll go in right direction; you have to spin past 180deg. It doesn't matter which direction you spin in, up or down, though Your quaternion can then be something like: w=0.1,x=0.1,y=0,z=0 And moving forward, you actually move backward?! (I am using the euclid Python module, but its the same as every other conjulate) The code can be tried online at http://williame.github.com/ludum_dare_24_evolution/ The only key that adjusts the speed is W and S. The arrow keys only adjust the pitch/roll. At first you can fly ok, but after a bit of weaving around you end up getting sucked towards one of the sides. The code is https://github.com/williame/ludum_dare_24_evolution/blob/cbacf61a7159d2c83a2187af5f2015b2dde28687/tiny1web.py#L102

    Read the article

  • How do i reset values of dynamically created controls on ASP .NET c# page?

    - by Euclid
    i have an array of buttons added to a panel control and need to reset them to their original values, is this possible pragmatically? protected void Page_Load(object sender, EventArgs e) { RenderTable(); } private void RenderTable() { Button[] board = new Button[9]; for(int i =0; i <board.Length; i++) { board[i] = new Button(); board[i].Text = " "; board[i].Width= board[i].Height = 50; board[i].Click += PlayerClick; board[i].ID = "pos" + i; Panel1.Controls.Add(board[i]); } }

    Read the article

  • How much slower is a try/catch block? [closed]

    - by Euclid
    Possible Duplicate: What is the real overhead of try/catch in C#? how much slower is a try catch block than a conditional? eg try { v = someArray[10]; } catch { v = defaultValue; } or if (null != someArray) { v = someArray[10]; } else { v = defaultValue; } is there much in it or isn't there a definative performance differance?

    Read the article

  • Showing renames in hg status?

    - by Ryan Thompson
    I know that Mercurial can track renames of files, but how do I get it to show me renames instead of adds/removes when I do hg status? For instance, instead of: A bin/extract-csv-column.pl A bin/find-mirna-binding.pl A bin/xls2csv-separate-sheets.pl A lib/Text/CSV/Euclid.pm R src/extract-csv-column.pl R src/find-mirna-binding.pl R src/modules/Text/CSV/Euclid.pm R src/xls2csv-separate-sheets.pl I want some indication that four files have been moved. I think I read somewhere that the output is like this to preserve backward-compatibility with something-or-other, but I'm not worried about that.

    Read the article

  • Showing renames in hg log?

    - by Ryan Thompson
    I know that Mercurial can track renames of files, but how do I get it to show me renames instead of adds/removes when I do hg log? For instance, instead of: A bin/extract-csv-column.pl A bin/find-mirna-binding.pl A bin/xls2csv-separate-sheets.pl A lib/Text/CSV/Euclid.pm R src/extract-csv-column.pl R src/find-mirna-binding.pl R src/modules/Text/CSV/Euclid.pm R src/xls2csv-separate-sheets.pl I want some indication that four files have been moved. I think I read somewhere that the output is like this to preserve backward-compatibility with something-or-other, but I'm not worried about that.

    Read the article

  • What are algorithmic paradigms?

    - by Vaibhav Agarwal
    We generally talk about paradigms of programming as functional, procedural, object oriented, imperative etc but what should I reply when I am asked the paradigms of algorithms? For example are Travelling Salesman Problem, Dijkstra Shortest Path Algorithm, Euclid GCD Algorithm, Binary search, Kruskal's Minimum Spanning Tree, Tower of Hanoi paradigms of algorithms? Should I answer the data structures I would use to design these algorithms?

    Read the article

  • How to pass common arguments to Perl modules

    - by Leonard
    I'm not thrilled with the argument-passing architecture I'm evolving for the (many) Perl scripts that have been developed for some scripts that call various Hadoop MapReduce jobs. There are currently 8 scripts (of the form run_something.pl) that are run from cron. (And more on the way ... we expect anywhere from 1 to 3 more for every function we add to hadoop.) Each of these have about 6 identical command-line parameters, and a couple command line parameters that are similar, all specified with Euclid. The implementations are in a dozen .pm modules. Some of which are common, and others of which are unique.... Currently I'm passing the args globally to each module ... Inside run_something.pl I have: set_common_args (%ARGV); set_something_args (%ARGV); And inside Something.pm I have sub set_something_args { (%MYARGS) =@_; } So then I can do if ( $MYARGS{'--needs_more_beer'} ) { $beer++; } I'm seeing that I'm probably going to have additional "common" files that I'll want to pass args to, so I'll have three or four set_xxx_args calls at the top of each run_something.pl, and it just doesn't seem too elegant. On the other hand, it beats passing the whole stupid argument array down the call chain, and choosing and passing individual elements down the call chain is (a) too much work (b) error-prone (c) doesn't buy much. In lots of ways what I'm doing is just object-oriented design without the object-oriented language trappings, and it looks uglier without said trappings, but nonetheless ... Anyone have thoughts or ideas?

    Read the article

  • Simple RSA encryption (Java)

    - by jake blue
    This is simply for fun. This will not be used for any actual encryption. I'm only first year comp sci student and love cryptography. This took a long time to get working. At approximately N = 18, it begins breaking down. It won't encrypt messages properly after that point. I'm not sure why. Any insights? I'd also appreciate any links you could provide me to tutorials or interesting reading about Cryptography. import java.math.BigInteger; import java.security.SecureRandom; /** * Cryptography. * * Generates public and private keys used in encryption and * decryption * */ public class RSA { private final static BigInteger one = new BigInteger("1"); private final static SecureRandom random = new SecureRandom(); // prime numbers private BigInteger p; private BigInteger q; // modulus private BigInteger n; // totient private BigInteger t; // public key private BigInteger e; // private key private BigInteger d; private String cipherText; /** * Constructor for objects of class RSA */ public RSA(int N) { p = BigInteger.probablePrime(N/2, random); q = BigInteger.probablePrime(N/2, random); // initialising modulus n = p.multiply(q); // initialising t by euclid's totient function (p-1)(q-1) t = (p.subtract(one)).multiply(q.subtract(one)); // initialising public key ~ 65537 is common public key e = new BigInteger("65537"); } public int generatePrivateKey() { d = e.modInverse(t); return d.intValue(); } public String encrypt(String plainText) { String encrypted = ""; int j = 0; for(int i = 0; i < plainText.length(); i++){ char m = plainText.charAt(i); BigInteger bi1 = BigInteger.valueOf(m); BigInteger bi2 = bi1.modPow(e, n); j = bi2.intValue(); m = (char) j; encrypted += m; } cipherText = encrypted; return encrypted; } public String decrypt() { String decrypted = ""; int j = 0; for(int i = 0; i < cipherText.length(); i++){ char c = cipherText.charAt(i); BigInteger bi1 = BigInteger.valueOf(c); BigInteger bi2 = bi1.modPow(d, n); j = bi2.intValue(); c = (char) j; decrypted += c; } return decrypted; } }

    Read the article

  • How to shoot yourself in the foot (DO NOT Read in the office)

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2013/06/21/how-to-shoot-yourself-in-the-foot-do-not-read.aspxLet me make it absolutely clear - the following is:merely collated by your Geek from http://www.codeproject.com/Lounge.aspx?msg=3917012#xx3917012xxvery, very very funny so you read it in the presence of others at your own riskso here is the list - you have been warned!C You shoot yourself in the foot.   C++ You accidently create a dozen instances of yourself and shoot them all in the foot. Providing emergency medical assistance is impossible since you can't tell which are bitwise copies and which are just pointing at others and saying "That's me, over there."   FORTRAN You shoot yourself in each toe, iteratively, until you run out of toes, then you read in the next foot and repeat. If you run out of bullets, you continue anyway because you have no exception-handling facility.   Modula-2 After realizing that you can't actually accomplish anything in this language, you shoot yourself in the head.   COBOL USEing a COLT 45 HANDGUN, AIM gun at LEG.FOOT, THEN place ARM.HAND.FINGER on HANDGUN.TRIGGER and SQUEEZE. THEN return HANDGUN to HOLSTER. CHECK whether shoelace needs to be retied.   Lisp You shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds...   BASIC Shoot yourself in the foot with a water pistol. On big systems, continue until entire lower body is waterlogged.   Forth Foot yourself in the shoot.   APL You shoot yourself in the foot; then spend all day figuring out how to do it in fewer characters.   Pascal The compiler won't let you shoot yourself in the foot.   Snobol If you succeed, shoot yourself in the left foot. If you fail, shoot yourself in the right foot.   HyperTalk Put the first bullet of the gun into foot left of leg of you. Answer the result.   Prolog You tell your program you want to be shot in the foot. The program figures out how to do it, but the syntax doesn't allow it to explain.   370 JCL You send your foot down to MIS with a 4000-page document explaining how you want it to be shot. Three years later, your foot comes back deep-fried.   FORTRAN-77 You shoot yourself in each toe, iteratively, until you run out of toes, then you read in the next foot and repeat. If you run out of bullets, you continue anyway because you still can't do exception-processing.   Modula-2 (alternative) You perform a shooting on what might be currently a foot with what might be currently a bullet shot by what might currently be a gun.   BASIC (compiled) You shoot yourself in the foot with a BB using a SCUD missile launcher.   Visual Basic You'll really only appear to have shot yourself in the foot, but you'll have so much fun doing it that you won't care.   Forth (alternative) BULLET DUP3 * GUN LOAD FOOT AIM TRIGGER PULL BANG! EMIT DEAD IF DROP ROT THEN (This takes about five bytes of memory, executes in two to ten clock cycles on any processor and can be used to replace any existing function of the language as well as in any future words). (Welcome to bottom up programming - where you, too, can perform compiler pre-processing instead of writing code)   APL (alternative) You hear a gunshot and there's a hole in your foot, but you don't remember enough linear algebra to understand what happened. or @#&^$%&%^ foot   Pascal (alternative) Same as Modula-2 except that the bullet is not the right type for the gun and your hand is blown off.   Snobol (alternative) You grab your foot with your hand, then rewrite your hand to be a bullet. The act of shooting the original foot then changes your hand/bullet into yet another foot (a left foot).   Prolog (alternative) You attempt to shoot yourself in the foot, but the bullet, failing to find its mark, backtracks to the gun, which then explodes in your face.   COMAL You attempt to shoot yourself in the foot with a water pistol, but the bore is clogged, and the pressure build-up blows apart both the pistol and your hand. or draw_pistol aim_at_foot(left) pull_trigger hop(swearing)   Scheme As Lisp, but none of the other appendages are aware of this happening.   Algol You shoot yourself in the foot with a musket. The musket is aesthetically fascinating and the wound baffles the adolescent medic in the emergency room.   Ada If you are dumb enough to actually use this language, the United States Department of Defense will kidnap you, stand you up in front of a firing squad and tell the soldiers, "Shoot at the feet." or The Department of Defense shoots you in the foot after offering you a blindfold and a last cigarette. or After correctly packaging your foot, you attempt to concurrently load the gun, pull the trigger, scream and shoot yourself in the foot. When you try, however, you discover that your foot is of the wrong type. or After correctly packing your foot, you attempt to concurrently load the gun, pull the trigger, scream, and confidently aim at your foot knowing it is safe. However the cordite in the round does an Unchecked Conversion, fires and shoots you in the foot anyway.   Eiffel   You create a GUN object, two FOOT objects and a BULLET object. The GUN passes both the FOOT objects a reference to the BULLET. The FOOT objects increment their hole counts and forget about the BULLET. A little demon then drives a garbage truck over your feet and grabs the bullet (both of it) on the way. Smalltalk You spend so much time playing with the graphics and windowing system that your boss shoots you in the foot, takes away your workstation and makes you develop in COBOL on a character terminal. or You send the message shoot to gun, with selectors bullet and myFoot. A window pops up saying Gunpowder doesNotUnderstand: spark. After several fruitless hours spent browsing the methods for Trigger, FiringPin and IdealGas, you take the easy way out and create ShotFoot, a subclass of Foot with an additional instance variable bulletHole. Object Oriented Pascal You perform a shooting on what might currently be a foot with what might currently be a bullet fired from what might currently be a gun.   PL/I You consume all available system resources, including all the offline bullets. The Data Processing & Payroll Department doubles its size, triples its budget, acquires four new mainframes and drops the original one on your foot. Postscript foot bullets 6 locate loadgun aim gun shoot showpage or It takes the bullet ten minutes to travel from the gun to your foot, by which time you're long since gone out to lunch. The text comes out great, though.   PERL You stab yourself in the foot repeatedly with an incredibly large and very heavy Swiss Army knife. or You pick up the gun and begin to load it. The gun and your foot begin to grow to huge proportions and the world around you slows down, until the gun fires. It makes a tiny hole, which you don't feel. Assembly Language You crash the OS and overwrite the root disk. The system administrator arrives and shoots you in the foot. After a moment of contemplation, the administrator shoots himself in the foot and then hops around the room rabidly shooting at everyone in sight. or You try to shoot yourself in the foot only to discover you must first reinvent the gun, the bullet, and your foot.or The bullet travels to your foot instantly, but it took you three weeks to load the round and aim the gun.   BCPL You shoot yourself somewhere in the leg -- you can't get any finer resolution than that. Concurrent Euclid You shoot yourself in somebody else's foot.   Motif You spend days writing a UIL description of your foot, the trajectory, the bullet and the intricate scrollwork on the ivory handles of the gun. When you finally get around to pulling the trigger, the gun jams.   Powerbuilder While attempting to load the gun you discover that the LoadGun system function is buggy; as a work around you tape the bullet to the outside of the gun and unsuccessfully attempt to fire it with a nail. In frustration you club your foot with the butt of the gun and explain to your client that this approximates the functionality of shooting yourself in the foot and that the next version of Powerbuilder will fix it.   Standard ML By the time you get your code to typecheck, you're using a shoot to foot yourself in the gun.   MUMPS You shoot 583149 AK-47 teflon-tipped, hollow-point, armour-piercing bullets into even-numbered toes on odd-numbered feet of everyone in the building -- with one line of code. Three weeks later you shoot yourself in the head rather than try to modify that line.   Java You locate the Gun class, but discover that the Bullet class is abstract, so you extend it and write the missing part of the implementation. Then you implement the ShootAble interface for your foot, and recompile the Foot class. The interface lets the bullet call the doDamage method on the Foot, so the Foot can damage itself in the most effective way. Now you run the program, and call the doShoot method on the instance of the Gun class. First the Gun creates an instance of Bullet, which calls the doFire method on the Gun. The Gun calls the hit(Bullet) method on the Foot, and the instance of Bullet is passed to the Foot. But this causes an IllegalHitByBullet exception to be thrown, and you die.   Unix You shoot yourself in the foot or % ls foot.c foot.h foot.o toe.c toe.o % rm * .o rm: .o: No such file or directory % ls %   370 JCL (alternative) You shoot yourself in the head just thinking about it.   DOS JCL You first find the building you're in in the phone book, then find your office number in the corporate phone book. Then you have to write this down, then describe, in cubits, your exact location, in relation to the door (right hand side thereof). Then you need to write down the location of the gun (loading it is a proprietary utility), then you load it, and the COBOL program, and run them, and, with luck, it may be run tonight.   VMS   $ MOUNT/DENSITY=.45/LABEL=BULLET/MESSAGE="BYE" BULLET::BULLET$GUN SYS$BULLET $ SET GUN/LOAD/SAFETY=OFF/SIGHT=NONE/HAND=LEFT/CHAMBER=1/ACTION=AUTOMATIC/ LOG/ALL/FULL SYS$GUN_3$DUA3:[000000]GUN.GNU $ SHOOT/LOG/AUTO SYS$GUN SYS$SYSTEM:[FOOT]FOOT.FOOT   %DCL-W-ACTIMAGE, error activating image GUN -CLI-E-IMGNAME, image file $3$DUA240:[GUN]GUN.EXE;1 -IMGACT-F-NOTNATIVE, image is not an OpenVMS Alpha AXP image or %SYS-F-FTSHT, foot shot (fifty lines of traceback omitted) sh,csh, etc You can't remember the syntax for anything, so you spend five hours reading manual pages, then your foot falls asleep. You shoot the computer and switch to C.   Apple System 7 Double click the gun icon and a window giving a selection for guns, target areas, plus balloon help with medical remedies, and assorted sound effects. Click "shoot" button and a small bomb appears with note "Error of Type 1 has occurred."   Windows 3.1 Double click the gun icon and wait. Eventually a window opens giving a selection for guns, target areas, plus balloon help with medical remedies, and assorted sound effects. Click "shoot" button and a small box appears with note "Unable to open Shoot.dll, check that path is correct."   Windows 95 Your gun is not compatible with this OS and you must buy an upgrade and install it before you can continue. Then you will be informed that you don't have enough memory.   CP/M I remember when shooting yourself in the foot with a BB gun was a big deal.   DOS You finally found the gun, but can't locate the file with the foot for the life of you.   MSDOS You shoot yourself in the foot, but can unshoot yourself with add-on software.   Access You try to point the gun at your foot, but it shoots holes in all your Borland distribution diskettes instead.   Paradox Not only can you shoot yourself in the foot, your users can too.   dBase You squeeze the trigger, but the bullet moves so slowly that by the time your foot feels the pain, you've forgotten why you shot yourself anyway. or You buy a gun. Bullets are only available from another company and are promised to work so you buy them. Then you find out that the next version of the gun is the one scheduled to actually shoot bullets.   DBase IV, V1.0 You pull the trigger, but it turns out that the gun was a poorly designed hand grenade and the whole building blows up.   SQL You cut your foot off, send it out to a service bureau and when it returns, it has a hole in it but will no longer fit the attachment at the end of your leg. or Insert into Foot Select Bullet >From Gun.Hand Where Chamber = 'LOADED' And Trigger = 'PULLED'   Clipper You grab a bullet, get ready to insert it in the gun so that you can shoot yourself in the foot and discover that the gun that the bullets fits has not yet been built, but should be arriving in the mail _REAL_SOON_NOW_. Oracle The menus for coding foot_shooting have not been implemented yet and you can't do foot shooting in SQL.   English You put your foot in your mouth, then bite it off. (For those who don't know, English is a McDonnell Douglas/PICK query language which allegedly requires 110% of system resources to run happily.) Revelation [an implementation of the PICK Operating System] You'll be able to shoot yourself in the foot just as soon as you figure out what all these bullets are for.   FlagShip Starting at the top of your head, you aim the gun at yourself repeatedly until, half an hour later, the gun is finally pointing at your foot and you pull the trigger. A new foot with a hole in it appears but you can't work out how to get rid of the old one and your gun doesn't work anymore.   FidoNet You put your foot in your mouth, then echo it internationally.   PicoSpan [a UNIX-based computer conferencing system] You can't shoot yourself in the foot because you're not a host. or (host variation) Whenever you shoot yourself in the foot, someone opens a topic in policy about it.   Internet You put your foot in your mouth, shoot it, then spam the bullet so that everybody gets shot in the foot.   troff rmtroff -ms -Hdrwp | lpr -Pwp2 & .*place bullet in footer .B .NR FT +3i .in 4 .bu Shoot! .br .sp .in -4 .br .bp NR HD -2i .*   Genetic Algorithms You create 10,000 strings describing the best way to shoot yourself in the foot. By the time the program produces the optimal solution, humans have evolved wings and the problem is moot.   CSP (Communicating Sequential Processes) You only fail to shoot everything that isn't your foot.   MS-SQL Server MS-SQL Server’s gun comes pre-loaded with an unlimited supply of Teflon coated bullets, and it only has two discernible features: the muzzle and the trigger. If that wasn't enough, MS-SQL Server also puts the gun in your hand, applies local anesthetic to the skin of your forefinger and stitches it to the gun's trigger. Meanwhile, another process has set up a spinal block to numb your lower body. It will then proceeded to surgically remove your foot, cryogenically freeze it for preservation, and attach it to the muzzle of the gun so that no matter where you aim, you will shoot your foot. In order to avoid shooting yourself in the foot, you need to unstitch your trigger finger, remove your foot from the muzzle of the gun, and have it surgically reattached. Then you probably want to get some crutches and go out to buy a book on SQL Server Performance Tuning.   Sybase Sybase's gun requires assembly, and you need to go out and purchase your own clip and bullets to load the gun. Assembly is complicated by the fact that Sybase has hidden the gun behind a big stack of reference manuals, but it hasn't told you where that stack is. While you were off finding the gun, assembling it, buying bullets, etc., Sybase was also busy surgically removing your foot and cryogenically freezing it for preservation. Instead of attaching it to the muzzle of the gun, though, it packed your foot on dry ice and sent it UPS-Ground to an unnamed hookah bar somewhere in the middle east. In order to shoot your foot, you must modify your gun with a GPS system for targeting and hire some guy named "Indy" to find the hookah bar and wire the coordinates back to you. By this time, you've probably become so daunted at the tasks stand between you and shooting your foot that you hire a guy who's read all the books on Sybase to help you shoot your foot. If you're lucky, he'll be smart enough both to find your foot and to stop you from shooting it.   Magic software You spend 1 week looking up the correct syntax for GUN. When you find it, you realise that GUN will not let you shoot in your own foot. It will allow you to shoot almost anything but your foot. You then decide to build your own gun. You can't use the standard barrel since this will only allow for standard bullets, which will not fire if the barrel is pointed at your foot. After four weeks, you have created your own custom gun. It blows up in your hand without warning, because you failed to initialise the safety catch and it doesn't know whether the initial state is "0", 0, NULL, "ZERO", 0.0, 0,0, "0.0", or "0,00". You fix the problem with your remaining hand by nesting 12 safety catches, and then decide to build the gun without safety catch. You then shoot the management and retire to a happy life where you code in languages that will allow you to shoot your foot in under 10 days.FirefoxLets you shoot yourself in as many feet as you'd like, while using multiple great addons! IEA moving target in terms of standard ammunition size and doesn't always work properly with non-Microsoft ammunition, so sometimes you shoot something other than your foot. However, it's the corporate world's standard foot-shooting apparatus. Hackers seem to enjoy rigging websites up to trigger cascading foot-shooting failures. Windows 98 About the same as Windows 95 in terms of overall bullet capacity and triggering mechanisms. Includes updated DirectShot API. A new version was released later on to support USB guns, Windows 98 SE.WPF:You get your baseball glove and a ball and you head out to your backyard, where you throw balls to your pitchback. Then your unkempt-haired-cargo-shorts-and-sandals-with-white-socks-wearing neighbor uses XAML to sculpt your arm into a gun, the ball into a bullet and the pitchback into your foot. By now, however, only the neighbor can get it to work and he's only around from 6:30 PM - 3:30 AM. LOGO: You very carefully lay out the trajectory of the bullet. Then you start the gun, which fires very slowly. You walk precisely to the point where the bullet will travel and wait, but just before it gets to you, your class time is up and one of the other kids has already used the system to hack into Sony's PS3 network. Flash: Someone has designed a beautiful-looking gun that anyone can shoot their feet with for free. It weighs six hundred pounds. All kinds of people are shooting themselves in the feet, and sending the link to everyone else so that they can too. That is, except for the criminals, who are all stealing iOS devices that the gun won't work with.APL: Its (mostly) all greek to me. Lisp: Place ((gun in ((hand sight (foot then shoot))))) (Lots of Insipid Stupid Parentheses)Apple OS/X and iOS Once a year, Steve Jobs returns from sick leave to tell millions of unwavering fans how they will be able to shoot themselves in the foot differently this year. They retweet and blog about it ad nauseam, and wait in line to be the first to experience "shoot different".Windows ME Usually fails, even at shooting you in the foot. Yo dawg, I heard you like shooting yourself in the foot. So I put a gun in your gun, so you can shoot yourself in the foot while you shoot yourself in the foot. (Okay, I'm not especially proud of this joke.) Windows 2000 Now you really do have to log in, before you are allowed to shoot yourself in the foot.Windows XPYou thought you learned your lesson: Don't use Windows ME. Then, along came this new creature, built on top of Windows NT! So you spend the next couple days installing antivirus software, patches and service packs, just so you can get that driver to install, and then proceed to shoot yourself in the foot. Windows Vista Newer! Glossier! Shootier! Windows 7 The bullets come out a lot smoother. Active Directory Each bullet now has an attached Bullet Identifier, and can be uniquely identified. Policies can be applied to dictate fragmentation, and the gun will occasionally have a confusing delay after the trigger has been pulled. PythonYou try to use import foot; foot.shoot() only to realize that's only available in 3.0, to which you can't yet upgrade from 2.7 because of all those extension libs lacking support. Solaris Shoots best when used on SPARC hardware, but still runs the trigger GUI under Java. After weeks of learning the appropriate STOP command to prevent the trigger from automatically being pressed on boot, you think you've got it under control. Then the one time you ever use dtrace, it hits a bug that fires the gun. MySQL The feature that allows you to shoot yourself in the foot has been in development for about 6 years, and they are adding it into the next version, which is coming out REAL SOON NOW, promise! But you can always check it out of source control and try it yourself (just not in any environment where data integrity is important because it will probably explode.) PostgreSQLAllows you to have a smug look on your face while you shoot yourself in the foot, because those MySQL guys STILL don't have that feature. NoSQL Barrel? Who needs a barrel? Just put the bullet on your foot, and strike it with a hammer. See? It's so much simpler and more efficient that way. You can even strike multiple bullets in one swing if you swing with a good enough arc, because hammers are easy to use. Getting them to synchronize is a little difficult, though.Eclipse There are about a dozen different packages for shooting yourself in the foot, with weird interdependencies on outdated components. Once you finally navigate the morass and get one installed, you then have something to look at while you shoot yourself in the foot with that package: You can watch the screen redraw.Outlook Makes it really easy to let everyone know you shot yourself in the foot!Shooting yourself in the foot using delegates.You really need to shoot yourself in the foot but you hate firearms (you don't want any dependency on the specifics of shooting) so you delegate it to somebody else. You don't care how it is done as long is shooting your foot. You can do it asynchronously in case you know you may faint so you are called back/slapped in the face by your shooter/friend (or background worker) when everything is done.C#You prepare the gun and the bullet, carefully modeling all of the physics of a bullet traveling through a foot. Just before you're about to pull the trigger, you stumble on System.Windows.BodyParts.Foot.ShootAt(System.Windows.Firearms.IGun gun) in the extended framework, realize you just wasted the entire afternoon, and shoot yourself in the head.PHP<?phprequire("foot_safety_check.php");?><!DOCTYPE HTML><html><head> <!--Lower!--><title>Shooting me in the foot</title></head> <body> <!--LOWER!!!--><leg> <!--OK, I made this one up...--><footer><?php echo (dungSift($_SERVER['HTTP_USER_AGENT'], "ie"))?("Your foot is safe, but you might want to wear a hard hat!"):("<div class=\"shot\">BANG!</div>"); ?></footer></leg> </body> </html>

    Read the article

  • Help with Java Program for Prime numbers

    - by Ben
    Hello everyone, I was wondering if you can help me with this program. I have been struggling with it for hours and have just trashed my code because the TA doesn't like how I executed it. I am completely hopeless and if anyone can help me out step by step, I would greatly appreciate it. In this project you will write a Java program that reads a positive integer n from standard input, then prints out the first n prime numbers. We say that an integer m is divisible by a non-zero integer d if there exists an integer k such that m = k d , i.e. if d divides evenly into m. Equivalently, m is divisible by d if the remainder of m upon (integer) division by d is zero. We would also express this by saying that d is a divisor of m. A positive integer p is called prime if its only positive divisors are 1 and p. The one exception to this rule is the number 1 itself, which is considered to be non-prime. A positive integer that is not prime is called composite. Euclid showed that there are infinitely many prime numbers. The prime and composite sequences begin as follows: Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, … Composites: 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, … There are many ways to test a number for primality, but perhaps the simplest is to simply do trial divisions. Begin by dividing m by 2, and if it divides evenly, then m is not prime. Otherwise, divide by 3, then 4, then 5, etc. If at any point m is found to be divisible by a number d in the range 2 d m-1, then halt, and conclude that m is composite. Otherwise, conclude that m is prime. A moment’s thought shows that one need not do any trial divisions by numbers d which are themselves composite. For instance, if a trial division by 2 fails (i.e. has non-zero remainder, so m is odd), then a trial division by 4, 6, or 8, or any even number, must also fail. Thus to test a number m for primality, one need only do trial divisions by prime numbers less than m. Furthermore, it is not necessary to go all the way up to m-1. One need only do trial divisions of m by primes p in the range 2 p m . To see this, suppose m 1 is composite. Then there exist positive integers a and b such that 1 < a < m, 1 < b < m, and m = ab . But if both a m and b m , then ab m, contradicting that m = ab . Hence one of a or b must be less than or equal to m . To implement this process in java you will write a function called isPrime() with the following signature: static boolean isPrime(int m, int[] P) This function will return true or false according to whether m is prime or composite. The array argument P will contain a sufficient number of primes to do the testing. Specifically, at the time isPrime() is called, array P must contain (at least) all primes p in the range 2 p m . For instance, to test m = 53 for primality, one must do successive trial divisions by 2, 3, 5, and 7. We go no further since 11 53 . Thus a precondition for the function call isPrime(53, P) is that P[0] = 2 , P[1] = 3 , P[2] = 5, and P[3] = 7 . The return value in this case would be true since all these divisions fail. Similarly to test m =143 , one must do trial divisions by 2, 3, 5, 7, and 11 (since 13 143 ). The precondition for the function call isPrime(143, P) is therefore P[0] = 2 , P[1] = 3 , P[2] = 5, P[3] = 7 , and P[4] =11. The return value in this case would be false since 11 divides 143. Function isPrime() should contain a loop that steps through array P, doing trial divisions. This loop should terminate when 2 either a trial division succeeds, in which case false is returned, or until the next prime in P is greater than m , in which case true is returned. Function main() in this project will read the command line argument n, allocate an int array of length n, fill the array with primes, then print the contents of the array to stdout according to the format described below. In the context of function main(), we will refer to this array as Primes[]. Thus array Primes[] plays a dual role in this project. On the one hand, it is used to collect, store, and print the output data. On the other hand, it is passed to function isPrime() to test new integers for primality. Whenever isPrime() returns true, the newly discovered prime will be placed at the appropriate position in array Primes[]. This process works since, as explained above, the primes needed to test an integer m range only up to m , and all of these primes (and more) will already be stored in array Primes[] when m is tested. Of course it will be necessary to initialize Primes[0] = 2 manually, then proceed to test 3, 4, … for primality using function isPrime(). The following is an outline of the steps to be performed in function main(). • Check that the user supplied exactly one command line argument which can be interpreted as a positive integer n. If the command line argument is not a single positive integer, your program will print a usage message as specified in the examples below, then exit. • Allocate array Primes[] of length n and initialize Primes[0] = 2 . • Enter a loop which will discover subsequent primes and store them as Primes[1] , Primes[2], Primes[3] , ……, Primes[n -1] . This loop should contain an inner loop which walks through successive integers and tests them for primality by calling function isPrime() with appropriate arguments. • Print the contents of array Primes[] to stdout, 10 to a line separated by single spaces. In other words Primes[0] through Primes[9] will go on line 1, Primes[10] though Primes[19] will go on line 2, and so on. Note that if n is not a multiple of 10, then the last line of output will contain fewer than 10 primes. Your program, which will be called Prime.java, will produce output identical to that of the sample runs below. (As usual % signifies the unix prompt.) % java Prime Usage: java Prime [PositiveInteger] % java Prime xyz Usage: java Prime [PositiveInteger] % java Prime 10 20 Usage: java Prime [PositiveInteger] % java Prime 75 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 % 3 As you can see, inappropriate command line argument(s) generate a usage message which is similar to that of many unix commands. (Try doing the more command with no arguments to see such a message.) Your program will include a function called Usage() having signature static void Usage() that prints this message to stderr, then exits. Thus your program will contain three functions in all: main(), isPrime(), and Usage(). Each should be preceded by a comment block giving it’s name, a short description of it’s operation, and any necessary preconditions (such as those for isPrime().) See examples on the webpage.

    Read the article

1