Search Results

Search found 13878 results on 556 pages for 'field codes'.

Page 1/556 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • MySQL field type for a comments field or text area

    - by Derek
    As the title says, I'm after a good field type for a comments field I have in a table. It will store many characters (as users can continuously add to it) so it's definitely over 255. I looked at longtext but wasn't sure...Also how do I change the field type to accept different characters such as apostrophies. Thanks.

    Read the article

  • How can I convert XML files to one CSV file in C#?

    - by TruMan1
    I have a collection of strings that are XML content. I want to iterate thru my collection and build a CSV file to stream to the user for download (sometimes it can be hundreds in the collection). This is my loop: foreach (string response in items.Responses) { string xmlResponse = response; //BUILD CSV HERE } This is what my XML content looks like for each iteration (xmlResponse). I want to put it in a flat file including the "properties" attributes: <?xml version="1.0"?> <response> <properties id="60375c90-9dd7-400f-aafb-a8726df409a9" name="Account Request" date="Thursday, March 04, 2010 2:14:07 PM" page="http://mydomain/sitefinity/CreateAccount.aspx" ip="192.168.1.255" browser="Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.8) Gecko/20100202 Firefox/3.5.8" referrer="http://mydomain/sitefinity/CreateAccount.aspx" confirmation="True" subject="Email from website: Account Request Form" sender="[email protected]" recipients="[email protected], , " /> <fields> <field> <label>Personal Details</label> <value>Personal Details</value> </field> <field> <label>Name</label> <value>Tim Wales</value> </field> <field> <label>Email</label> <value>[email protected]</value> </field> <field> <label>Website</label> <value></value> </field> <field> <label>Password</label> <value></value> </field> <field> <label>Phone</label> <value></value> </field> <field> <label>Years in Business</label> <value></value> </field> <field> <label>Background</label> <value>Background</value> </field> <field> <label>Place of Birth</label> <value>Earth</value> </field> <field> <label>Date of Birth</label> <value></value> </field> <field> <label>Some Label</label> <value>Some Label</value> </field> <field> <label>Industry</label> <value> Technology Other</value> </field> <field> <label>Pets</label> <value>Dog</value> </field> <field> <label>Your View</label> <value>Positive</value> </field> <field> <label>Misc</label> <value>Misc</value> </field> <field> <label>Comments</label> <value></value> </field> <field> <label>Agree to Terms?</label> <value>True</value> </field> </fields> </response> <?xml version="1.0"?> <response> <properties id="60375c90-9dd7-400f-aafb-a8726df409a9" Form="Account Request" Date="Tuesday, March 16, 2010 6:21:07 PM" Page="http://mydomain/sitefinity/Home.aspx" IP="fe80::1c0f57:9ee3%10" Browser="Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Trident/4.0; SLCC1; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.5.21022; .NET CLR 3.5.30729; .NET CLR 3.0.30729)" Referrer="http://mydomain/sitefinity/Home.aspx" Subject="Email from website: Account Request Form" Sender="[email protected]" Recipients="[email protected]" Confirmation="True" /> <fields> <field> <label>Personal Details</label> <value>Personal Details</value> </field> <field> <label>Name</label> <value>erger</value> </field> <field> <label>Email</label> <value></value> </field> <field> <label>Website</label> <value></value> </field> <field> <label>Password</label> <value></value> </field> <field> <label>Phone</label> <value></value> </field> <field> <label>Years in Business</label> <value></value> </field> <field> <label>Background</label> <value>Background</value> </field> <field> <label>Place of Birth</label> <value>Earth</value> </field> <field> <label>Date of Birth</label> <value></value> </field> <field> <label>Some Label</label> <value>Some Label</value> </field> <field> <label>Industry</label> <value> Technology Service</value> </field> <field> <label>Pets</label> <value>Dog</value> </field> <field> <label>Your View</label> <value>Positive</value> </field> <field> <label>Misc</label> <value>Misc</value> </field> <field> <label>Comments</label> <value></value> </field> <field> <label>Agree to Terms?</label> <value>True</value> </field> </fields> </response> <?xml version="1.0"?> <response> <properties id="60375c90-9dd7-400f-aafb-a8726df409a9" Form="Account Request" Date="Tuesday, March 16, 2010 4:50:17 PM" Page="http://mydomain/sitefinity/Home.aspx" IP="fe80::1c0f:ee3%10" Browser="Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Trident/4.0; SLCC1; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.5.21022; .NET CLR 3.5.30729; .NET CLR 3.0.30729)" Referrer="http://mydomain/sitefinity/Home.aspx" Subject="Email from website: Account Request Form" Sender="[email protected]" Recipients="[email protected]" Confirmation="True" /> <fields> <field> <label>Personal Details</label> <value>Personal Details</value> </field> <field> <label>Name</label> <value>esfs</value> </field> <field> <label>Email</label> <value></value> </field> <field> <label>Website</label> <value></value> </field> <field> <label>Password</label> <value></value> </field> <field> <label>Phone</label> <value></value> </field> <field> <label>Years in Business</label> <value></value> </field> <field> <label>Background</label> <value>Background</value> </field> <field> <label>Place of Birth</label> <value>Earth</value> </field> <field> <label>Date of Birth</label> <value></value> </field> <field> <label>Some Label</label> <value>Some Label</value> </field> <field> <label>Industry</label> <value> Technology Service</value> </field> <field> <label>Pets</label> <value>Dog</value> </field> <field> <label>Your View</label> <value>Positive</value> </field> <field> <label>Misc</label> <value>Misc</value> </field> <field> <label>Comments</label> <value></value> </field> <field> <label>Agree to Terms?</label> <value>True</value> </field> </fields> </response> Can anyone help with this?

    Read the article

  • SQL SERVER – Parsing SSIS Catalog Messages – Notes from the Field #030

    - by Pinal Dave
    [Note from Pinal]: This is a new episode of Notes from the Field series. SQL Server Integration Service (SSIS) is one of the most key essential part of the entire Business Intelligence (BI) story. It is a platform for data integration and workflow applications. The tool may also be used to automate maintenance of SQL Server databases and updates to multidimensional cube data. In this episode of the Notes from the Field series I requested SSIS Expert Andy Leonard to discuss one of the most interesting concepts of SSIS Catalog Messages. There are plenty of interesting and useful information captured in the SSIS catalog and we will learn together how to explore the same. The SSIS Catalog captures a lot of cool information by default. Here’s a query I use to parse messages from the catalog.operation_messages table in the SSISDB database, where the logged messages are stored. This query is set up to parse a default message transmitted by the Lookup Transformation. It’s one of my favorite messages in the SSIS log because it gives me excellent information when I’m tuning SSIS data flows. The message reads similar to: Data Flow Task:Information: The Lookup processed 4485 rows in the cache. The processing time was 0.015 seconds. The cache used 1376895 bytes of memory. The query: USE SSISDB GO DECLARE @MessageSourceType INT = 60 DECLARE @StartOfIDString VARCHAR(100) = 'The Lookup processed ' DECLARE @ProcessingTimeString VARCHAR(100) = 'The processing time was ' DECLARE @CacheUsedString VARCHAR(100) = 'The cache used ' DECLARE @StartOfIDSearchString VARCHAR(100) = '%' + @StartOfIDString + '%' DECLARE @ProcessingTimeSearchString VARCHAR(100) = '%' + @ProcessingTimeString + '%' DECLARE @CacheUsedSearchString VARCHAR(100) = '%' + @CacheUsedString + '%' SELECT operation_id , SUBSTRING(MESSAGE, (PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1)) - (PATINDEX(@StartOfIDSearchString, MESSAGE) + LEN(@StartOfIDString) + 1))) AS LookupRowsCount , SUBSTRING(MESSAGE, (PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1)) - (PATINDEX(@ProcessingTimeSearchString, MESSAGE) + LEN(@ProcessingTimeString) + 1))) AS LookupProcessingTime , CASE WHEN (CONVERT(numeric(3,3),SUBSTRING(MESSAGE, (PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1)) - (PATINDEX(@ProcessingTimeSearchString, MESSAGE) + LEN(@ProcessingTimeString) + 1))))) = 0 THEN 0 ELSE CONVERT(bigint,SUBSTRING(MESSAGE, (PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1)) - (PATINDEX(@StartOfIDSearchString, MESSAGE) + LEN(@StartOfIDString) + 1)))) / CONVERT(numeric(3,3),SUBSTRING(MESSAGE, (PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1)) - (PATINDEX(@ProcessingTimeSearchString, MESSAGE) + LEN(@ProcessingTimeString) + 1)))) END AS LookupRowsPerSecond , SUBSTRING(MESSAGE, (PATINDEX(@CacheUsedSearchString,MESSAGE) + LEN(@CacheUsedString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@CacheUsedSearchString,MESSAGE) + LEN(@CacheUsedString) + 1)) - (PATINDEX(@CacheUsedSearchString, MESSAGE) + LEN(@CacheUsedString) + 1))) AS LookupBytesUsed ,CASE WHEN (CONVERT(bigint,SUBSTRING(MESSAGE, (PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1)) - (PATINDEX(@StartOfIDSearchString, MESSAGE) + LEN(@StartOfIDString) + 1)))))= 0 THEN 0 ELSE CONVERT(bigint,SUBSTRING(MESSAGE, (PATINDEX(@CacheUsedSearchString,MESSAGE) + LEN(@CacheUsedString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@CacheUsedSearchString,MESSAGE) + LEN(@CacheUsedString) + 1)) - (PATINDEX(@CacheUsedSearchString, MESSAGE) + LEN(@CacheUsedString) + 1)))) / CONVERT(bigint,SUBSTRING(MESSAGE, (PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1)) - (PATINDEX(@StartOfIDSearchString, MESSAGE) + LEN(@StartOfIDString) + 1)))) END AS LookupBytesPerRow FROM [catalog].[operation_messages] WHERE message_source_type = @MessageSourceType AND MESSAGE LIKE @StartOfIDSearchString GO Note that you have to set some parameter values: @MessageSourceType [int] – represents the message source type value from the following results: Value     Description 10           Entry APIs, such as T-SQL and CLR Stored procedures 20           External process used to run package (ISServerExec.exe) 30           Package-level objects 40           Control Flow tasks 50           Control Flow containers 60           Data Flow task 70           Custom execution message Note: Taken from Reza Rad’s (excellent!) helper.MessageSourceType table found here. @StartOfIDString [VarChar(100)] – use this to uniquely identify the message field value you wish to parse. In this case, the string ‘The Lookup processed ‘ identifies all the Lookup Transformation messages I desire to parse. @ProcessingTimeString [VarChar(100)] – this parameter is message-specific. I use this parameter to specifically search the message field value for the beginning of the Lookup Processing Time value. For this execution, I use the string ‘The processing time was ‘. @CacheUsedString [VarChar(100)] – this parameter is also message-specific. I use this parameter to specifically search the message field value for the beginning of the Lookup Cache  Used value. It returns the memory used, in bytes. For this execution, I use the string ‘The cache used ‘. The other parameters are built from variations of the parameters listed above. The query parses the values into text. The string values are converted to numeric values for ratio calculations; LookupRowsPerSecond and LookupBytesPerRow. Since ratios involve division, CASE statements check for denominators that equal 0. Here are the results in an SSMS grid: This is not the only way to retrieve this information. And much of the code lends itself to conversion to functions. If there is interest, I will share the functions in an upcoming post. If you want to get started with SSIS with the help of experts, read more over at Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Backup and Restore, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: SSIS

    Read the article

  • Microsoft Word 2007 opening all docs with field codes toggled off

    - by WilliamKF
    Recently, something changed with my Microsoft Word 2007 installation/preferences on Windows XP, such that whenever I open a word document, all the field codes are displayed raw instead of as their expanded value. For example, my header reads: My Name { TITLE \* MERGEFORMAT } Version { REVNUM \* MERGEFORMAT } But, if I copy and paste it here, it reads expanded: My Name My Doc Title Version 42 I expect to see the copy and paste version directly inside Word, I can work around this by right clicking on each such field and choosing toggle field codes, however, I never had to do that before, as previously, the document opened with all such field codes expanded. Another example is the Table of Contents which shows as: { TOC \o "1-3" \h \z \u } Instead of the full table of contents. I searched the word options dialog, but could not find anything that appeared relevant. Please suggest how to restore the old behavior.

    Read the article

  • IIS 7.0 informational HTTP status codes

    - by Samir R. Bhogayta
    1xx - Informational These HTTP status codes indicate a provisional response. The client computer receives one or more 1xx responses before the client computer receives a regular response. IIS 7.0 uses the following informational HTTP status codes: 100 - Continue. 101 - Switching protocols. 2xx - Success These HTTP status codes indicate that the server successfully accepted the request. IIS 7.0 uses the following success HTTP status codes: 200 - OK. The client request has succeeded. 201 - Created. 202 - Accepted. 203 - Nonauthoritative information. 204 - No content. 205 - Reset content. 206 - Partial content. 3xx - Redirection These HTTP status codes indicate that the client browser must take more action to fulfill the request. For example, the client browser may have to request a different page on the server. Or, the client browser may have to repeat the request by using a proxy server. IIS 7.0 uses the following redirection HTTP status codes: 301 - Moved permanently. 302 - Object moved. 304 - Not modified. 307 - Temporary redirect. 4xx - Client error These HTTP status codes indicate that an error occurred and that the client browser appears to be at fault. For example, the client browser may have requested a page that does not exist. Or, the client browser may not have provided valid authentication information. IIS 7.0 uses the following client error HTTP status codes: 400 - Bad request. The request could not be understood by the server due to malformed syntax. The client should not repeat the request without modifications. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 400 error: 400.1 - Invalid Destination Header. 400.2 - Invalid Depth Header. 400.3 - Invalid If Header. 400.4 - Invalid Overwrite Header. 400.5 - Invalid Translate Header. 400.6 - Invalid Request Body. 400.7 - Invalid Content Length. 400.8 - Invalid Timeout. 400.9 - Invalid Lock Token. 401 - Access denied. IIS 7.0 defines several HTTP status codes that indicate a more specific cause of a 401 error. The following specific HTTP status codes are displayed in the client browser but are not displayed in the IIS log: 401.1 - Logon failed. 401.2 - Logon failed due to server configuration. 401.3 - Unauthorized due to ACL on resource. 401.4 - Authorization failed by filter. 401.5 - Authorization failed by ISAPI/CGI application. 403 - Forbidden. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 403 error: 403.1 - Execute access forbidden. 403.2 - Read access forbidden. 403.3 - Write access forbidden. 403.4 - SSL required. 403.5 - SSL 128 required. 403.6 - IP address rejected. 403.7 - Client certificate required. 403.8 - Site access denied. 403.9 - Forbidden: Too many clients are trying to connect to the Web server. 403.10 - Forbidden: Web server is configured to deny Execute access. 403.11 - Forbidden: Password has been changed. 403.12 - Mapper denied access. 403.13 - Client certificate revoked. 403.14 - Directory listing denied. 403.15 - Forbidden: Client access licenses have exceeded limits on the Web server. 403.16 - Client certificate is untrusted or invalid. 403.17 - Client certificate has expired or is not yet valid. 403.18 - Cannot execute requested URL in the current application pool. 403.19 - Cannot execute CGI applications for the client in this application pool. 403.20 - Forbidden: Passport logon failed. 403.21 - Forbidden: Source access denied. 403.22 - Forbidden: Infinite depth is denied. 404 - Not found. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 404 error: 404.0 - Not found. 404.1 - Site Not Found. 404.2 - ISAPI or CGI restriction. 404.3 - MIME type restriction. 404.4 - No handler configured. 404.5 - Denied by request filtering configuration. 404.6 - Verb denied. 404.7 - File extension denied. 404.8 - Hidden namespace. 404.9 - File attribute hidden. 404.10 - Request header too long. 404.11 - Request contains double escape sequence. 404.12 - Request contains high-bit characters. 404.13 - Content length too large. 404.14 - Request URL too long. 404.15 - Query string too long. 404.16 - DAV request sent to the static file handler. 404.17 - Dynamic content mapped to the static file handler via a wildcard MIME mapping. 404.18 - Querystring sequence denied. 404.19 - Denied by filtering rule. 405 - Method Not Allowed. 406 - Client browser does not accept the MIME type of the requested page. 408 - Request timed out. 412 - Precondition failed. 5xx - Server error These HTTP status codes indicate that the server cannot complete the request because the server encounters an error. IIS 7.0 uses the following server error HTTP status codes: 500 - Internal server error. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 500 error: 500.0 - Module or ISAPI error occurred. 500.11 - Application is shutting down on the Web server. 500.12 - Application is busy restarting on the Web server. 500.13 - Web server is too busy. 500.15 - Direct requests for Global.asax are not allowed. 500.19 - Configuration data is invalid. 500.21 - Module not recognized. 500.22 - An ASP.NET httpModules configuration does not apply in Managed Pipeline mode. 500.23 - An ASP.NET httpHandlers configuration does not apply in Managed Pipeline mode. 500.24 - An ASP.NET impersonation configuration does not apply in Managed Pipeline mode. 500.50 - A rewrite error occurred during RQ_BEGIN_REQUEST notification handling. A configuration or inbound rule execution error occurred. Note Here is where the distributed rules configuration is read for both inbound and outbound rules. 500.51 - A rewrite error occurred during GL_PRE_BEGIN_REQUEST notification handling. A global configuration or global rule execution error occurred. Note Here is where the global rules configuration is read. 500.52 - A rewrite error occurred during RQ_SEND_RESPONSE notification handling. An outbound rule execution occurred. 500.53 - A rewrite error occurred during RQ_RELEASE_REQUEST_STATE notification handling. An outbound rule execution error occurred. The rule is configured to be executed before the output user cache gets updated. 500.100 - Internal ASP error. 501 - Header values specify a configuration that is not implemented. 502 - Web server received an invalid response while acting as a gateway or proxy. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 502 error: 502.1 - CGI application timeout. 502.2 - Bad gateway. 503 - Service unavailable. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 503 error: 503.0 - Application pool unavailable. 503.2 - Concurrent request limit exceeded.

    Read the article

  • CSS: move a "float:right" element to top (to align with the first element of the list)

    - by Patrick
    hi, I've a sequence of elements and the last one has css "float:left". I would like to display it at the same height of the first element and not on the bottom of the list. (I cannot change the html code, so it is the last in the list). At the same time, I would like to keep it on the right. How can I make it wich CSS ? thanks Code: <div class="field field-type-text field-field-year"> <div class="field-items"> <div class="field-item odd"> <div class="field-label-inline-first"> Year:&nbsp;</div> 2009 </div> </div> </div> <div class="field field-type-text field-field-where"> <div class="field-items"> <div class="field-item odd"> <div class="field-label-inline-first"> Where:&nbsp;</div> Musée Rath, Geneva </div> </div> </div> <div class="field field-type-text field-field-when"> <div class="field-items"> <div class="field-item odd"> <div class="field-label-inline-first"> When:&nbsp;</div> 25.8 – 27.9.2009 </div> </div> </div> <div class="field field-type-text field-field-editor"> <div class="field-items"> <div class="field-item odd"> <div class="field-label-inline-first"> Editor:&nbsp;</div> Blabla Blabla </div> </div> </div> <div class="field field-type-text field-field-material"> <div class="field-items"> <div class="field-item odd"> <div class="field-label-inline-first"> Material/techniques:&nbsp;</div> contemporary art installations </div> </div> </div> <div class="field field-type-text field-field-dimension"> <div class="field-items"> <div class="field-item odd"> <div class="field-label-inline-first"> Dimension:&nbsp;</div> 2 floors in a neoclassical building </div> </div> </div> <div class="field field-type-text field-field-artists"> <div class="field-items"> <div class="field-item odd"> <div class="field-label-inline-first"> Artists:&nbsp;</div> Blablablabla balbalbalbalba </div> </div> </div> .field-field-year, .field-field-where, .field-field-when, .field-field-editor, .field-field-material, .field-field-dimension { width:300px; } .field-field-artists { width:400px; float:right; clear:right; top-margin: -200px; }

    Read the article

  • Developer’s Life – Disaster Lessons – Notes from the Field #039

    - by Pinal Dave
    [Note from Pinal]: This is a 39th episode of Notes from the Field series. What is the best solution do you have when you encounter a disaster in your organization. Now many of you would answer that in this scenario you would have another standby machine or alternative which you will plug in. Now let me ask second question – What would you do if you as an individual faces disaster?  In this episode of the Notes from the Field series database expert Mike Walsh explains a very crucial issue we face in our career, which is not technical but more to relate to human nature. Read on this may be the best blog post you might read in recent times. Howdy! When it was my turn to share the Notes from the Field last time, I took a departure from my normal technical content to talk about Attitude and Communication.(http://blog.sqlauthority.com/2014/05/08/developers-life-attitude-and-communication-they-can-cause-problems-notes-from-the-field-027/) Pinal said it was a popular topic so I hope he won’t mind if I stick with Professional Development for another of my turns at sharing some information here. Like I said last time, the “soft skills” of the IT world are often just as important – sometimes more important – than the technical skills. As a consultant with Linchpin People – I see so many situations where the professional skills I’ve gained and use are more valuable to clients than knowing the best way to tune a query. Today I want to continue talking about professional development and tell you about the way I almost got myself hit by a train – and why that matters in our day jobs. Sometimes we can learn a lot from disasters. Whether we caused them or someone else did. If you are interested in learning about some of my observations in these lessons you can see more where I talk about lessons from disasters on my blog. For now, though, onto how I almost got my vehicle hit by a train… The Train Crash That Almost Was…. My family and I own a little schoolhouse building about a 10 mile drive away from our house. We use it as a free resource for families in the area that homeschool their children – so they can have some class space. I go up there a lot to check in on the property, to take care of the trash and to do work on the property. On the way there, there is a very small Stop Sign controlled railroad intersection. There is only two small freight trains a day passing there. Actually the same train, making a journey south and then back North. That’s it. This road is a small rural road, barely ever a second car driving in the neighborhood there when I am. The stop sign is pretty much there only for the train crossing. When we first bought the building, I was up there a lot doing renovations on the property. Being familiar with the area, I am also familiar with the train schedule and know the tracks are normally free of trains. So I developed a bad habit. You see, I’d approach the stop sign and slow down as I roll through it. Sometimes I’d do a quick look and come to an “almost” stop there but keep on going. I let my impatience and complacency take over. And that is because most of the time I was going there long after the train was done for the day or in between the runs. This habit became pretty well established after a couple years of driving the route. The behavior reinforced a bit by the success ratio. I saw others doing it as well from the neighborhood when I would happen to be there around the time another car was there. Well. You already know where this ends up by the title and backstory here. A few months ago I came to that little crossing, and I started to do the normal routine. I’d pretty much stopped looking in some respects because of the pattern I’d gotten into.  For some reason I looked and heard and saw the train slowly approaching and slammed on my brakes and stopped. It was an abrupt stop, and it was close. I probably would have made it okay, but I sat there thinking about lessons for IT professionals from the situation once I started breathing again and watched the cars loaded with sand and propane slowly labored down the tracks… Here are Those Lessons… It’s easy to get stuck into a routine – That isn’t always bad. Except when it’s a bad routine. Momentum and inertia are powerful. Once you have a habit and a routine developed – it’s really hard to break that. Make sure you are setting the right routines and habits TODAY. What almost dangerous things are you doing today? How are you almost messing up your production environment today? Stop doing that. Be Deliberate – (Even when you are the only one) – Like I said – a lot of people roll through that stop sign. Perhaps the neighbors or other drivers think “why is he fully stopping and looking… The train only comes two times a day!” – they can think that all they want. Through deliberate actions and forcing myself to pay attention, I will avoid that oops again. Slow down. Take a deep breath. Be Deliberate in your job. Pay attention to the small stuff and go out of your way to be careful. It will save you later. Be Observant – Keep your eyes open. By looking around, observing the situation and understanding what your servers, databases, users and vendors are doing – you’ll notice when something is out of place. But if you don’t know what is normal, if you don’t look to make sure nothing has changed – that train will come and get you. Where can you be more observant? What warning signs are you ignoring in your environment today? In the IT world – trains are everywhere. Projects move fast. Decisions happen fast. Problems turn from a warning sign to a disaster quickly. If you get stuck in a complacent pattern of “Everything is okay, it always has been and always will be” – that’s the time that you will most likely get stuck in a bad situation. Don’t let yourself get complacent, don’t let your team get complacent. That will lead to being proactive. And a proactive environment spends less money on consultants for troubleshooting problems you should have seen ahead of time. You can spend your money and IT budget on improving for your customers. If you want to get started with performance analytics and triage of virtualized SQL Servers with the help of experts, read more over at Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • SQL SERVER – ?Finding Out What Changed in a Deleted Database – Notes from the Field #041

    - by Pinal Dave
    [Note from Pinal]: This is a 41th episode of Notes from the Field series. The real world is full of challenges. When we are reading theory or book, we sometimes do not realize how real world reacts works and that is why we have the series notes from the field, which is extremely popular with developers and DBA. Let us talk about interesting problem of how to figure out what has changed in the DELETED database. Well, you think I am just throwing the words but in reality this kind of problems are making our DBA’s life interesting and in this blog post we have amazing story from Brian Kelley about the same subject. In this episode of the Notes from the Field series database expert Brian Kelley explains a how to find out what has changed in deleted database. Read the experience of Brian in his own words. Sometimes, one of the hardest questions to answer is, “What changed?” A similar question is, “Did anything change other than what we expected to change?” The First Place to Check – Schema Changes History Report: Pinal has recently written on the Schema Changes History report and its requirement for the Default Trace to be enabled. This is always the first place I look when I am trying to answer these questions. There are a couple of obvious limitations with the Schema Changes History report. First, while it reports what changed, when it changed, and who changed it, other than the base DDL operation (CREATE, ALTER, DELETE), it does not present what the changes actually were. This is not something covered by the default trace. Second, the default trace has a fixed size. When it hits that size, the changes begin to overwrite. As a result, if you wait too long, especially on a busy database server, you may find your changes rolled off. But the Database Has Been Deleted! Pinal cited another issue, and that’s the inability to run the Schema Changes History report if the database has been dropped. Thankfully, all is not lost. One thing to remember is that the Schema Changes History report is ultimately driven by the Default Trace. As you may have guess, it’s a trace, like any other database trace. And the Default Trace does write to disk. The trace files are written to the defined LOG directory for that SQL Server instance and have a prefix of log_: Therefore, you can read the trace files like any other. Tip: Copy the files to a working directory. Otherwise, you may occasionally receive a file in use error. With the Default Trace files, if you ask the question early enough, you can see the information for a deleted database just the same as any other database. Testing with a Deleted Database: Here’s a short script that will create a database, create a schema, create an object, and then drop the database. Without the database, you can’t do a standard Schema Changes History report. CREATE DATABASE DeleteMe; GO USE DeleteMe; GO CREATE SCHEMA Test AUTHORIZATION dbo; GO CREATE TABLE Test.Foo (FooID INT); GO USE MASTER; GO DROP DATABASE DeleteMe; GO This sets up the perfect situation where we can’t retrieve the information using the Schema Changes History report but where it’s still available. Finding the Information: I’ve sorted the columns so I can see the Event Subclass, the Start Time, the Database Name, the Object Name, and the Object Type at the front, but otherwise, I’m just looking at the trace files using SQL Profiler. As you can see, the information is definitely there: Therefore, even in the case of a dropped/deleted database, you can still determine who did what and when. You can even determine who dropped the database (loginame is captured). The key is to get the default trace files in a timely manner in order to extract the information. If you want to get started with performance tuning and database security with the help of experts, read more over at Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Query, SQL Security, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Developer’s Life – Attitude and Communication – They Can Cause Problems – Notes from the Field #027

    - by Pinal Dave
    [Note from Pinal]: This is a 27th episode of Notes from the Field series. The biggest challenge for anyone is to understand human nature. We human have so many things on our mind at any moment of time. There are cases when what we say is not what we mean and there are cases where what we mean we do not say. We do say and things as per our mood and our agenda in mind. Sometimes there are incidents when our attitude creates confusion in the communication and we end up creating a situation which is absolutely not warranted. In this episode of the Notes from the Field series database expert Mike Walsh explains a very crucial issue we face in our career, which is not technical but more to relate to human nature. Read on this may be the best blog post you might read in recent times. In this week’s note from the field, I’m taking a slight departure from technical knowledge and concepts explained. We’ll be back to it next week, I’m sure. Pinal wanted us to explain some of the issues we bump into and how we see some of our customers arrive at problem situations and how we have helped get them back on the right track. Often it is a technical problem we are officially solving – but in a lot of cases as a consultant, we are really helping fix some communication difficulties. This is a technical blog post and not an “advice column” in a newspaper – but the longer I am a consultant, the more years I add to my experience in technology the more I learn that the vast majority of the problems we encounter have “soft skills” included in the chain of causes for the issue we are helping overcome. This is not going to be exhaustive but I hope that sharing four pieces of advice inspired by real issues starts a process of searching for places where we can be the cause of these challenges and look at fixing them in ourselves. Or perhaps we can begin looking at resolving them in teams that we manage. I’ll share three statements that I’ve either heard, read or said and talk about some of the communication or attitude challenges highlighted by the statement. 1 – “But that’s the SAN Administrator’s responsibility…” I heard that early on in my consulting career when talking with a customer who had serious corruption and no good recent backups – potentially no good backups at all. The statement doesn’t have to be this one exactly, but the attitude here is an attitude of “my job stops here, and I don’t care about the intent or principle of why I’m here.” It’s also a situation of having the attitude that as long as there is someone else to blame, I’m fine…  You see in this case, the DBA had a suspicion that the backups were not being handled right.  They were the DBA and they knew that they had responsibility to ensure SQL backups were good to go – it’s a basic requirement of a production DBA. In my “As A DBA Where Do I start?!” presentation, I argue that is job #1 of a DBA. But in this case, the thought was that there was someone else to blame. Rather than create extra work and take on responsibility it was decided to just let it be another team’s responsibility. This failed the company, the company’s customers and no one won. As technologists – we should strive to go the extra mile. If there is a lack of clarity around roles and responsibilities and we know it – we should push to get it resolved. Especially as the DBAs who should act as the advocates of the data contained in the databases we are responsible for. 2 – “We’ve always done it this way, it’s never caused a problem before!” Complacency. I have to say that many failures I’ve been paid good money to help recover from would have not happened had it been for an attitude of complacency. If any thoughts like this have entered your mind about your situation you may be suffering from it. If, while reading this, you get this sinking feeling in your stomach about that one thing you know should be fixed but haven’t done it.. Why don’t you stop and go fix it then come back.. “We should have better backups, but we’re on a SAN so we should be fine really.” “Technically speaking that could happen, but what are the chances?” “We’ll just clean that up as a fast follow” ..and so on. In the age of tightening IT budgets, increased expectations of up time, availability and performance there is no room for complacency. Our customers and business units expect – no demand – the best. Complacency says “we will give you second best or hopefully good enough and we accept the risk and know this may hurt us later. Sometimes an organization will opt for “good enough” and I agree with the concept that at times the perfect can be the enemy of the good. But when we make those decisions in a vacuum and are not reporting them up and discussing them as an organization that is different. That is us unilaterally choosing to do something less than the best and purposefully playing a game of chance. 3 – “This device must accept interference from other devices but not create any” I’ve paraphrased this one – but it’s something the Federal Communications Commission – a federal agency in the United States that regulates electronic communication – requires of all manufacturers of any device that could cause or receive interference electronically. I blogged in depth about this here (http://www.straightpathsql.com/archives/2011/07/relationship-advice-from-the-fcc/) so I won’t go into much detail other than to say this… If we all operated more on the premise that we should do our best to not be the cause of conflict, and to be less easily offended and less upset when we perceive offense life would be easier in many areas! This doesn’t always cause the issues we are called in to help out. Not directly. But where we see it is in unhealthy relationships between the various technology teams at a client. We’ll see teams hoarding knowledge, not sharing well with others and almost working against other teams instead of working with them. If you trace these problems back far enough it often stems from someone or some group of people violating this principle from the FCC. To Sum It Up Technology problems are easy to solve. At Linchpin People we help many customers get past the toughest technological challenge – and at the end of the day it is really just a repeatable process of pattern based troubleshooting, logical thinking and starting at the beginning and carefully stepping through to the end. It’s easy at the end of the day. The tough part of what we do as consultants is the people skills. Being able to help get teams working together, being able to help teams take responsibility, to improve team to team communication? That is the difficult part, and we get to use the soft skills on every engagement. Work on professional development (http://professionaldevelopment.sqlpass.org/) and see continuing improvement here, not just with technology. I can teach just about anyone how to be an excellent DBA and performance tuner, but some of these soft skills are much more difficult to teach. If you want to get started with performance analytics and triage of virtualized SQL Servers with the help of experts, read more over at Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • how to read LDAP error codes

    - by Padur
    Hello I am having trouble reading ldap error codes. Is there any method or an API to read ldap error codes/sub error codes.Right now I am parsing the exception message and getting the error code. I believe there is a simple way of extracting codes? Padur

    Read the article

  • SQL SERVER – Windows File/Folder and Share Permissions – Notes from the Field #029

    - by Pinal Dave
    [Note from Pinal]: This is a 29th episode of Notes from the Field series. Security is the task which we should give it to the experts. If there is a small overlook or misstep, there are good chances that security of the organization is compromised. This is very true, but there are always devils’s advocates who believe everyone should know the security. As a DBA and Administrator, I often see people not taking interest in the Windows Security hiding behind the reason of not expert of Windows Server. We all often miss the important mission statement for the success of any organization – Teamwork. In this blog post Brian tells the story in very interesting lucid language. Read On! In this episode of the Notes from the Field series database expert Brian Kelley explains a very crucial issue DBAs and Developer faces on their production server. Linchpin People are database coaches and wellness experts for a data driven world. Read the experience of Brian in his own words. When I talk security among database professionals, I find that most have at least a working knowledge of how to apply security within a database. When I talk with DBAs in particular, I find that most have at least a working knowledge of security at the server level if we’re speaking of SQL Server. One area I see continually that is weak is in the area of Windows file/folder (NTFS) and share permissions. The typical response is, “I’m a database developer and the Windows system administrator is responsible for that.” That may very well be true – the system administrator may have the primary responsibility and accountability for file/folder and share security for the server. However, if you’re involved in the typical activities surrounding databases and moving data around, you should know these permissions, too. Otherwise, you could be setting yourself up where someone is able to get to data he or she shouldn’t, or you could be opening the door where human error puts bad data in your production system. File/Folder Permission Basics: I wrote about file/folder permissions a few years ago to give the basic permissions that are most often seen. Here’s what you must know as a minimum at the file/folder level: Read - Allows you to read the contents of the file or folder. Having read permissions allows you to copy the file or folder. Write  – Again, as the name implies, it allows you to write to the file or folder. This doesn’t include the ability to delete, however, nothing stops a person with this access from writing an empty file. Delete - Allows the file/folder to be deleted. If you overwrite files, you may need this permission. Modify - Allows read, write, and delete. Full Control - Same as modify + the ability to assign permissions. File/Folder permissions aggregate, unless there is a DENY (where it trumps, just like within SQL Server), meaning if a person is in one group that gives Read and antoher group that gives Write, that person has both Read and Write permissions. As you might expect me to say, always apply the Principle of Least Privilege. This likely means that any additional permission you might add does not need Full Control. Share Permission Basics: At the share level, here are the permissions. Read - Allows you to read the contents on the share. Change - Allows you to read, write, and delete contents on the share. Full control - Change + the ability to modify permissions. Like with file/folder permissions, these permissions aggregate, and DENY trumps. So What Access Does a Person / Process Have? Figuring out what someone or some process has depends on how the location is being accessed: Access comes through the share (\\ServerName\Share) – a combination of permissions is considered. Access is through a drive letter (C:\, E:\, S:\, etc.) – only the file/folder permissions are considered. The only complicated one here is access through the share. Here’s what Windows does: Figures out what the aggregated permissions are at the file/folder level. Figures out what the aggregated permissions are at the share level. Takes the most restrictive of the two sets of permissions. You can test this by granting Full Control over a folder (this is likely already in place for the Users local group) and then setting up a share. Give only Read access through the share, and that includes to Administrators (if you’re creating a share, likely you have membership in the Administrators group). Try to read a file through the share. Now try to modify it. The most restrictive permission is the Share level permissions. It’s set to only allow Read. Therefore, if you come through the share, it’s the most restrictive. Does This Knowledge Really Help Me? In my experience, it does. I’ve seen cases where sensitive files were accessible by every authenticated user through a share. Auditors, as you might expect, have a real problem with that. I’ve also seen cases where files to be imported as part of the nightly processing were overwritten by files intended from development. And I’ve seen cases where a process can’t get to the files it needs for a process because someone changed the permissions. If you know file/folder and share permissions, you can spot and correct these types of security flaws. Given that there are a lot of database professionals that don’t understand these permissions, if you know it, you set yourself apart. And if you’re able to help on critical processes, you begin to set yourself up as a linchpin (link to .pdf) for your organization. If you want to get started with performance tuning and database security with the help of experts, read more over at Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Query, SQL Security, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • SQL SERVER – Planned and Unplanned Availablity Group Failovers – Notes from the Field #031

    - by Pinal Dave
    [Note from Pinal]: This is a new episode of Notes from the Fields series. AlwaysOn is a very complex subject and not everyone knows many things about this. The matter of the fact is there is very little information available on this subject online and not everyone knows everything about this. This is why when a very common question related to AlwaysOn comes, people get confused. In this episode of the Notes from the Field series database expert John Sterrett (Group Principal at Linchpin People) explains a very common issue DBAs and Developer faces in their career and is related to Planned and Unplanned Availablity Group Failovers. Linchpin People are database coaches and wellness experts for a data driven world. Read the experience of John in his own words. Whenever a disaster occurs it will be a stressful scenario regardless of how small or big the disaster is. This gets multiplied when it is your first time working with newer technology or the first time you are going through a disaster without a proper run book. Today, were going to help you establish a run book for creating a planned failover with availability groups. To make today’s session simple were going to have two instances of SQL Server 2012 included in an availability group and walk through the steps of doing an unplanned failover.  We will focus on using the user interface and T-SQL to complete the failovers. We are going to use a two replica Availability Group where each replica is in another location. Therefore, we will be covering Asynchronous (non automatic failover) the following is a breakdown of our availability group utilized today. Seeing the following screen might be scary the first time you come across an unplanned failover.  It looks like our test database used in this Availability Group is not functional and it currently isn’t. The database status is not synchronizing which makes sense because the primary replica went down so it couldn’t synchronize. With that said, we can still failover and make it functional while we troubleshoot why we lost our primary replica. To start we are going to right click on the availability group that needs to be restarted and select failover. This will bring up the following wizard, which will walk you through several steps needed to complete the failover using the graphical user interface provided with SQL Server Management Studio (SSMS). You are going to see warning messages simply because we are in Asynchronous commit mode and can not guarantee ‘no data loss’ when we do failover. Just incase you missed it; you get another screen warning you about potential data loss because we are in Asynchronous mode. Next we get to connect to the specific replica we want to become the primary replica after the failover occurs. In our case, we only have two replicas so this is trivial. In order to failover, it’s required to connect to the replica that will become primary.  The following screen shows that the connection has been made successfully. Next, you will see the final summary screen. Once again, this reminds you that the failover action will cause data loss as were using Asynchronous commit mode due to the distance between instances used for disaster recovery. Finally, once the failover is completed you will see the following screen. If you followed along this long you might be wondering what T-SQL scripts are generated for clicking through all the sections of the wizard. If you have used Database Mirroring in the past you might be surprised.  It’s not too different, which makes sense because the data is being replicated via SQL Server endpoints just like the good old database mirroring. Now were going to take a look at how to do a failover with just T-SQL. First, were going to need to open a new query window and run our query in SQLCMD mode. Just incase you haven’t used SQLCMD mode before we will show you how to enable it below. Now you can run the following statement. Notice, we connect to the replica we want to become primary after failover and specify to force failover to allow data loss. We can use the following script to failback over when our primary instance comes back online. -- YOU MUST EXECUTE THE FOLLOWING SCRIPT IN SQLCMD MODE. :Connect SQL2012PROD1 ALTER AVAILABILITY GROUP [AGSQL2] FORCE_FAILOVER_ALLOW_DATA_LOSS; GO Are your servers running at optimal speed or are you facing any SQL Server Performance Problems? If you want to get started with the help of experts read more over here: Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • SQL SERVER – SSIS Parameters in Parent-Child ETL Architectures – Notes from the Field #040

    - by Pinal Dave
    [Notes from Pinal]: SSIS is very well explored subject, however, there are so many interesting elements when we read, we learn something new. A similar concept has been Parent-Child ETL architecture’s relationship in SSIS. Linchpin People are database coaches and wellness experts for a data driven world. In this 40th episode of the Notes from the Fields series database expert Tim Mitchell (partner at Linchpin People) shares very interesting conversation related to how to understand SSIS Parameters in Parent-Child ETL Architectures. In this brief Notes from the Field post, I will review the use of SSIS parameters in parent-child ETL architectures. A very common design pattern used in SQL Server Integration Services is one I call the parent-child pattern.  Simply put, this is a pattern in which packages are executed by other packages.  An ETL infrastructure built using small, single-purpose packages is very often easier to develop, debug, and troubleshoot than large, monolithic packages.  For a more in-depth look at parent-child architectures, check out my earlier blog post on this topic. When using the parent-child design pattern, you will frequently need to pass values from the calling (parent) package to the called (child) package.  In older versions of SSIS, this process was possible but not necessarily simple.  When using SSIS 2005 or 2008, or even when using SSIS 2012 or 2014 in package deployment mode, you would have to create package configurations to pass values from parent to child packages.  Package configurations, while effective, were not the easiest tool to work with.  Fortunately, starting with SSIS in SQL Server 2012, you can now use package parameters for this purpose. In the example I will use for this demonstration, I’ll create two packages: one intended for use as a child package, and the other configured to execute said child package.  In the parent package I’m going to build a for each loop container in SSIS, and use package parameters to pass in a value – specifically, a ClientID – for each iteration of the loop.  The child package will be executed from within the for each loop, and will create one output file for each client, with the source query and filename dependent on the ClientID received from the parent package. Configuring the Child and Parent Packages When you create a new package, you’ll see the Parameters tab at the package level.  Clicking over to that tab allows you to add, edit, or delete package parameters. As shown above, the sample package has two parameters.  Note that I’ve set the name, data type, and default value for each of these.  Also note the column entitled Required: this allows me to specify whether the parameter value is optional (the default behavior) or required for package execution.  In this example, I have one parameter that is required, and the other is not. Let’s shift over to the parent package briefly, and demonstrate how to supply values to these parameters in the child package.  Using the execute package task, you can easily map variable values in the parent package to parameters in the child package. The execute package task in the parent package, shown above, has the variable vThisClient from the parent package mapped to the pClientID parameter shown earlier in the child package.  Note that there is no value mapped to the child package parameter named pOutputFolder.  Since this parameter has the Required property set to False, we don’t have to specify a value for it, which will cause that parameter to use the default value we supplied when designing the child pacakge. The last step in the parent package is to create the for each loop container I mentioned earlier, and place the execute package task inside it.  I’m using an object variable to store the distinct client ID values, and I use that as the iterator for the loop (I describe how to do this more in depth here).  For each iteration of the loop, a different client ID value will be passed into the child package parameter. The final step is to configure the child package to actually do something meaningful with the parameter values passed into it.  In this case, I’ve modified the OleDB source query to use the pClientID value in the WHERE clause of the query to restrict results for each iteration to a single client’s data.  Additionally, I’ll use both the pClientID and pOutputFolder parameters to dynamically build the output filename. As shown, the pClientID is used in the WHERE clause, so we only get the current client’s invoices for each iteration of the loop. For the flat file connection, I’m setting the Connection String property using an expression that engages both of the parameters for this package, as shown above. Parting Thoughts There are many uses for package parameters beyond a simple parent-child design pattern.  For example, you can create standalone packages (those not intended to be used as a child package) and still use parameters.  Parameter values may be supplied to a package directly at runtime by a SQL Server Agent job, through the command line (via dtexec.exe), or through T-SQL. Also, you can also have project parameters as well as package parameters.  Project parameters work in much the same way as package parameters, but the parameters apply to all packages in a project, not just a single package. Conclusion Of the numerous advantages of using catalog deployment model in SSIS 2012 and beyond, package parameters are near the top of the list.  Parameters allow you to easily share values from parent to child packages, enabling more dynamic behavior and better code encapsulation. If you want me to take a look at your server and its settings, or if your server is facing any issue we can Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • SQL SERVER – SQL Server High Availability Options – Notes from the Field #032

    - by Pinal Dave
    [Notes from Pinal]: When it is about High Availability or Disaster Recovery, I often see people getting confused. There are so many options available that when the user has to select what is the most optimal solution for their organization they are often confused. Most of the people even know the salient features of various options, but when they have to figure out one single option to use they are often not sure which option to use. I like to give ask my dear friend time all these kinds of complicated questions. He has a skill to make a complex subject very simple and easy to understand. Linchpin People are database coaches and wellness experts for a data driven world. In this 26th episode of the Notes from the Fields series database expert Tim Radney (partner at Linchpin People) explains in a very simple words the best High Availability Option for your SQL Server.  Working with SQL Server a common challenge we are faced with is providing the maximum uptime possible.  To meet these demands we have to design a solution to provide High Availability (HA). Microsoft SQL Server depending on your edition provides you with several options.  This could be database mirroring, log shipping, failover clusters, availability groups or replication. Each possible solution comes with pro’s and con’s.  Not anyone one solution fits all scenarios so understanding which solution meets which need is important.  As with anything IT related, you need to fully understand your requirements before trying to solution the problem.  When it comes to building an HA solution, you need to understand the risk your organization needs to mitigate the most. I have found that most are concerned about hardware failure and OS failures. Other common concerns are data corruption or storage issues.  For data corruption or storage issues you can mitigate those concerns by having a second copy of the databases. That can be accomplished with database mirroring, log shipping, replication or availability groups with a secondary replica.  Failover clustering and virtualization with shared storage do not provide redundancy of the data. I recently created a chart outlining some pros and cons of each of the technologies that I posted on my blog. I like to use this chart to help illustrate how each technology provides a certain number of benefits.  Each of these solutions carries with it some level of cost and complexity.  As a database professional we should all be familiar with these technologies so we can make the best possible choice for our organization. If you want me to take a look at your server and its settings, or if your server is facing any issue we can Fix Your SQL Server. Note: Tim has also written an excellent book on SQL Backup and Recovery, a must have for everyone. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Shrinking Database

    Read the article

  • Use date operations on a computed field filter in a view

    - by stephenhay
    I'd like to expose a filter in Views based on a Computed Field. This field should utilize the date operation "less than". Apparently, a date type is not available to computed field (varchar is). However, using varchar results in views treating the field as a string rather than as a date, without the operation I'm looking for. So I tried using a timestamp instead of a date, which allowed me to use an integer data type. The exposed view gives me a "less than" operation, but as it's still not a date, the user must type in a timestamp. Not handy. So I'm thinking the best way to do this is to create a new (hidden) CCK field which is a date field, and set the value of this field to the value of the Computed Field. I can then use the new CCK field for my exposed filter. But I'm not getting anywhere with this, as I'm unsure how to set another CCK field with a Computed Field. To return the value to the computed field itself, I'm using the standard: $node_field[0]['value'] = $newestdate; I would like to set the value of the new CCK field to $newestdate as well. Can anyone help?

    Read the article

  • SQL SERVER – SSIS Look Up Component – Cache Mode – Notes from the Field #028

    - by Pinal Dave
    [Notes from Pinal]: Lots of people think that SSIS is all about arranging various operations together in one logical flow. Well, the understanding is absolutely correct, but the implementation of the same is not as easy as it seems. Similarly most of the people think lookup component is just component which does look up for additional information and does not pay much attention to it. Due to the same reason they do not pay attention to the same and eventually get very bad performance. Linchpin People are database coaches and wellness experts for a data driven world. In this 28th episode of the Notes from the Fields series database expert Tim Mitchell (partner at Linchpin People) shares very interesting conversation related to how to write a good lookup component with Cache Mode. In SQL Server Integration Services, the lookup component is one of the most frequently used tools for data validation and completion.  The lookup component is provided as a means to virtually join one set of data to another to validate and/or retrieve missing values.  Properly configured, it is reliable and reasonably fast. Among the many settings available on the lookup component, one of the most critical is the cache mode.  This selection will determine whether and how the distinct lookup values are cached during package execution.  It is critical to know how cache modes affect the result of the lookup and the performance of the package, as choosing the wrong setting can lead to poorly performing packages, and in some cases, incorrect results. Full Cache The full cache mode setting is the default cache mode selection in the SSIS lookup transformation.  Like the name implies, full cache mode will cause the lookup transformation to retrieve and store in SSIS cache the entire set of data from the specified lookup location.  As a result, the data flow in which the lookup transformation resides will not start processing any data buffers until all of the rows from the lookup query have been cached in SSIS. The most commonly used cache mode is the full cache setting, and for good reason.  The full cache setting has the most practical applications, and should be considered the go-to cache setting when dealing with an untested set of data. With a moderately sized set of reference data, a lookup transformation using full cache mode usually performs well.  Full cache mode does not require multiple round trips to the database, since the entire reference result set is cached prior to data flow execution. There are a few potential gotchas to be aware of when using full cache mode.  First, you can see some performance issues – memory pressure in particular – when using full cache mode against large sets of reference data.  If the table you use for the lookup is very large (either deep or wide, or perhaps both), there’s going to be a performance cost associated with retrieving and caching all of that data.  Also, keep in mind that when doing a lookup on character data, full cache mode will always do a case-sensitive (and in some cases, space-sensitive) string comparison even if your database is set to a case-insensitive collation.  This is because the in-memory lookup uses a .NET string comparison (which is case- and space-sensitive) as opposed to a database string comparison (which may be case sensitive, depending on collation).  There’s a relatively easy workaround in which you can use the UPPER() or LOWER() function in the pipeline data and the reference data to ensure that case differences do not impact the success of your lookup operation.  Again, neither of these present a reason to avoid full cache mode, but should be used to determine whether full cache mode should be used in a given situation. Full cache mode is ideally useful when one or all of the following conditions exist: The size of the reference data set is small to moderately sized The size of the pipeline data set (the data you are comparing to the lookup table) is large, is unknown at design time, or is unpredictable Each distinct key value(s) in the pipeline data set is expected to be found multiple times in that set of data Partial Cache When using the partial cache setting, lookup values will still be cached, but only as each distinct value is encountered in the data flow.  Initially, each distinct value will be retrieved individually from the specified source, and then cached.  To be clear, this is a row-by-row lookup for each distinct key value(s). This is a less frequently used cache setting because it addresses a narrower set of scenarios.  Because each distinct key value(s) combination requires a relational round trip to the lookup source, performance can be an issue, especially with a large pipeline data set to be compared to the lookup data set.  If you have, for example, a million records from your pipeline data source, you have the potential for doing a million lookup queries against your lookup data source (depending on the number of distinct values in the key column(s)).  Therefore, one has to be keenly aware of the expected row count and value distribution of the pipeline data to safely use partial cache mode. Using partial cache mode is ideally suited for the conditions below: The size of the data in the pipeline (more specifically, the number of distinct key column) is relatively small The size of the lookup data is too large to effectively store in cache The lookup source is well indexed to allow for fast retrieval of row-by-row values No Cache As you might guess, selecting no cache mode will not add any values to the lookup cache in SSIS.  As a result, every single row in the pipeline data set will require a query against the lookup source.  Since no data is cached, it is possible to save a small amount of overhead in SSIS memory in cases where key values are not reused.  In the real world, I don’t see a lot of use of the no cache setting, but I can imagine some edge cases where it might be useful. As such, it’s critical to know your data before choosing this option.  Obviously, performance will be an issue with anything other than small sets of data, as the no cache setting requires row-by-row processing of all of the data in the pipeline. I would recommend considering the no cache mode only when all of the below conditions are true: The reference data set is too large to reasonably be loaded into SSIS memory The pipeline data set is small and is not expected to grow There are expected to be very few or no duplicates of the key values(s) in the pipeline data set (i.e., there would be no benefit from caching these values) Conclusion The cache mode, an often-overlooked setting on the SSIS lookup component, represents an important design decision in your SSIS data flow.  Choosing the right lookup cache mode directly impacts the fidelity of your results and the performance of package execution.  Know how this selection impacts your ETL loads, and you’ll end up with more reliable, faster packages. If you want me to take a look at your server and its settings, or if your server is facing any issue we can Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: SSIS

    Read the article

  • SHAREPOINT: Custom Field type property storage defined for custom field

    - by Eric Rockenbach
    ok here is a great question. I have a set of generic custom fields that are highly configurable from an end user perspective and the configuration is getting overbearing as there are nearly 100 plus items each custom field allows you to perform in the areas of Server/Client Validation, Server/Client Events/Actions, Server/Client Bindings parent/child, display properties for form/control, etc, etc. Right now I'm storing most of these values as "Text" in my field xml for my propertyschema. I'm very familiar with the multi column value, but this is not a complex custom type in sense it's an array. I also considered creating serilzable objects and stuffing them into the text field and then pulling out and de-serilizing them when editing through the field editor or acting on the rules through the custom spfield. So I'm trying to take the following for example <PropertySchema> <Fields> <Field Name="EntityColumnName" Hidden="TRUE" DisplayName="EntityColumnName" MaxLength="500" DisplaySize="200" Type="Text"> <default></default> </Field> <Field Name="EntityColumnParentPK" Hidden="TRUE" DisplayName="EntityColumnParentPK" MaxLength="500" DisplaySize="200" Type="Text"> <default></default> </Field> <Field Name="EntityColumnValueName" Hidden="TRUE" DisplayName="EntityColumnValueName" MaxLength="500" DisplaySize="200" Type="Text"> <default></default> </Field> <Field Name="EntityListName" Hidden="TRUE" DisplayName="EntityListName" MaxLength="500" DisplaySize="200" Type="Text"> <default></default> </Field> <Field Name="EntitySiteUrl" Hidden="TRUE" DisplayName="EntitySiteUrl" MaxLength="500" DisplaySize="200" Type="Text"> <default></default> </Field> </Fields> <PropertySchema> And turn it into this... <PropertySchema> <Fields> <Field Name="ServerValidationRules" Hidden="TRUE" DisplayName="ServerValidationRules" Type="ServerValidationRulesType"> <default></default> </Field> </Fields> <PropertySchema> Ideas?????

    Read the article

  • User-Defined Customer Events & their impact (FA Type Profile)

    - by Rajesh Sharma
    CC&B automatically creates field activities when a specific Customer Event takes place. This depends on the way you have setup your Field Activity Type Profiles, the templates within, and associated SP Condition(s) on the template. CC&B uses the service point type, its state and referenced customer event to determine which field activity type to generate.   Customer events available in the base product include: Cut for Non-payment (CNP) Disconnect Warning (DIWA) Reconnect for Payment (REPY) Reread (RERD) Stop Service (STOP) Start Service (STRT) Start/Stop (STSP)   Note the Field values/codes defined for each event.   CC&B comes with a flexibility to define new set of customer events. These can be defined in the Look Up - CUST_EVT_FLG. Values from the Look Up are used on the Field Activity Type Profile Template page.     So what's the use of having user-defined Customer Events? And how will the system detect such events in order to create field activity(s)?   Well, system can only detect such events when you reference a user-defined customer event on a Severance Event Type for an event type Create Field Activities.     This way you can create additional field activities of a specific field activity type for user-defined customer events.   One of our customers adopted this feature and created a user-defined customer event CNPW - Cut for Non-payment for Water Services. This event was then linked on a Field Activity Type Profile and referenced on a Severance Event - CUT FOR NON PAY-W. The associated Severance Process was configured to trigger a reconnection process if it was cancelled (done by defining a Post Cancel Algorithm). Whenever this Severance Event was executed, a specific type of Field Activity was generated for disconnection purposes. The Field Activity type was determined by the system from the Field Activity Type Profile referenced for the SP Type, SP's state and the referenced user-defined customer event. All was working well until the time when they realized that in spite of the Severance Process getting cancelled (when a payment was made); the Post Cancel Algorithm was not executed to start a Reconnection Severance Process for the purpose of generating a reconnection field activity and reconnecting the service.   Basically, the Post Cancel algorithm (if specified on a Severance Process Template) is triggered when a Severance Process gets cancelled because a credit transaction has affected/relieved a Service Agreement's debt.   So what exactly was happening? Now we come to actual question as to what is the impact in having a user-defined customer event.   System defined/base customer events are hard-coded across the entire system. There is an impact even if you remove any customer event entry from the Look Up. User-defined customer events are not recognized by the system anywhere else except in the severance process, as described above.   There are few programs which have routines to first validate the completion of disconnection field activities, which were raised as a result of customer event CNP - Cut for Non-payment in order to perform other associated actions. One such program is the Post Cancel Algorithm, referenced on a Severance Process Template, generally used to reconnect services which were disconnected from other Severance Event, specifically CNP - Cut for Non-Payment. Post cancel algorithm provided by the product - SEV POST CAN does the following (below is the algorithm's description):   This algorithm is called after a severance process has been cancelled (typically because the debt was paid and the SA is no longer eligible to be on the severance process). It checks to see if the process has a completed 'disconnect' event and, if so, starts a reconnect process using the Reconnect Severance Process Template defined in the parameter.    Notice the underlined text. This algorithm implicitly checks for Field Activities having completed status, which were generated from Severance Events as a result of CNP - Cut for Non-payment customer event.   Now if we look back to the customer's issue, we can relate that the Post Cancel algorithm was triggered, but was not able to find any 'Completed' CNP - Cut for Non-payment related field activity. And hence was not able to start a reconnection severance process. This was because a field activity was generated and completed for a customer event CNPW - Cut for Non-payment of Water Services instead.   To conclude, if you introduce new customer events that extend or simulate base customer events, the ones that are included in the base product, ensure that there is no other impact either direct or indirect to other business functions that the application has to offer.  

    Read the article

  • Limitations of User-Defined Customer Events (FA Type Profile)

    - by Rajesh Sharma
    CC&B automatically creates field activities when a specific Customer Event takes place. This depends on the way you have setup your Field Activity Type Profiles, the templates within, and associated SP Condition(s) on the template. CC&B uses the service point type, its state and referenced customer event to determine which field activity type to generate.   Customer events available in the base product include: Cut for Non-payment (CNP) Disconnect Warning (DIWA) Reconnect for Payment (REPY) Reread (RERD) Stop Service (STOP) Start Service (STRT) Start/Stop (STSP)   Note the Field values/codes defined for each event.   CC&B comes with a flexibility to define new set of customer events. These can be defined in the Look Up - CUST_EVT_FLG. Values from the Look Up are used on the Field Activity Type Profile Template page.     So what's the use of having user-defined Customer Events? And how will the system detect such events in order to create field activity(s)?   Well, system can only detect such events when you reference a user-defined customer event on a Severance Event Type for an event type Create Field Activities.     This way you can create additional field activities of a specific field activity type for user-defined customer events.   One of our customers adopted this feature and created a user-defined customer event CNPW - Cut for Non-payment for Water Services. This event was then linked on a Field Activity Type Profile and referenced on a Severance Event - CUT FOR NON PAY-W. The associated Severance Process was configured to trigger a reconnection process if it was cancelled (done by defining a Post Cancel Algorithm). Whenever this Severance Event was executed, a specific type of Field Activity was generated for disconnection purposes. The Field Activity type was determined by the system from the Field Activity Type Profile referenced for the SP Type, SP's state and the referenced user-defined customer event. All was working well until the time when they realized that in spite of the Severance Process getting cancelled (when a payment was made); the Post Cancel Algorithm was not executed to start a Reconnection Severance Process for the purpose of generating a reconnection field activity and reconnecting the service.   Basically, the Post Cancel algorithm (if specified on a Severance Process Template) is triggered when a Severance Process gets cancelled because a credit transaction has affected/relieved a Service Agreement's debt.   So what exactly was happening? Now we come to actual question as to what are limitations in having user-defined customer event.   System defined/base customer events are hard-coded across the entire system. There is an impact even if you remove any customer event entry from the Look Up. User-defined customer events are not recognized by the system anywhere else except in the severance process, as described above.   There are few programs which have routines to first validate the completion of disconnection field activities, which were raised as a result of customer event CNP - Cut for Non-payment in order to perform other associated actions. One such program is the Post Cancel Algorithm, referenced on a Severance Process Template, generally used to reconnect services which were disconnected from other Severance Event, specifically CNP - Cut for Non-Payment. Post cancel algorithm provided by the product - SEV POST CAN does the following (below is the algorithm's description):   This algorithm is called after a severance process has been cancelled (typically because the debt was paid and the SA is no longer eligible to be on the severance process). It checks to see if the process has a completed 'disconnect' event and, if so, starts a reconnect process using the Reconnect Severance Process Template defined in the parameter.    Notice the underlined text. This algorithm implicitly checks for Field Activities having completed status, which were generated from Severance Events as a result of CNP - Cut for Non-payment customer event.   Now if we look back to the customer's issue, we can relate that the Post Cancel algorithm was triggered, but was not able to find any 'Completed' CNP - Cut for Non-payment related field activity. And hence was not able to start a reconnection severance process. This was because a field activity was generated and completed for a customer event CNPW - Cut for Non-payment of Water Services instead.   To conclude, if you introduce new customer events, you should be aware that you don't extend or simulate base customer events, the ones that are included in the base product, as they are further used to provide/validate additional business functions.  

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Apache + Passenger not passing on custom status codes

    - by harm
    I'm currently building an API. This API communicates with the client via status codes. I created several custom status codes (as per http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6) in order to inform the client on certain things. For example I introduced the 481 status code to signify a specific client error. The Rails app I wrote works like a charm. But when Apache and Passenger are serving it things run aground. When I provoke a 481 error the response header looks like this: HTTP/1.1 500 Internal Server Error Date: Wed, 19 May 2010 06:37:05 GMT Server: Apache/2.2.9 (Debian) Phusion_Passenger/2.2.5 mod_ssl/2.2.9 OpenSSL/0.9.8g X-Powered-By: Phusion Passenger (mod_rails/mod_rack) 2.2.5 Cache-Control: no-cache X-Runtime: 1938 Set-Cookie: _session_id=32bc259dc763193ad57ae7dc19d5f57e; path=/; HttpOnly Content-Length: 62 Status: 481 Content-Type: application/json; charset=utf-8 As you can see the original Status header is still there almost a the end. But the 'true' status header (the very first line) is quiet different. It seems that Apache doesn't like Status headers it has no knowledge of and thus assumes an error. Is there anyway to fix this? Maybe via the mod_headers ( http://httpd.apache.org/docs/2.2/mod/mod_headers.html) module? I don't know enough of Apache to figure this out on my own. Thanks,

    Read the article

  • List of phone number country codes

    - by jesperlind
    On this Wikipedia entry I found out that ITU Telecommunication Standardization Sector (ITU-T) is providing such list of country calling codes. Here is a pdf: http://www.itu.int/dms_pub/itu-t/opb/sp/T-SP-E.164D-2009-PDF-E.pdf I wonder where to find this in a xml file or similar? I need to do find out which country a phone number is from, both in javascript and c#.

    Read the article

  • Linq To SQL: Behaviour for table field which is NotNull and having Default value or binding

    - by kaushalparik27
    I found this something interesting while wandering over community which I would like to share. The post is whole about: DBML is not considering the table field's "Default value or Binding" setting which is a NotNull. I mean the field which can not be null but having default value set needs to be set IsDbGenerated = true in DBML file explicitly.Consider this situation: There is a simple tblEmployee table with below structure: The fields are simple. EmployeeID is a Primary Key with Identity Specification = True with Identity Seed = 1 to autogenerate numeric value for this field. EmployeeName and their EmailAddress to store in rest of 2 fields. And the last one is "DateAdded" with DateTime datatype which doesn't allow NULL but having Default Value/Binding with "GetDate()". That means if we don't pass any value to this field then SQL will insert current date in "DateAdded" field.So, I start with a new website, add a DBML file and dropped the said table to generate LINQ To SQL context class. Finally, I write a simple code snippet to insert data into the tblEmployee table; BUT, I am not passing any value to "DateAdded" field. Because I am considering SQL Server's "Default Value or Binding (GetDate())" setting to this field and understand that SQL will insert current date to this field.        using (TestDatabaseDataContext context = new TestDatabaseDataContext())        {            tblEmployee tblEmpObjet = new tblEmployee();            tblEmpObjet.EmployeeName = "KaushaL";            tblEmpObjet.EmployeeEmailAddress = "[email protected]";            context.tblEmployees.InsertOnSubmit(tblEmpObjet);            context.SubmitChanges();        }Here comes the twist when application give me below error:  This is something not expecting! From the error it clearly depicts that LINQ is passing NULL value to "DateAdded" Field while according to my understanding it should respect Sql Server's "Default value or Binding" setting for this field. A bit googling and I found very interesting related to this problem.When we set Primary Key to any field with "Identity Specification" Property set to true; DBML set one important property "IsDbGenerated=true" for this field. BUT, when we set "Default Value or Biding" property for some field; we need to explicitly tell the DBML/LINQ to let it know that this field is having default binding at DB side that needs to be respected if I don't pass any value. So, the solution is: You need to explicitly set "IsDbGenerated=true" for such field to tell the LINQ that the field is having default value or binding at Sql Server side so, please don't worry if i don't pass any value for it.You can select the field and set this property from property window in DBML Designer file or write the property in DBML.Designer.cs file directly. I have attached a working example with required table script with this post here. I hope this would be helpful for someone hunting for the same. Happy Discovery!

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >